
Selective Opening Security for Receivers

Carmit Hazay ∗ Arpita Patra † Bogdan Warinschi ‡

Abstract

In a selective opening (SO) attack an adversary breaks into a subset of honestly created ciphertexts
and tries to learn information on the plaintexts of some untouched (but potentially related) ciphertexts.
Contrary to intuition, standard security notions do not always imply security against this type of adver-
sary, making SO security an important standalone goal. In this paper we study receiver security, where
the attacker is allowed to obtain the decryption keys corresponding to some of the ciphertexts.

First we study the relation between two existing security definitions, one based on simulation and
the other based on indistinguishability, and show that the former is strictly stronger. We continue with
feasibility results for both notions which we show can be achieved from (variants of) non-committing
encryption schemes. In particular, we show that indistinguishability-based SO security can be achieved
from a tweaked variant of non-committing encryption which, in turn, can be instantiated from a variety
of basic, well-established, assumptions. We conclude our study by showing that SO security is however
strictly weaker than all variants of non-committing encryption that we consider, leaving potentially more
efficient constructions as an interesting open problem.

Keywords: Selective Opening Attacks, Encryption Schemes, Non-committing Encryption

∗Faculty of Engineering, Bar-Ilan University, Israel. Email: carmit.hazay@biu.ac.il.
†Dept. of Computer Science & Automation, Indian Institute of Science, India. Email: arpita@csa.iisc.ernet.in.
‡Department of Computer Science, University of Bristol, United Kingdom. Email: csxbw@bristol.ac.uk.

1 Introduction

Security notions for encryption come in many forms that reflect different attacker goals (e.g. one-wayness,
indistinguishability for plaintexts or non-malleability of ciphertexts), variations in possible attack scenarios
(e.g. chosen plaintext or ciphertext attacks) and definitional paradigms (e.g. through games or simulation).
A class of attacks motivated by practical considerations are those where the adversary may perform selective
openings (SO). Here, an adversary is allowed to break into a subset of honestly created ciphertexts leaving
untouched other (potentially related) ciphertexts.

This attack scenario was first identified in the context of adaptively secure multi-party computation
(MPC) where communication is over encrypted channels visible to the adversary. The standard trust model
considers an adversary who, based on the information that he sees, can decide to corrupt parties and learn
their internal state. In turn, this may allow the attacker to determine the parties’ long term secret keys
and/or the randomness used to create the ciphertexts. The broader context of Internet communication also
naturally gives rise to SO attacks. Attackers that access and store large amount of encrypted internet traffic
are a reality, and getting access to the internal states of honest parties can be done by leveraging design or
implementation weaknesses of deployed systems. For example the Heartbleed attack allowed a remote party
to extract (among other things) the encryption keys used to protect OpenSSL connections.

Security against SO attacks comes in several distinct flavors. Depending on the attack scenario, we
distinguish two settings that fall under the general idea of SO attacks. In sender security, we have n senders
and one receiver. The receiver holds a secret key relative to a public key known to all the senders. The
senders encrypt messages for the receiver and the adversary is allowed to corrupt some of the senders (and
learn the messages and randomness underlying some of the ciphertexts). The concern is that the messages
sent by uncorrupted senders stay secret. The second scenario deals with receiver security. Here we consider
one sender and n receivers who hold independently generated public and secret keys. The attacker is allowed
to corrupt some of the receivers (and learn the secret keys that decrypt some of the observed ciphertexts).
Security in this setting is concerned with the messages received by uncorrupted receivers. For each of these
settings, security can be defined using either the standard indistinguishability paradigm or simulation-based
definitions. Importantly, both scenarios capture realistic attacks in secure computation where usually every
party acts as either a sender or a receiver at some point of time during a protocol execution.

Since most of the existent encryption schemes have been analyzed w.r.t. traditional notions of security
(e.g. indistinguishability under chosen plaintext or chosen ciphertext attacks (ind-cpa, ind-cca)), a central
question in this area is to understand how security against SO attacks relates to the established definitions.
Despite compelling intuition that the only information that an adversary obtains is what it can glean from the
opened plaintexts, progress towards confirming or disproving this conjecture has been rather slow. Perhaps
the most interesting and surprising results are due to Bellare et al. [BHY09, BDWY12] who showed that
selective sender security as captured via simulation based definitions is strictly stronger than indistinguisha-
bility under chosen plaintext attacks [GM84] (denoted by ind-cpa security). The gap between standard
notions of security and SO security is uncomfortable: while SO attacks may naturally occur we do not have
a clear understanding of the level of security that existing constructions offer nor do we have many ideas on
how to achieve security against such attacks.

In this paper we study receiver security. This setting is less studied than sender security yet it corresponds
to more plausible attacks (e.g. the Heartbleed attack). In a nutshell, we clarify the relation between various
security notions for receiver security and propose novel constructions. Before we describe our contributions
in detail we overview existing work in the area and take this opportunity to introduce more carefully the
different security notions of SO security.

1

1.1 Related Work

Selective opening attacks were first introduced in [DNRS03] in the context of commitment schemes. In the
context of encryption schemes, the first rigorous definitions were proposed by Bellare, Hofheinz and Yilek
[BHY09]. They studied SO security for public key encryption (PKE), for both the receiver and the sender
settings and for each setting proposed two types of definitions, indistinguishability-based and simulation-
based ones. Very roughly, the indistinguishability-based definition (denoted by ind-so) requires that an
adversary that sees a vector of ciphertexts cannot distinguish the true plaintexts of the unopened ciphertexts
from independently sampled plaintexts. This is required even with access to the randomness used for gener-
ating the opened ciphertexts (in the sender corruption setting), or with access to the secret keys that decrypt
the opened ciphertexts (in the receiver corruption setting). This definition requires messages to come from
a distribution that is efficiently resamplable. A stronger security variant that does not restrict the message
distribution called full ind-so has been introduced later by Böhl, Hofheinz and Kraschewski [BHK12]. The
simulation based notion (denoted by sim-so) is reminiscent of the definitional approach from [DNRS03]
and requires computational indistinguishability between an idealized execution and the real one.

The first feasibility results for security against selective opening attacks are for the sender setting
and leverage an interesting relation with lossy encryption: a lossy PKE implies ind-so for sender secu-
rity [BHY09]. Furthermore, if the PKE scheme has an efficient opening algorithm of ciphertexts, then
the scheme also satisfies sim-so security. The work of Hemenway et al. [HLOV11] shows that lossy (and
therefore ind-so) PKE can be constructed based on several generic cryptographic primitives.

For primitives that benefit from multiple security notions, a central question is to understand how these
notions relate to each other. This type of results are important as they clarify the limitations of some of
the notions and enable trade-offs between security and efficiency (to gain efficiency, a scheme with weaker
guarantees may be employed, if the setting allows it). The relation between traditional security notions of
encryption and security against selective opening attacks was a long-standing open problem that was solved
by Bellare et al. [BDWY12]. Their result is that standard ind-cpa security does not imply sim-so (neither
in the sender nor in the receiver setting). There is no fully satisfactory result concerning the relation between
ind-cpa and ind-so. Here, the best result is that these two notions imply each other in the generic group
model [HR14] and that for the chosen-chiphertext attacks variant (CCA) the two notions are distinct.

Relations between the different notions for selective opening have mainly been studied in the sender
setting. Böhl et al. establish that full ind-so and sim-so are incomparable. Recently, [ROV14] introduced an
even stronger variant of the full ind-so definition, and showed that many ind-cpa, ind-so and sim-so secure
encryption schemes are insecure according to their new notion. They further showed that sim-so definition
does not imply lossy encryption even without efficient openability. Finally, SO security has been considered
for CCA attacks in [FHKW10, HLQ13] and in the identity-based encryption scenario in [BWY11].

1.2 Our Contribution

With only two exceptions [BHY09, BDWY12] prior work on SO security has addressed mainly the sender
setting. We concentrate on the receiver setting. Though theoretically the feasibility for SO security for
the receiver is implied by the existence of non-committing encryption schemes [CFGN96, Nie02, DN00,
CDSMW09], the state of the art constructions still leave many interesting open problems in terms of relations
between notions and feasibility results. This is the focus of this work.

For relation between notions, similarly to prior separating results in the SO setting [BHK12, HR14,
ROV14], we demonstrate the existence of a separating scheme that is based on generic assumptions and
can be instantiated under various concrete assumptions. For constructions, we find it useful to leverage the

2

close relation between (variants of) non-committing encryption and security under selective opening attacks.
For example, we show that ind-so security follows from a tweaked variant of non-committing encryption
which, in turn, we show how to instantiate from a variety of standard assumptions. Interestingly, we also
show a separation between SO security and non-committing encryption (which leaves open the question of
potentially more efficient constructions that meet the former notion but not the latter). Below, we elaborate
on our results in details.

Notation-wise, we denote the indistinguishability and simulation-based definitions in the receiver setting
by rind-so and rsim-so, respectively. For the corresponding notions in the sender setting we write sind-so
and ssim-so, respectively. That is, we prepend “s” or “r” to indicate if the definition is for sender security
or receiver security.

The relation between rind-so and rsim-so. First, we study the relation between the indistinguishabil-
ity and simulation-based security notions in the receiver setting. We establish that the rind-so notion is
strictly weaker (and therefore easier to realize) than the notion of rsim-so, by presenting a concrete pubic
key scheme that meets the former but not the latter level of security. Loosely speaking, a ciphertext includes
a commitment to the plaintext together with encryptions of the opening information of this commitment
(namely, the plaintext and the corresponding randomness). We then prove that when switching to an alter-
native fake mode the hiding properties of our building blocks (commitment and encryption schemes) imply
that the ciphertext does not contain any information about the plaintext. Nevertheless, simulation always
fails since it would require breaking the binding property of the commitment. Applying the observation that
rsim-so implies rind-so security,1 we obtain the result that rind-so is strictly weaker.

In more details, our separating scheme is built from a commitment scheme and a primitive called non-
committing encryption for the receiver (NCER) [CHK05] that operates in two indistinguishable ciphertexts
modes: valid and fake, where a fake ciphertext can be decrypted into any plaintext using a proper secret key.
This property is referred to as secret key equivocation and is implied by the fact that fake ciphertexts are
lossy which, in turn, implies rind-so security. Specifically, the security of our scheme implies that:

Theorem 1.1. (Informal) There exists a PKE that is rind-so secure but is not rsim-so secure.

Somewhat related to our work, [BDWY12] proved that the standard ind-cpa security does not imply
rsim-so security via the notion of decryption verifiability – the idea that it is hard to decrypt a ciphertext
into two distinct messages (even using two different secret keys). Specifically, [BDWY12] showed that any
ind-cpa secure PKE that is decryption verifiable cannot be rsim-so secure. Compared with their result,
our result implies that rsim-so security is strictly stronger than rind-so security (which may turn out to be
stronger than ind-cpa security).

The feasibility of rind-so and rsim-so. We recall that in the sender setting, the notions sind-so and
ssim-so are achievable from lossy encryption and lossy encryption with efficient openability.2 We identify
a security notion (and a variant) which plays for receiver security the role that lossy encryption plays in
sender security. Specifically, we prove that NCER implies rsim-so and that a variant of NCER, which we

1This can be derived from the fact that the adversary’s view is identical for any two simulated executions with different sets of
unopened messages, as the simulator never gets to see these messages.

2Recall that a lossy encryption scheme is a public key encryption with the additional ability to generate fake indistinguishable
public keys so that a fake ciphertext (that is generated using a fake public key) is lossy and is a non-committing ciphertext with
respect to the plaintext. A lossy encryption implies the existence of an opening algorithm (possibly inefficient) that can compute a
randomness for a given fake ciphertext and a message.

3

refer as tweaked NCER (formally defined in Section 3.3), implies rind-so. Loosely speaking, the security
of tweaked NCER is formalized as follows. Similarly to NCER, tweaked NCER has the ability to create
fake ciphertexts that are computationally indistinguishable from real ciphertexts. Nevertheless, while in
NCER a fake ciphertext can be efficiently decrypted to any plaintext (by producing a matching secret key),
in tweaked NCER a fake ciphertext can only be efficiently decrypted to a concrete predetermined plaintext.
Informally, our results are captured by the following theorem:

Theorem 1.2. (Informal) Assume the existence of tweaked NCER and NCER, then there exist PKE schemes
that are rind-so and rsim-so secure, respectively.

Interestingly, we show that the converse implications do not hold. That is, a rsim-so secure PKE is not
necessarily a tweaked NCER or a NCER. This further implies that a rind-so secure PKE is not necessarily
a tweaked NCER or NCER. This result is reminiscent of the previous result that sim-so and rind-so secure
PKE do not imply lossy encryption even without efficient openability [ROV14].

Our separating scheme is based on an arbitrary key-simulatable PKE schemes. Intuitively, in such
schemes, it is possible to produce a public key without sampling the corresponding secret key. The set
of obliviously sampled public keys may be larger than the the set of public keys sampled together with
their associated secret key, yet it is possible to prove a public key sampled along with a secret key as one
sampled without. In these schemes we also require that the two type of keys are also computationally
indistinguishable. Our proof holds for the case that the set of obliviously sampled keys is indeed larger, so
that not every obliviously sampled public key can be explained to possess a secret key. In summary, we
prove that:

Theorem 1.3. (Informal) Assume the existence of key-simulatable PKE, then there exists a PKE scheme that
is rsim-so secure but is neither tweaked NCER nor NCER.

The constructions that we present show that rsim-so (and rind-so) security can be achieved under the
same assumptions as key-simulatable PKE – there are results that show that the latter can be constructed
from a variety of hardness assumptions such as Decisional Diffie-Hellman (DDH) and Decisional Composite
Residuosity (DCR). They also show that we can construct schemes from any hardness assumption that
implies simulatable PKE [DN00] (where both public keys and ciphertexts can be obliviously sampled).

Realizing tweaked NCER. Finally, we demonstrate the broad applicability of this primitive and show
how to construct it from various important primitives: key-simultable PKE, two-round honest-receiver
statistically-hiding

(
2
1

)
oblivious transfer (OT) and hash proof systems (HPS). We stress that it is not known

how to build NCER under these assumptions (or any other generic assumption), which implies that tweaked
NCER is much easier to realize. In addition, we prove that the two existing NCER schemes [CHK05] with
security under the DDH and DCR hardness assumptions imply the tweaked NCER notion, where surpris-
ingly, the former construction that is a secure NCER for only polynomial-size message spaces, is a tweaked
NCER for exponential-size message spaces (this further hints that tweaked NCER may be constructed more
efficiently than NCER). These results imply that tweaked NCER (and thus rind-so) can be realized based
on DDH, DCR, RSA, factoring and learning with errors (LWE) hardness assumptions.

Our results are summarized in Fig. 1.

The relation between sind-so and ssim-so. As a side result, we study the relation between the indistin-
guishability and simulation based security definitions in the sender setting. We show that sind-so is strictly

4

Key-Simulatable PKE

(
2
1

)
-OT

HPS

NCER

Tweaked NCER rind-so rsim-so

Figure 1: The arrows can be read as follows: solid arrows denote implication, crossed arrows denote
counterexamples, dashed arrows denote assumption-wise implication and dotted arrows denote implication
with respect to concrete instances (where the implication may not hold in general). The implication of
receiver indistinguishability security by simulation security is a known result.

weaker than the notion of ssim-so by presenting a concrete public key scheme that meets the former but
not the latter level of security. Our separating scheme is built using the two primitives lossy public key
encryption and commitment scheme. We exploit the hiding properties of these building blocks to prove that
our scheme implies sind-so security. On the other hand, simulation always fails since it implies breaking
the binding property of the commitment scheme. Informally, we prove the following theorem:

Theorem 1.4. (Informal) There exists a PKE that is sind-so secure but is not ssim-so secure.

We stress that this was already demonstrated indirectly in [BY09] (by combining two separation results).
Here we design a concrete counter example to demonstrate the same in a simpler manner. A similar result
has been shown for full ind-so and sim-so in [BHK12], demonstrating that these definitions do not imply
each other in the sender setting.

To sum up, we study the different levels for receiver security in the presence of SO attacks. We clarify the
relation between these notions and provide constructions that meet them using the close conceptual relation
between SO security and non-committing encryption. From a broader perspective, our results position more
precisely SO security for the receiver in the spectrum of security notions for encryption.

2 Preliminaries

Basic notations. For x, y ∈ N with x < y, let [x] := {1, . . . , x} and [x, y] := {x, x + 1, . . . , y}. We
denote the computational security parameter by k and statistical security parameter by s. A function µ(·) is
negligible in security parameter κ if for every polynomial p(·) there exists a valueN such that for all κ > N
it holds that µ(k) < 1

p(κ) , where κ is either k or s. For a finite set S, we denote by s ← S the process
of sampling s uniformly. For a distribution X , we denote by x ← X the process of sampling x from X .
For a deterministic algorithm A, we write a ← A(x) the process of running A on input x and assigning
a the result. For a randomized algorithm A, we write a ← A(x; r) the process of running A on input x
and randomness r and assigning y the result. At times we skip r in the parenthesis to avoid mentioning it

5

explicitly. We write PPT for probabilistic polynomial-time. For a PKE (or commitment) scheme C, we use
the notationMC and respectively RC to denote the input and the randomness space of the encryption (or
commitment) algorithm of C. We use bold fonts to denote vectors. If m is an n dimensional vector, we
write mi for the i-th entry in m; if I ⊆ [n] is a set of indices we write mI for the vector of dimension |I|
obtained by projecting m on the coordinates in I.

2.1 Public Key Encryption

A public key encryption (PKE) scheme PKE with message space M consists of three PPT algorithms
(Gen,Enc,Dec). The key generation algorithm Gen(1k) outputs a public key pk and a secret key sk. The
encryption algorithm Encpk(m; r) takes pk and a message m ∈ M and randomness r ∈ R, and outputs
a ciphertext c. The decryption algorithm Decsk(c) takes sk and a ciphertext c and outputs a message m.
For correctness, we require that m = Decsk(c) for all m ∈ M and all (pk, sk) ← Gen(1k) and all
c ← Encpk(m). The standard notion of security for PKE is indistinguishability under chosen plaintext
attacks, denoted by ind-cpa [GM84] (and the corresponding experiment is denoted as Expind-cpa

PKE). As a
general remark, we note that whenever we refer to a secret key, we refer to the randomness used to generate
it by the key generation algorithm.

2.2 Selective Opening Security

Depending on the attack scenario, we distinguish two settings that fall under the general idea of SO attacks.
In sender security, we have n senders and one receiver. The receiver holds a secret key relative to a public
key known to all senders. The senders send messages to the receiver and the adversary is allowed to corrupt
some of the senders (and learn the messages and randomness underlying some of the ciphertexts). The
concern is that the messages sent by uncorrupted users stay secret. The second scenario deals with receiver
security. Here we consider one sender and n receivers who hold independently generated public and secret
keys. The attacker is allowed to learn the secret keys of some of the receivers. Security is concerned with
the messages received by uncorrupted receivers.

For each of these settings we consider two definitions: (1) an indistinguishability based definition
[BHY09] and (2) a simulation based definition that follows from [BHY09] which, in turn, builds on the
one proposed by [DNRS03] in the context of commitments. Indistinguishability-based definitions require
that an adversary that sees a vector of ciphertexts cannot distinguish the true plaintexts of the ciphertexts
from independently sampled plaintexts, even in the presence of the randomness used for generating the
opened ciphertexts (in the sender corruption setting), or the secret keys that decrypt the opened ciphertexts
(in the receiver corruption setting). The indistinguishability based definitions use the notion of efficiently
resamplable message distributions which we recall next following [BHK12].

Definition 2.1 (Efficiently resamplable distribution). Let n = n(k) > 0 and let Dist be a joint distribution
over

(
{0, 1}k

)n. We say that Dist is efficiently resamplable if there is a PPT algorithm ResampDist such that

for any I ⊆ [n] and any partial vector m′I ∈
(
{0, 1}k

)|I|, ResampDist(m
′
I) returns a vector m sampled

from Dist|m′I , i.e. m′ is sampled from Dist conditioned on mI = m′I .

Below, we recall indistinguishability and simulation based definitions for security in the presence of
selective opening attacks3. We present the definitions for sender and receiver security. To avoid heavy

3We remark that a stronger security notion that does not does require efficient resemplability is possible, but no constructions
that satisfy this stronger notion are known.

6

notation we follow the following conventions when naming the security notions: we use “ind” or “sim” to
indicate if the definition is indistinguishability-based or simulation-based, and prepend “s” or “r” to indicate
if the definition is for sender security or receiver security; we keep “so” in the name of the notion to indicate
that we deal with selective opening attacks. We also note that we consider chosen plaintext attacks only, but
avoid showing this explicitly in the names of the security notions.

Definition 2.2 (Indistinguishability based SO security). For a PKE scheme PKE = (Gen,Enc,Dec), a
polynomially bounded function n = n(k) > 0 and a stateful PPT adversary A, consider the following two
experiments; the left experiment corresponds to sender corruptions, whereas, the right experiment corre-
sponds to receiver corruptions.

Experiment. Expsind-so
PKE (A, k)

b← {0, 1}
(pk, sk)← Gen(1k)
(Dist,ResampDist, state1)← A(pk)
m := (mi)i∈[n] ← Dist
r := (ri)i∈[n] ← Rn

PKE

e := (ei)i∈[n] ← (Encpk(mi; ri))i∈[n]
(I, state2)← A(e, state1)
m′ ← Resamp(mI)
m∗ = m if b = 0, else m∗ = m′

b′ ← A(rI ,m
∗, state2),

Return 1 if b = b′, and 0 otherwise.

Experiment. Exprind-so
PKE (A, k)

b← {0, 1}
(pk, sk) := (pki, ski)← (Gen(1k))i∈[n]
(Dist,ResampDist, state1)← A(pk)
m := (mi)i∈[n] ← Dist
r := (ri)i∈[n] ← Rn

PKE

e := (ei)i∈[n] ← (Encpki
(mi; ri))i∈[n]

(I, state2)← A(e, state1)
m′ ← Resamp(mI)
m∗ = m if b = 0, else m∗ = m′

b′ ← A(skI ,m
∗, state2)

Return 1 if b = b′, and 0 otherwise.

In the above experiments we only assume adversaries that are well-behaved in that they always output
efficiently resamplable distributions together with resampling algorithms.
We say that PKE is sind-so secure if for a well-behaved PPT A there exists a negligible function µ = µ(k)
such that

Advsind-so
PKE (A, k) := 2

∣∣∣∣Pr[Expsind-so
PKE (A, k) = 1]− 1

2

∣∣∣∣ ≤ µ.
We say that PKE is rind-so secure if for a well-behaved PPT A there exists a negligible function µ = µ(k)
such that

Advrind-so
PKE (A, k) := 2

∣∣∣∣Pr[Exprind-so
PKE (A, k) = 1]− 1

2

∣∣∣∣ ≤ µ.
Pr
[
Expsind-so

PKE (A, k) = 1
]

and Pr
[
Exprind-so

PKE (A, k) = 1
]

denote the winning probability of A in the re-
spective experiments.

Simulation based security is defined, as usual, by comparing an idealized execution with the real one.
Again, we consider both sender and receiver security.

Definition 2.3 (Simulation based SO security). For a PKE scheme PKE = (Gen,Enc,Dec), a polynomi-
ally bounded function n = n(k) > 0, a PPT adversary A and a PPT algorithm S, we define the following
pairs of experiments.

We say that PKE is ssim-so secure iff for every PPT A there is a PPT algorithm S, a PPT distinguisher
D with binary output and a negligible function µ = µ(k) such that

Advssim-so
PKE (D, k) :=

∣∣∣Pr[1← D(Expssim-so-real
PKE (A, k))]− Pr[1← D(Expssim-so-ideal

PKE (S, k))]
∣∣∣ ≤ µ.

7

Experiment. Expssim-so-real
PKE (A, k)

(pk, sk)← Gen(1k)
(Dist, state1)← A(pk)
m := (mi)i∈[n] ← Dist
r := (ri)i∈[n] ← Rn

PKE

e := (ei)i∈[n] ← (Encpk(mi; ri))i∈[n]
(I, state2)← A(e, state1)
output← A(rI ,mI , state2)
Return (m,Dist, I, output).

Experiment. Expssim-so-ideal
PKE (S, k)

(Dist, state1)← S(·)
m := (mi)i∈[n] ← Dist
(I, state2)← S(state1)
output← S(mI , state2)
Return (m,Dist, I, output).

Experiment. Exprsim-so-real
PKE (A, k)

(pk, sk) := (pki, ski)← (Gen(1k))i∈[n]
(Dist, state1)← A(pk)
m := (mi)i∈[n] ← Dist
r := (ri)i∈[n] ← Rn

PKE

e := (ei)i∈[n] ← (Encpki
(mi; ri))i∈[n]

(I, state2)← A(e, state1)
output← A(skI ,mI , state2)
Return (m,Dist, I, output).

Experiment. Exprsim-so-ideal
PKE (S, k)

(Dist, state1)← S(·)
m := (mi)i∈[n] ← Dist
(I, state2)← S(state1)
output← S(mI , state2)
Return (m,Dist, I, output).

We say that PKE is rsim-so secure iff for every PPT A there is a PPT algorithm S, a PPT distinguisher
D with binary output and a negligible function µ = µ(k) such that

Advrsim-so
PKE (D, k) :=

∣∣∣Pr[1← D(Exprsim-so-real
PKE (A, k))]− Pr[1← D(Exprsim-so-ideal

PKE (S, k))]
∣∣∣ ≤ µ.

Our definitions consider non-adaptive attacks, where the adversary corrupts the parties in one go. We
note that all our results will remain unaffected even in the face of an adaptive adversary [BHK12].

3 Building Blocks

Our constructions employ a number of fundamental cryptographic building blocks as well as a new primitive
which we denote by tweaked NCER. We describe them and their security definitions below.

3.1 Commitment Schemes

We require a non-interactive commitment scheme (NISHCOM) that is statistically hiding.

Definition 3.1 (NISHCOM). A non-interactive commitment scheme nisCom consists of two algorithms
(nisCommit, nisOpen) defined as follows. Given a security parameter k, message m ∈ MnisCom and
random coins r ∈ RnisCom, PPT algorithm nisCommit outputs commitment c. Given k, commitment c and
message m, (possibly inefficient) algorithm nisOpen outputs r. We require the following properties:

– Correctness. We require that c = nisCommit(m; r) for all m ∈MnisCom and r ← nisOpen(c,m).

– Security. A NISHCOM nisCom is stat-hide secure if commitments of two distinct messages are statis-
tically indistinguishable. Specifically, for any unbounded powerful adversary A, there exists a negli-
gible function µ = µ(s) such that Advstat-hide

nisCom (A, k) := |Pr[1← A(c0)]− Pr[1← A(c1)]| ≤ µ for
ci ← nisCommit(mi) for i ∈ {0, 1} and m0,m1 ∈MnisCom.

A NISHCOM nisCom is comp-bind secure if no commitment can be opened to two different messages
in polynomial time. Specifically, the advantage Advcomp-bind

nisCom (A, k) of A defined by Pr[(m0, r0,m1, r1)←

8

A(k) : nisCommit(m0; r0) = nisCommit(m1; r1)] (with the probability over the choice of the coins
of A) is smaller than some negligible function µ = µ(k).

A NISHCOM nisCom is called secure it is {stat-hide, comp-bind} secure.

3.2 Non-Committing Encryption for Receiver (NCER)

A non-committing encryption for receiver (NCER) [JL00, CHK05] is a PKE with the property that there is a
way to generate fake ciphertexts which can then be decrypted (with the help of a trapdoor) to any plaintext.
Intuitively, fake ciphertexts are generated in a lossy way so that the plaintext is no longer well defined given
the ciphertext and the public key. This leaves enough entropy for the secret key to be sampled in a way that
determines the desired plaintext. We continue with a formal definition of NCER and a security notion for it
referred as ind-ncer security.

Definition 3.2 (NCER). An NCER nPKE consists of five PPT algorithms (nGen, nEnc, nEnc∗, nDec, nOpen)
defined as follows. Algorithms (nGen, nEnc, nDec) form a PKE. Given the public key pk, the fake encryp-
tion algorithm nEnc∗ outputs a ciphertext e∗ and a trapdoor t. Given the secret key sk, the public key pk,
fake ciphertext e∗, trapdoor t and plaintext m, algorithm nOpen outputs sk∗.

– Correctness. We require that m = nDecsk(c) for all m ∈ M, all (pk, sk) ← nGen(1k) and all c ←
nEncpk(m).

– Security. An NCER scheme nPKE is ind-ncer secure if the real and fake ciphertexts are indistinguishable.
Specifically, for a PPT adversary A, consider the experiment Expind-ncer

nPKE defined as follows.

Experiment. Expind-ncer
nPKE (A, k)

b← {0, 1}
(pk, sk0)← nGen(1k)
m← A(pk)
e0 ← nEncpk(m)
(e1, t)← nEnc∗pk(1k), sk1 ← nOpen(sk0, pk, e1, t,m)
b′ ← A(skb, eb)
Return 1 if b = b′, and 0 otherwise.

We say that nPKE is ind-ncer-secure if for a PPT adversary A, there exists a negligible function
µ = µ(k) such that Advind-ncer

nPKE (A, k) := 2
∣∣Pr[Expind-ncer

nPKE (A, k) = 1]− 1
2

∣∣ ≤ µ.
An NCER nPKE is secure if it is ind-ncer secure.

3.3 Tweaked NCER

We introduce a variant of NCER which tweaks the definition of NCER in the following two ways. First, the
opening algorithm nOpen may be inefficient. In addition, the fake encryption algorithm is required to output
a fake ciphertext e∗ given the secret key sk and a plaintext m, so that decryption is “correct” with respect to
e∗ and m. This new notion is denoted as tweaked NCER. We formolize this notion below.

Definition 3.3 (Tweaked NCER). A tweaked NCER scheme tPKE is a PKE that consists of five algo-
rithms (tGen, tEnc, tEnc∗, tDec, tOpen) defined as follows. Algorithms (tGen, tEnc, tDec) form a PKE.
Given the secret key sk and the public key pk, and a plaintext m, the PPT fake encryption algorithm
tEnc∗ outputs a ciphertext e∗. Given the secret key sk and the public key pk, fake ciphertext e∗ such that

9

e∗ ← tEnc∗pk(sk,m
′) for some m′ ∈MtPKE and a plaintext m, the inefficient algorithm tOpen outputs sk∗

such that m = tDecsk∗(e
∗).

– Correctness. We require that m = tDecsk(c) for all m ∈ M, all (pk, sk) ← tGen(1k) and all c ←
tEncpk(m).

– Security. A tweaked NCER scheme tPKE is ind-tcipher secure if real and fake ciphertexts are indis-
tinguishable. Specifically, for a PPT adversary A, consider the experiment Expind-tcipher

tPKE defined as
follows.

Experiment. Expind-tcipher
tPKE (A, k)

b← {0, 1}
(pk, sk)← tGen(1k)
m← A(pk)
e0 ← tEncpk(m)
e1 ← tEnc∗pk(sk,m)
b′ ← A(sk, eb)
Return 1 if b = b′, and 0 otherwise.

Experiment. Expind-tncer
tPKE (A, k)

b← {0, 1}
(pk, sk0)← tGen(1k)
m← A(pk)
e0 ← tEnc∗pk(sk0,m)
e1 ← tEnc∗pk(sk0,m

′) for m′ ∈MtPKE

sk1 ← tOpen(e1,m)
b′ ← A(skb, eb)
Return 1 if b = b′, and 0 otherwise.

We say that tPKE is ind-tcipher secure if for a PPT adversary A, there exists a negligible function
µ = µ(k) such that Advind-tcipher

tPKE (A, k) := 2
∣∣∣Pr[Expind-tcipher

tPKE (A, k) = 1]− 1
2

∣∣∣ ≤ µ.

We say that tPKE is ind-tncer secure if for an unbounded adversary A, there exists a negligible
function µ = µ(s) such that Advind-tncer

tPKE (A, k) := 2
∣∣Pr[Expind-tncer

tPKE (A, k) = 1]− 1
2

∣∣ ≤ µ.
A tweaked NCER tPKE is secure if it is {ind-tcipher, ind-tncer} secure.

3.4 Key-Simulatable PKE

A key-simulatable public key encryption scheme is a PKE in which the public keys can be generated in two
modes. In the first mode a public key is picked together with a secret key, whereas the second mode implies
an oblivious public key generation without the secret key. Let V denote the set of public keys generated in
the first mode and K denote the set of public keys generated in the second mode. Then it is possible that K
contains V (i.e., V ⊆ K). Moreover, in case V ⊂ K the set of public keys from K \ V is not associated with
any secret key. We respectively denote the keys in V and K \ V as valid and invalid public keys. In addition
to the key generation algorithms, key-simulatable PKE also consists of an efficient key faking algorithm that
explains a public key from V , that was generated in the first mode, as an obliviously generated public key
from K that was generated without the corresponding secret key. The security requirement asserts that it is
hard to distinguish a random element fromK from a random element from V . The formal definition follows.
We note that the notion of key-simulatable PKE is very similar to the simulatable PKE [DN00] notion with
the differences that the latter notion assumes thatK = V and further supports oblivious ciphertext generation
and ciphertext faking.

Definition 3.4 (Key-simulatable PKE). A key-simulatable public key encryption sPKE consists of five

PPT algorithms (sGen, sEnc, sDec, s̃Gen, s̃Gen
−1

) defined as follows. Algorithms (sGen, sEnc, sDec) form
a PKE. Given the security parameter k, the oblivious public key generator s̃Gen returns a public key pk′

from K and the random coins r′ used to sample pk′. Given a public key pk ∈ V , the key faking algorithm
returns some random coins r.

10

– Correctness. We require that m = sDecsk(c) for all m ∈ M, all (pk, sk) ← sGen(1k) and all c ←
sEncpk(m).

– Security. A key-simulatable scheme sPKE is ind-cpa secure if (sGen, sEnc, sDec) is ind-cpa secure.
It is called ksim secure if it is hard to distinguish an obliviously generated key from a legitimately
generated key. Specifically, for a PPT adversary A, there exists a negligible function µ = µ(k)
such that Advksim

sPKE(A, k) :=
∣∣Pr [1← A(r, pk)]− Pr

[
1← A(r′, pk′)

]∣∣ ≤ µ where (pk, sk) ←
sGen(1k), r ← s̃Gen

−1
(pk) and (pk′, r′)← s̃Gen(1k).

A key-simulatable scheme sPKE is secure if it is {ind-cpa, ksim} secure.

An extended key-simulatable PKE is a secure key-simulatable where in addition V ⊂ K and it holds that
Pr
[
pk ∈ K \ V | (pk, r)← s̃Gen(1k)

]
is non-negligible.

3.5 Lossy PKE

A lossy public-key encryption scheme is a PKE with a standard key generation algorithm (that produces
“real” keys) and a lossy key generation algorithm (that produces “lossy” keys that are indistinguishable
from real ones), such that ciphertexts that are computed under real keys are committing to the plaintexts
while ciphertexts that are computed under lossy keys are non-committing.

Definition 3.5 (Lossy PKE). A lossy public key encryption scheme loPKE consists of five algorithms (loGen,
loGen∗, loEnc, loDec, loOpen) defined as follows. Algorithms (loGen, loEnc, loDec) form a PKE. Given
a security parameter k, the PPT lossy key generation algorithm loGen∗ outputs a public key pk∗ where
pk∗ is called a lossy public key. Given a lossy public key pk∗, plaintext m ∈ MloPKE and ciphertext
e = loEncpk∗(m), the (possibly inefficient) algorithm loOpen outputs r′ ∈ RloPKE.

– Correctness. We require that m = sDecsk(c) for all m ∈ M, all (pk, sk) ← sGen(1k) and all c ←
sEncpk(m). We further require that e = loEncpk∗(m; r′) for pk∗ ← sGen∗(1k), plaintext m ∈ M,
ciphertext e = loEncpk∗(m) and r′ ← loOpen(pk∗,m, e).

– Security. A lossy PKE scheme loPKE is ind-lossy secure if lossy keys are computationally indistinguish-
able from real keys. Specifically, for a PPT adversary A, there exists a negligible function µ = µ(k)
such that

Advind-lossy
loPKE (A, k) := |Pr[1← A(pk)]− Pr[1← A(pk∗)]| ≤ µ

for (pk, sk)← loGen(1k) and pk∗ ← loGen∗(1k).

A lossy PKE scheme loPKE is ind-lossycipher secure if encryptions of two distinct messages are
indistinguishable when encrypted under a lossy public key. Specifically, for an unbounded powerful
adversary A, there exists a negligible function µ = µ(s) such that

Advind-lossycipher
loPKE (A, k) := |Pr[1← A(e0)]− Pr[1← A(e1)]| ≤ µ

for pk∗ ← loGen∗(1k) and e ← loEncpk∗(m0), e1 ← loEncpk∗(m1) and any m0,m1 ∈ MloPKE

chosen by A given pk∗.

A lossy PKE scheme loPKE is secure if it is {ind-lossy, ind-lossycipher} secure.

11

3.6 Statistically-Hiding
(
2
1

)
-OT

We recall the definition of honest-receiver two-round statistically-hiding
(
2
1

)
-OT. We follow the notation

from [HLOV11], but modify their definition to consider statistical privacy with respect to the receiver rather
than the sender. In addition, we only consider a binary plaintext space.

Definition 3.6 (Statistically-hiding OT). Oblivious transfer is a protocol between a sender Sen and a
receiver Rec = (Recq,Recr). The sender Sen has two input bits s0, s1, and the receiver has a bit b. The
receiver Recq generates a query q along with some state information sk and sends q to the sender. The
sender evaluates q(s0, s1) and sends the result rsp = Sen(q, s0, s1) to the receiver Recr who uses sk to
obtain sb. We require the following properties from (Sen,Rec):

– Correctness. For all s0, s1 ∈ {0, 1} and for all b ∈ {0, 1}, there exists a negligible function µ = µ(k)
such that Pr[sb = Recr(sk, rsp) | (q, sk)← Recq(1

k, b); rsp← Sen(q, s0, s1)] ≥ 1− µ.

– Receiver Privacy. b remains statistically hidden from Sen’s view. Specifically, for an unbounded powerful
adversary A and a negligible function µ = µ(s) it holds that

|Pr[1← A(q0)]− Pr[1← A(q1)]| ≤ µ

for (q0, sk)← Recq(1
k, 0) and (q1, sk)← Recq(1

k, 1)

– Sender Privacy. For any b ∈ {0, 1}, for any s0, s1, s′0, s
′
1 such that sb = s′b ,the following must hold for a

PPT adversary A and a negligible function µ = µ(k)

|Pr[1← A(rsp0)]− Pr[1← A(rsp1)]| ≤ µ

for (q, sk)← Recq(1
k, b); rsp0 ← Sen(q, s0, s1) and rsp1 ← Sen(q, s′0, s

′
1)

In all of the above,the probabilities are over the randomness of Recq and Sen.

3.7 Hash Proof Systems

We recall the definition of hash proof systems (HPS), introduced by Cramer and Shoup [CS02]. For sim-
plicity we frame the description by viewing HPS as key-encapsulation mechanisms (KEM). A KEM is a
public-key encryption scheme that is used for encrypting random messages that are used as encryption keys
for a symmetric-key encryption scheme, which in turn encrypts the actual plaintext. A HPS can be viewed
as a KEM in which ciphertexts can be generated in two modes. The ciphertexts that are generated using
the first mode are referred to as valid ciphertexts. For such ciphertexts the encapsulated key is well defined,
and can be decapsulated using the secret key and also using the public key along with the “witness” of
the ciphertext validity. The ciphertexts that are generated using the second mode are referred to as invalid
ciphertexts and essentially contain no information on the encapsulated key. That is, given a public key and
an invalid ciphertext, the distribution of the encapsulated key (as it will be produced by the decapsulation
process using the secret key) is almost uniform. This is achieved by introducing redundancy into the secret
key: each public key has many corresponding secret keys. It might not be even possible to decapsulate the
key using the public key. The only computational requirement is that the two modes are computational indis-
tinguishable: any PPT adversary cannot distinguish with a noticeable advantage between valid ciphertexts
and invalid ciphertexts.

12

Let C be the set of all ciphertexts, V ⊂ C be the set of all valid ciphertexts, K be the set of all symmetric
keys, PK be the set of all public keys and SK be the set of all secret keys. We assume that there are efficient
algorithms for sampling sk ∈ SK, c ∈ V together with a witness w, and c ∈ C \ V . Let Λsk : C → K be
a hash function indexed with sk ∈ SK that maps ciphertexts in C to symmetric keys in K. A hash function
Λsk is projective if there exists a projection δ : SK → PK such that δ(sk) ∈ PK defines the action of Λsk
over the subset V . That is, for every c ∈ V , the value k = Λsk(c) is uniquely determined by pk = δ(sk) and
c. In other words, even though there are many different secret keys sk corresponding to the same public key
pk, the action of Λsk over the subset of valid ciphertexts in completely determined by the public key pk. In
contrast, the action of Λsk over the subset of invalid ciphertexts should be completely undetermined and it
might not be possible to compute Λsk from pk and c ∈ C \ V . Formally,

Definition 3.7 (HPS). A HPS HPS consists of three PPT algorithms (Param,Pub,Priv) defined as fol-
lows. Given the security parameter k, algorithm Param generates the parameterized instances of the form
(G,K, C,V,SK,PK,Λ(·), δ(·)), where G may contain some additional structural parameters and Λ(·), δ
are efficiently computable functions. Given a public key pk = δ(sk), ciphertext c ∈ V together with a
corresponding witness w for c being a valid ciphertext, the deterministic public evaluation algorithm Pub
outputs the encapsulated key Λsk(c). Given a secret key sk and a ciphertext c ∈ C, the deterministic private
evaluation algorithm Priv outputs the encapsulated key Λsk(c).

– Projectiveness. Function δ(·) : SK → PK is a projection such that δ(sk) ∈ PK defines the action of the
hash function Λsk over V , where for every C ∈ V , the value K = Λsk(c) is uniquely determined by
pk = δ(sk).

– Security. A HPS scheme HPS is ind-hps secure if valid and invalid ciphertexts are indistinguishable.
Specifically, for a PPT adversary A there exists a negligible function µ = µ(k) such that

Advind-hps
HPS (A, k) := |Pr [1← A(C,V, c0)]− Pr [1← A(C,V, c1)]| ≤ µ

where C and V are generated using Param(1k), c0 ← V and c1 ← C \ V .

A HPS scheme HPS is 1-universal if for a PPT adversary A there exists a negligible function µ = µ(k)
such that

|Pr [1← A(pk,Privsk(c))]− Pr [1← A(pk,K)]| ≤ µ

for all c ∈ C \ V , sk ∈ SK, K ← K and pk = δ(sk).

HPS HPS is secure if it is ind-hps secure and 1-universal.

4 Selective Opening Security for the Receiver

In this section we provide negative and positive results regarding security for the receiver in the presence of
selective opening attacks. First, we show that rind-so is strictly weaker than rsim-so security by construct-
ing a scheme that meets the former but not the latter level of security. We then relate the different forms
of security under SO attacks with non-committing encryption (for the receiver). Specifically, we show that
secure NCER implies rsim-so and that secure tweaked NCER implies rind-so. Interestingly, we show that
the converse implications do not hold. In terms of constructions, we show that tweaked NCER can be
constructed from various primitives such as key-simulatable PKE, two-round honest-receiver statistically-
hiding

(
2
1

)
-OT protocol, secure HPS and NCER. The DDH based secure NCER scheme of [CHK05] that

works for polynomial message space turns out to be secure tweaked NCER for exponential message space.

13

4.1 rind-so Secure PKE 6=⇒ rsim-so Secure PKE

In this section we construct a rind-so secure encryption scheme PKE that is not rsim-so secure. Our start-
ing point is an ind-ncer secure scheme nPKE and a {stat-hide, comp-bind} secure NISHCOM nisCom.
The public key of our scheme is defined by two independent public keys of nPKE, whereas the secret key
corresponds to the matched secret keys. Moreover, encrypting a plaintext is carried out by computing a
commitment of the plaintext and encrypting the opening information of this commitment under the public
keys. Finally, decryption is computed by decrypting the opening information of the commitment and ver-
ifying whether it is consistent with the commitment. Below we prove that PKE is rind-so secure but not
rsim-so secure (due to comp-bind security of the commitment scheme). Our separating scheme requires
that the message and randomness spaces of nisCom, denoted byMnisCom andRnisCom, are compatible with
the message spaceMnPKE of nPKE (as we encrypt the committed message as well as the randomness used
for computing the commitment). We formally define compatibility as follows:

Definition 4.1. An ind-ncer secure NCER nPKE and a {stat-hide, comp-bind} secure NISHCOM nisCom
are said to be compatible ifMnPKE =MnisCom = RnisCom.

We proceed with our main theorem for this section and provide a concrete example of schemes that
satisfy the compatibility criteria in Section 4.1.1.

Theorem 4.2. Assume there exist an ind-ncer secure NCER and a {stat-hide, comp-bind} secure NISH-
COM that are compatible. Then, there exists a PKE that is rind-so secure but is not rsim-so secure.

Proof: We describe our separating encryption scheme first. Consider a scheme nPKE = (nGen, nEnc,
nEnc∗, nDec, nOpen) that is secure NCER (cf. Definition 3.2) and an NISHCOM nisCom = (nisCommit,
nisOpen) (cf. Definition 3.1) that are compatible. We define the encryption scheme PKE = (Gen,Enc,Dec)
as follows.

Gen(1k)
(pk0, sk0)← nGen(1k)
(pk1, sk1)← nGen(1k)
pk = (pk0, pk1)
sk = (sk0, sk1)
Return (pk, sk)

Encpk(m)
c← nisCommit(m; r)
e0 ← nEncpk0(m)
e1 ← nEncpk1(r)
Return e = (e0, e1, c)

Decsk(e)
e := (e0, e1, c)
m = nDecsk0(e0)
r = nDecsk1(e1)
if c = nisCommit(m, r)

Return m
else Return ⊥

The proof follows from Lemmas 4.1 and 4.5 below which formalize that PKE is rind-so secure but not
rsim-so secure.

Lemma 4.1. Assume that nPKE is ind-ncer secure and nisCom is {stat-hide, comp-bind} secure, then
PKE is rind-so secure.

Proof: More precisely we show that for any PPT adversary A attacking PKE there exist a PPT adversary B
and an unbounded powerful adversary C such that

Advrind-so
PKE (A, k) ≤ n

(
4 ·Advind-ncer

nPKE (B, k) + Advstat-hide
nisCom (C, k)

)
.

We prove this lemma using the following sequence of experiments.

14

• Exp0 = Exprind-so
PKE .

• Exp1 is identical to Exp0 except that the first component of each ciphertext in the vector e is com-
puted using nEnc∗ of nPKE. That is, for all i ∈ [n] ciphertext ei is defined by (e∗i0, ei1, ci) such that
(e∗i0, ti0) ← nEnc∗pki0(1k). Furthermore, if i ∈ I (i.e., A asks to open the ith ciphertext), then Exp1

computes sk∗i0 ← nOpen(ski0, e
∗
i0, ti0,mi) and hands (sk∗i0, ski1) to A.

• Exp2 is identical to Exp1 except that the second component of each ciphertext in the vector e is
computed using nEnc∗ of nPKE, That is, for all i ∈ [n] ciphertext ei is defined by (e∗i0, e

∗
i1, ci)

such that (e∗i1, ti1) ← nEnc∗pki1(1k). Furthermore, if i ∈ I (i.e., A asks to open the ith ciphertext),
then Exp2 computes sk∗i1 ← nOpen(ski1, e

∗
i1, ti1, ri) and hands (sk∗i0, sk

∗
i1) to A, where ri is the

randomness used to compute ci.

• Exp3 is identical to Exp2 except that the third component of each ciphertext in the vector e is a
commitment of a dummy message. That is, for all i ∈ [n] ciphertext ei is defined by (e∗i0, e

∗
i1, c

∗
i) such

that c∗i ← nisCommit(m∗i ; r
∗
i), where m∗i is a dummy message from MnisCom and r∗i ← RnisCom.

Furthermore, if i ∈ I then Exp3 first computes ri ← nisOpen(c∗i ,mi). Then it computes sk∗i1 ←
nOpen(ski1, e

∗
i1, ti1, ri) and hands (sk∗i0, sk

∗
i1) to A, where ri is the randomness returned by nisOpen.

We note that although the third experiment is not efficient (the experiment needs to equivocate the com-
mitment without a trapdoor), it does not introduce a problem in our proof: an adversary that distinguishes
between Exp2 and Exp3 gives rise to an unbounded adversary that breaks the statistical hiding property of
the commitment scheme used by our construction.

Let εj be the advantage of A in Expj , i.e. εj := 2
∣∣Pr[Expj(A, k) = 1]− 1

2

∣∣. We first note that ε3 = 0
since in experiment Exp3 the adversary receives a vector of ciphertexts that are statistically independent of
the encrypted plaintexts, implying that the adversary (even with unbounded computing power) outputs the
correct bit b with probability 1/2. Next we show that |ε0 − ε1| ≤ 2n∆ind-ncer and |ε1 − ε2| ≤ 2n∆ind-ncer,
where ∆ind-ncer = Advind-ncer

nPKE (B, k) for a PPT adversary B. Finally, we argue that |ε2 − ε3| ≤ n∆stat-hide
where ∆stat-hide = Advstat-hide

nisCom (C, k) for an unbounded powerful adversary C. All together this implies
that |ε0 − ε3| ≤ 4n∆ind-ncer+n∆stat-hide and that ε0 ≤ 4n∆ind-ncer+n∆stat-hide, which proves the lemma.

Claim 4.2. |ε0 − ε1| ≤ 2n∆ind-ncer, where ∆ind-ncer = Advind-ncer
nPKE (B, k).

Proof: We prove the claim by introducing n intermediate hybrids experiments between Exp0 and Exp1;
the difference between two consequent hybrids is bounded by a reduction to ind-ncer security of nPKE.
More specifically, we introduce n − 1 intermediate hybrid experiments so that E0 = Exp0, En = Exp1

and the ith hybrid experiment Ei is defined recursively. That is,

• E0 = Exp0.

• For i = [n], Ei is identical to Ei−1 except that the ith ciphertext ei is computed by (e∗i0, ei1, ci) where
(e∗i0, ti0) ← nEnc∗pki0(1k). Furthermore, if i ∈ I (i.e., if A asks to open the ith ciphertext), then Ei
computes sk∗i0 ← nOpen(ski0, e

∗
i0, ti0,mi) and hands (sk∗i0, ski1) to A.

Clearly En = Exp1 where the first component of all ciphertext is computed using nEnc∗. Let γi define
the advantage of A in Ei, i.e. γi := 2

∣∣Pr[Ei(A, k) = 1]− 1
2

∣∣. Next we show that |γi−1 − γi| ≤ 2∆ind-ncer
for all i ∈ [n]. This implies that |γ0 − γn| ≤ 2n∆ind-ncer. Now, since γ0 = ε0 and γn = ε1 we get
|ε0 − ε1| ≤ 2n∆ind-ncer, thus proving the claim.

15

We fix i ∈ [n] and prove that |γi−1 − γi| ≤ 2∆ind-ncer. Specifically, we show that any adversary B that
wishes to distinguish a real ciphertext from a fake one relative to nPKE can utilize the power of adversary
A. Upon receiving pk from experiment Expind-ncer

nPKE and i, B interacts with A as follows.

1. B samples first a bit b ← {0, 1} and sets pki0 = pk. It then uses nGen to generate the rest of the
public keys to obtain pk (and all but (i0)th secret key).4 Finally, it hands pk to A that returns Dist
and ResampDist.

2. B samples m ← Dist(1k) and outputs mi to Expind-ncer
nPKE that returns (sk, e). B then sets ski0 = sk.

(Note that this completes vector sk since B generated the rest of the secret keys in the previous step).

• For j ∈ [i− 1], B computes the first component of ciphertext ej by (ej0, tj0) ← nEnc∗pkj0(1k).
B completes ej honestly (i.e., exactly as specified in Enc).

• For j = i, B sets the first component of ej to be e. B completes ej honestly.

• For j ∈ [i+ 1, n], B computes ciphertext ej honestly.

Let e = (ej)j∈[n]. B hands e to A that returns I.

3. B resamples m′ ← ResampDist(mI). Subsequently it hands m∗ to A as well as secret keys for all the
indices that are specified in I, where m∗ = m if b = 0, m∗ = m′ otherwise. That is,

• If j ∈ I lies in [i−1], then B computes sk∗j0 ← nOpen(skj0, ej0, tj0,mj) and hands (sk∗j0, skj1).

• If j ∈ I equals i, then B hands (skj0, skj1) where skj0 is same as sk that B had received from
Expind-ncer

nPKE .

• If j ∈ I lies in [i+ 1, n], then B returns (skj0, skj1).

4. B outputs 1 in experiment Expind-ncer
nPKE if A wins.

Next, note that B perfectly simulates Ei−1 if it received a real ciphertext e within (sk, e). Otherwise,
B perfectly simulates Ei. This ensures that the probability that B outputs 1 in Expind-ncer

nPKE given a real
ciphertext is at least as good as the probability that A wins in Ei−1. On the other hand, the probability that
B outputs 1 in Expind-ncer

nPKE given a fake ciphertext is at least as good as the probability that A wins in Ei.
Since the advantage of A in Ei is γi, its winning probability (cf. Definition 2.2) Pr[Ei(A, k) = 1] in the
experiment is γi

2 + 1
2 . Similarly, the winning probability of A in experiment Ei−1 is γi−1

2 + 1
2 . Denoting the

bit picked in Expind-ncer
nPKE by c we get,

Pr
[
1← B(sk, e) | (pk, sk)← nGen(1k) ∧ e← nEncpk(mi)

]
︸ ︷︷ ︸

=Pr[1←B | c=0]

≥ γi−1
2

+
1

2
and

Pr
[
1← B(sk, e) | (pk, sk)← nGen(1k) ∧ (e, te)← nEnc∗pk(1

k) ∧ sk ← nOpen(sk, e, te,mi)
]

︸ ︷︷ ︸
=Pr[1←B | c=1]

≥ γi
2

+
1

2
.

4Recall that each public key within pk includes two public keys relative to nPKE.

16

This implies that

∆ind-ncer = Advind-ncer
nPKE (B, k) = 2

∣∣∣∣Pr[Expind-ncer
nPKE (B, k) = 1]− 1

2

∣∣∣∣
= 2

∣∣∣∣∣∣∣Pr[0← B | c = 0] Pr(c = 0)︸ ︷︷ ︸
=1/2

+Pr[1← B | c = 1] Pr(c = 1)︸ ︷︷ ︸
=1/2

−1

2

∣∣∣∣∣∣∣
= |Pr[0← B | c = 0] + Pr[1← B | c = 1]− 1|
= |Pr[1← B | c = 0]− Pr[1← B | c = 1]|

≥ |γi−1 − γi|
2

.

�
The following claim follows by a similar hybrid argument as the one described above.

Claim 4.3. |ε1 − ε2| ≤ 2n∆ind-ncer, where ∆ind-ncer = Advind-ncer
nPKE (B, k).

Finally, we prove the following claim.

Claim 4.4. |ε2 − ε3| ≤ n∆stat-hide, where ∆stat-hide = Advstat-hide
nisCom (C, k).

Proof: We prove the claim by introducing n intermediate hybrids experiments between Exp2 and Exp3;
we show that each pair of consecutive experiments is statistically indistinguishable based on stat-hide
security of the NISHCOM. These hybrid experiments are defined as follows:

• H0 = Exp2.

• For i = [n], Hi is identical to Hi−1 except that the ith ciphertext ei in e is computed as (e∗i0, e
∗
i1, c

∗
i)

where c∗i ← nisCommit(m∗i ; r
∗
i), where m∗i is a dummy message fromMnisCom and r∗ ← RnisCom.

Furthermore, if i ∈ I, then Hi computes ri ← nisOpen(c∗i ,mi) and hands (sk∗i0, sk
∗
i1) to A.

We remark again that the hybrid experiments defined above are not efficient, but this is not an issue as we
rely on the statistical security of the underlying NISHCOM.

Clearly, Hn = Exp3 where the third component of each ciphertext within e is computed using dummy
messages. Let νi be the advantage of A in Hi, i.e., νi := 2

∣∣Pr[Hi(A, k) = 1]− 1
2

∣∣. Next, we show that
|νi−1 − νi| ≤ ∆stat-hide for all i ∈ [n], where ∆stat-hide = Advstat-hide

nisCom (C, k) . All together, this implies
that |ν0 − νn| ≤ n∆stat-hide. Since ν0 = ε2 and νn = ε3 we get that |ε2 − ε3| ≤ n∆stat-hide which proves
the claim.

Fix i ∈ [n]. The only difference between experiments Hi−1 and Hi is relative to the third component
of ciphertext ei. Namely, in Hi−1, the third component in ei is a commitment to mi where mi is the ith
element in m. On the other hand, in Hi it is a commitment to a dummy message fromMnisCom. As the
underlying NISHCOM satisfies statistical hiding property, even an unbounded adversary C cannot distinct
Hi−1 and Hi with probability better than ∆stat-hide, so |νi−1 − νi| ≤ ∆stat-hide as desired. � �

We conclude with the proof of the following lemma.

Lemma 4.5. PKE is not rsim-so secure.

17

Proof: We then rely on a result of [BDWY12] which establishes that no decryption verifiable ind-cpa
secure is rsim-so. Informally, decryption verifiability implies the existence of an algorithm W (that either
outputs accept or reject), such that it is hard to find pk, sk0, sk1, distinct m0,m1 and a ciphertext e where
both W (pk, sk0, e,m0) and W (pk, sk1, e,m1) accept. Note that it is hard to find two valid secret keys
and plaintexts as required since decryption follows successfully only if the commitment that is part of
the ciphertext is also correctly opened. In particular, an adversary that produces a ciphertext that can be
successfully decrypted into two distinct plaintexts (under two different keys) must break the comp-bind
security of the underlying commitment scheme.5 This implies that PKE is not rsim-so secure. �

4.1.1 Compatible Secure NCER and Secure NISHCOM

We instantiate the commitment scheme with the Paillier based scheme of Damgård and Nielsen [DN02,
DN03], which is comprised of the following algorithms that use public parameters (N, g) where N is a
k-bit RSA composite and g = xN mod N2 for an uniformly random x← Z∗N . Moreover,
– nisCommit, given N, g and message m ∈ ZN , pick r ← Z∗N and compute gm · rN mod N2.
– nisOpen, given commitment c and message m, compute randomness r such that c = gm · rN mod N2.

Namely, find first r̃ such that c = r̃N mod N2. This implies that r̃N = (xN)m · rN mod N2 for
some r ∈ Z∗N , since we can fix r = r̃/xm.

This scheme is computationally binding, as a commitment is simply a random Paillier encryption of zero.
Furthermore, opening to two different values implies finding the N th root of g (which breaks the underlying
assumption of Paillier, i.e., DCR). Finally, the NCER can be instantiated with the scheme from [CHK05]
that is also based on the DCR assumption. The message space of these two primitives is ZN . In addition,
the randomness of the commitment scheme is Z∗N and thus can be made consistent with the plaintext spaces,
as it is infeasible to find an element in ZN/Z∗N .

4.2 Secure Tweaked NCER =⇒ rind-so Secure PKE

In this section we prove that every secure tweaked NCER is a rind-so secure PKE. Intuitively, this follows
since real ciphertexts are indistinguishable from fake ones, and fake ciphertexts do not commit to any fixed
plaintext. This implies that the probability of distinguishing an encryption of one message from another is
exactly half, even for an unbounded adversary.

Theorem 4.3. Assume there exists an {ind-tcipher, ind-tncer} secure tweaked NCER, then there exists a
PKE that is rind-so secure.

Proof: More precisely, let tPKE = (tGen, tEnc, tEnc∗, tDec, tOpen) denote a secure tweaked NCER.
Then we prove that tPKE is rind-so secure, by proving that for any PPT adversary A attacking tPKE in
the rind-so experiment there exist a PPT adversary B and an unbounded powerful adversary C such that
Advrind-so

tPKE (A, k) ≤ 2n
(
Advind-tcipher

tPKE (B, k) + Advind-tncer
tPKE (C, k)

)
.

We modify experiment rind-so step by step, defining a sequence of 2n + 1 experiments and bound the
advantage of A in the last experiment. The proof is then concluded by proving that any two intermediate
consecutive experiments are indistinguishable due to either ind-tcipher security or ind-tncer security of
tPKE. Specifically, we define a sequence of hybrid experiments {Expi}2ni=0 as follows.

• Exp0 = Exprind-so
tPKE .

5Recall that the decryption algorithm verifies first whether the commitment within the ciphertext is consistent with the decrypted
ciphertexts (that encrypt the committed message and its corresponding randomness for commitment).

18

• For all i ∈ [n], Expi is identical to Expi−1 except that the ith ciphertext in vector e is computed by
e∗i ← tEnc∗pki(ski,mi), so that if i ∈ I then Expi outputs the secret key ski computed by tGen and
hands ski to adversary A (here we rely on the additional property of tEnc∗).

• For all i ∈ [n], Expn+i is identical to Expn+i−1 except that the ith ciphertext in vector e is computed
by sampling a random messagem∗i ∈MtPKE first and then computing e∗i ← tEnc∗pki(ski,m

∗
i). Next,

if i ∈ I then Expn+i computes a secret key sk∗i ← tOpen(e∗i ,mi) and hands sk∗i to A.

Let εi denote the advantage of A in experiment Expi i.e. εi :=
∣∣Pr[Expi(A, k) = 1]− 1

2

∣∣. We first note
that ε2n = 0 since in experiment Exp2n the adversary receives a vector of ciphertexts that are statisti-
cally independent of the encrypted plaintexts, implying that the adversary outputs the correct bit b with
probability 1/2. We next show that |εi−1 − εi| ≤ 2∆ind-tcipher for any i ∈ [n], where ∆ind-tcipher =

Advind-tcipher
tPKE (B, k) for a PPT adversary B. Finally, we prove that |εn+i−1 − εn+i| ≤ 2∆ind-tncer for

any i ∈ [n], where ∆ind-tncer = Advind-tncer
tPKE (C, k) for an unbounded powerful adversary C. Together

this implies that |ε0 − ε2n| ≤ 2n(∆ind-tcipher + ∆ind-tncer). So we conclude that ε0 ≤ n(∆ind-tcipher +
∆ind-tncer) + ε2n = 2n(∆ind-tcipher + ∆ind-tncer) which concludes the proof of the theorem.

Claim 4.6. |εi−1 − εi| ≤ 2n∆ind-tcipher for all i ∈ [n], where ∆ind-tcipher = Advind-tcipher
tPKE (B, k).

Proof: In the following, we prove that one can design an adversary B that distinguishes a real ciphertext
from a fake one in Expind-tcipher

tPKE , using adversary A. B interacts with A as follows:

1. Upon receiving pk from Expind-tcipher
tPKE and an integer i, B sets pki = pk. It picks a bit b randomly. It

then generates the rest of the public and secret key pairs using tGen for all j ∈ [n] \ i, obtaining pk.
It hands pk to A who returns Dist and ResampDist.

2. B samples m ← Dist(1k) and hands mi to Expind-tcipher
tPKE which returns (sk, e). B fixes ei = e and

completes sk by setting ski = sk. Next, for j ∈ [i− 1] it computes ej ← tEnc∗pkj (skj ,mj), whereas
for j ∈ [i + 1, n] it samples randomness rj ← RtPKE and computes ej ← tEncpkj (mj ; rj). Let
e = (ei)i∈[n]. B hands e to A who returns I.

3. B samples m′ ← Resamp(mI) and hands Am∗ and the following secret keys for all the indices that
are specified in I. Here m∗ is m if b = 0 and m′ otherwise. That is,

• If j ∈ I lies in [i− 1] or in [i+ 1, n], then B returns skj .

• If j ∈ I equals i, then B returns sk.

4. B outputs 1 in Expind-tcipher
tPKE if A wins.

Next, note that B perfectly simulates Expi−1 if it receives a real ciphertext e within (sk, e). On the other
hand, B perfectly simulates Expi if e is a fake ciphertext. This ensures that the probability that B outputs 1
given a real ciphertext is at least as good as the probability that A wins in Expi−1. On the other hand, the
probability that B outputs 1 given a fake ciphertext is at least as good as the probability that A wins in Expi.
Since the advantage of A in Expi is εi, its winning probability (cf. Definition 2.2) Pr[Expi(A, k) = 1]
in the experiment is εi

2 + 1
2 . Similarly, the winning probability of A in experiment Expi−1 is εi−1

2 + 1
2 .

Denoting the bit picked in Expind-tcipher
tPKE by c we get,

Pr
[
1← B(pk, sk, e,mi) | (pk, sk)← tGen(1k) ∧ e← tEncpk(mi)

]
︸ ︷︷ ︸

=Pr[1←B | c=0]

≥ εi−1
2

+
1

2
and

19

Pr
[
1← B(pk, sk, e∗,mi) | (pk, sk)← tGen(1k) ∧ e∗ ← tEnc∗pk(sk,mi)

]
︸ ︷︷ ︸

=Pr[1←B | c=1]

≥ εi
2

+
1

2
.

This implies that

∆ind-tcipher = Advind-tcipher
tPKE (B, k) = 2

∣∣∣∣Pr[Expind-tcipher
tPKE (B, k) = 1]− 1

2

∣∣∣∣
= 2

∣∣∣∣∣∣∣Pr[0← B | c = 0] Pr(c = 0)︸ ︷︷ ︸
=1/2

+Pr[1← B | c = 1] Pr(c = 1)︸ ︷︷ ︸
=1/2

−1

2

∣∣∣∣∣∣∣
= |Pr[0← B | c = 0] + Pr[1← B | c = 1]− 1|

= |Pr[1← B | c = 0]− Pr[1← B | c = 1]| ≥ |εi−1 − εi|
2

�

Claim 4.7. |εn+i−1 − εn+i| ≤ 2n∆ind-tcipher for all i ∈ [n], where ∆ind-tncer = Advind-tncer
tPKE (C, k).

Proof: Below, we prove that one can design an unbounded powerful adversary C that distinguishes two
views generated in ind-tncer experiment, using adversary A. C interacts with A as follows:

1. Upon receiving pk from Expind-tncer
tPKE and an integer i, C sets pki = pk and picks a bit b. It then

generates the rest of the public and secret key pairs using tGen for all j ∈ [n] \ {i}, obtaining pk. It
hands pk to A who returns Dist and ResampDist.

2. C samples m ← Dist(1k) hands mi to Expind-tncer
tPKE which returns (sk, e). C fixes ei = e and

completes sk by setting ski = sk. Next, for j ∈ [i − 1] it samples m∗j ← MtPKE and com-
putes ej ← tEnc∗pkj (skj ,m

∗
j), whereas for j ∈ [i + 1, n] it computes ej ← tEnc∗pkj (skj ,mj). Let

e = (ej)j∈[n]. C hands e to A who returns I.

3. C samples m′ ← Resamp(mI) and hands m∗ to A and the following secret keys for all the indices
that are specified in I. Here m∗ is m if b = 0 and m′ otherwise. That is,

• If j ∈ I lies in [i− 1], then C returns skj such that skj = tOpen(ej ,mj).

• If j ∈ I equals i, then C returns sk.

• If j ∈ I lies in [i+ 1, n], then C returns skj .

4. C outputs 1 in Expind-tncer
tPKE if A wins.

Next, note that B perfectly simulates Expn+i−1 if it receives a real ciphertext e within (sk, e). On the
other hand, B perfectly simulates Expn+i if e is a fake ciphertext and sk is a secret key returned by tOpen.
This ensures that the probability that B outputs 1 given a real ciphertext is at least as good as the probability
that A wins in Expn+i−1. On the other hand, the probability that B outputs 1 given a fake ciphertext is
at least as good as the probability that A wins in Expn+i. Since the advantage of A in Expi is εn+i, its
winning probability (c.f Definition 2.2) Pr[Expi(A, k) = 1] in the experiment is εn+i

2 + 1
2 . Similarly, the

20

winning probability of A in experiment Expn+i−1 is εn+i−1

2 + 1
2 . Denoting the bit picked in Expind-tncer

tPKE

by c we get,

Pr
[
1← C(sk, e) | (pk, sk)← tGen(1k) ∧ e← tEnc∗pk(sk,mi)

]
︸ ︷︷ ︸

=Pr[1←C | c=0]

≥ εn+i−1
2

+
1

2
and

Pr
[
1← C(sk∗, e∗) | (pk, sk)← tGen(1k) ∧ e∗ ← tEnc∗pk(sk,m

∗) ∧ sk∗ ← tOpen(e∗, sk,mi)
]

︸ ︷︷ ︸
=Pr[1←C | c=1]

≥ εn+i
2

+
1

2
.

Following a similar argument as in the previous claim, we conclude that 2∆ind-tncer ≥ |εn+i−1 − εn+i|. �

4.3 Secure NCER =⇒ rsim-so Secure PKE

In this section we prove that secure NCER implies selective opening security in the presence of receiver
corruption. Our proof is shown for the stronger simulation based security definition but holds for the indis-
tinguishability definition as well.

Theorem 4.4. Assume there exists an ind-ncer secure PKE, then there exists a PKE that is rsim-so secure.

Proof: More precisely, let nPKE = (nGen, nEnc, nEnc∗, nDec, nOpen) denote a ind-ncer secure PKE.
Then we prove that nPKE is rsim-so secure, by proving that for any PPT adversary A attacking nPKE in
the rsim-so experiment there exists a PPT adversary B such that

Advrsim-so
nPKE (A, k) ≤ n ·Advind-ncer

nPKE (B, k).

In order to prove this theorem, we modify experiment rsim-so-real step by step, defining a sequence of n+1
experiments. We then design a simulator for the last experiment in this sequence and prove that it is identical
to experiment rsim-so-ideal. The proof is then concluded by proving that any two intermediate consecu-
tive experiments are computationally indistinguishable due to the ciphertext indistinguishability property
(i.e. ind-ncer property) of nPKE. Specifically, we define a sequence of hybrid experiments {Expi}ni=0 as
follows.

• Exp0 = Exprind-so
nPKE .

• For all i ∈ [n], Expi is identical to Expi−1 except that the ith ciphertext in vector e is computed
by (e∗i , ti) ← nEnc∗pki(1

k), so that if i ∈ I then Expi computes sk∗i ← nOpen(ski, e
∗
i , ti,mi)) and

hands sk∗i to adversary A.

Next, we design a simulator S for experiment rsim-so-ideal. Specifically, the simulator picks n pairs of
public and secret key pairs of nPKE and hands the public key vector pk to A. Upon receiving Dist from
A, S outputs Dist. S then invokes nEnc∗ of nPKE n times in order to generate e and hands this vec-
tor to A. Upon receiving I from A, S outputs I and receives back a vector mI . For j ∈ I, S invokes
sk∗j ← nOpen(skj , ej , tj ,mj) and returns (sk∗j ,mj) to A. Finally, the simulator outputs whatever A out-
puts. It is easy to verify that experiments Expn and rsim-so-ideal, when executed with S, produce the same
distribution.

21

It remains to show that Expi−1 and Expi are computationally indistinguishable for all i ∈ [n]. Fix
i ∈ [n] and let Di be an efficient distinguisher that distinguishes Expi−1 and Expi. Namely, let εi−1 is
the probability that Di outputs 1 when given a distribution generated relative to Expi−1, and likewise εi
is the probability that Di outputs 1 when given a distribution generated relative to Expi. We prove that
|εi−1 − εi| ≤ ∆ind-ncer for any i ∈ [n], where ∆ind-ncer = Advind-ncer

nPKE (B, k). All together this implies that
ε0 − εn ≤ n∆ind-ncer which proves the theorem.

In the following, we prove that one can design a PPT adversary B that distinguishes a real ciphertext
from a fake one in experiment Expind-ncer

nPKE using adversary Di that distinguishes between experiments Expi
and Expi−1. B interacts with Di as follows:

1. Upon receiving pk from experiment Expind-ncer
nPKE and an integer i, B sets pki = pk. It then generates

the rest of the public and secret key pairs using nGen for all j ∈ [n] \ i, obtaining pk. It hands pk to
Di who returns Dist.

2. B samples m← Dist(1k) and handsmi to experiment Expind-ncer
nPKE which returns (sk, e). B fixes ei =

e and completes sk by setting ski = sk. Next, for j ∈ [i − 1] it computes (ej , tj) ← nEnc∗pkj (1
k),

whereas for j ∈ [i+ 1, n] it samples randomness rj ← RnPKE and computes ej ← nEncpkj (mj ; rj).
Let e = (ei)i∈[n]. B hands e to Di who returns I.

3. B hands Di pairs of secret keys and plaintexts for all the indices that are specified in I. That is,

• If j ∈ I lies in [i− 1], then B computes sk∗j ← nOpen(skj , ej , tj ,mj) and returns (sk∗j ,mj).

• If j ∈ I equals i, then B returns (sk,m).

• If j ∈ I lies in [i+ 1, n], then B simply returns (skj ,mj).

4. B outputs 1 in experiment Expind-ncer
nPKE if Di outputs 1.

Next, note that B perfectly simulates Expi−1 if it receives a real ciphertext e within (pk, sk, e,m). On the
other hand, B perfectly simulates Expi if e is a fake ciphertext. This ensures that the probability that B
outputs 1 given a real ciphertext is at least as good as the probability that Di outputs 1 in Expi−1. On the
other hand, the probability that B outputs 1 given a fake ciphertext is at least as good as the probability that
Di outputs 1 in Expi. Denoting the bit picked in Expind-ncer

nPKE by c we get,

Pr
[
1← B(pk, sk,mi, e) | (pk, sk)← nGen(1k) ∧ e← nEncpk(mi)

]
︸ ︷︷ ︸

=Pr[1←B | c=0]

≥ εi−1 and

Pr
[
1← B(pk, sk,mi, e) | (e, t)← nEnc∗pk(1

k) ∧ sk ← nOpen(sk, e, t,mi)
]

︸ ︷︷ ︸
=Pr[1←B | c=1]

≥ εi.

This implies that

∆ind-ncer = Advind-ncer
nPKE (B, k) = 2

∣∣∣∣Pr[Expind-ncer
nPKE (B, k) = 1]− 1

2

∣∣∣∣
= |Pr[1← B | c = 0]− Pr[1← B | c = 1]|
≥ |εi−1 − εi|

22

4.4 rsim-so Secure PKE 6=⇒ Secure NCER and Tweaked NCER

In this section we prove that rsim-so does not imply both tweaked NCER and NCER by providing a concrete
counter example based on an extended key-simulatable PKE (cf. Section 3.4). The key point in our proof is
that in some cases simulatable public keys cannot be explained as valid public keys. Formally,

Theorem 4.5. Assume there exists an {ind-cpa, ksim} secure extended key-simulatable PKE, then there
exists a PKE that is rsim-so secure but is neither a {ind-tcipher, ind-tncer} secure tweaked NCER nor a
ind-ncer secure NCER.

Proof: We describe our separating encryption scheme first. Namely, given an extended key-simulatable

PKE sPKE = (sGen, sEnc, sDec, s̃Gen, s̃Gen
−1

) for a plaintext spaceMsPKE, we construct a new scheme
PKE = (Gen,Enc,Dec) with a binary plaintext space that is rsim-so secure, and thus also rind-so secure,
yet it does not imply tweaked NCER. For simplicity, we assume thatMsPKE is the binary space {0, 1}. The
DDH based instantiation of sPKE with V ⊂ K from Section 4.4.1 is defined with respect to this space.

Gen(1k)
α← {0, 1}
(pkα, skα)← sGen(1k)

(pk1−α, r1−α)← s̃Gen(1k)
pk = (pk0, pk1)
sk = (α, skα, r1−α)
Return (pk, sk)

Encpk(b)
e0 ← Encpk0(b)
e1 ← Encpk1(b)
Return e = (e0, e1)

Decsk(e)
sk = (α, skα, r1−α)
e := (e0, e1)
b = Decskα(eα)
Return b

The proof follows from Lemmas 4.8 and 4.11.

Lemma 4.8. PKE is rsim-so secure.

Proof: Namely, we prove that for any PPT adversaries B and C respectively attacking the ind-cpa and ksim
security of sPKE there exists a PPT adversary A such that

Advrsim-so
PKE (A, k) ≤ n

(
Advind-cpa

sPKE (B, k) + Advksim
sPKE(C, k)

)
.

To prove this lemma, we modify experiment rsim-so-real step by step, defining a sequence of 2n + 1
experiments. We then design a simulator and prove that the last experiment in this sequence is identical to
experiment rsim-so-ideal when executed along with the simulator. The proof is then concluded by proving
that any two intermediate consecutive experiments are computationally indistinguishable due to the ksim
and ind-cpa security of sPKE. Specifically, we define a sequence of hybrid experiments {Expi}2ni=0 as
follows.

• Exp0 = Exprind-so
PKE .

• For all i ∈ [n], Expi is identical to Expi−1 except for the following change. The ith public key
pki in vector pk consists of two public keys pki0, pki1 that are computed using sEnc. Namely
(pkij , skij)← sGen(1k) for j ∈ {0, 1}. For a random α, the secret key ski is set to (α, skiα, ri(1−α))

where ri(1−α) ← s̃Gen
−1

(pki(1−α)).

23

• For all i ∈ [n], Expn+i is identical to Expn+i−1 except for the following changes. The ith ciphertext
ei consisting of (ei0, ei1) in vector e is computed as follows: (i) a random bit α is picked and (ii)
eiα ← sEncpkiα(0) and ei(1−α) ← sEncpki(1−α)(1). Later, if i ∈ I and the plaintext is 0 then Expi

sets its secret key ski as (α, skiα, ri(1−α)) where ri(1−α) ← s̃Gen
−1

(pki(1−α)). Else, it sets ski as

((1− α), ski(1−α), riα) where riα ← s̃Gen
−1

(pkiα). It then hands ski to adversary A.

Next, we design a simulator S for experiment rsim-so-ideal. Specifically, the simulator picks n pairs of
public and secret key pairs of sPKE using sGen. It then computes the public key vector pk using the public
keys and hands it to A. Upon receiving Dist from A, S outputs Dist in experiment rsim-so-ideal. To
compute the ith ciphertext ei in vector e, S does exactly what Expn+i does for computing its ith ciphertext.
It hands over e to A. Upon receiving I from A, S outputs I in experiment rsim-so-ideal and receives back a
bit vector bI . For all i ∈ I, S computes the ith secret key ski exactly the way Expn+i computes its ski and
returns (ski, bi) to A. Finally, the simulator outputs whatever A outputs. It is easy to verify that experiments
Exp2n and rsim-so-ideal, when executed with S, produce the same distribution.

It remains to show that Expi−1 and Expi are computationally indistinguishable for all i ∈ [2n]. We
prove this in two steps. Let Di be an efficient distinguisher that distinguishes Expi−1 and Expi. Namely,
let εi−1 is the probability that Di outputs 1 when given a distribution generated relative to Expi−1, and
likewise εi is the probability that Di outputs 1 when given a distribution generated relative to Expi−1. We
show that |εi−1 − εi| ≤ ∆ksim for any i ∈ [n], where ∆ksim = Advksim

sPKE(C, k). Next, we prove that
|εn+i−1 − εn+i| ≤ ∆ind-cpa for any i ∈ [n], where ∆ind-cpa = Advind-cpa

sPKE (B, k). All together this implies
that ε0 − ε2n ≤ n(εksim + εind-cpa) which proves the lemma.

Claim 4.9. |εi−1 − εi| ≤ n∆ksim for all i ∈ [n], where ∆ksim = Advksim
sPKE(C, k).

Proof: Intuitively, the experiments Expi−1 and Expi are computationally indistinguishable since the only
difference between them is that in Expi−1 one of the public keys in pki is picked using s̃Gen, whereas both
public keys in pki in Expi are computed using sGen. That is, one of the keys in Expi−1 is sampled from
K. Whereas, in Expi both keys are sampled from V , the set of valid public keys. Any distinguisher Di for
these two experiments can be successfully transformed into a distinguisher C for Expksim

sPKE. We now show
how this can be achieved. C interacts with Di as follows:

1. Upon receiving (pk, r) from Expksim
sPKE and an integer i, C picks a random bit α and sets pkiα = pk

whereas pki(1−α) is computed using sGen. For all j ∈ [1, i−1], it then generates the public and secret
key pairs exactly as in Expi−1 (that is, both public keys within every pkj are generated using sGen).
Next, for all j ∈ [i+ 1, n] C generates the public and secret key pairs exactly as in Expi (that is, one
of public keys within every pkj is generated using sGen and the other key is generated using s̃Gen).
Next, it completes pk with the public keys chosen above and hands pk to Di who returns Dist.

2. C samples b ← Dist(1k) and computes the ciphertext vector e the way it is computed in Expi−1 or
Expi (note that e is computed in the same way both in Expi−1 and Expi; so choosing either way
makes no difference).

3. Upon receiving I from Di, C hands it pairs of secret keys and plaintexts for all the indices that are
specified in this set. That is,

• If j ∈ I lies in [i− 1], then C returns (skj , bj) such that skj = (β, skjβ, rj(1−β)) for a random

β ∈ {0, 1} and rj(1−β) ← s̃Gen
−1

(pkj(1−β)).

24

• If j ∈ I equals i, then C returns (skj , bj) such that skj = ((1−α), skj(1−α), rjα) with rjα = r.

• If j ∈ I lies in [i + 1, n], then C returns (skj , bj) such that skj = (β, skjβ, rj(1−β)) where

(pkjβ, skjβ) ← sGen(1κ) and (pkj(1−β), rj(1−β)) ← s̃Gen(1k) (that is, the pair (pkjβ, skjβ)
was generated by sGen, whereas the other public key pkj(1−β) was generated by the oblivious

sampling algorithm s̃Gen).

4. C outputs 1 in Expksim
sPKE if Di outputs 1.

Next, note that C perfectly emulates Expi−1 if it receives a challenge public key pk that is picked obliviously
using s̃Gen. On the other hand, C perfectly emulates Expi if pk was computed using sGen(1κ) along with

its secret key and the randomness r returned by Expksim
sPKE along with pk has been obtained via s̃Gen

−1
. This

ensures that the probability that C outputs 1 given an obliviously picked public key pk is at least as good
as the probability that Di outputs 1 in Expi−1. On the other hand, the probability that C outputs 1 given a
legitimate public key pk is at least as good as the probability that Di outputs 1 in Expi. That is,

Pr [1← C(pk, r)] ≥ εi−1 when (pk, r)← s̃Gen(1k) and

Pr [1← C(pk, r)] ≥ εi when (pk, sk)← sGen(1k) ∧ r ← s̃Gen
−1

(pk).

This implies that ∆ksim = Advksim
sPKE(A, k) ≥ |εi−1 − εi| and concludes our proof. We finally note that the

above reduction works even for a stronger distinguisher Di that may ask for the randomness used to sample
the public key that C claims to choose obliviously for every pki of pk. �

Claim 4.10. |εn+i−1 − εn+i| ≤ n∆ind-cpa for all i ∈ [n], ∆ind-cpa = Advind-cpa
sPKE (B, k).

Proof: The difference between Expn+i−1 and Expn+i is that the ith ciphertext ei in the vector e consists
of encryptions of the same plaintext in Expn+i−1 and different plaintexts in Expn+i. In the following, we
prove that one can design an adversary B that can win in Expind-cpa

sPKE using adversary Di that distinguishes
between experiments Expn+i−1 and Expn+i. B interacts with Di as follows:

1. Upon receiving pk from Expind-cpa
sPKE and an integer i, B picks a random bit α and sets pkiα = pk

whereas pki(1−α) is computed using sGen. It then generates the rest of the public and secret key pairs
using sGen for all j ∈ [n] \ i. Next, it completes pk with the plaintexts and public keys chosen above
and hands pk to Di who returns Dist. B hands (0, 1) to tExpind-cpa

sPKE and gets back the challenge
ciphertext e which either encrypts 0 or 1.

2. B samples b ← Dist(1k) and fixes eiα = e and ei(1−α) ← sEncpki(1−α)(bi) where bi is the ith bit in
the vector b. Next, for j ∈ [i− 1] B computes ej such that it consists of the encryptions of 0 and 1 in
some random order. For j = [i+ 1, n], B computes ej such that it consists of the encryptions of same
plaintext bj . I.e, ej0 ← sEncpki0(bj) and ej1 ← sEncpki1(bj).

3. Upon receiving I from Di, B hands it pairs of secret keys and plaintexts for all the indices that are
specified in this set. That is,

• If j ∈ I lies in [i−1], then B returns (skj , bj) such that skj = (β, skjβ, rj(1−β)) if ejβ encrypts

bj under public key pkjβ and rj(1−β) ← s̃Gen
−1

(pkj(1−β)).

25

• If j ∈ I equals i, then B returns (skj , bj) such that skj = ((1 − α), skj(1−α), rjα) with rjα =

s̃Gen
−1

(pkjα). Note that pkjα = pk, where pk is received from Expind-cpa
sPKE .

• If j ∈ I lies in [i+1, n], then B returns (skj , bj) such that skj = (β, skjβ, rj(1−β)) for a random

β ∈ {0, 1} and rj(1−β) ← s̃Gen
−1

(pkj(1−β)).

4. B outputs 1 in Expind-cpa
sPKE if Di outputs 1.

Next, note that B perfectly emulates Expn+i−1 if it receives a challenge ciphertext e that encrypts bi. On the
other hand, B perfectly emulates Expn+i if e is the encryption of (1− bi). This ensures that the probability
that B outputs 1 given an encryption of bi is at least as good as the probability that Di outputs 1 in Expn+i−1.
On the other hand, the probability that B outputs 1 given an encryption of (1− bi) is at least as good as the
probability that Di outputs 1 in Expn+i. Denoting the bit picked in Expind-cpa

sPKE by c we get,

Pr
[
1← B(pk, e) | (pk, sk)← sGen(1k) ∧ e← sEncpk(bi)

]
︸ ︷︷ ︸

=Pr[1←B | c=0]

≥ εn+i−1 and

Pr
[
1← B(pk, e) | (pk, sk)← sGen(1k) ∧ e← sEncpk(1− bi)

]
︸ ︷︷ ︸

=Pr[1←B | c=1]

≥ εn+i.

This implies that

∆ind-cpa = Advind-cpa
sPKE (B, k) = 2

∣∣∣∣Pr[Expind-cpa
sPKE (B, k) = 1]− 1

2

∣∣∣∣
= |Pr[1← B | c = 0]− Pr[1← B | c = 1]|
≥ |εn+i−1 − εn+i| .

� �
Next, we show that PKE is neither a secure tweaked NCER nor a secure NCER.

Lemma 4.11. PKE is neither a {ind-tcipher, ind-tncer} secure tweaked NCER nor an ind-ncer secure
NCER.

Proof: First we show that PKE is not a secure tweaked NCER. Define the tweaked NCER tPKE = (tGen,
tEnc, tEnc∗, tDec, tOpen) where (tGen, tEnc, tDec) are the same as (Gen,Enc,Dec). We show that it is
impossible to define algorithms tEnc∗ and tOpen so that a ciphertext generated by tEnc∗ can be opened into
any plaintext from the binary plaintext space, by producing (possibly inefficiently) a matching secret key
via tOpen. First, note that for any ciphertext e← tEnc∗pk produced with a public key pk so that (pk, sk)←
tGen(1k), it must be that e = (e0, e1) so that for a random α, eα = sEncpkα(0) and e1−α = sEncpk1−α(1),
where pk = (pk0, pk1). It is easy to see that if the above claim does not hold then e cannot be decrypted
to both 0 and 1. Specifically, tOpen can produce a secret key that decrypts e into a bit b where pkb is
selected using sGen. However, in order to produce a secret key that decrypts e into 1 − b, tOpen must find
a secret key that matches pk1−b, which was picked from K. Nevertheless, it may be that pk1−b is an invalid
public key, that is computationally indistinguishable from a valid public key, but does not have a matching
secret key (namely, when V ⊂ K). Thus, producing a secret key in this case is impossible regardless of
the computational power tOpen is given. Our proof now follows from the fact that the probability that

26

pk1−b is an invalid key is non-negligible in k (recall that secure extended key-simulatable PKE ensures this
property) and so tPKE does not satisfy ind-tcipher security which concludes the first part of the proof. The
proof claiming that PKE is not a secure NCER follows due to similar reasons where we show that ind-ncer
security cannot be achieved. �

4.4.1 Realizing Key-Simulatable and Extended Key-Simulatable PKE

A simple example of a {ind-cpa, ksim} secure key-simulatable PKE is the ElGamal PKE [Gam85] where
we set K to be equal to the set of valid public keys, i.e. K = V . In addition, note that any simulatable PKE
as defined in [DN00] is also {ind-cpa, ksim} secure key-simulatable PKE.

Below we provide an example of extended key-simulatable PKE with security under the DDH assump-
tion. For simplicity we consider a binary plaintext space. Let (g0, g1, p) ← G(1k) be an algorithm that
given a security parameter k returns a group description G = Gg0,g1,p specified by its generators g0, g1 and
its order p. Furthermore, we set K = G2 and V = {(gx0 , gx1) ∈ G2 | x ∈ Zp}. Then define the following
extended key-simulatable PKE,
– sGen, given the security parameter k, set (g0, g1, p) ← G(1k). Choose uniformly random x ← Zp and

compute hi = gxi for all i ∈ {0, 1}. Output the secret key sk = x and the public key pk = (h0, h1).
– sEnc, given the public key pk and plaintext m ∈ {0, 1}, choose a uniformly random s, t ← Zp. Output

the ciphertext
(
gs0g

t
1, g

m
0 · (hs0ht1)

)
.

– sDec, given the secret key x and ciphertext (gc, hc), output hc · (gxc)−1.
– s̃Gen, given 1k, output two random elements from G and their bit sequence as the randomness.

– s̃Gen
−1

, given a legitimate public key h0, h1, simply returns the bit strings of h0, h1 as the randomness
used to sample them from G2 by s̃Gen.

We remark that a public key chosen randomly from G2 does not necessarily correspond to a secret key.
Furthermore, Pr

[
pk ∈ K \ V | pk ← s̃Gen(1k)

]
is non-negligible. This is a key property in our proof from

Section 4.4 that enables us to prove that rsim-so does not imply NCER as well as tweaked NCER, which
further implies that rind-so does not imply these primitives.

4.5 Realizing Tweaked NCER

4.5.1 Constructions for Polynomial Plaintext Spaces

Based on key-simulatable PKE. We prove that secure tweaked NCER can be built based on any secure
key-simulatable PKE with K = V (cf. definition 3.4). Specifically, our construction is based on the sep-
arating scheme presented in Section 4.4. In addition, we define the fake encryption algorithm so that it
outputs two ciphertexts that encrypt two distinct plaintexts rather than the same plaintext twice (implying
that ciphertext indistinguishability follows from the ind-cpa security of the underlying encryption scheme).
More formally, the fake encryption algorithm can be defined as follows. Given sk = (α, skα, r1−α)
and message b, a fake encryption of b is computed by e∗ = (sEncpk0(b), sEncpk1(1 − b)) if α = 0 and
e∗ = (sEncpk0(1 − b), sEncpk1(b)) otherwise. It is easy to verify that given sk, the decryption of e∗ re-
turns b and that e∗ is computationally indistinguishable from a valid encryption even given the secret key.
Next, we discuss the details of the non-efficient opening algorithm which is required to generate a secret
key for a corresponding public key given a fake ciphertext and a message b′. In more details, assuming

27

sk = (α, skα, r1−α) and pk = (pk0, pk1),

tOpen(sk, pk, (e∗0, e
∗
1), b

′) =

(α, skα, r1−α) if e∗α = sEncpkα(b′)

(1− α, sk1−α, rα) otherwise, where rα ← s̃Gen
−1

(pkα) and
sk1−α is a valid secret key of pk1−α.

Note that since it holds that V = K for the underlying sPKE scheme, there exists a secret key that corre-
sponds to pk1−α and it can be computed (possibly in an inefficient way). Encryption schemes for larger
plaintext spaces can be obtained by repeating this basic scheme sufficiently many times.6 Finally, we note
that the scheme is {ind-tcipher, ind-tncer} secure. Recalling that any simulatable PKE with K = V is a
key-simulatable PKE [DN00, CDSMW09], we conclude that secure tweaked NCER for a binary plaintext
space can be built relying on DDH, RSA, factoring and LWE assumptions.

Based on statistically-hiding
(
2
1

)
-OT. Let (Sen,Rec) be a two-round honest-receiver statistically-hiding(

2
1

)
oblivious transfer protocol (cf. Definition 3.6). Then, we show how to construct a tweaked NCER.

Intuitively, we view the first message of the protocol as the public key, whereas the second message is
viewed as a ciphertext that encrypts one of the sender’s inputs (since the receiver only learns one of these
inputs). Moreover, a valid encryption algorithm employs the sender with the same input twice, whereas a
fake encryption algorithm invokes the sender with an input and its compliment, ensuring that there is a secret
key that decrypts into each one of these inputs by the statistical security of the receiver. More formally, we
define algorithms (tGen, tEnc, tEnc∗, tDec, tOpen) as follows.

– tGen, given the security parameter 1k, set (q, sk) ← Recq(1
k, α) for a random α ← {0, 1}. Set pk = q,

and sk to be the sk returned by Recq.

– tEnc, given the public key q and plaintext m ∈ {0, 1}, output Sen(q,m,m).

– tDec, given the secret key sk and ciphertext c = rsp, output Recr(sk, rsp).

– tEnc∗, given the secret key sk, public key q and plaintext m ∈ {0, 1}, output Sen(q,m, 1 − m) if
α = 0. Otherwise, output Sen(q, 1 −m,m). Note that given the pair (pk, sk) it is possible to learn
α. Furthermore, tDec(sk, rsp∗) = m where rsp∗ is a fake ciphertext since fake encryption follows
according to the receiver’s input α.

– tOpen, given the secret key sk, public key pk, fake ciphertext rsp∗ and plaintext m, output sk′ that is
consistent with q. Note that such sk′ exists since the receiver’s input α is statistically hidden given q.

It is easy to verify that ciphertext indistinguishability holds due to the sender’s privacy property. Further-
more, any two fake ciphertexts with sender’s input s0 = 0 and s1 = 1, or s0 = 1 and s1 = 0, are identically
distributed where the probability distribution is over the randomness for tEnc∗ and the choice of α. Finally,
since we it holds that simulatable PKE implies statistically-hiding OT, it implies that secure tweaked NCER
is obtained from the same assumptions that are specified earlier.

6We note that this construction was discussed in [HLAWW13] in the context of weak hash proof systems and leakage resilient
PKE.

28

4.5.2 Constructions for Exponential Plaintext Spaces

Based on NCER. We show that the DCR based secure NCER of [CHK05] is also a secure tweaked NCER.
Specifically, let (p′, q′)← G(1n) be an algorithm that given a security parameter k returns two random n bit
primes p′ and q′ such that p = 2p′ + 1 and q = 2q′ + 1 are also primes. Let N = pq and N ′ = p′q′. Define
(tGen, tEnc, tEnc∗, tDec, tOpen) as follows.

– tGen, given the security parameter k, run (p′, q′) ← G(1n) and set p = 2p′ + 1, q = 2q′ + 1, N = pq
and N ′ = p′q′. Choose random x0, x1 ← ZN2/4 and a random g′ ∈ Z∗N2 and compute g0 = g′2N ,
h0 = gx00 and h1 = gx10 . Output public key pk = (N, g0, h0, h1) and secret key sk = (x0, x1).

– tEnc, given the public key pk and a plaintext m ∈ ZN , choose a uniformly random t← ZN/4 and output
ciphertext

c← tEncpk(m; t) =
(
gt0 mod N2, (1 +N)mht0 mod N2, ht1 mod N2

)
.

– tDec, given the secret key (x0, x1) and a ciphertext (c0, c1, c2), check whether c2x10 = (c2)
2; if not output

⊥. Then set m̂ = (c1/c
x0
0)N+1. If m̂ = 1 +mN for some m ∈ ZN , then output m; else output ⊥.

– tEnc∗, given the public key pk, secret key sk and a message m, choose uniformly random t ← Zφ(N)/4,
compute the fake ciphertext

c∗ ← (c∗0, c
∗
1, c
∗
2) =

(
(1 +N) · gt0 mod N2, (1 +N)m · (c∗0)x0 mod N2, (c∗0)

x1 mod N2
)
.

– tOpen, given N ′, (x0, x1), a ciphertext (c0, c1, c2) such that (c0, c1, c2)← tEnc∗pk(sk,m) and a plaintext
m∗ ∈ ZN , output sk∗ = (x∗0, x1), where x∗0 ← ZNN ′ is the unique solution to the equations x∗0 =
x mod N ′ and x∗0 = x0 + m −m∗ mod N . These equations have a unique solution due to the fact
that gcd(N,N ′) = 1 and the solution can be obtained employing Chinese Remainder Theorem.

It can be verified that the secret key sk∗ matches the public key pk and also decrypts the ‘simulated’
ciphertext to the required message m∗. The first and third components of pk remain the same since
x1 has not been changed. Now gx

∗
0 = gx

∗
0 mod N ′ = gx0 mod N ′ = gx0 = h0. Using the fact that the

order of (1 +N) in Z∗N2 is N , we have(
c1

c
x∗0
0

)N+1

=

(
(1 +N)x0+mgtx00

(1 +N)x
∗
0g
tx∗0
0

)N+1

=
(

(1 +N)x0+m−x
∗
0 mod N

)N+1
= ((1 +N)m)N+1 = (1 +mN).

It is easy to verify that real and fake ciphertexts are computationally indistinguishable under the DCR
assumption since the only difference is with respect to the first element (which is an 2N th power in a real
ciphertext and not an 2N th power in a simulated ciphertext). The other two elements are powers of the
first element. Furthermore sk = (x0, x1) and sk∗ = (x∗0, x1) are statistically close since x0 ← ZN2/4 and
x∗0 ← ZNN ′ and the uniform distribution over ZNN ′ and ZN2/4 is statistically close.

29

Based on HPS. Finally, we demonstrate that HPS (cf. Definition 3.7) imply tweaked NCER. Let HPS =
(Param,Pub,Priv) denote a secure HPS. We define a secure tweaked NCER as follows.

– tGen, given the security parameter 1k, invoke Param(1k) and generate instances of (G,K, C,V,SK,PK,Λ(·),
δ(·)). Choose a random sk ∈ SK and let pk = δ(sk) ∈ PK. Output the pair (pk, sk).

– tEnc, given the public key pk and plaintext m ∈M, choose a random c← V together with a correspond-
ing witness w for c being a valid ciphertext. Let e = Pubpk(c, w) ⊕ m, then output the ciphertext
(c, e).

– tDec, given the secret key sk and ciphertext (c, e), output m = e⊕ Privsk(c).

– tEnc∗, given the secret key sk and plaintext m ∈M, choose a random c∗ ← C/V . Let e∗ = Privsk(c
∗)⊕

m, then output the ciphertext (c∗, e∗). It is easy to verify that the decryption of a fake ciphertext
(c∗, e∗) outputs the encrypted plaintext m.

– tOpen, given the secret key sk and the public key pk, fake ciphertext (c∗, e∗) and plaintext m ∈ M
output sk∗ that decrypts this ciphertext into m (the existence of such a secret key is implied by the
1-universality property of HPS).

First, ciphertext indistinguishability holds due to the ind-hps property of the HPS. In addition, the 1-
universal property ensures that encapsulated keys that were generated by Privsk(c

∗) for c∗ ← C/V are
identically distributed to encapsulated keys that are equivocated by algorithm tOpen.

5 Selective Opening Security for the Sender

In this section we prove sind-so is strictly weaker than ssim-so security by constructing a scheme that meets
the former but not the latter level of security. We prove this statement by constructing a sind-so secure
encryption scheme that is not ssim-so secure. Our starting point is a lossy encryption scheme loPKE =
(loGen, loGen∗, loEnc, loDec). We then modify loPKE by adding a (statistically hiding) commitment to
each ciphertext such that the new scheme, denoted by PKE, becomes committing. Next, we prove that
PKE is sind-so secure by showing that the scheme remains lossy and is therefore sind-so secure according
to [BHY09]. Finally, using the result from [BDWY12] we claim that PKE is not ssim-so secure. Our
separating scheme requires that the message spaceMnisCom of nisCom and the message spaceMloPKE of
loPKE are the same (since we encrypt and commit to the same message). We formalize this requirement
and define compatibility between the above primitives as follows:

Definition 5.1. Assume that loPKE and nisCom are {ind-lossy, ind-lossycipher} secure lossy PKE and
{stat-hide, comp-bind} secure NISHCOM, respectively. We say that these primitives are compatible if
MloPKE =MnisCom.

We proceed with our main theorem for this section and further provide a concrete example of schemes
that satisfy the compatibility criteria.

Theorem 5.2. Assume there exists a {ind-lossy, ind-lossycipher} secure lossy PKE and a {stat-hide,
comp-bind} secure NISHCOM that are compatible. Then, there exists a PKE that is sind-so secure but is
not ssim-so secure.

30

Gen(1k)
(pk, sk)← loGen(1k)
Return (pk, sk)

Gen∗(1k)
(pk∗, sk∗)← loGen∗(1k)
Return (pk∗, sk∗)

Encpk(m)
e0 ← loEncpk(m)
e1 ← nisCommit(m)
Return e = (e0, e1)

Decsk(e)
e := (e0, e1)
m = loDecsk(e0)
Return m

Proof: We describe our separating encryption scheme first. Specifically, given a secure lossy PKE loPKE =
(loGen, loGen∗, loEnc, loDec) and a secure NISHCOM (nisCommit, nisOpen), we define our separating
scheme PKE = (Gen,Gen∗,Enc,Dec) as follows.

The proof follows from Lemmas 5.1 and 5.2 presented and proven below.

Lemma 5.1. PKE is sind-so secure.

Proof: According to [BHY09], any lossy encryption satisfies sind-so security. We thus prove that PKE
is a lossy encryption scheme. It is easy to verify that correctness on real keys and indistinguishability of
real and lossy keys follow due to the underlying lossy encryption scheme loPKE. Next, lossyness under
lossy keys follows from the lossyness under lossy keys of loPKE and the statistical hiding property of
NISHCOM. Namely, since NISHCOM satisfies statistical hiding there exists a (possibly inefficient) algo-
rithm that given a message m ∈ MnisCom and commitment c outputs randomness r ∈ RnisCom such that
c = nisCommit(m; r), where RnisCom is the randomness space of the commitment scheme. Therefore,
one can define an algorithm loOpen for PKE (as required for a lossy encryption), that is combined of two
sub-algorithms: (1) algorithm loOpen of loPKE which exists under the assumption that loPKE is a lossy
encryption, and (2) the algorithm specified above for the commitment scheme. This implies that PKE is a
lossy encryption and concludes the proof. �

Lemma 5.2. PKE is not ssim-so secure.

Proof: We note that PKE is a binding scheme in the sense of [BDWY12] due to the use of a commitment
scheme. Specifically, explaining a ciphertext in two different ways (i.e., generating two random strings for
two different messages), implies breaking the computational binding property of nisCommit. By applying
the result of [BDWY12] that no binding scheme is ssim-so, the proof is concluded. �

5.1 Compatible Secure Lossy PKE and Secure NISHCOM

Our construction requires secure lossy PKE and a secure NISHCOM that share the same plaintext space.
One potential instantiation is to consider the lossy PKE from [HLOV11] that is defined based on the reran-
domizable encryption El Gamal encryption scheme specified by the algorithms (Gen,Enc,Dec), that is
defined relative to a group G of prime order p (where the plaintext space of polynomial size might also be a
subset of Zp). Specifically, the key generation algorithm for the lossy encryption scheme invokes Gen and
generates a pair of keys (pkEG, skEG), and fixes pk = (EncpkEG(0),EncpkEG(1)), whereas sk = skEG.
Moreover, given a public key (c0, c1) an encryption of the bit b ∈ {0, 1} is defined by a rerandomization of
ciphertext cb, whereas decryption follows by decrypting the ciphertext using sk as in El Gamal. Finally, the
lossy key generation algorithm is defined by fixing pk∗ = (EncpkEG(0),EncpkEG(0)).

In addition, we instantiate the NISHCOM with Pedersen commitment scheme [Ped91] which can operate
over a polynomial size subset of Zp, i.e. the same message space of the above secure lossy PKE. More
concretely, let {Gk, gk, hk}k∈N be a family of finite groups, along with fixed generators gk, hk of Gk, that are
all parameterized by the security parameter. Then, assuming the hardness of computing loggk hk, Pedersen’s
commitment, defined by nisCommit(m; r) := gmk h

r
k, is a secure NISHCOM where comp-bind security

holds due to the hardness of discrete log assumption.

31

Acknowledgements

Carmit Hazay acknowledges support from the Israel Ministry of Science and Technology (grant No. 3-
10883). Arpita Patra acknowledges support from project entitled ‘ISEA - Part II’ funded by Department
of Electronics and Information Technology (DeitY) of Govt. of India. Part of this work was carried out
while Bogdan Warinschi was a visiting Microsoft Research, Cambridge, UK and IMDEA, Madrid, Spain.
He has been supported in part by ERC Advanced Grant ERC-2010-AdG-267188-CRIPTO, by EPSRC via
grant EP/H043454/1, and has received funding from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement 609611 (PRACTICE).

References
[BDWY12] Mihir Bellare, Rafael Dowsley, Brent Waters, and Scott Yilek. Standard security does not imply secu-

rity against selective-opening. In EUROCRYPT, pages 645–662, 2012.

[BHK12] Florian Böhl, Dennis Hofheinz, and Daniel Kraschewski. On definitions of selective opening security.
In Public Key Cryptography, pages 522–539, 2012.

[BHY09] Mihir Bellare, Dennis Hofheinz, and Scott Yilek. Possibility and impossibility results for encryption
and commitment secure under selective opening. In EUROCRYPT, pages 1–35, 2009.

[BWY11] Mihir Bellare, Brent Waters, and Scott Yilek. Identity-based encryption secure against selective open-
ing attack. In TCC, pages 235–252, 2011.

[BY09] Mihir Bellare and Scott Yilek. Encryption schemes secure under selective opening attack. IACR
Cryptology ePrint Archive, 2009:101, 2009.

[CDSMW09] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. Improved non-committing
encryption with applications to adaptively secure protocols. In ASIACRYPT, pages 287–302, 2009.

[CFGN96] Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. Adaptively secure multi-party computation.
In STOC, pages 639–648, 1996.

[CHK05] Ran Canetti, Shai Halevi, and Jonathan Katz. Adaptively-secure, non-interactive public-key encryption.
In TCC, pages 150–168, 2005.

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen ciphertext
secure public-key encryption. In EUROCRYPT, pages 45–64, 2002.

[DN00] Ivan Damgård and Jesper Buus Nielsen. Improved non-committing encryption schemes based on a
general complexity assumption. In CRYPTO, pages 432–450, 2000.

[DN02] Ivan Damgård and Jesper Buus Nielsen. Perfect hiding and perfect binding universally composable
commitment schemes with constant expansion factor. In CRYPTO, pages 581–596, 2002.

[DN03] Ivan Damgård and Jesper Buus Nielsen. Universally composable efficient multiparty computation from
threshold homomorphic encryption. In CRYPTO, pages 247–264, 2003.

[DNRS03] Cynthia Dwork, Moni Naor, Omer Reingold, and Larry J. Stockmeyer. Magic functions. J. ACM,
50(6):852–921, 2003.

[FHKW10] Serge Fehr, Dennis Hofheinz, Eike Kiltz, and Hoeteck Wee. Encryption schemes secure against chosen-
ciphertext selective opening attacks. In EUROCRYPT, pages 381–402, 2010.

[Gam85] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE
Transactions on Information Theory, 31(4):469–472, 1985.

32

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270–299,
1984.

[HLAWW13] Carmit Hazay, Adriana López-Alt, Hoeteck Wee, and Daniel Wichs. Leakage-resilient cryptography
from minimal assumptions. In EUROCRYPT, pages 160–176, 2013.

[HLOV11] Brett Hemenway, Benoı̂t Libert, Rafail Ostrovsky, and Damien Vergnaud. Lossy encryption: Con-
structions from general assumptions and efficient selective opening chosen ciphertext security. In ASI-
ACRYPT, pages 70–88, 2011.

[HLQ13] Zhengan Huang, Shengli Liu, and Baodong Qin. Sender-equivocable encryption schemes secure
against chosen-ciphertext attacks revisited. In Public Key Cryptography, pages 369–385, 2013.

[HR14] Dennis Hofheinz and Andy Rupp. Standard versus selective opening security: Separation and equiva-
lence results. In TCC, pages 591–615, 2014.

[JL00] Stanislaw Jarecki and Anna Lysyanskaya. Adaptively secure threshold cryptography: Introducing
concurrency, removing erasures. In EUROCRYPT, pages 221–242, 2000.

[Nie02] Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic proofs: The non-
committing encryption case. In Advances in Cryptology - CRYPTO 2002, 22nd Annual International
Cryptology Conference, Santa Barbara, California, USA, August 18-22, 2002, Proceedings, pages
111–126, 2002.

[Ped91] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In
CRYPTO, pages 129–140, 1991.

[ROV14] Vanishree Rao R. Ostrovsky and Ivan Visconti. On selective-opening sattacks against encryption
schemes. In SCN, 2014.

33

