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Abstract. Secure multiparty computation can be done with a deck of
playing cards. For example, den Boer (EUROCRYPT ’89) devised his
famous “five-card trick”, which is a secure two-party AND protocol using
five cards. However, the output of the protocol is revealed in the process
and it is therefore not suitable for general circuits with hidden intermediate
results. To overcome this limitation, protocols in committed format, i.e.,
with concealed output, have been introduced, among them the six-card
AND protocol of (Mizuki and Sone, FAW 2009). In their paper, the authors
ask whether six cards are minimal for committed format AND protocols.
We give a comprehensive answer to this problem: there is a four-card
AND protocol with a runtime that is finite in expectation (i.e., a Las
Vegas protocol), but no protocol with finite runtime. Moreover, we show
that five cards are sufficient for finite runtime. In other words, improving
on (Mizuki, Kumamoto and Sone, ASIACRYPT 2012) “The Five-Card
Trick can be done with four cards”, our results can be stated as “The
Five-Card Trick can be done in committed format” and furthermore it
“can be done with four cards in Las Vegas committed format”.
By devising a Las Vegas protocol for any k-ary boolean function using 2k
cards, we address the open question posed by (Nishida et al., TAMC 2015)
on whether 2k + 6 cards are necessary for computing any k-ary boolean
function. For this we use the shuffle abstraction as introduced in the
computational model of card-based protocols in (Mizuki and Shizuya,
Int. J. Inf. Secur., 2014). We augment this result by a discussion on
implementing such general shuffle operations.

Keywords: card-based protocols · committed format · boolean AND ·
secure computation · cryptography without computers

1 Introduction

The most well known card-based cryptographic protocol uses five cards showing
two different types of symbols, ♥ and ♣, which are otherwise assumed to be
physically indistinguishable. Let us quickly describe the elegant “five-card trick”
∗ c© IACR 2015. This article is the final version submitted by the authors to the IACR
and to Springer-Verlag on 2015-09-07.



of den Boer [B89] for computing a logical AND operation on the bits of two players.
For this, the players input their bits as a commitment, which is two face-down
cards either as ♥♣ or ♣♥, encoding 1 or 0, respectively, with a separating ♣
card in between, so that the possible input sequences look like this:

♥ ♣︸︷︷︸
a=1

♣ ♥ ♣︸︷︷︸
b=1

/ ♥ ♣︸︷︷︸
a=1

♣ ♣ ♥︸︷︷︸
b=0

/ ♣ ♥︸︷︷︸
a=0

♣ ♥ ♣︸︷︷︸
b=1

/ ♣ ♥︸︷︷︸
a=0

♣ ♣ ♥︸︷︷︸
b=0

Now, the second player inverts his bit by swapping his cards, leading to the
following situation:

♥ ♣ ♣ ♣ ♥︸ ︷︷ ︸
a∧b=1

/ ♥ ♣ ♣ ♥ ♣︸ ︷︷ ︸
a∧b=0

/ ♣ ♥ ♣ ♣ ♥︸ ︷︷ ︸
a∧b=0

/ ♣ ♥ ♣ ♥ ♣︸ ︷︷ ︸
a∧b=0

Observe that only in the case of a = b = 1, the three ♣s are consecutive. The
following cyclic arrangement of cards as seen from below a “glass table” makes it
obvious that this property is preserved under cyclic shifts of the cards:

♣

♣

♥♥

♣ /

♣

♥

♣♥

♣ /

♣
♣

♥♣

♥ /

♣

♥

♣♣

♥

By applying a cyclic shift by a random offset, the correspondence of the positions
to the players is obscured. This “shuffling” of the cards can be done by the players
taking turns in applying a cyclic shift of a random offset, without letting the
other players observe the permutation that has been applied to the cards. By
revealing all cards afterwards, the players can check whether the three ♣s are
consecutive and deduce that the output is 1 if this is the case, and 0 otherwise.

This example illustrates that a deck of cards can be used to securely evaluate
functions, without the players giving away anything about their inputs that cannot
be deduced from the result of the execution of such a card-based cryptographic
protocol. The utility of these protocols is evident from their use in classrooms
and lectures to illustrate secure multiparty computation to non-experts to the
field of cryptography, or in an introductory course. Moreover, the possibility
of performing these protocols without the use of computers is an interesting
distinctive feature.

In their ASIACRYPT 2012 paper, Mizuki, Kumamoto, and Sone [MKS12]
were able to reduce the number of cards to the best possible of 4, which is already
necessary to encode the inputs. However, both protocols have an important
caveat: They unavoidably reveal the final result during the computation. This
makes them inadequate for use in larger protocols, for instance when evaluating
complex logical circuits.

Therefore, starting with [NR98; S01; CK93], several researchers came up with
so-called committed format protocols, which output a commitment encoding
the result by two cards, as described above. This allows for using the output
commitment of the protocol as an input to another protocol and for having a
fine-grained control on who learns what about the result.
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So far, the protocols using the least number of cards for computing AND in
committed format are

– the six-card protocol of Mizuki and Sone [MS09], which has a deterministic
runtime (cf. Fig. 2), and

– the five-card Las Vegas protocol of [CHL13], as described in Example 1.
Note that this protocol may end in a configuration which needs restarting
with probability 1/2 and utilizes a rather complex shuffle operation. (These
operations will be discussed in Section 8).

This leads to the natural question on the minimality of cards needed for a secure
committed format AND, which has been posed in several places in the literature,
see, e.g., [MS09; MS14a; MKS12]. Moreover in [CHL13], the authors ask whether
there is a “deterministic” five-card variant of their protocol. In this paper, we
answer these questions comprehensively.

To cope with these questions, [MS14a] defined a formal computational model
stating the possible operations that a card-based protocol can make. To allow
for strong impossibility results, the authors give a rather wide palette of possible
operations that can be applied to the cards, e.g., shuffling with an arbitrary
probability distribution on the set of permutations. Our paper shows that this
yields rather strong possibility results by utilizing “non-closed” shuffles, as defined
in Section 8.

Note that all protocols are in the honest-but-curious setting (although some
analysis of malicious behavior has been done in [MS14b]), i.e., the players execute
the protocol according to its description, but gather any information they can
possibly obtain.

Contribution. In this paper, we

– introduce a four-card Las Vegas protocol for the AND of two players’ bits,
– give a five-card variant, which has an a priori bound on the number of

execution steps, i.e., a finite-runtime protocol,
– show that this is optimal, as four-card finite-runtime protocols computing

AND in committed format are impossible,
– define a method of enriching the description of a protocol, that makes

correctness and security transparent and gives a good understanding of how
these protocols work, which can be used as a leverage to devise impossibility
results. We therefore believe that this method is of general interest for research
in card-based cryptography,

– state a general 2k-card protocol for any k-ary boolean function, which can be
seen as a touchstone for the practicability of the underlying computational
model,

– discuss the computational model of [MS14a] briefly.

For comparison with other protocols, we refer the reader to Tables 1 and 2.
For the former, we have three key parameters in describing the properties of
protocols: whether it is committed format, whether it is a finite-runtime or a Las
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Table 1. Minimal number of cards required by protocols computing AND of two bits,
subject to the requirements specified in the first three columns.

format runtime shuffles #cards reference

committed exp. finite non-uniform closed 4 Theorem 1
non-committed finite uniform closed 4 [MKS12]
committed finite non-uniform non-closed 5 Theorems 2 and 3
committed exp. finite uniform non-closed ≤ 5 [CHL13]
committed finite uniform closed ≤ 6 [MS09]

Table 2. Comparison of protocols for k-ary boolean functions.

#cards success probability shuffles #steps reference

2k 2−k uniform non-closed constant Theorem 4
2k + 6 1 uniform closed large [N+15]

Vegas algorithm, and whether “non-closed” or “non-uniform” shuffles are used in
the protocols, for which it is not yet apparent how they can be run in practice,
cf. Section 8 for a discussion. Table 1 states the minimal number of cards for
protocols with the given parameters and gives the corresponding references.

In Table 2 we compare our 2k-card protocol of Section 7 with the best
protocol for general boolean functions in the literature, with respect to the
number of cards, namely [N+15]. While our protocol reduces the number of cards
by six, it is a Las Vegas protocol with a substantial probability to end in a state
which requires to restart the protocol. Moreover, it uses the non-closed shuffles
mentioned above. Even though the expected number of restarts until a successful
run is of order O(2k), each run of our protocol requires only a constant number
of steps. This result can also be interpreted as a touchstone of the plausibility of
the computational model for card-based protocols.

Outline. In Section 2 we introduce the basic computational model of card-based
protocols and a strong information-theoretic security definition. We describe a
method for the analysis of protocols in Section 3. We give a description of our
four- and five-card protocols in Section 4 and Section 5, respectively. In the
subsequent Section 6 we show that five cards are necessary for finite-runtime
protocols. In Section 7 we state a Las Vegas protocol for general boolean functions
using a strong shuffle operation that the computational model allows. We discuss
these shuffle operations in Section 8. Finally, we conclude the paper in Section 9.

Notation. In the paper we use the following notation.

– Cycle Decomposition. For n ∈ N and numbers a1, a2, . . . , ak ≤ n we write
π = (a1 a2 . . . ak) for the permutation π ∈ Sn that maps ai to ai+1 for
1 ≤ i ≤ k − 1 and ak to a1 and all other x ≤ n to themselves. We call this
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a cycle. Cycles are maps, so they can be composed with ◦, which we will
omit in the following, e.g. (1 3 5)(2 4) maps 1 7→ 3, 3 7→ 5, 5 7→ 1, 2 7→ 4 and
4 7→ 2.

– Drawing from a Probability Distribution. If F is a probability distribution on
a set X, we write x← F to indicate that x ∈ X should be randomly chosen
from X according to F .

– Sequence Indices. Given a sequence x = (α1, . . . , αl) and an index i with
1 ≤ i ≤ l, we denote by x[i], the ith entry of the sequence, namely αi.

2 Machine Model and Security of Card-based Protocols

Mizuki and Shizuya [MS14a] came up with an elegant framework to model a
computation with card-based cryptographic protocols. We adopt their setting to
our needs and quickly review the important definitions in the following.

A deck D is a finite multiset of symbols, its elements are cards. We will restrict
ourselves to the case where D contains two types of symbols, depicted by ♥ and
♣. For a symbol c ∈ D, c? denotes a face-up card and ?

c a face-down card with
symbol c, respectively. Here, ‘?’ is a special backside symbol, not contained in D.
For a face-up or face-down card α, top(α) and atom(α) denote the symbol in the
“numerator” and the symbol distinct from ‘?’, respectively.

Cards are lying on the table in a sequence. A sequence is obtained by permuting
D and choosing face-up or face-down for each card. For example, ( ?

♣ ,
♣
? ,

?
♥ ,

?
♥ ,

?
♣ )

is a sequence of D = [♣,♣,♣,♥,♥]. We extend top(·) and atom(·) from single
cards to sequences of cards in the canonical way. For a sequence Γ , top(Γ ) is
the visible sequence of Γ . For example, top ( ?

♣ ,
♣
? ,

?
♥ ,

?
♥ ,

?
♣ ) = (?,♣, ?, ?, ?). We

denote the set of all visible sequences of D by VisD, or Vis for short. Furthermore,
we define the set of atomic sequences AtSeqD, or AtSeq for short, as the set of
all permutations of D.

A protocol P is a quadruple (D, U,Q,A), where D is a deck, U is a set of
input sequences, Q is a set of states with two distinguished states q0 and qf, being
the initial and the final state. Moreover, we have a (partial) action function

A : (Q \ {qf})× Vis → Q× Action,

depending only on the current state and visible sequence, specifying the next
state and an operation on the sequence from Action that contains the following
actions:

– (perm, π) for a permutation π ∈ S|D| from the symmetric group S|D| on
elements {1, . . . , |D|}. This transforms a sequence Γ = (α1, . . . , α|D|) into

permπ(Γ ) := (απ−1(1), . . . , απ−1(|D|)),

i.e., it permutes the cards according to π.
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– (turn, T ) for T ⊆ {1, . . . , |D|}. This transforms a sequence Γ = (α1, . . . , α|D|)
into

turnT (Γ ) := (β1, . . . , β|D|), where βi =
{

swap(αi), if i ∈ T,
αi, otherwise,

i.e., it turns over all cards from a turn set T . Here swap( c? ) := ?
c and

swap( ?
c ) := c

? , for c ∈ D.
– (shuffle, Π,F) for a probability distribution F on S|D| with support Π. This

transforms a sequence Γ into the random sequence

shuffleΠ,F (Γ ) := permπ(Γ ), for π ← F ,

i.e., π ∈ Π is drawn according to F and then applied to Γ . Note that the
players do not learn the chosen permutation when executing the protocol
(unless they can derive it from F and the visible sequence after the operation).
If F is the uniform distribution on Π, we may omit it and write (shuffle, Π).

– (rflip, Φ,G) for a probability distribution G on 2{1,...,|D|} with support Φ. This
transforms a sequence Γ into

rflipΦ,G(Γ ) := turnT (Γ ), for T ← G,

i.e., T ⊆ {1, . . . , |D|} is drawn according to G and then the corresponding
cards of Γ are turned.

– (restart). This transforms a sequence into the start sequence. This special
operation requires that the first component of A’s output, i.e., the next state,
is q0. This allows for Las Vegas protocols that “fail” and start over with a
certain probability. Protocols with a (deterministic) finite runtime do not
need this operation.

– (result, p1, . . . , pl) for a list of positions p1, . . . , pl ∈ {1, . . . , |D|}. This special
operation occurs if and only if the first component of A’s output is qf.
This halts the protocol and specifies that (αp1 , . . . , αpl

) is the output, where
Γ = (α1, . . . , α|D|) is the current sequence.

A tuple (Γ0, Γ1, . . . , Γt) of sequences such that Γ0 ∈ U and Γi+1 arises from Γi
by an operation as specified by the action function in a protocol run is a sequence
trace; in that case (top(Γ0), top(Γ1), . . . , top(Γt)) is a visible sequence trace.1

A protocol terminates when entering the final state qf. A protocol is called
finite-runtime2 if there is a fixed bound on the number of steps, and in contrast
Las Vegas, if it terminates almost surely (i.e., with probability 1) and in a number
of steps that is only expectedly finite.

Next we describe a canonical form for protocols computing boolean functions.
For this we interpret two cards with distinct symbols as 1, if their symbols are
arranged ♥♣, and 0, if they are arranged as ♣♥.
1 Note that traces in our sense also capture prefixes of complete protocol runs.
2 We avoid the term “deterministic” here, as, for their security, card-based protocols
use randomness as an intrinsic property, albeit not necessarily as a speedup of the
protocol.
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Definition 1. Let f : {0, 1}k → {0, 1} be a boolean function. Then we say a
protocol P = (D, U,Q,A) computes f , if the following holds:

– the deck D contains at least k cards of each symbol,
– there is a one-to-one correspondence between inputs and input sequences,
with the convention that for b ∈ {0, 1}k we have that U contains Γ b =
(α1, . . . , α|D|), where

(α2i−1, α2i) =
{

( ?
♥ ,

?
♣ ), if b[i] = 1,

( ?
♣ ,

?
♥ ), if b[i] = 0,

for 1 ≤ i ≤ k. The remaining |D| − 2k “helping” cards are arranged in some
canonical way (their arrangement does not depend on b). In this paper we
assume that the helping ♣s are to the left of the helping ♥s.

– it terminates almost surely,
– for an execution starting with Γ b for b ∈ {0, 1}k the protocol ends with the
action (result, p1, p2), such that

atom (βp1 , βp2) =
{

(♥,♣), if f(b) = 1,
(♣,♥), otherwise,

where Γ = (β1, . . . , β|D|) is the final sequence.

Example 1. Let us describe, as an example, the Las Vegas five-card AND protocol
of Cheung, Hawthorne, and Lee [CHL13]. Here, the deck is D = [♥,♥,♣,♣,♣]
and the set of inputs is given by U = {Γ 11, Γ 10, Γ 01, Γ 00}, where Γ 11 =
( ?
♥ ,

?
♣ ,

?
♥ ,

?
♣ ,

?
♣ ), Γ 10 = ( ?

♥ ,
?
♣ ,

?
♣ ,

?
♥ ,

?
♣ ), Γ 01 = ( ?

♣ ,
?
♥ ,

?
♥ ,

?
♣ ,

?
♣ ), and Γ 00 =

( ?
♣ ,

?
♥ ,

?
♣ ,

?
♥ ,

?
♣ ). The protocol P = (D, U, {q0, q1, q2, q3, qf}, A) is then described

by A as follows:

1. A(q0, v) = (q1, (perm, (2 3 4 5))), i.e., insert the helping card at position 2.3
2. A(q1, v) = (q2, (shuffle, Π)), where Π = {id, (1 4 2 5 3)}.
3. A(q2, v) = (q3, (turn, {1})), i.e., turn the first card.

4. A(q3, v) =
{

(qf, (result, 2, 3)), if v[1] = ♣,
(q0, (restart)), otherwise.

Here, v denotes the current visible sequence in each step. Note that there is no
obvious way to implement the shuffle in step 2 efficiently, as it is non-closed. See
Section 8 for discussion.

Definition 2 (secure, committed format). Let P = (D, U,Q,A) be a proto-
col. Let Γ0 be a random variable with values in the set of input sequences U and
a distributionM on U . Let V be a random variable for the visible sequence trace
of the protocol execution.

3 Note that this step is only needed because our input convention from Definition 1
differs from the input convention of [CHL13].

7



P is secure or private if Γ0 and V are stochastically independent.
Moreover, let R be a random variable that encodes the output of the protocol.

Then P is said to be in committed format, if atom(R) and V are stochastically
independent. (In particular, this implies that an index occurring in the result
action points to a face-down card, unless this part of the output is constant.)

From this definition it is apparent that if there is a functional dependency
between the inputs and the output, then security implies committed format.
Note that it is stronger than other security definitions in the literature that were
defined to also capture non-committed format protocols, such as the five-card
trick of [B89].

When the input is provided by players, each of them have a partial knowledge
on Γ0. The definition then implies that, even given this partial knowledge, Γ0
and V are still independent. Therefore the players cannot learn anything about
the inputs of the other players, as the result is not part of V .

3 A Calculus of States

From a specification of a protocol it is not immediately obvious whether it is
correct and private. We describe a new method to obtain a rich description of
possible protocol runs, from which correctness and privacy can be more easily
recognized. We use this method in later sections to describe our constructions
and prove the impossibility of finite-runtime four-card AND in Section 6. We
believe this method is of general interest for researchers in the field of card-based
cryptography.

When describing all possible executions of a protocol we obtain a tree which
branches when the visible sequence differs. The nodes of this tree correspond to
the visible sequence traces that can occur during the run of the protocol. Each
node has an action associated to it, namely the action that the protocol prescribes
for that situation. In the following, this action is a label on the outgoing edges.

Take for instance the six-card AND protocol of [MS09], as shown in Fig. 1.
We hope that it will soon become clear why the protocol works.

Until the fourth step (the turn step) there is no observable difference, i.e., all
visible sequences contain only ‘?’. After the turn, there are two types of executions
that can be distinguished by players. If security was violated, i.e., players can
deduce information about the input, then this is because some inputs are more
likely to lead to a specific visible sequence than other inputs.

While the actual sequence on the table and the actual input of the players
is typically unknown, knowledge about the former implies knowledge about the
latter and vice versa. To facilitate the privacy analysis, we annotate the nodes
of the tree with this dependent knowledge. A state in our sense captures the
probability distribution of atomic sequences conditioned on the input sequence.

Definition 3. Let P be a secure protocol computing f : {0, 1}k → {0, 1} and V
be a visible sequence trace of P. The state S of P belonging to V is the map
S : AtSeq → Xk, with s 7→ Pr[s |V ], where:
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(perm, (2 4 3))

(shuffle, {id, (1 4)(2 5)(3 6)})

(perm, (2 3 4))

(turn, {1, 2})
♥♣???? ♣♥????

(result, 3, 4)

X
(result, 5, 6)

X

Fig. 1. Six-card AND protocol in committed format of [MS09].

– Xk denotes the polynomials over the variables Xb for b ∈ {0, 1}k of the
form

∑
b∈{0,1}k βbXb, for βb ∈ [0, 1] ⊆ R. We interpret these polynomials as

probabilities which depend on the probabilities of the inputs b, symbolized by
the variables Xb for b ∈ {0, 1}k.

– for s ∈ AtSeq, Pr[s |V ] denotes the (symbolic) probability that the current
atomic sequence is s given that current visible sequence trace is V . (It will
later be apparent that the probability Pr[s|V ] is indeed in Xk.)

We say a state S contains an atomic sequence s (or s is in S for short) if S(s)
is not the zero polynomial. For k ≥ 2, we introduce the additional shorthands
X0 :=

∑
f(b)=0 Xb and X1 :=

∑
f(b)=1 Xb.

Let S be a state. Given a probability distribution M on the inputs, then
substituting each variable Xb with the probability of the input b, yields a proba-
bility distribution on the atomic sequences in S. In particular, if s is an atomic
sequence in S and S(s) the corresponding polynomial, substituting 1 for the
variable Xb and 0 for the other variables in S(s), yields the probability that s is
the current atomic sequence, given the input b and any information observed so
far. Accordingly, we can use our notions to analyze player knowledge in multiparty
computations where an agent has partial information about the input.

As an illustration of our method, consider the states of the six-card AND
protocol from above, see Fig. 2 on page 10, where states are represented by a box
with atomic sequences on the left and the associated polynomials on the right.
In such a 2-ary protocol, a state maps each atomic sequence to a polynomial of
the form β11X11 + β10X10 + β01X01 + β00X00, where β11, β10, β01, β00 ∈ [0, 1].

– In the start state, each input b ∈ {00, 01, 10, 11} is associated with a unique
input sequence Γ b ∈ U , which, by our conventions in Definition 1, are
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♥♣♥♣♣♥ X11

♥♣♣♥♣♥ X10

♣♥♥♣♣♥ X01

♣♥♣♥♣♥ X00

♥♥♣♣♣♥ X11

♥♣♥♣♣♥ X10

♣♥♣♥♣♥ X01

♣♣♥♥♣♥ X00

(perm, (2 4 3))

♥♥♣♣♣♥ 1/2X11

♣♣♥♥♥♣ 1/2X11

♥♣♥♣♣♥ 1/2X10 + 1/2X00

♣♣♥♥♣♥ 1/2X10 + 1/2X00

♣♥♣♥♣♥ 1/2X01

♥♣♥♣♥♣ 1/2X01

(shuffle, {id, (1 4)(2 5)(3 6)})

♥♣♥♣♣♥ 1/2X11

♣♥♣♥♥♣ 1/2X11

♥♣♣♥♣♥ 1/2X10 + 1/2X00

♣♥♣♥♣♥ 1/2X10 + 1/2X00

♣♥♥♣♣♥ 1/2X01

♥♣♣♥♥♣ 1/2X01

(perm, (2 3 4))

♥♣♥♣♣♥ X11

♥♣♣♥♣♥ X10 +X00

♥♣♣♥♥♣ X01

♣♥♣♥♥♣ X11

♣♥♣♥♣♥ X10 +X00

♣♥♥♣♣♥ X01

(turn, {1, 2})
♥♣???? ♣♥????

(result, 3, 4)

X
(result, 5, 6)

X

Fig. 2. Six-card AND protocol in committed format of [MS09] augmented with state
information as in Definition 3.
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Γ 11 = (♥,♣,♥,♣,♣,♥), Γ 10 = (♥,♣,♣,♥,♣,♥), Γ 01 = (♣,♥,♥,♣,♣,♥)
and Γ 00 = (♣,♥,♣,♥,♣,♥). The probability of atom(Γ b) being the current
atomic sequence is therefore exactly Xb, i.e., the probability that b is the
input. The remaining

(6
3
)
− 4 atomic sequences are mapped to zero and

omitted in the presentation.
– The first (and third) action is a permutation. Mathematically, nothing inter-

esting happens here: If an atomic sequence s had its probability captured
by S(s), then after permuting with a permutation π, these probabilities are
then assigned to the atomic sequence π(s).

– The shuffle introduces uncertainty. Consider for instance the case that the
input was “10”. Then, before the shuffle, we must have had the atomic sequence
s = (♥,♣,♥,♣,♣,♥). It was either permuted by id or by π = (1 4)(2 5)(3 6),
yielding either s itself or s′ = (♣,♣,♥,♥,♣,♥), both with probability 1/2.
This explains the coefficients of X10 in the polynomials for s and s′.

– The turn step can yield two possible visible sequences: (♥,♣, ?, ?, ?, ?) and
(♣,♥, ?, ?, ?, ?). Crucially, the probability of observing (♣,♥, ?, ?, ?, ?) is the
same for each possible input, so no information about the actual sequence is
leaked: If (♣,♥, ?, ?, ?, ?) would be observed slightly more frequently for, say,
the input “01” than for the input “10”, then observing (♣,♥, ?, ?, ?, ?) would
be weak evidence that the input was “01”. In the case at hand, however,
the probability for the right branch is 1/2 for each input, as the sum of the
polynomials of the atomic sequences branching right is 1/2(X11 +X10 +X01 +
X11).
After the turn our knowledge has changed, for instance, if we have observed
(♥,♣, ?, ?, ?, ?) and know that the input was “11” then we know beyond
doubt that the atomic sequence must then be (♥,♣,♥,♣,♣,♥), explaining
the coefficient 1 of X11.

– The output given by the result actions is correct: For all polynomials con-
taining X11 with non-zero coefficient, the corresponding atomic sequence has
(♥,♣) at the specified positions and for all polynomials containing one of the
other variables with non-zero coefficient, the corresponding atomic sequence
has (♣,♥) there.
Note that “mixed” polynomials with non-zero coefficients of both types
cannot occur in a final state of a protocol.

Derivation Rules for States. To compute the states we first identify the start
state and then specify how subsequent states arise from a given state when
performing an action. The rules of our calculus can also be seen as an inductive
proof that our definition of a state is sound in secure protocols, as the probabilities
are in Xk as claimed.

The start state S0 with initial visible sequence trace V0 contains exactly
the input sequences in U . Each Γb ∈ U of input b ∈ {0, 1}k is mapped to the
probability Pr[atom(Γb) |V0] = Xb.

An action act ∈ Action on a state S belonging to a visible sequence trace V
can result in visible sequences v1, . . . , vn. In the following, we state the rules for
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the derivation of these subsequent states S1, . . . , Sn belonging to the extended
visible sequences traces V ‖ vi, obtained by appending the new visible sequence vi
to the trace, for 1 ≤ i ≤ n. We restrict the presentation to shuffle and randomized
flip operations, as the permutation and turn operations are special cases. For an
illustration, we refer to Fig. 3.

S

act ∈ Action

S1 S2 S3

· · ·
Sn

v1
v2 v3

vn

Fig. 3. Performing an action on a state can result in different visible sequences corre-
sponding to a state each.

Shuffle Action. Let act = (shuffle, Π,F). If all cards are face-down before the
shuffle, act can result in only one visible sequence, but in general let Πv be the
subset of Π that leads to some visible sequence v with corresponding state S′. If
F|v denotes the probability distribution on Πv conditioned on the fact that v is
observed, we have that

S′(s) =
∑
π∈Πv

F|v(π) · S(π−1(s)).

In other words, the probability for the atomic sequence s in the new state S′
is obtained by considering all atomic sequences π−1(s) from which s may have
originated through some π ∈ Πv and summing the probability of those atomic
sequences in the old state, weighted with the probabilities that the corresponding
π is chosen.

Randomized Flip Action. Let act = (rflip, Φ,G). Consider the state S′ belonging
to the visible sequence trace V ′ := V ‖ v for the new visible sequence v, resulting
from a flip of some turn set T ∈ Φ. We say that v is compatible with an atomic
sequence s from S if v and s agree in all positions that are not ‘?’ in v. The set
of all atomic sequences compatible with v is denoted by Cv.

Let Pv :=
∑
s∈Cv

S(s). This polynomial represents the probability of ob-
serving v if T is turned in state S. Let βb be the coefficients of Pv, i.e., Pv =∑
b∈{0,1}k βbXb. If the coefficients differ, i.e., βb1 6= βb2 for two inputs b1 and b2,

then the probability of observing v when turning T in state S depends on the
input. This must not be the case in secure protocols where visible sequences and
inputs are independent.
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In secure protocols, we therefore know that

Pv =
∑

b∈{0,1}k

βvXb = βv
∑

b∈{0,1}k

Xb,

for some βv ∈ R. In our interpretation as probabilities, we have
∑
b∈{0,1}k Xb = 1,

i.e., the sum over all input probabilities is 1. From this, we obtain Pv = βv.
Then, using Bayes’ formula yields

S′(s) = Pr[s |V ′] = Pr[s|(V ‖ v)] = Pr[v |V, s] · Pr[s |V ]
Pr[v |V ]

= Pr[v |V, s] · S(s)
Pv

=
{
S(s)/βv, if s ∈ Cv,
0, otherwise,

where Pr[v |V, s] denotes the probability that v occurs, given that the visible
sequence trace is V and the actual atomic sequence is s, and Pr[v |V ] denotes
the probability that v occurs, given that the visible sequence trace is V . Note
that the actual atomic sequence s determines the visible sequence of the turn
action, so Pr[v |V, s] is either 0 or 1.

Checking Correctness and Security. Since we keep track of the set of possible
atomic sequences for any state of the protocol, we can decide for any result action
whether it yields the correct output in all cases.

To check privacy, first note that shuffle actions never reveal new critical
information: When shuffling with face-up cards, the shuffle may reveal information
about which permutation was used to shuffle, but this information is a fresh
random variable independent of all previous information. Considering turns
or randomized flips, we already identified the condition before: A turn does
not violate privacy if for every visible sequence v that may result from the
turn, the set Cv of atomic sequences that are compatible with v must fulfill∑
s∈Cv

S(s) = βv ∈ [0, 1] since this exactly means that the probability to observe
a visible sequence does not depend on the inputs. As this was a precondition for
the derivation rule of randomized flips, being able to construct a diagram by the
rules above is a witness to the security of the protocol. (In this sense, Fig. 2 is
an alternative proof for the security of the six-card AND protocol of [MS09].)

Las Vegas vs Finite-Runtime. In our formalism, the states of a finite-runtime
protocol form a finite tree without restart actions. A Las Vegas protocol, in
contrast, makes use of restart actions, or its states form a cyclic or infinite
diagram.

4 A Four-Card Las Vegas AND Protocol

We present a secure protocol to compute AND on two bits in committed format
and without restarts. An algorithmic description is given in Protocol 1 and a
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representation in the state calculus of Section 3, from which correctness and
privacy can be deduced, is given in Fig. 4.

Note that the state diagram contains a cycle, i.e., it is possible to return to a
state that was encountered before. This implies that the protocol is not finite-
runtime. However, on the cycle there are two turn operations each of which have
a chance of 1/3 to yield a final state and therefore leave the cycle. The probability
to return to a state on the cycle is therefore ( 2

3 )2 = 4
9 and the probability to

take the cycle k times is ( 4
9 )k. The expected number of times the cycle is taken

is therefore
∑
k≥0( 4

9 )k = (1− 4
9 )−1 = 9

5 . In particular, the expected runtime of
the protocol is bounded. We summarize our result in the following theorem.

Theorem 1. There is a secure Las Vegas protocol to compute AND on two bits
in committed format and without restarts.

In contrast to the protocol for general boolean functions presented in Section 7
the shuffle operations are “closed”, a circumstance we discuss more closely in
Section 8.

5 A Five-Card Finite-Runtime AND Protocol

In the presentation of our five-card finite-runtime AND protocol in committed
format, we reuse part of our four-card protocol from Section 4. We just have to
show that we can “break out” of the cycle of the four card protocol by using the
fifth card. This yields a finite-runtime protocol with at most 12 steps in every
execution. Here, the fifth card is chosen to have symbol ♥.

An algorithmic description is given in Protocol 2 and a representation of
the crucial component in the state calculus of Section 3, from which correctness
and privacy can be deduced, is given in Fig. 5. We summarize our result in the
following theorem.

Theorem 2. There is a secure five-card finite-runtime protocol to compute AND
on two bits in committed format.

6 Finite-Runtime AND Requires Five Cards

There are secure protocols with four cards computing AND in committed format
using either the restart operation (see Section 7) or running in cycles for a number
of iterations that is finite only in expectation (see Section 4). However, it would
be nice to have a protocol that is finite-runtime, i.e., is guaranteed to terminate
after a finite number of steps. In the following we show that this is impossible.

To this end, we distinguish several different types of states and later analyze
which state transitions are possible. We need the following definitions and obser-
vations only for the deck D = [♥,♥,♣,♣], but choose to state some of them in a
more general form to better convey the underlying ideas.
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♥♣♥♣ X11

♥♣♣♥ X10

♣♥♥♣ X01

♣♥♣♥ X00

♥♣♥♣ X11

♣♥♥♣ 1/2X10 + 1/2X01

♥♣♣♥ 1/2X10 + 1/2X01

♣♥♣♥ X00

(shuffle, {id, (1 3)(2 4)})

♥♥♣♣ 1/2X11

♥♣♥♣ 1/2X11

♣♥♥♣ 1/2X10 + 1/2X01

♥♣♣♥ 1/2X10 + 1/2X01

♣♥♣♥ 1/2X00

♣♣♥♥ 1/2X00

(shuffle, {id, (2 3)})

♥♥♣♣ X11

♣♥♥♣ X10 +X01

♣♥♣♥ X00

♥♥♣♣ X1

♣♥♥♣ 1/2X0

♣♥♣♥ 1/2X0

(shuffle, {id, (3 4)})

♥♥♣♣ 1/3X1

♣♣♥♥ 2/3X1

♣♥♥♣ 1/6X0

♥♣♣♥ 1/3X0

♣♥♣♥ 1/2X0

(shuffle, {id, (1 3)(2 4)},F)
F : id 7→ 1/3, (1 3)(2 4) 7→ 2/3

♥♥♣♣ X1

♥♣♣♥ X0

(result, 2, 4)

X

♣♣♥♥ X1

♣♥♥♣ 1/4X0

♣♥♣♥ 3/4X0

(turn, {1})
♣??? ♥???

♣♣♥♥ X1

♣♥♥♣ 1/2X0

♣♥♣♥ 1/2X0

(shuffle, {id, (3 4)})

♥♣♥♣ X11

♥♣♣♥ X10 +X01

♣♣♥♥ X00

♥♣♥♣ X1

♥♣♣♥ 1/2X0

♣♣♥♥ 1/2X0

(shuffle, {id, (1 3)})

♥♣♥♣ 1/3X1

♣♥♣♥ 2/3X1

♥♣♣♥ 1/6X0

♣♥♥♣ 1/3X0

♣♣♥♥ 1/2X0

(shuffle, {id, (1 2)(3 4)},F)
F : id 7→ 1/3, (1 2)(3 4) 7→ 2/3

♥♣♥♣ X1

♣♥♥♣ X0

(result, 1, 2)

X

♣♥♣♥ X1

♥♣♣♥ 1/4X0

♣♣♥♥ 3/4X0

(turn, {4})

???♣ ???♥

♣♥♣♥ X1

♥♣♣♥ 1/2X0

♣♣♥♥ 1/2X0

(shuffle, {id, (1 3)})

(turn, {2})

?♣?? ?♥??

(perm, (1 3 4 2))(perm, (1 2 4 3))

Fig. 4. The four-card Las Vegas AND protocol without restart operations from Proto-
col 1. Note that we make use of the shorthands X1 := X11 and X0 := X00 + X10 + X01
and omit the turn actions that merely turn cards back to face-down. Starting at certain
points the tree becomes self-similar, which we represent by drawing backwards edges.



Protocol 1. Protocol to compute AND in committed format using four cards.
Note that, because of the goto operations, no bound on the number of steps
can be given.
(shuffle, {id, (1 3)(2 4)})
(shuffle, {id, (2 3)})
(turn, {2})
if v = (?,♣, ?, ?) then

(turn, {2}) // turn back
(shuffle, {id, (1 3)})

1 (shuffle, {id, (1 2)(3 4)},F : id 7→ 1/3, (1 2)(3 4) 7→ 2/3)
(turn, {4})
if v = (?, ?, ?,♣) then

(result, 1, 2)
else if v = (?, ?, ?,♥) then

(turn, {4}) // turn back
(shuffle, {id, (1 3)})
(perm, (1 3 4 2))
goto 2

else if v = (?,♥, ?, ?) then
(turn, {2}) // turn back
(shuffle, {id, (3 4)})

2 (shuffle, {id, (1 3)(2 4)},F : id 7→ 1/3, (1 3)(2 4) 7→ 2/3)
(turn, {1})
if v = (♥, ?, ?, ?) then

(result, 2, 4)
else if v = (♣, ?, ?, ?) then

(turn, {1}) // turn back
(shuffle, {id, (3 4)})
(perm, (1 2 4 3))
goto 1

Definition 4. Let P be a protocol with deck D computing a boolean function f .
Let s be an atomic sequence, S a state of P and P = S(s) the polynomial
representing the probability of s in S.

1. If P contains only variables Xb with f(b) = 1 or f(b) = 0, then s is called a
1-sequence or 0-sequence, respectively.

2. If P contains variables of both types, then s is called a ⊥-sequence.
3. We say that S is of type i/j, or an i/j-state, if its number of 0-sequences and

1-sequences is i and j, respectively, and it does not contain any ⊥-sequences.
4. We call a state S final if it does not contain a ⊥-sequence and there are

indices m,n ∈ {1, . . . , |D|}, such that all 1-sequences have ♥ at position m,
all 0-sequences have ♣ at position m, and the other way round at position n.
In that case (result,m, n) is a correct output operation.

Note that a protocol that produces a ⊥-sequence cannot be finite-runtime: once
the ⊥-sequence is lying on the table, it is impossible to decide whether the output
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Protocol 2. A five-card finite-runtime AND protocol. It proceeds as in Proto-
col 1 (ignoring card 5) until reaching the line marked as 1, when instead of
executing the line, an alternative path is taken using the fifth card.
(shuffle, {id, (1 3)(2 4)})
(shuffle, {id, (2 3)})
(turn, {2})
if v = (?,♣, ?, ?, ?) then

(turn, {2}) // turn back
(shuffle, {id, (1 3)})

? (perm, (1 5 2 4)) // sort in the fifth card
(shuffle, {id, (5 4 3 2 1)},F : id 7→ 1/3, (5 4 3 2 1) 7→ 2/3)
(turn, {5})
if v = (?, ?, ?, ?,♣) then

(result, 4, 3)
else if v = (?, ?, ?, ?,♥) then

(result, 3, 1)
else if v = (?,♥, ?, ?, ?) then

(turn, {2}) // turn back
(shuffle, {id, (3 4)})
(shuffle, {id, (1 3)(2 4)},F : id 7→ 1/3, (1 3)(2 4) 7→ 2/3)
(turn, {1})
if v = (♥, ?, ?, ?, ?) then

(result, 2, 4)
else if v = (♣, ?, ?, ?, ?) then

(turn, {1}) // turn back
(shuffle, {id, (3 4)})
(perm, (1 2 4 3))
goto ?

should be 0 or 1. Thus, any protocol that proceeds to output something without
restarting in between produces an incorrect result with positive probability; and
any protocol that may use a restart, may take this execution path an unbounded
number of times.

Since we are interested in the existence of finite-runtime protocols, we restrict
our attention to protocols that never produce ⊥-sequences. We now bundle a few
simple properties about i/j-states in the following lemma.

Lemma 1. Given a secure protocol computing a non-constant boolean function
with deck D, consisting of n ♥s and m ♣s where n,m ≥ 1, the following holds.

1. In a state of type i/j, we have i, j ≥ 1, otherwise players could derive the
the result, contradicting the committed format property.

2. If a turn in a state S of type i/j can result in two different successor states S1
and S2 of type i1/j1 and i2/j2, respectively, then i = i1 + i2 and j = j1 + j2.
In particular, i ≥ 2 and j ≥ 2.

3. In a state of type i/j resulting from a turn that revealed a ♥ or ♣ we have
i+ j ≤

(
n+m−1
n−1

)
or i+ j ≤

(
n+m−1
m−1

)
, respectively.
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...

♥♣♥♣♥ X1

♥♣♣♥♥ 1/2X0

♣♣♥♥♥ 1/2X0

♣♥♥♣♥ X1

♥♥♣♣♥ 1/2X0

♥♥♥♣♣ 1/2X0

(perm, (1 5 2 4))

♣♥♥♣♥ 2/3X1

♥♥♣♥♣ 1/3X1

♥♥♣♣♥ 1/2X0

♥♣♣♥♥ 1/6X0

♥♥♥♣♣ 1/3X0

(shuffle, {id, (5 4 3 2 1)},F)
F : id 7→ 2/3, (5 4 3 2 1) 7→ 1/3

♥♥♣♥♣ X1

♥♥♥♣♣ X0

(result, 4, 3)

X

♣♥♥♣♥ X1

♥♥♣♣♥ 3/4X0

♥♣♣♥♥ 1/4X0

(result, 3, 1)

X

(turn, {5})
????♣ ????♥

Fig. 5. The crucial part of a five-card finite-runtime AND protocol that allows to “break
out” of the cycle in the four-card Las Vegas AND protocol.

4. Let S be a state of type i/j and S′ a state of type i′/j′ resulting from S via
a shuffle operation. Then we have i′ ≥ i, j′ ≥ j.

5. If S is a final state of type i/j, then i, j ≤
(
n+m−2
n−1

)
.

6. Two atomic sequences differ in an even number of positions, i.e., have even
distance.

7. Given an atomic sequence s ∈ AtSeq, there are(
n
d
2

)(
m
d
2

)
atomic sequences of (even) distance d to s.

8. Any two sequences have distance at most min {2m, 2n}.
9. After a single-card turn revealing ♥ or ♣, any two sequences of the state

have distance at most 2n− 2 or 2m− 2, respectively.
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Theorem 3. There is no secure finite-runtime four-card AND protocol in com-
mitted format.

Proof. Let P be a secure protocol computing AND with four cards in committed
format.

We will define a set of good states, denoted by G, that contain all final states
but not the starting state and show that any operation on a non-good state will
produce at least one non-good state as a successor. From this it is then clear by
induction that P is not finite-runtime.

A state S is good iff it fulfills one of the following properties:

– S is a 1/1-state,
– S is a 2/2-state,
– S is a 1/2- or 2/1-state containing two atomic sequences of distance 4.

We first observe which state types i/j can occur with our deck: Since there
are 6 =

(4
2
)
atomic sequences in total, we need i+ j ≤ 6. By Lemma 1, item 1,

states with i = 0 or j = 0 cannot occur.

Final States are Good. From item 5 in Lemma 1 we know that final states fulfil
i, j ≤ 2 so the only candidate for final states are 1/1, 2/2, 1/2 and 2/1. We need
to show that they are good which is true by definition for 1/1 and 2/2. Consider
a final 1/2-state (the argument for the 2/1-state is symmetric). Its 0-sequence
differs from both 1-sequences in the two positions used for the output. Since the
two 1-sequences are distinct, at least one of them must differ from the 0-sequence
in another position, meaning they must have distance at least 3 and therefore
distance 4 (item 6 in Lemma 1).

Therefore, all final sequences are good, but the start state, which is a 3/1-state,
is non-good. Consider an action act ∈ Action that acts on a non-good state. We
show that act has a non-good successor state by considering all cases for the type
of act:

Non-trivial Single-card Turns. Let S be a non-good state of type i/j, and S♥
and S♣ the two possible states after a turn of a single card. From item 2 in
Lemma 1, we know that S has to be of type i/j, with i, j ≥ 2, excluding the case
of 2/2, as S is non-good. This leaves the following possible types for S: 2/3, 3/3,
2/4 where we assume without loss of generality that i ≤ j. The turn partitions
the sequences onto the two branches in one of the following ways:

2/3

1/1 1/2

3/3

1/1 2/2

3/3

1/2 2/1

2/4

1/2 1/2

2/4

1/3 1/1

From item 3 in Lemma 1, we know that a state resulting directly from a turn
contains at most 3 atomic sequences, thereby ruling out turn-transitions that
lead to a 2/2- or 1/3-state. Moreover, any 2/1- or 1/2-state occurring after a turn
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has the property that all atomic sequences have pairwise distance 2 by item 9 in
Lemma 1. By definition, such 2/1-states are non-good. Note that a turn action
on a 2/3-state – while producing a good and even final 1/1-state – produces a
non-good 1/2-state on the other branch.4

Non-branching Shuffles. Now consider a shuffle that produces a unique subsequent
state S′ of type i′/j′. We want to show that S′ is non-good. Using item 4 in
Lemma 1 and the fact that a good S′ would require i′, j′ ≤ 2, we only need to
consider the case that S is a non-good state with i, j ≤ 2, i.e., S is of type 1/2
or 2/1 with pairwise distance 2 – without loss of generality of type 1/2 and with
a 0-sequence s0 and two 1-sequences s1 and s′1. We argue that without loss of
generality S is of the form

s0: ♥♥♣♣
s1: ♥♣♥♣
s′1: ♥♣♣♥

This is because

– S contains a constant column: Let k and l be the positions where s0 differs
from s1, and m, n the positions where s0 differs from s′1. If {k, l} and {m,n}
are disjoint, then s1 and s′1 have distance 4 – a contradiction. Otherwise
{k, l,m, n} has size at most 3 so there is one position where all atomic
sequences agree.

– The constant column can be assumed to be in position 1 and to contain ♥s.
This completely determines the atomic sequences occurring in S. Our choice
to pick the 0-sequence is arbitrary, but inconsequential.

If all permutations in the shuffle map 1 to the same i ∈ {1, 2, 3, 4}, then S′ will
have a constant column in position i. Then S′ is still of type 1/2 with sequences
of pairwise distance 2, so non-good. If there are two permutations in the shuffle
that map 1 to different positions i 6= j, then S′ will contain all three atomic
sequences with ♥ in position i and all three atomic sequences with ♥ in position
j. There is only one atomic sequence with ♥ in both positions. So S′ contains at
least 3 + 3− 1 = 5 atomic sequences and is therefore non-good.

Other Actions. The hard work is done, but for completeness, we need to consider
the remaining actions as well:

Restart. This action is not allowed in our finite-runtime setting.
Result. Since non-good states are non-final this action cannot be applied.
Permutation. This is just a special case of a non-branching shuffle.
4 Moreover, this is the only way to produce a good state from a non-good state via a
turn action. We make use of such a turn in our four-card protocol in Section 4, which
did not require finite-runtime. (In contrast to our protocol in Section 7 this allows us
to avoid restart actions.)
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Trivial turn. If act is a turn operation that can only result in a single visible
sequence (the turn is trivial), then the outcome of the turn was known in
advance and the state does not change.

Multi-card turn. If act turns more than one card, then act can be decomposed
into single-card turn actions, turning the cards one after the other. We
already know that a single-card turn from a non-good state yields a non-good
subsequent state, so following a “trail” of non-good states shows act produces
a non-good state as well.

Randomized flip. If act is a randomized flip then consider any turn set T that
act might be picked. We already know that turning T yields a non-good
subsequent state and this is also a subsequent state of act.

Branching shuffle. If act is a shuffle that produces several subsequent states (this
requires shuffling with a face-up card), then restricting the set of allowed
permutations to those corresponding to one of the visible sequences yields
an ordinary shuffle that therefore yields a single subsequent non-good state.
This state is also a subsequent state of act.

This concludes the proof. ut

7 A 2k-Card Protocol For Any k-ary Boolean Function

The following protocol will compute a k-ary boolean function with 2k cards
and success probability 2−k in three steps: One shuffle, one turn and one result
or restart action. The “hard work” is done in an “irregularly complex” shuffle
operation, which may pose practical problems we expand upon in Section 8.

Theorem 4. For any boolean function f : {0, 1}k → {0, 1} there is a secure Las
Vegas protocol in committed format using 2k cards. The expected number of restart
actions in a run is 2k − 1.

Proof. Note first that all unary boolean functions can easily be implemented:
The identity and not-function is simple (just output the input or the inversed
input) and for the constant functions we may shuffle the two cards (to obscure
the input), then turn the cards over, arrange them to represent the constant and
then return the positions of the corresponding cards, via result.

We now assume k ≥ 2. For each input b = (b1, b2, . . . , bk) ∈ {0, 1}k we define
the permutation:

πb := (2 3)1−f(b) ◦ (1 2)b1(3 4)b2 · · · (2k − 1 2k)bk .

In other words, when applied to an input sequence, πb first swaps the i-th input
bit for each i such that bi = 1. Afterwards, it swaps the second and third card if
f(b) = 0.

We can now describe the steps of our protocol:

1. (shuffle, {πb : b ∈ {0, 1}k}), i.e., pick b ∈ {0, 1}k uniformly at random and
permute the cards with πb.
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2. (turn, {1, 4, 6, 8, . . . , 2k}), i.e., turn over the first card and all cards with even
indices except 2.

3. If the turn revealed ♣ in position 1 and ♥ everywhere else, i.e., the visible
sequence is (♣, ?, ?,♥, ?,♥, . . . , ?,♥), then perform (result, 2, 3). Otherwise,
(restart).

For a deeper understanding of what is actually going on, we suggest contemplating
on Fig. 6 (which is, admittedly, somewhat intimidating), but correctness and
privacy are surprisingly easy to show directly:

Correctness. Assume the input is b ∈ {0, 1}k and a result action is performed.
Then the visible sequence after the turn was (♣, ?, ?,♥, ?,♥, . . . , ?,♥). This means
the permutation π done by the shuffle must have first transformed the input
sequence to (♣,♥,♣,♥,♣,♥, . . . ,♣,♥) (before potentially flipping the cards in
position 2 and 3). This can be interpreted as the sequence encoding only 0s,
therefore π has flipped exactly the card pairs, where the input sequence had
(♥,♣) encoding 1. This implies π = πb. From the definition of πb it is now clear
that the output is (♥,♣) if f(b) = 1 and (♣,♥) if f(b) = 0.

Privacy. Let v be a visible sequence after the turn step. Consider an input
sequence Γb belonging to the input b ∈ {0, 1}k. The probability that Γb yields
the visible sequence v in the turn is exactly 2−k since exactly one of the 2k
permutations in the shuffle action swaps the appropriate set of pairs of positions.
This means the probability to observe v is 2−k – and thus independent of the
input sequence.

Runtime. The probability to observe (♣, ?, ?,♥, . . . , ?,♥) in the turn step is 2−k,
the probability to restart is therefore 1− 2−k. This yields a runtime that is finite
in expectation – of order O(2k). ut

8 On the Implementation of Shuffle Operations

The shuffle used in the protocol in Section 7, while allowed in the formalism by
[MS14a], is of questionable practicality: in general there is no obvious way to
perform it in a real world situation with actual people and actual cards such that
the players do not learn anything about the permutation that was done in the
shuffle. In a weaker form this also applies to the protocols in Sections 4 and 5.

Other shuffle operations, such as (shuffle, {id, (1 2)}) that either perform a
swap or do nothing, both with probability 1

2 , are unproblematic to implement
with two players Alice and Bob: first let Alice perform the shuffle while Bob is
looking away and then have Bob perform the shuffle while Alice is looking away.
Provided they do not tell each other what they did, to both of them the cards
seem to be swapped with probability 1/2. Here, it is crucial that performing the
swap twice yields the identity: one of the allowed permutations.

In general, a shuffle action act = (shuffle, Π,F) can be implemented in this
way if act is closed, i.e., Π2 := {π1 ◦ π2 | π1, π2 ∈ Π} = Π and uniform, i.e., F is
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♣♥ ♣♥ ♣♥· · ·♣♥ ♣♥ X00···00
♣♥ ♣♥ ♣♥· · ·♣♥ ♥♣ X00···01
♣♥ ♣♥ ♣♥· · ·♥♣ ♣♥ X00···10

...
...

♥♣ ♥♣ ♥♣· · ·♥♣ ♣♥ X11···10
♥♣ ♥♣ ♥♣· · ·♥♣ ♥♣ X11···11

♣♥ ♣♥ ♣♥ · · · ♣♥ ♣♥ 2−k
∑

f(b)=1Xb

♣♣ ♥♥ ♣♥ · · · ♣♥ ♣♥ 2−k
∑

f(b)=0Xb

♣♥ ♣♥ ♣♥ · · · ♣♥ ♥♣ 2−k
∑

f(b)=1Xb⊕00···01
♣♣ ♥♥ ♣♥ · · · ♣♥ ♥♣ 2−k

∑
f(b)=0Xb⊕00···01

...
...

♥♣ ♥♣ ♥♣ · · · ♥♣ ♣♥ 2−k
∑

f(b)=1Xb⊕11···10
♥♥ ♣♣ ♥♣ · · · ♥♣ ♣♥ 2−k

∑
f(b)=0Xb⊕11···10

♥♣ ♥♣ ♥♣ · · · ♥♣ ♥♣ 2−k
∑

f(b)=1Xb⊕11···11
♥♥ ♣♣ ♥♣ · · · ♥♣ ♥♣ 2−k

∑
f(b)=0Xb⊕11···11

(shuffle, {πb : b ∈ {0, 1}k})

♣♥ ♣♥ ♣♥ · · · ♣♥ ♣♥ ∑
f(b)=1Xb

♣♣ ♥♥ ♣♥ · · · ♣♥ ♣♥ ∑
f(b)=0Xb

♣♥ ♣♥ ♣♥ · · · ♣♥ ♥♣ ∑
f(b)=1Xb⊕00···01

♣♣ ♥♥ ♣♥ · · · ♣♥ ♥♣ ∑
f(b)=0Xb⊕00···01

· · ·

♥♣ ♥♣ ♥♣ · · · ♥♣ ♣♥ ∑
f(b)=1Xb⊕11···10

♥♥ ♣♣ ♥♣ · · · ♥♣ ♣♥ ∑
f(b)=0Xb⊕11···10

♥♣ ♥♣ ♥♣ · · · ♥♣ ♥♣ ∑
f(b)=1Xb⊕11···11

♥♥ ♣♣ ♥♣ · · · ♥♣ ♥♣ ∑
f(b)=0Xb⊕11···11

(turn, {1, 4, 6, 8, · · · , 2k})

♣??♥?♥ · · · ?♥?♥

♣??♥?♥ · · · ?♥?♣ ♥??♣?♣ · · · ?♣?♥

♥??♣?♣ · · · ?♣?♣

(result, 2, 3)

X

(restart)

	

(restart)

	

(restart)

	

Fig. 6. The 2k-card protocol for an arbitrary boolean function f of Theorem 4. We use
the notation b1⊕b2 to denote the bitwise exclusive-or operation, e.g. 0011⊕0101 = 0110.
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the uniform distribution on Π. Note that our protocols in Sections 4, 5 and 7 use
shuffles that are not uniform and/or not closed, see Tables 1 and 2. Therefore, it
may be worthwhile to continue studying shuffles in several directions:

– Restrict the computational model to uniform closed shuffles and examine the
properties of the new model.

– Replace the action shuffle of the computational model by an alternative action
playerPerm executed by a single player, while other players are not allowed
to look on the table. Here, (playerPerm, p,Π,F) is like (shuffle, Π,F), with
the difference that the executing player p learns which permutation has been
chosen. As argued above, this at least as powerful as allowing uniform closed
shuffles.

– Search for a more clever way to implement shuffles with everyday objects.
– Weaken the honest-but-curious assumption and discuss implementations of

shuffles with respect to, e.g., robustness against active attacks.

9 Conclusion

To summarize our results, we have extensively considered the question on tight
lower bound on the number of cards for AND protocols, which has been open for
several years. We believe that our answer to this question is satisfactory, as we
do not only give two concrete AND protocols with different properties, we also
show an impossibility result. Apart from the impossibility for perfect copy of a
single card in [MS14a], we are the first to give such a type of result. This may be
because of the sparsity of good ways to speak about card-based protocols. We
believe to have overcome this problem by introducing an elegant “calculus of
protocol states” in Section 3. Finally, we give a protocol for evaluating a k-ary
boolean function with the theoretical minimum of cards, i.e., the 2k cards which
are already necessary for encoding the input.

Open Problems. Our paper identifies a number of open problems in the field
of card-based cryptographic protocols. This is, for example, how to implement
non-closed or non-uniform shuffles and in consequence back up the current
computational model with more evidence that its definition is rooted in reality.
In the same way, we ask whether there is a finite-runtime five-card protocol using
only closed and/or uniform shuffles.

The same set of questions which have been answered in Table 1 can also be
asked for general boolean functions: What is the minimal number of cards for
finite-runtime protocols with and without closed shuffles. Analogously, a tight
lower bound on the number of cards in Las Vegas protocols using only uniform
closed shuffles would be interesting.

Acknowledgments. We would like to thank the anonymous reviewers and
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