
An extended abstract of this paper appears in the Proceedings of the 21th International Conference on
the Theory and Application of Cryptology and Information Security (ASIACRYPT 2015), Part ?, ???????
(Eds.), volume ???? of Lecture Notes in Computer Science, pages ???–???, Springer, ???? 2015. This is
the full version.

Multilinear and Aggregate
Pseudorandom Functions:

New Constructions and Improved Security
Michel Abdalla Fabrice Benhamouda Alain Passelègue

ENS, CNRS, INRIA, and PSL
45 Rue d’Ulm, 75230 Paris Cedex 05, France

{michel.abdalla,fabrice.ben.hamouda,alain.passelegue}@ens.fr
http://www.di.ens.fr/∼{mabdalla,fbenhamo,passeleg}

Abstract
Since its introduction, pseudorandom functions (PRFs) have become one of the main building

blocks of cryptographic protocols. In this work, we revisit two recent extensions of standard PRFs,
namely multilinear and aggregate PRFs, and provide several new results for these primitives. In the
case of aggregate PRFs, one of our main results is a proof of security for the Naor-Reingold PRF with
respect to read-once boolean aggregate queries under the standard Decision Diffie-Hellman problem,
which was an open problem. In the case of multilinear PRFs, one of our main contributions is the
construction of new multilinear PRFs achieving indistinguishability from random symmetric and
skew-symmetric multilinear functions, which was also left as an open problem. In order to achieve
these results, our main technical tool is a simple and natural generalization of the recent linear
independent polynomial framework for PRFs proposed by Abdalla, Benhamouda, and Passelègue in
Crypto 2015, that can handle larger classes of PRF constructions. In addition to simplifying and
unifying proofs for multilinear and aggregate PRFs, our new framework also yields new constructions
which are secure under weaker assumptions, such as the decisional k-linear assumption.

Keywords. Pseudorandom functions, multilinear PRFs, aggregate PRFs.

1

Contents
1 Introduction 3

2 Definitions 4

3 Polynomial Linear Pseudorandomness Security 7
3.1 Intuition . 8
3.2 Formal Security Notion and Theorem . 9

4 Applications 9
4.1 Aggregate Pseudorandom Functions . 10
4.2 Multilinear Pseudorandom Functions . 11

A Supplementary Definitions 15
A.1 Standard Assumptions. 15
A.2 Random Self-Reducibility of Ek,d-MDDH and (Ek,d, N)-MDDH 15

B Multivariate Polynomial Representation 16
B.1 Multivariate Polynomial Representation in Polynomial Linear Pseudorandomness Security 16
B.2 Decomposition Lemmas . 17

C Proof of the PLP Theorem (Theorem 3.1) 18

D Proofs of Lemmas in Section 4 22
D.1 Proof of Lemma 4.1 . 22
D.2 Proof of Lemma 4.2 . 23
D.3 Proof of Lemma 4.3 . 23

E Proof of Security of Ek,d-MDDH 23
E.1 Definitions: Monomial Order and Leading Commutative Monomials 23
E.2 Main Lemma . 24
E.3 Security of Ek,d-MDDH . 29

2

1 Introduction
Pseudorandom functions (PRFs) are one of the most fundamental primitives in cryptography. One of the
features that makes PRFs so useful is the fact that they behave as truly random functions with respect
to computationally bounded adversaries. Since being introduced by Goldreich, Goldwasser, and Micali
[GGM86], PRFs have been used in many cryptographic applications, varying from symmetric encryption
and authentication schemes to key exchange. In particular, they are very useful for modeling the security
of concrete block ciphers, such as AES [AES01].

Given the large applicability of pseudorandom functions, several extensions have been proposed in the
literature over the years, with the goal of providing additional functionalities to these functions. One
concrete example of such an extension are constrained PRFs [KPTZ13, BGI14, BW13], which provides the
owner of the secret key with the capability of delegating the computation of the pseudorandom function for
different subsets of the input domain, without compromising the pseudorandomness property for the other
points of the input domain. In this paper, we focus on two recent extensions of pseudorandom functions,
namely multilinear PRFs [CH15], and aggregate PRFs [CGV15], and solve several open problems related
to the construction of these primitives.
Aggregate Pseudorandom Functions. Aggregate pseudorandom functions were introduced by Cohen,
Goldwasser, and Vaikuntanathan in [CGV15]. The main interest of an aggregate PRF is to provide
the user with the possibility of aggregating the values of the function over super-polynomially many
PRF values with only a polynomial-time computation, without enabling a polynomial-time adversary to
distinguish the function from a truly random function. For instance, one such example of an aggregate
query could be to compute the product of all the output values of the PRF corresponding to a given
exponentially-sized interval of the input domain.

In addition to proposing the notion of aggregate PRFs, Cohen, Goldwasser, and Vaikuntanathan
[CGV15] also proposed new constructions for several different classes of aggregate queries, such as
decision trees, hypercubes, and read-once boolean formulas, achieving different levels of expressiveness.
Unfortunately, for most of the constructions proposed in [CGV15], the proofs of security suffer from an
exponential (in the input length) overhead in their running time and have to rely on the sub-exponential
hardness of the Decisional Diffie-Hellman (DDH) problem.

Indeed, to prove the security of their constructions, the authors use a generic result which is simply
saying the following: given an adversary A against the AGG-PRF security of a PRF F , one can build an
adversary B against the standard PRF security of F . B simply queries all the values required to compute
the aggregate values (or the PRF values), and computes the aggregate values itself before sending them
to A .

Clearly, this reduction proves that any secure PRF is actually also a secure aggregate PRF. However,
this reduction is not efficient, since to answer to just one aggregate query, the adversary B may have to
query an exponential number of values to its oracle. Hence, as soon as we can aggregate in one query a
superpolynomial number of PRF values, this generic reduction does not run in polynomial time.
Multilinear Pseudorandom Functions. In order to overcome the shortcomings of the work of Cohen,
Goldwasser, and Vaikuntanathan [CGV15], Cohen and Holmgren introduced the concept of multilinear
pseudorandom functions in [CH15]. Informally speaking, a multilinear pseudorandom function is a
variant of the standard notion of pseudorandom functions, which works with vector spaces and which
guarantees indistinguishability from random multilinear functions with the same domain and range. As
shown in [CH15], multilinear pseudorandom functions can be used to prove the AGG-PRF security of
the Naor-Reingold (NR) PRF [NR97] with a polynomial time reduction for the case of hypercubes and
decision trees aggregations. Unfortunately, their technique does not extend to the more general case of
read-once formulas aggregation, which is the most expressive form of aggregation in [CGV15].
Our Techniques. In this work, we provide an alternative way of overcoming the limitations of the work
of Cohen, Goldwasser, and Vaikuntanathan [CGV15], based on a natural extension of the recent algebraic
framework for pseudorandom functions proposed by Abdalla, Benhamouda, and Passelègue in [ABP15],
known as the linear independent polynomial (LIP) framework.

In a nutshell, the LIP framework essentially says that for any linearly independent polynomials
P1, . . . , Pq ∈ Zp[T1, . . . , Tn], the group elements

[P1(#”a) · b] , . . . , [Pq(#”a) · b] ,

with #”a
$← Znp and b

$← Zp, are computationally indistinguishable from independent random group
elements in G, under the DDH assumption (when polynomials are multilinear) or the d-DDHI assumption

3

(where d is the maximum degree of P1, . . . , Pq in any indeterminate Ti). As a toy example, the LIP
framework directly proves the security of the NR PRF defined as:

NR((b, #”a), x) =
[
b

n∏
i=1

axii

]
,

where (b, #”a = (a1, . . . , an)) ∈ K = Zp × Znp and x ∈ D = {0, 1}n. Indeed, all the polynomials
Px = b

∏n
i=1 a

xi
i are linearly independent.

Unfortunately, the LIP framework is not enough to prove the security of multilinear PRFs or aggregate
PRFs, as the outputs of the function (and the corresponding polynomials) may not be independent.
To overcome these limitations, we provide a natural extension of the LIP framework, which we call
polynomial linear pseudorandomness security (PLP), that can handle such dependences. Despite being
a simple extension, the new PLP framework yields significant improvements over previous works on
multilinear and aggregate PRFs. In particular, the multilinear constructions in [CH15] can be seen as a
special case of our new PLP framework.
Main Results. Using our new PLP framework for pseudorandom functions, we obtain the following
results.

First, we prove the security of the aggregate PRF for read-once formulas proposed in [CGV15], under
the DDH assumption and with a polynomial-time reduction. This in turn implies the security of all the
other aggregate PRFs in [CGV15], as the latter are particular cases of the aggregate PRFs for read-once
formulas. The proof is very simple and based on linear algebra. Up to now, the only known reduction
incurred an exponential blow-up in the length n of the input.

Second, we show that our PLP framework enables to very easily prove the security of the multilinear
pseudorandom function construction in [CH15]. More importantly, it enables us to directly show the
security of the symmetric variant of this construction, under the d-DDHI assumption, which was left as
an open problem in [CH15].

Third, we extend all the above constructions to weaker assumptions, as the k-Lin assumption, which
can hold in symmetric k-linear groups, contrary to DDH or d-DDHI. Again, these extensions are
straightforward to prove thanks to our PLP framework.

Additionally, we solve two other open problems respectively in [CGV15, end of Section 1 and
Section 2.2] and in [CH15]: We show that unless NP=BPP, there cannot exist aggregate PRFs for DNF
formulas, although satisfiability of DNF formulas can be tested in polynomial time; and we propose the
first skew-symmetric multilinear PRF.
Additional Contributions. As a side contribution, we prove the hardness of Ek,d-MDDH (defined
in [ABP15] and recalled in Section 2) in the generic (symmetric) k-linear group model, which was left
as an open problem in [ABP15] for k > 2 and d > 1. This result directly implies that all the results
stated in [ABP15] under the E2,d-MDDH now holds also for Ek,d-MDDH, for any k ≥ 2, which is also an
interesting side contribution. To prove this result, we essentially need to prove there are no non-trivial
polynomial relations of degree k between the elements of the assumptions (these elements being themselves
polynomials), as in [BBG05, Boy08, EHK+13]. The latter polynomial independence is a consequence of
Lemma E.5 in Appendix E. The technically difficult part is the proof of this lemma. The proof is by
induction over k: for the base case k = 1, the proof is straightforward as all the elements we consider are
linearly independent; for the inductive case k = 2, we basically set some indeterminates to some carefully
chosen values (for the polynomials defining the elements we consider) to come down to previous cases.
Paper Organization. The rest of the paper is composed of the following sections. In Section 2 and
Appendix A, we give necessary background and notations. We introduce our general PLP security notion
and explain our main result, termed PLP theorem (Theorem 3.1), in Section 3. Its proof and some
intermediate lemmas are detailed in Appendices B and C. We then present our new constructions and
improved security bounds for aggregate and multilinear pseudorandom functions in Section 4 as well as
some side results. The proofs of these results are detailed in Appendix D. Finally, in Appendix E, we
prove the hardness of our main assumption (the Ek,d-MDDH assumption) in the generic k-linear group
model.

2 Definitions

Notations and Conventions. We denote by κ the security parameter. Let F : K × D → R be a
function that takes a key K ∈ K and an input x ∈ D and returns an output F (K,x) ∈ R. The set of all

4

procTestLin(L, R)
// L[`] = R` for ` = 1, . . . , L and L = |L|
RL+1 ← R
N ← 2L+ 4
For k = 1, . . . , N

”γk
$← Znp

M matrix over Zp of L+ 1 rows and N columns
For ` = 1, . . . , L+ 1

For k = 1, . . . , N
m`,k ← R`(# ”γk)

Apply Gaussian elimination on M
If M is full-rank then

Return ⊥
Else

Let
#”

λ′ be the row vector such that
#”

λ′ ·M = #”0
#”

λ ← (λ′1/λ′L+1, . . . , λ
′
L/λ

′
L+1)

Return #”

λ

Figure 1: TestLin procedure

functions F : K×D → R is denoted by Fun(K,D,R). Likewise, Fun(D,R) denotes the set of all functions
mapping D to R. Also, if D and R are vector spaces, we denote by L(D,R) the vector space of linear
functions from D to R. In addition, if D1, . . . ,Dn are n vector spaces, then L(D1 ⊗ · · · ⊗ Dn,R) is the
vector space of n-linear functions from D1 × · · · × Dn to R.

If S is a set, then |S| denotes its size. We denote by s $← S the operation of picking at random s in S.
If #”x is a vector then we denote by | #”x | its length, so #”x = (x1, . . . , x| #”x |). For a binary string x, we denote
its length by |x| so x ∈ {0, 1}|x|, xi its i-th bit, so x = x1 ‖ . . . ‖x|x|. For a matrix A of size k ×m, we
denote by ai,j the coefficient of A in the i-th row and the j-th column. We denote by Zp[T1, . . . , Tn] the
subspace of multivariate polynomials in indeterminates T1, . . . , Tn, and by Zp[T1, . . . , Tn]≤d the subring of
polynomials of degree at most d in each indeterminate. For a polynomial P ∈ Zp[T1, . . . , Tn], we denote
by P (#”

T) the polynomial P (T1, . . . , Tn) and by P (#”a) its evaluation by setting #”

T to #”a , meaning that we
set T1 = a1, . . . , Tn = an.

We often implicitly consider a multiplicative group G = 〈g〉 with public generator g of order p and
we denote by [a] the element ga, for any a ∈ Zp. Similarly, if A is a matrix in Zk×mp , [A] is a matrix
U ∈ Gk×m, such that ui,j = [ai,j] for i = 1, . . . , k and j = 1, . . . ,m. All vector spaces are implicitly
supposed to be Zp-vector spaces.

We denote by TestLin a procedure which takes as inputs a list L of polynomials (R1, . . . , RL) (such
that R1, . . . , RL are linearly independent as polynomials) and a polynomial R and which outputs:{

⊥ if R is linearly independent of the set {R1, . . . , RL}
#”

λ = (λ1, . . . , λL) otherwise, so that R = λ1R1 + . . .+ λLRL

#”

λ is uniquely defined since we assume that polynomials from the input list are linearly independent. No
such procedure is known for multivariate polynomials, if we require the procedure to be deterministic
and polynomial-time. However, it is easy to construct such a randomized procedure which is correct
with overwhelming probability. Such a statistical procedure is sufficient for our purpose and was given
in [ABPP14]. We recall this procedure in Figure 1. This procedure is correct with probability at least
p−1
p as soon as nd ≤ √p, where d is the maximum degree in one indeterminate and n is the number of

indeterminates.
Games [BR06]. Most of our definitions and proofs use the code-based game-playing framework, in
which a game has an Initialize procedure, procedures to respond to adversary oracle queries, and a
Finalize procedure. In the case where the Finalize procedure is not explicitly defined, it is implicitly
defined as the procedure that simply outputs its input. To execute a game G with an adversary A ,
we proceed as follows. First, Initialize is executed and its outputs become the input of A . When A
executes, its oracle queries are answered by the corresponding procedures of G. When A terminates, its
outputs become the input of Finalize. The output of the latter, denoted GA is called the output of the

5

game, and we let “GA ⇒ 1” denote the event that this game output takes the value 1. The running time
of an adversary by convention is the worst case time for the execution of the adversary with any of the
games defining its security, so that the time of the called game procedures is included.
Pseudorandom Functions. A PRF is an efficiently computable ensemble of functions F : K×D → R,
implicitly indexed by the security parameter κ, such that, when K $← K, the function x ∈ D 7→ F (K,x) ∈
R is indistinguishable from a random function. Formally, we say that F is a pseudorandom function if
the advantage of any adversary A in attacking the standard PRF security of F is negligible, where this
advantage is defined via

Advprf
F (A) = Pr

[
PRFRealAF ⇒ 1

]
− Pr

[
PRFRandA

F ⇒ 1
]
,

where games PRFRealF and PRFRandF are depicted in Figure 2.
Aggregation Function. Let f : K × D → R be a function. We define an aggregation function by
describing two objects:

• a collection S of subsets S of the domain D;

• an aggregation function Γ: R∗ → V that takes as input a tuple of values from the range R of F
and aggregates them to produce a value in an output set V.

In addition, we require the set ensemble S to be efficiently recognizable, meaning that for any S ∈ S ,
there exists a polynomial time procedure to check if x ∈ S, for any x ∈ D. Also, we require the aggregation
function Γ to be polynomial time and the output of the function not to depend on the order of the
elements provided as inputs. Finally, we require all sets S to have a representation of size polynomial in
the security parameter κ.

Given an aggregation function (S ,Γ), we define the aggregate function AGG = AGGf,S ,Γ as the
function that takes as input a set S ∈ S and outputs the aggregation of all values f(x) for all x ∈ S. That
is, AGG(S) outputs Γ(f(x1), . . . , f(x|S|)), where S = {x1, . . . , x|S|}. We will require the computation of
AGG to be polynomial time (even if the input set S is exponentially large) if the function f provided is
the pseudorandom function F (K, ·) we consider, where K is some key.
Aggregate Pseudorandom Functions. Let F : K × D → R be a pseudorandom function and let
(S ,Γ) be an associated aggregation function. We say that F is an (S ,Γ)-aggregate pseudorandom
function ((S ,Γ)-AGG-PRF) if the advantage of any adversary in attacking the AGG-PRF security of F
is negligible, where this advantage is defined via

Advagg-prf
F,S ,Γ(A) = Pr

[
AGGPRFRealAF ⇒ 1

]
− Pr

[
AGGPRFRandA

F ⇒ 1
]
,

where games AGGPRFRealF and AGGPRFRandF are depicted in Figure 2. Game AGGPRFRandF
may not be polynomial-time, as AGGf,S ,Γ may not require to compute an exponential number of values
f(x). However, for all the aggregate PRFs that we consider, this game is statistically indistinguishable
from a polynomial-time game, using the TestLin procedure, similarly to what is done in our new PLP
security notion (see Section 3 and Figure 3).
Multilinear Pseudorandom Functions. Multilinear pseudorandom functions are a variant of the
standard notion of pseudorandom functions, which works with vector spaces. More precisely, a multilinear
pseudorandom function F : K ×D → R, is an efficiently computable function with key space K, domain
D = D1×· · ·×Dn (a cartesian product of n vector spaces D1, . . . ,Dn, for some integer n), range R which
is a vector space, and which is indistinguishable from a random n-linear function with same domain and
range. We say that F is a multilinear pseudorandom function (MPRF) if the advantage of any adversary
in attacking the MPRF security of F is negligible, where this advantage is defined via

Advmprf
F (A) = Pr

[
MPRFRealAF ⇒ 1

]
− Pr

[
MPRFRandA

F ⇒ 1
]
,

where games MPRFRealF and MPRFRandF are depicted in Figure 2. As explained in [CH15], Game
MPRFRandF can be implemented in polynomial time using a deterministic algorithm checking linearity
of simple tensors [BW04]. Also, similarly to Game AGGPRFRandF , it is also possible to implement a
polynomial-time game that is statistically indistinguishable from MPRFRandF using TestLin.

6

PRFRealF PRFRandF
proc Initialize
K

$← K
proc Fn(x)
Return F (K,x)

proc Initialize
f

$← Fun(D,R)
proc Fn(x)
Return f(x)

AGGPRFRealF AGGPRFRandF
proc Initialize
K

$← K
proc Fn(x)
Return F (K,x)
proc AGG(S)
Return AGGF (K,·),S ,Γ(S)

proc Initialize
f

$← Fun(D,R)
proc Fn(x)
Return f(x)
proc AGG(S)
Return AGGf,S ,Γ(S)

MPRFRealF MPRFRandF
proc Initialize
K

$← K
proc Fn(#”x)
Return F (K, #”x)

proc Initialize
f

$← L(D1 ⊗ · · · ⊗ Dn,R)
proc Fn(#”x)
Return f(#”x)

Figure 2: Security games for (classical, aggregate, multilinear — from top to bottom) pseudorandom
functions

Assumptions. Our main theorem is proven under the same MDDH assumption [EHK+13] introduced
in [ABP15] and termed Ek,d-MDDH assumption. This MDDH assumption is defined by the matrix
distribution Ek,d which samples matrices Γ as follows

Γ =

A0 ·B
A1 ·B

...
Ad ·B

 ∈ Zk(d+1)×k
p with A,B

$← Zk×kp . (1)

The advantage of an adversary D against the Ek,d-MDDH assumption is

AdvEk,d-mddh
G (D) = Pr [D(g, [Γ] , [Γ ·W])]− Pr [D(g, [Γ] , [U])],

where Γ $← Ek,d, W
$← Zk×1

p , U
$← Zk(d+1)×1

p . This assumption is random self-reducible, as any other
MDDH assumption (we will make use of this property in the proof of our main theorem, and recall this
property in Appendix A).

In Table 1, we summarize security results for Ek,d-MDDH. For k = 1 or d = 1, the Ek,d-MDDH
assumption is implied by standard assumptions (DDH, DDHI, or k-Lin, as recalled in Appendix A).
E1,1-MDDH is actually exactly DDH. In [ABP15], the question of the hardness of the Ek,d-MDDH
problem in the generic k-linear group model was left as an open problem when d > 1 and k > 2. One of
our contributions is to give a proof of hardness of these assumptions, which is detailed in Appendix E.

3 Polynomial Linear Pseudorandomness Security
As we already mentioned in the introduction, while the LIP theorem from [ABP15] is quite powerful
to prove the security of numerous constructions of pseudorandom functions (and related-key secure
pseudorandom functions), it falls short when we need to prove the security of multilinear pseudorandom
functions or aggregate pseudorandom functions. Indeed, the LIP theorem requires that there is no linear
dependence between the outputs of the function. Thus, for the latter primitives, it is clear that one

7

Table 1: Security of Ek,d-MDDH
k = 1 k = 2 k ≥ 3

d = 1 = Advddh
G . 2 ·AdvU2-mddh

G . k ·AdvUk-mddh
G

d ≥ 2 . d ·Advd-ddhi
G

¶ generic bilinear group† generic k-linear group‡

Advddh
G , Advd-ddhi

G and AdvUk -mddh
G are advantages for DDH, DDHI, and Uk-MDDH. This later

assumption is weaker than k-Lin;
¶ proven in [ABP15];
† proven in the generic (symmetric) bilinear group model [BB04] in [ABP15] (and also as a partic-

ular case of Appendix E);
‡ proven in the generic (symmetric) k-linear group model [Sha07, HK07] in Appendix E.

cannot use the LIP theorem, since the main point of these primitives is precisely that outputs can be
related.

In order to deal with these primitives, we introduce a new security notion, termed polynomial linear
pseudorandomness security (PLP), which encompasses the LIP security notion, but allows to handle
multilinear pseudorandom functions and aggregate pseudorandom functions.

3.1 Intuition
Intuitively, the polynomial linear pseudorandomness security notion says that for any polynomials
P1, . . . , Pq ∈ Zp[T1, . . . , Tn], the group elements

[P1(#”a) · b] , . . . , [Pq(#”a) · b] ,

with #”a
$← Znp and b $← Zp, are computationally indistinguishable from the group elements:

[U(P1)] , . . . , [U(Pq)] ,

with U
$← L(Zp[T1, . . . , Tn]≤d,Zp) being a random linear function from the polynomial vector space

Zp[T1, . . . , Tn]≤d (with d the maximum degree of P1, . . . , Pq in any indeterminate Ti) to the base field Zp.
Our main theorem (Theorem 3.1) shows that this security notion holds under the E1,d-MDDH assumption
(and thus also under DDH for d = 1 and d-DDHI for d ≥ 2).

When P1, . . . , Pq are linearly independent, [U(P1)] , . . . , [U(Pq)] are independent random group ele-
ments in G. In that sense, the polynomial linear pseudorandomness security notion is a generalization of
the LIP security notion.

We remark that, in the generic group model, the polynomial linear pseudorandomness security notion
holds trivially, by definition. The difficulty of the work is to prove it under classical assumptions such as
the E1,d-MDDH assumption.
Polynomial-Time Games. When we want to formally define the polynomial linear pseudorandomness
security notion, we quickly face a problem: how to compute [U(Pi)] for a random linear map U

$←
L(Zp[T1, . . . , Tn]≤d,Zp)? Such a map can be represented by a (random) vector with (d+ 1)n entries. But
doing so would make the game in the security notion exponential time. The idea is to define or draw
U lazily: each time we need to evaluate it on a polynomial Pi linearly independent of all the previous
polynomials Pj (with j < i), we define U(Pi)

$← Zp; otherwise, we compute U(Pi) as a linear combination
of U(Pj). More precisely, if Pi =

∑i−1
j=1 λj · Pj , U(Pi) =

∑i−1
j=1 λj · U(Pj). As explained in Section 2,

no deterministic polynomial-time algorithm for checking linear dependency between polynomials in
Zp[T1, . . . , Tn] is known. But we can use one which is correct which overwhelming probability. We recall
that we denote by TestLin such an algorithm.
On the Representation of the Polynomials. A second challenge is to define how the polynomials
are represented. We cannot say they have to be given in their expanded form, because it would restrict
us to polynomials with a polynomial number of monomials and forbid polynomials such as

∏n
i=1(ai + 1).

Instead, we only suppose that polynomials can be (partially) evaluated, in polynomial time (in n and
d, the maximum degree in each indeterminate). This encompasses polynomials defined by an expression
(with + and · operations, indeterminates, and scalars) of polynomial size (in n and d). Details are given
in Appendix B.1.
Extension to Weaker Assumptions. Before, showing the formal definition and theorem, let us show
an extension of our polynomial linear pseudorandomness security notion to handle weaker assumptions,

8

proc Initialize
#”

A
$← (Zk×kp)n

B
$← Zk×mp

L1 ← empty list
L2 ← empty list
L← 0
b

$← {0, 1}

proc Pl(P)
If b = 0 then

Y ← P (#”

A) ·B
Else

#”

λ ← TestLin(L1, P)
If #”

λ = ⊥ then
Y

$← Zk×mp

L← L+ 1
L1[L]← P
L2[L]← Y

Else
Y ←

∑L
i=1 λi · L2[i]

Return [Y]

proc Finalize(b′)
Return b′ = b

Figure 3: Game defining the (n, d, k,m)-PLP security for a group G

namely Ek,d-MDDH, with k ≥ 2. In that case, we need to evaluate polynomials on matrices: [Pi(A) ·B],
with A

$← Zk×kp and B
$← Zk×mp (with m ≥ 1 being a positive integer). As multiplication of matrices is

not commutative, we need to be very careful. We therefore consider that Tn appears before Tn−1 (in
products), Tn−1 before Tn−2, . . . (or any other fixed ordering).

More formally, we suppose that polynomials are represented by an expression (similar to the case
k = 1), such that in any subexpression Q · R, if Q contains Ti (formally as an expression and not just
when the expression is expanded), then R contains no monomial Tj with j > i. Details are given in
Appendix B.1.

3.2 Formal Security Notion and Theorem
Let G = 〈g〉 be a group of prime order p. We define the advantage of an adversary A against the
(n, d, k,m)-PLP security of G, denoted Adv(n,d,k,m)-plp

G (A) as the probability of success in the game
defined in Figure 3, with A being restricted to make queries P ∈ Zp[T1, . . . , Tn]≤d. When not specified,
m = 1. When k = m = 1, we get exactly the intuitive security notion defined previously, as in that case
#”

A = #”a ∈ Znp and B = b ∈ Zp.

Theorem 3.1 (PLP). Let G = 〈g〉 be a group of prime order p. Let A be an adversary against the
(n, d, k,m)-PLP security of G that makes q oracle queries P1, . . . , Pq. Then we can design an adversary B

against the Ek,d-MDDH problem in G, such that Adv(n,d,k,m)-plp
G (A) ≤ n·d·AdvEk,d-mddh

G (B)+O(ndqN/p),
where N is an integer polynomial in the size of the representations of the polynomials and N = 1 when
k = 1 (see Appendix C for details). The running time of B is that of A plus the time to perform a
polynomial number (in q, n, and d) of operations in Zp and G.

The proof of Theorem 3.1 is detailed in Appendix C. It is similar to the proof of the LIP theorem
(in the matrix case) in [ABP15]. More precisely, we show a series of indistinguishable games where the
first game corresponds to the (n, d, k,m)-PLP security game when b = 0, and the last game corresponds
to this security game when b = 1. Basically, all the games except for the last two games are the same
as in the proof of the LIP theorem. The two last games differ, as follows: for the LIP theorem, all
polynomials are supposed to be linearly independent, and so in the last two games, all the returned values
are drawn uniformly and independently, while for the PLP theorem, the returned values still have linear
dependencies.

4 Applications
In this section, we describe how PLP theorem (Theorem 3.1) can be used to prove the security of
aggregate pseudorandom functions as well as multilinear pseudorandom functions. In particular, we
obtain polynomial-time reduction for all previous constructions of aggregate-pseudorandom, even for
aggregate where only exponential-time reduction were known (read-once formulas). We also obtain a very
simple proof of the multilinear pseudorandom function designed in [CH15]. Finally, we briefly explain
how these results can be extended to build constructions based on weaker assumptions in an almost

9

straightforward manner, by simply changing the key space. The proofs of security remain almost the
same and consist in reducing the security to the adequate PLP security game.

4.1 Aggregate Pseudorandom Functions
In this subsection, we show that for all constructions proposed in [CGV15], one can prove the AGG-PRF
security with a polynomial time reduction, while proofs proposed in this seminal paper suffered from an
exponential (in the input size) overhead in the running time of the reduction. Moreover, our reductions
are almost straightforward via the PLP theorem.

A first attempt to solve the issue of the exponential time of the original reductions was done in [CH15].
By introducing multilinear pseudorandom functions and giving a particular instantiation, Cohen and
Holmgren showed that one can prove the AGG-PRF security of NR with a polynomial time reduction for
hypercubes and decision trees aggregation. However, their technique does not extend to the more general
case of read-once formulas aggregation. Also, as we will show it the next subsection, their construction
can be seen as a particular case of our main theorem, and then can be proven secure very easily using our
result.

Here, we provide a polynomial time reduction for the general case of read-once formulas. This implies
in particular the previous results on hypercubes and decision trees which are particular cases of read-once
formulas.

Intuitively, if we consider the PLP security for k = 1 and aggregation with the Naor-Reingold PRF,
our PLP theorem (Theorem 3.1) implicitly says that as long as the aggregate values can be computed as
a group element whose discrete logarithm is the evaluation of a multivariate polynomial on the key, then,
if the corresponding polynomials have a small representation, the PLP theorem guarantees the security
(with a polynomial time reduction), even if the number of points aggregated is superpolynomial. Please
notice that if these polynomials do not have any small representation (e.g. the smallest representation is
exponential in the input size), then there is no point of considering such aggregation, since the whole
point of aggregate pseudorandom function lies in the possibility of aggregating superpolynomially many
PRF values with a very efficient computation.
Read-Once Formulas. A read-once formula is a circuit on x = (x1, . . . , xn) ∈ {0, 1}n composed of only
AND, OR and NOT gates with fan-out 1, so that each input literal is fed into at most one gate and each
gate output is fed into at most one other gate. We denote by ROFn the family of all read-once boolean
formulas over x1, . . . , xn variables. In order to ease the reading, we restrict these circuits to be in a
standard form, so that they are composed of fan-in 2 and fan-out 1 AND and OR gates, and NOT gates
occurring only at the inputs. This common restriction can be done without loss of generality. Hence, one
can see such a circuit as a binary tree where each leaf is labeled by a variable xi or its negation x̄i and
where each internal node has a label C and has two children with labels CL and CR and represents either
an AND or an OR gate (with fan-in 2). We identify a formula (and the set it represents) with the label
of its root Cφ.
Aggregation for Read-Once Formulas. We recall the definition of read-once formula aggregation
used in [CGV15]. For the sake of simplicity, we only consider the case of the Naor-Reingold PRF, defined
as NR(#”a , x) = [a0

∏n
i=1 a

xi
i], where a0, . . . , an

$← Zp and x ∈ {0, 1}n. We define the aggregation function
for read-once formulas of length n as follows.

The collection Srof ⊆ {0, 1}n corresponds to all the subsets of S ⊆ {0, 1}n such that there exists a
read-once formula Cφ ∈ ROFn such that S = {x ∈ {0, 1}n | Cφ(x) = 1}.

The aggregation function Γrof is defined as the product (assuming the group is a multiplicative group)
of the values on such a subset. Hence, we have:

AGGNR,Srof ,Γrof (Cφ) =
∏

x|Cφ(x)=1

[
a0

n∏
i=1

axii

]
=

a0
∑

x|Cφ(x)=1

n∏
i=1

axii

=
[
a0 ·ACφ,1(#”a)

]
,

where AC,b is the polynomial
∑
x∈{0,1}n|C(x)=b

∏n
i=1 T

xi
i for any C ∈ ROFn and b ∈ {0, 1}.

Efficient Evaluation of AC,b. One can efficiently compute AC,b recursively as follows:

• If C is a literal for variable xi, then AC,1 = Ti and AC,0 = 1 if C = xi; and AC,1 = 1 and AC,0 = Ti
if C = x̄i;

10

• If C is an AND gate with CL and CR its two children, then we have:
AC,1 = ACL,1 ·ACR,1
AC,0 = ACL,0 ·ACR,0 +ACL,1 ·ACR,0 +ACL,0 ·ACR,1;

• If C is an OR gate with CL and CR its two children, then we have:
AC,1 = ACL,1 ·ACR,1 +ACL,1 ·ACR,0 +ACL,0 ·ACR,1
AC,0 = ACL,0 ·ACR,0.

Now we have introduced everything, we can prove that NR (or more general constructions) is an
(Srof ,Γrof)-AGG-PRF under the standard DDH assumption, as stated in the lemma below.

Lemma 4.1. Let G = 〈g〉 be a group of prime order p and NR be the Naor-Reingold PRF defined as
NR(#”a , x) = [a0

∏n
i=1 a

xi
i], where the key is (a0, . . . , an) $← Zn+1

p and the input is x ∈ {0, 1}n. Then one
can reduce the (Srof ,Γrof)-AGG-PRF security of NR to the hardness of the DDH problem in G, with a
loss of a factor n. Moreover, the time overhead is polynomial in n and in the number of queries made by
the adversary.

The proof is straightforward using the PLP theorem: all queries in the security game for the aggregate
PRF can be seen as a queries of the form Pl(P) for some polynomial P with a small representation: Fn(x)
returns Pl(T0

∏n
i=1 T

xi
i) and AGG(Cφ) returns Pl(T0 ·ACφ,1(#”

T)). Details can be found in Appendix D.1.
Extensions. One can easily extend this result for k-Lin-based PRFs similar to NR using our main
theorem. Also, one can easily use our PLP theorem (Theorem 3.1) to prove the security for any aggregate
(for instance with NR) as soon as the aggregate values can be represented as group elements whose discrete
logarithms are the evaluation of a (multivariate) polynomial on the key (and that this polynomial is
efficiently computable).
Impossibility Result for CNF (Conjunctive Normal Form) and DNF (Disjunctive Normal
Form) Formulas. In [CGV15], the authors show that, unless NP=BPP, there does not exist an
(S ,Γ)-aggregate pseudorandom function1, with D = {0, 1}n, S containing the following sets:

Sφ = {x ∈ {0, 1}n | φ(x) = 1}

with φ a CNF formula with n-bit input, and Γ a “reasonable” aggregate function, e.g., Γrof (assuming R
is a cyclic group G of prime order p). The proof consists in showing that if such aggregate pseudorandom
function exists, then we can solve SAT in polynomial time. More precisely, given a SAT instance, i.e.,
a CNF formula φ, we can compute AGG(φ). If φ is not satisfiable, AGG(φ) = 1 ∈ G, while otherwise
AGG(φ) =

∏
x∈{0,1}n, φ(x)=1 F (K,x). This latter value is not 1 with high probability, otherwise we would

get a non-uniform distinguisher against aggregate pseudorandomness.
The case of DNF formulas (or more generally of any class for which satisfiability is tractable) was

left as an important open problem in [CGV15]. Here, we show that unless NP=BPP, there also does
not exist an (S ,Γ)-aggregate pseudorandom function as above, when S contains Sφ for any DNF
(instead of CNF) formula φ with n-bit input. For that, we first remark that the formula >, always
true, is a DNF formula (it is the disjunction of all the possible literals), and that the negation φ̄ of
a CNF formula φ is a DNF formula. Then, given a SAT instance, a CNF formula φ, we compute
AGG(φ̄) and AGG(>). If φ is not satisfiable, φ̄ is always true and AGG(φ̄) = AGG(>), while otherwise,
AGG(φ̄) = AGG(>)/

∏
x∈{0,1}n, φ(x)=1 F (K,x). This latter value is not AGG(>) with high probability,

otherwise we would get a non-uniform distinguisher against aggregate pseudorandomness.

4.2 Multilinear Pseudorandom Functions
Here, we explain how our main theorem can be used to prove directly the security of the multilinear
pseudorandom function built in [CH15]. We first recall their construction before explaining how to prove
its security.
Cohen-Holmgren multilinear pseudorandom function (CH). Let G = 〈g〉 be a group of prime
order p. The key space of the multilinear pseudorandom function is Zl1p × · · · × Zlnp . The input space is
the same as the key space. Given a key (#”a1, . . . ,

”an) taken uniformly at random in the key space, the
1We suppose that the aggregate pseudorandomness security property holds non-uniformly. When S is expressive enough,

we can also do the proof when this security property holds uniformly, see [CGV15, Section 2.2] for details.

11

evaluation of the multilinear pseudorandom function on the input (# ”x1, . . . ,
”xn)) outputs:

CH((#”a1, . . . ,
”an), (# ”x1, . . . ,

”xn)) =
[
n∏
i=1
〈 #”ai,

#”xi〉

]

where 〈 #”a , #”x 〉 denotes the canonical inner product 〈 #”a , #”x 〉 =
∑l
i=1 ai ·xi, with l being the length of vectors

#”a and #”x .
In [CH15], Cohen and Holmgren prove that this construction is a secure multilinear pseudorandom

function under the standard DDH assumption. One of their main contributions is to achieve a polynomial
time reduction. Their technique can be seen as a special case of ours. In particular, using our main
theorem, one can easily obtain the following lemma.

Lemma 4.2. Let G = 〈g〉 be a group of prime order p and CH: (Zl1p × · · · ×Zlnp)× (Zl1p × · · · ×Zlnp)→ G
denote the above multilinear pseudorandom function. Then we can reduce the multilinear PRF security of
CH to the hardness of the DDH problem in G, with a loss of a factor l =

∑n
i=1 li. Moreover, the time

overhead is polynomial in l and in the number of queries made by the adversary.

A detailed proof can be found in Appendix D.2, but we give an intuition of the proof in what follows.

Proof. Let #”

T = (T1,1, . . . , T1,l1 , . . . , Tn,1, . . . , Tn,ln) be a vector of indeterminates, and let #”

Ti = (Ti,1, . . . ,
Ti,li). The PLP theorem shows that CH(#”a1, . . . ,

”an,
”x1, . . . ,

”xn) (using a random key #”a) is computationally
indistinguishable from [

U

(
n∏
i=1
〈 #”

Ti,
#”xi〉

)]
= [f(# ”x1, . . . ,

”xn)]

with U $← L(Zp[
#”

T]≤1,Zp) and

f :
(

Zl1p × · · · × Zlnp → Zp
(# ”x1, . . . ,

”xn) 7→ U(
∏n
i=1〈

#”

Ti,
#”xi〉)

)
.

To conclude, we just need to prove that f is a random n-linear function in L(Zl1p ⊗ · · · ⊗ Zlnp ,Zp).
For that purpose, let us introduce the following n-linear application:

ψ :
(

Zl1p × · · · × Zlnp → Zp[
#”

T]≤1
(# ”x1, . . . ,

”xn) 7→
∏n
i=1〈

#”

Ti,
#”xi〉

)
.

We remark that f is the composition of U and ψ: f = U ◦ ψ.
Furthermore, if we write # ”ei,l = (0, . . . , 0, 1, 0, . . . , 0) the i-th vector of the canonical base of Zlp, then:

ψ(# ”ei1,l1 , . . . ,
”ein,ln) = T1,i1 · · ·Tn,in ;

and as the monomials T1,i1 · · ·Tn,in are linearly independent, ψ is injective. Since f = U ◦ ψ and
U

$← L(Zp[
#”

T]≤1,Zp), the function f is a uniform random linear function from L(Zl1p ⊗ · · · ⊗Zlnp ,Zp). This
is exactly what we wanted to show.

Symmetric Multilinear Pseudorandom Function. In [CGV15], constructing symmetric multilinear
pseudorandom functions was left as an open problem. The definition of this notion is the same as the notion
of multilinear pseudorandom function, except that we only require the function to be indistinguishable
from a random symmetric multilinear function. In that case, we suppose that l1 = · · · = ln = l, i.e., all the
vectors # ”x1, . . . ,

”xn have the same size l. The authors wrote in [CGV15] that the natural modification of
the CH construction to obtain a symmetric construction consisting in setting #”a1 = #”a2 = · · · = # ”an (simply
denoted #”a in what follows) leads to a symmetric multilinear pseudorandom function whose security is
less clear, but claimed that it holds under the E1,n-MDDH assumption (which is exactly the n-Strong
DDH assumption), when l = | #”a | = 2. We show that this construction is actually secure under the same
assumption for any l = | #”a | ≥ 2 as stated in the following lemma, whose proof is detailed in Appendix D.3
and is almost the same as the proof of Lemma 4.2.

Lemma 4.3. Let G = 〈g〉 be a group of prime order p and CHsym: Zlp × (Zlp)
n → G that takes as input

a key #”a ∈ Zlp and an input #”x = (# ”x1, . . . ,
”xn) ∈ (Zlp)

n and outputs [
∏n
i=1〈

#”a , #”xi〉]. Then we can reduce the
symmetric multilinear PRF security of CHsym to the hardness of the n-DDHI problem in G, with a loss of
a factor l. Moreover, the time overhead is polynomial in l and in the number of queries made by the
adversary.

12

Skew-Symmetric Multilinear Pseudorandom Function. In [CGV15], the author left as an open
problem the construction of a skew-symmetric multilinear pseudorandom function. The definition of this
notion is the same as the notion of multilinear pseudorandom function, except that we only require the
function to be indistinguishable from a random skew-symmetric multilinear function. We assume that
l1 = · · · = ln = l = n, i.e., all the vectors # ”x1, . . . ,

”xn have the same size l = n. We need l = n because
there is no skew-symmetric n-multilinear map from

(
Zlp
)n to Zp, when l < n.

We know that any skew-symmetric n-multilinear map f is of the form:

f(# ”x1, . . . ,
”xn) = c · det(# ”x1, . . . ,

”xn),

with c being a scalar in Zp and det being the determinant function. Therefore, the function

F (a, (# ”x1, . . . ,
”xn)) = [a · det(# ”x1, . . . ,

”xn)]

is a skew-symmetric multilinear PRF with key a ∈ Zp. The proof is trivial since, (# ”x1, . . . ,
”xn) 7→

F (a, (# ”x1, . . . ,
”xn)) is actually a random skew-symmetric n-multilinear map when a is a random scalar in

Zp. No assumption is required. Our analysis shows that skew-symmetric multilinear PRFs are of limited
interest, but our construction still solves an interesting open problem in [CGV15].
Extensions. As for aggregate pseudorandom functions, it is very easy to build multilinear pseudorandom
functions under k-Lin and to prove their security applying our PLP theorem (Theorem 3.1), for instance
using the same construction but changing the key components from elements in Zp to elements in Zk×kp

while keeping the same inputs space, and by defining 〈 #”

A, #”x 〉 =
∑l
i=1 xi ·Ai, with

#”

A = (A1, . . . ,Al) ∈
(Zk×kp)l and x = (x1, . . . , xl) ∈ Zlp. This leads to the following construction:

F :
(

Zl1p × · · · × Zlnp → Gk×m

(# ”x1, . . . ,
”xn) 7→

[
(
∏n
i=1〈

”

Ai,
#”xi〉) ·B

])

with (# ”

A1, . . . ,
”

An) ∈ (Zk×kp)l1 × · · · × (Zk×kp)ln and B ∈ Zk×mp .

References
[ABP15] Michel Abdalla, Fabrice Benhamouda, and Alain Passelègue. An algebraic framework for

pseudorandom functions and applications to related-key security. In Rosario Gennaro and
Matthew J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages 388–409.
Springer, Heidelberg, August 2015. (Cited on pages 3, 4, 7, 8, and 9.)

[ABPP14] Michel Abdalla, Fabrice Benhamouda, Alain Passelègue, and Kenneth G. Paterson. Related-
key security for pseudorandom functions beyond the linear barrier. In Juan A. Garay and
Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 77–94. Springer,
Heidelberg, August 2014. (Cited on page 5.)

[AES01] Advanced Encryption Standard (AES). National Institute of Standards and Technology
(NIST), FIPS PUB 197, U.S. Department of Commerce, November 2001. (Cited on page 3.)

[BB04] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Christian Cachin
and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 56–73. Springer,
Heidelberg, May 2004. (Cited on page 8.)

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with
constant size ciphertext. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of
LNCS, pages 440–456. Springer, Heidelberg, May 2005. (Cited on pages 4 and 29.)

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom
functions. In Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 501–519.
Springer, Heidelberg, March 2014. (Cited on page 3.)

[Boy08] Xavier Boyen. The uber-assumption family (invited talk). In Steven D. Galbraith and
Kenneth G. Paterson, editors, PAIRING 2008, volume 5209 of LNCS, pages 39–56. Springer,
Heidelberg, September 2008. (Cited on pages 4 and 29.)

13

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for
code-based game-playing proofs. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004
of LNCS, pages 409–426. Springer, Heidelberg, May / June 2006. (Cited on page 5.)

[BW04] Andrej Bogdanov and Hoeteck Wee. A stateful implementation of a random function supporting
parity queries over hypercubes. In Klaus Jansen, Sanjeev Khanna, José D. P. Rolim, and Dana
Ron, editors, APPROX-RANDOM 2004, volume 3122 of LNCS, pages 298–309. Springer,
Heidelberg, August 2004. (Cited on page 6.)

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications.
In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270 of LNCS,
pages 280–300. Springer, Heidelberg, December 2013. (Cited on page 3.)

[CGV15] Aloni Cohen, Shafi Goldwasser, and Vinod Vaikuntanathan. Aggregate pseudorandom func-
tions and connections to learning. In Yevgeniy Dodis and Jesper Buus Nielsen, editors,
TCC 2015, Part II, volume 9015 of LNCS, pages 61–89. Springer, Heidelberg, March 2015.
(Cited on pages 3, 4, 10, 11, 12, and 13.)

[CH15] Aloni Cohen and Justin Holmgren. Multilinear pseudorandom functions. In Magnús M.
Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, ICALP 2015,
Part I, volume 9134 of LNCS, pages 331–342. Springer, Heidelberg, July 2015. (Cited on
pages 3, 4, 6, 9, 10, 11, and 12.)

[EHK+13] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An algebraic
framework for Diffie-Hellman assumptions. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 129–147. Springer, Heidelberg, August
2013. (Cited on pages 4, 7, 16, and 29.)

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions.
Journal of the ACM, 33(4):792–807, October 1986. (Cited on page 3.)

[GOR11] Vipul Goyal, Adam O’Neill, and Vanishree Rao. Correlated-input secure hash functions. In
Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 182–200. Springer, Heidelberg,
March 2011. (Cited on page 15.)

[HK07] Dennis Hofheinz and Eike Kiltz. Secure hybrid encryption from weakened key encapsulation.
In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages 553–571. Springer,
Heidelberg, August 2007. (Cited on page 8.)

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Dele-
gatable pseudorandom functions and applications. In Ahmad-Reza Sadeghi, Virgil D. Gligor,
and Moti Yung, editors, ACM CCS 13, pages 669–684. ACM Press, November 2013. (Cited
on page 3.)

[NR97] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random
functions. In 38th FOCS, pages 458–467. IEEE Computer Society Press, October 1997. (Cited
on page 3.)

[Sha07] Hovav Shacham. A cramer-shoup encryption scheme from the linear assumption and from
progressively weaker linear variants. Cryptology ePrint Archive, Report 2007/074, 2007.
http://eprint.iacr.org/2007/074. (Cited on page 8.)

14

http://eprint.iacr.org/2007/074

A Supplementary Definitions
A.1 Standard Assumptions.

Hardness Assumptions. We recall the definition of the Decisional d-Diffie-Hellman Inversion (DDHI)
problems given in [GOR11] and described in Figure 4. The advantage of an adversary D against the
d-DDHI problem in G is

Advd-ddhi
G (D) = Pr

[
d-DDHI-RealDG ⇒ 1

]
− Pr

[
d-DDHI-RandD

G ⇒ 1
]

where the probabilities are over the choices of a, z ∈ Zp, g ∈ G, and the random coins used by the
adversary.

We also recall the definition of the k-Lin problem in G, also described in Figure 4. The advantage of
an adversary D against the DDHI problem in G is

Advk-linG (D) = Pr
[
k-Lin-RealDG ⇒ 1

]
− Pr

[
k-Lin-RandD

G ⇒ 1
]

The two assumptions corresponding to the hardness of these problems are the d-DDHI assumption
and the k-Lin assumption.

Setting k = 1 in the k-Lin problem, we recover the usual definition of the DDH problem in G.

d-DDHI-Real d-DDHI-Rand
proc Initialize
g

$← G
a

$← Z∗p
Return ([1] , [a] , . . . ,

[
ad
]
, [1/a])

proc Finalize(b)
Return b

proc Initialize
g

$← G
a

$← Z∗p ; z $← Z∗p
Return ([1] , [a] , . . . ,

[
ad
]
, [z])

proc Finalize(b)
Return b

k-Lin-Real k-Lin-Rand
proc Initialize
g

$← G
a1, . . . , ak

$← Z∗p
w1, . . . , wk

$← Z∗p
z ← w1 + · · ·+ wk
Return ([1] , [a1] , . . . , [ak] ,

[a1w1] , . . . , [akwk] , [z])
proc Finalize(b)
Return b

proc Initialize
g

$← G
a1, . . . , ak

$← Z∗p
w1, . . . , wk

$← Z∗p
z

$← Z∗p
Return ([1] , [a1] , . . . , [ak] ,

[a1w1] , . . . , [akwk] , [z])
proc Finalize(b)
Return b

Figure 4: Games defining the advantage of an adversary D against DDHI and the k-Lin problems in G.

A.2 Random Self-Reducibility of Ek,d-MDDH and (Ek,d, N)-MDDH
Ek,d-MDDH assumption is random self-reducible. Namely, let (Ek,d,M)-MDDH denote the M -fold
Ek,d-MDDH assumption, which is similar to the Ek,d-MDDH assumption, except that W

$← Zk×Mp ,
U

$← Zk(d+1)×M
p .

Specifically, the (Ek,d,M)-MDDH assumption is defined by the matrix distribution Ek,d which samples
matrices Γ as follows

Γ =

A0 ·B
A1 ·B

...
Ad ·B

 ∈ Zk(d+1)×k
p with A,B

$← Zk×kp . (2)

15

The advantage of an adversary D against the (Ek,d,M)-MDDH assumption is

Adv(Ek,d,M)-mddh
G (D) = Pr [D(g, [Γ] , [Γ ·W])]− Pr [D(g, [Γ] , [U])],

where Γ $← Ek,d, W
$← Zk×Mp , U

$← Zk(d+1)×M
p . By random self-reducibility of the Ek,d-MDDH

assumption, this assumption is actually implied by the latter one, as stated in the above lemma.

Lemma A.1 ([EHK+13, Lemma 1]). Let G be a cyclic group of order p. Let A be an adversary against
the (Ek,d,M)-MDDH assumption in G. Then we can construct an adversary against the Ek,d-MDDH such
that:

Adv(Ek,d,M)-mddh
G (A) ≤

{
M ·AdvEk,d-mddh

G (B) if 1 ≤M ≤ (k + 1)d
(k + 1)d ·AdvEk,d-mddh

G (B) + 1
p−1 if M > (k + 1)d

B Multivariate Polynomial Representation
B.1 Multivariate Polynomial Representation in Polynomial Linear Pseudo-

randomness Security
An important but subtle point of our work is that we do not need polynomials to be given in expanded
form in the polynomial linear pseudorandomness security notion. Indeed, otherwise, the theorem would
be quite easy to prove but would not encompass a lot of interesting cases.

On the other hand, some representations of polynomials will even not enable us to define properly
the PLP game (Figure 3). It is indeed at the very least necessary to be able to evaluate the polynomial
at arbitrary points (which may be scalars in Zp when k = 1, or matrices in Zk×kp when k ≥ 2). For
example, it would be inconceivable to define a polynomial P by an RSA modulus N , as the polynomial
P = (X − p1)(X − p2), with p1 and p2 the two prime factors of N .

For this appendix only, let us write P̃ the representation of the polynomial, while P is the mathematical
polynomial object. The same polynomial may have many representations. In the core of the paper, we
always suppose that P̃ has polynomial size in n and d. This assumption is reasonable and simplifies the
bounds, but is not required (bounds in theorems would then need to be changed).
The Scalar Case (k = 1). In this case, we could actually just require the following condition

Condition 1. It is possible to get from P̃ (in polynomial time):

full evaluation the value P (a1, . . . , an) ∈ Zp, given a1, . . . , an ∈ Zp;

partial evaluation for any j = 0, . . . , n, a representation Q̃ of Q = P (T1, . . . , Tj , aj+1, . . . , an), given
aj+1, . . . , an ∈ Zp. This representation Q̃ has again to verify (recursively) Condition 1.

In all cases in our paper, actually, P̃ is just an expression or an abstract syntax tree (AST) where
internal nodes are either + or ·, while leaves are either an indeterminate Ti or a scalar in Zp. A partial
evaluation can be performed by replacing Ti by ai (when i > j) in the AST, while a full evaluation can
be performed by evaluating the AST (after the previous replacement, with j = 0). Both operations are
polynomial-time in the size of the AST.
The Matrix Case (k > 1). In this case, everything is more contrived because of the absence of
commutativity. Intuitively, we want that all the indeterminates always appears in the same order, without
loss of generality, Tn appears before Tn−1, Tn−1 before Tn−2, This has to hold not only in the
polynomial as a mathematical object, but somehow also “in the representation” if we want to be able to
prove something. More precisely, we do not want that, at some point, when evaluating the polynomial, we
have to compute AjAj′ with j′ > j, even if this expression does not appear in the resulting polynomial.
For example, the representation T2T3 − T2(T3 + T1) is not acceptable (because of the presence of T2T3),
while the representation T2T1 (which corresponds to the same polynomial) is acceptable.

More formally, we assume the representation of the polynomials satisfies the following condition.

Condition 2. The representation of a polynomial is an expression or AST (where internal nodes are
either + or ·, while leaves are either an indeterminate Ti or a scalar in Zp) with the following additional
(natural) property (to deal with non-commutativity): if P̃1 · P̃2 is a sub-expression of P̃ , and if Tj is a leaf
of P̃1 for some j, then for any j′ > j, Tj′ is not a leaf of P̃2.

16

We remark that, because of this condition, even if the polynomials we consider would normally be
non-commutative, we can as well view them as commutative polynomials (when we evaluate a polynomial
from a mathematical point of view, we perform multiplications of the indeterminates in the right order).

We also remark that, when k = 1, Condition 2 is stronger than Condition 1.

B.2 Decomposition Lemmas
In order to prove the PLP theorem, we will need to able to run some decomposition algorithms on the
polynomials queried. The following lemmas detail the types of decomposition that we require in our
proof.

Lemma B.1. Let k ≥ 2 be an integer. There exists a polynomial-time algorithm which takes as input:

• an integer j ∈ {0, . . . , n},

• n− j matrices Aj+1, . . . ,An in Zk×kp ,

• an expression P̃ of a multivariate polynomial P ∈ Zp[T1, . . . , Tn] satisfying Condition 2,

and which outputs a decomposition of P̃ as N polynomials Q1, . . . , QN ∈ Zp[T1, . . . , Tj] and N matrices
C1, . . . ,CN ∈ Zk×kp such that:

P (T1, . . . , Tj ,Aj+1, . . . ,An) =
N∑
ν=1

Cν ·Qν(T1, . . . , Tj).

In addition, N is less than the number of internal nodes in the expression or AST P̃ ; and the representations
of the polynomials Q1, . . . , QN satisfy Condition 2.

Proof. We do the proof by recursion:

• Base case (a leaf): an indeterminate Ti or a scalar in Zp. Straightforward.

• Recursive case 1: additive node P̃1 + P̃2. We decompose recursively P̃1 and P̃2.

• Recursive case 2: multiplicative node P̃1 · P̃2. This is the most important case. We consider two
sub-cases:

– P̃1 only contain leaves with scalars or indeterminates Tj+1, . . . , Tn. In that case, its decompo-
sition is just a matrix in Zk×kp . The decomposition of P̃1 · P̃2 then contains as many terms as
in the decomposition of P̃2.

– Otherwise, P̃2 does not contain indeterminates Tj+1, . . . , Tn (otherwise that would break
Condition 2), and so the decomposition of P̃2 is just a polynomial (matrices are identity
matrices). The decomposition of P̃1 · P̃2 then contains as many terms as in the decomposition
of P̃1.

Lemma B.2. Let k ≥ 1 and j ≥ 1 be two integers. There exists a polynomial-time algorithm which takes
as input an expression P̃ of a multivariate polynomial P ∈ Zp[T1, . . . , Tj] of degree at most d < p in Tj
and satisfying Condition 1, and which outputs d+ 1 polynomials Q0, . . . , Qd ∈ Zp[T1, . . . , Tj−1] such that

P = Q0 +Q1 · Tj + · · ·+Qd · T dj .

In addition, the representations of Q0, . . . , Qd satisfy Condition 1.

Proof. We can use the Lagrange interpolation

P =
d∑
i=0

P (T1, . . . , Tj−1, i)
∏

i′=0,...,d
i′ 6=i

(Tj − i′)
i− i′

,

and regroup terms correctly.

17

C Proof of the PLP Theorem (Theorem 3.1)

Preliminaries. We recall that the representations of the polynomials we consider satisfy Condition 1
(when k = 1, see Section B.1) or Condition 2 (when k ≥ 2). Let #”

A ∈ (Zk×kp)n. When k ≥ 2, for any
polynomial P ∈ Zp[T1, . . . , Tn] whose degree in one indeterminate is at most d and for j = 1, . . . , n, using
Lemma B.1, we can decompose QP,

#”
A,j = P (T1, . . . , Tj ,Aj+1, . . . ,An) as follows (in polynomial time):

QP,
#”
A,j =

NP, #”
A,j∑

ν=1
CP,

#”
A,j,ν ·QP, #”

A,j,ν(T1, . . . , Tj),

with NP, #”
A,j a positive integer, CP,

#”
A,j,ν a matrix in Zk×kp , and QP, #”

A,j,ν a polynomial in Zp[T1, . . . , Tj]
(given by a representation still satisfying Condition 2), for ν = 1, . . . , NP, #”

A,j . We remark that this
decomposition exists and can trivially be obtained when k = 1 (in this case NP, #”

A,j = 1 and CP,
#”
A,j,1 = 1.

When the index #”

A is clear from context, it is omitted. We write N the maximum possible value of NP,j
(when k = 1, N = 1).

Since QP,j,ν is a polynomial in Zp[T1, . . . , Tj], with degree in any indeterminate bounded by d,
according to Lemma B.2, we can decompose it in polynomial time as:

QP,j,ν = QP,j,ν,0 + Tj ·QP,j,ν,1 + · · ·+ T dj ·QP,j,ν,d,

with QP,k,ν,0, . . . , QP,k,ν,d polynomials in Zp[T1, . . . , Tj] (given by a representation satisfying Condition 1).
In particular, we have:

QP,j =
NP,j∑
ν=1

d∑
i=0

CP,j,ν · T ij ·QP,j,ν,i (3)

QP,j−1 =
NP,j∑
ν=1

d∑
i=0

CP,j,ν ·Aji ·QP,j,ν,i (4)

Finally, we write CP,j,z1,...,zj ∈ Zk×kp the (matrix) coefficient of T zjj · · ·T
z1
1 in QP,j , and we write

cP,j,ν,z1,...,zj ∈ Zp the coefficient of the previous monomial in QP,j,ν (or equivalently in QP,j,ν,zj · T ij). As
we have:

QP,j =
∑

z1,...,zj

CP,j,z1,...,zj · T
zj
j · · ·T

z1
1

QP,j =
NP,j∑
ν=1

∑
z1,...,zj

CP,j,ν · cP,j,ν,z1,...,zj · T
zj
j · · ·T

z1
1

QP,j =
NP,j+1∑
ν=1

∑
z1,...,zj

d∑
i=0

CP,j+1,ν ·Aij+1 · cP,j+1,ν,z1,...,zj ,i · T
zj
j · · ·T

z1
1

we have:

CP,j,z1,...,zj =
NP,j∑
ν=1

CP,j,ν · cP,j,ν,z1,...,zj (5)

CP,j,z1,...,zj =
NP,j+1∑
ν=1

d∑
i=0

CP,j+1,ν ·Aij+1 · cP,j+1,ν,z1,...,zj ,i. (6)

PLP Theorem (Theorem 3.1) . We write N the maximum of the NP,j ’s and M = (d + 1) · q · N · m.
Let A be an adversary against the (n, d, k,m)-PLP security of G that makes q oracle queries. We
prove a first statement under the (Ek,d,M)-MDDH assumption, which denotes the M -fold Ek,d-MDDH
assumption: namely, this is the Ek,d-MDDH assumption, except that W

$← Zk×Mp . We can then use
random self-reducibility to obtain our statement under the Ek,d-MDDH assumption. Please refer to
Appendix A.2 for formal definitions of this intermediate assumption and of random self-reducibility.

18

More precisely, we first design an adversary A against the (Ek,d, N)-MDDH problem such that:

Adv(n,d,k)-plp
G (A) ≤ n ·Adv(Ek,d,M)-mddh

G (B) + 2n(d+ 1)qN
p

+ n

p
+ n

p2 . (7)

The proof of the above equation is based on the sequence of games in Figure 5. The games are used
in the following order: G0,1,G1,1,G0,2, . . . ,G1,n. We denote by Succi the event that game Gi output
takes the value 1.

proc Initialize // G0,j ; j = 1, . . . , n
#”

A
$← Znp

L ← empty list
T← empty 2-dimensional table
L← 0 (length of L)
proc RKFn(P) // G0,j ; j = 1, . . . , n
Y ← 0 ∈ Zk×mp

For ν = 1, . . . , NP,j
For i = 0, . . . , d

#”

λ (ν,i) ← TestLin(L, QP,j,ν,i)
If #”

λ (ν,i) =⊥ then
L← L+ 1
L[L]← QP,j,ν,i

T[L, 0] $← Zk×mp

For ` = 1, . . . , d
T[L, `] $← A`

j · T[L, 0]
#”

λ (ν,i) ← (0, . . . , 0, 1) ∈ ZL+1
p

Y ← Y + CP,j,ν ·
L∑
l=1

λ
(ν,i)
l · T[l, i]

Return [Y]

proc Initialize // G1,j ; j = 1, . . . , n
#”

A
$← Znp

L ← empty list
T← empty 2-dimensional table
L← 0 (length of L)
proc RKFn(P) // G1,j ; j = 1, . . . , n
Y ← 0 ∈ Zk×mp

For ν = 1, . . . , NP,j
For i = 0, . . . , d

#”

λ (ν,i) ← TestLin(L, QP,j,ν,i)
If #”

λ (ν,i) =⊥ then
L← L+ 1
L[L]← QP,j,ν,i

T[L, 0] $← Zk×mp

For ` = 1, . . . , d
T[L, `] $← Zp

#”

λ (ν,i) ← (0, . . . , 0, 1) ∈ ZL+1
p

Y ← Y + CP,j,ν ·
L∑
l=1

λ
(ν,i)
l · T[l, i]

Return [Y]

Figure 5: Games G0,j and G1,j for the proof of the PLP theorem. Differences between the two games are
in blue

Let us start with the proof. For the sake of simplicity, let us first suppose the procedure TestLin is
perfect. We will deal with its imperfection at the end of the proof.

We first show that game G0,1 instantiates exactly the game defining the (n, d, k,m)-PLP security of
G when b = 0. For any query P , we have QP, #”

A,1,ν ∈ Zp[T1] (for any ν = 1, . . . , NP,1) and according to
Equation (3):

QP,1 =
NP,1∑
ν=1

d∑
i=0

CP,1,ν,i · T i1 ·QP,1,ν,i ,

with QP,1,ν,i ∈ Zp and CP,1,ν,i ∈ Zk×kp . The first time we see a non-zero coefficient α = QP,1,ν,i ∈ Zp:
L[1]← α ∈ Zp, T[1, 0] $← Zk×kp (let us write this element αA′), and T[1, `]← α ·A`

j ·A′ for ` = 1, . . . , d.
Afterwards, TestLin(L, QP,1,ν,i) always outputs #”

λ (ν,i) = QP,1,ν,i/α, for i = 0, . . . , d. Then, the matrix
Y is computed as

Y =
NP,1∑
ν=1

d∑
i=0

CP,1,ν ·
1∑
l=1

λ
(ν,i)
l · T[l, i]

=
NP,1∑
ν=1

d∑
i=0

CP,1,ν ·QP,1,ν,i · α−1 · α ·Ai
1 ·A′

=
NP,1∑
ν=1

d∑
i=0

CP,1,ν ·QP,1,ν,i ·Ai
1 ·A′

= QP,0 ·A′ = P (A1, . . . ,An) ·A′,

19

where the last-but-one equality comes from Equation (4). Hence, this is exactly the game defining the
(n, d, k,m)-PLP security of G when b = 0.

Now, let us show Game G0,j and Game G1,j are indistinguishable under the (Ek,d,M)-MDDH
assumption. Afterwards, we will show that Game G1,j and Game G0,j+1 are perfectly indistinguishable.
Indistinguishability of Game G0,j and Game G1,j under the (E1,d, d · q)-MDDH assumption.
We recall that M = (d+ 1) · q ·N ·m. We design adversaries Bj attacking the (E1,d,M)-MDDH problem
in G such that

Pr [Succ0,j]− Pr [Succ1,j] ≤ Adv(E1,d,M)-mddh
G (Bj) ; ∀j = 1, . . . , n.

The adversary Bj takes as input a tuple ([Γ] , [Z]) ∈ Gk(d+1)×k×G(d+1)×M , where either Z = Γ ·W ,
and W

$← Zk×Mp , or Z = U
$← Zk(d+1)×M

p , with Γ defined as in Equation (1) in Section 2, and has to
distinguish these two cases. For that purpose, the adversary Bj simulates everything as in Game G0,j
or G1,j for A , except it sets T[l, i] to be the k × m matrix with zα+ki,β+lm as the entry of index
(α, β) ∈ {1, . . . , k} × {1, . . . ,m}. Assuming the matrix B ∈ Zk×kp (in the definition of Γ in Equation (1))
is invertible (which happens with probability (1− 1/p) · · · (1− 1/pk) ≥ 1− 1/p− 1/p2, thanks to Euler’s
Pentagonal Number Theorem), in the first case, everything is simulated as in Game G0,j , while in the
second case, everything is simulated as in Game G1,j . In the first case, everything is simulated as in
Game G0,j , while in the second case, everything is simulated as in Game G1,j .
Perfect Indistinguishability of Game G1,j and Game G0,j+1. We introduce an intermediate
Game G2,j , described in Figure 6. We will use it to prove that Game G1,j is perfectly indistinguishable
from Game G0,j+1 by showing that both these games are perfectly indistinguishable from game G2,j .
This intermediate game is not polynomial-time, since U is a linear map from Zp[T1, . . . , Tj]≤d to Zk×mp

and so would be represented by a matrix with km(d + 1)j entries. But this does not affect our proof
since we show that it is perfectly indistinguishable from Game G1,j and Game G0,j+1 which are both
polynomial-time.

proc Initialize // G2,j ; j = 1, . . . , n
U

$← L(Zp[T1, . . . , Tj]≤d,Zk×mp)
proc RKFn(P) // G2,j ; j = 1 . . . , n
Y ←

∑
z1,...,zj

CP,j,z1,...,zj · U(T zjj · · ·T
z1
1)

Return [Y]

Figure 6: Games G2,j for the proof of the PLP theorem

First, we prove that game G1,j is perfectly indistinguishable from Game G2,j . For that, we
remark that T in G1,j can be seen as computed as T[l, i] = U(T ij · Ql), for k = 0, . . . , d, with
U

$← L(Zp[T1, . . . , Tj]≤d,Zk×mp) and L[l] = Ql ∈ Zp[T1, . . . , Tj−1]. Indeed, the polynomials T ij · Ql
are linearly independent, and so U(Tji ·Ql) are independent uniform matrices in Zk×mp . We have:

QP,j,ν,i =
L∑
l=1

λ
(ν,i)
l ·Ql.

20

Thus, for a query P , we remark that the matrix Y is computed as:

Y =
NP,j∑
ν=1

d∑
i=0

CP,j,ν ·
L∑
l=1

λ
(ν,i)
l · T[l, i] =

NP,j∑
ν=1

d∑
i=0

CP,j,ν ·
L∑
l=1

λ
(ν,i)
l · U(T ij ·Ql)

=
NP,j∑
ν=1

CP,j,ν · U

(
d∑
i=0

L∑
l=1

λ
(ν,i)
l · T ij ·Ql

)

=
NP,j∑
ν=1

d∑
i=0

CP,j,ν · U

(
d∑
i=0

QP,j,ν,i · T ij

)

=
NP,j∑
ν=1

CP,j,ν · U(
∑

z1,...,zj

cP,j,ν,z1,...,zj · T
zj
j · · ·T

z1
1)

=
∑

z1,...,zj

NP,j∑
ν=1

CP,j,ν · cP,j,ν,z1,...,zj

 · U(T zjj · · ·T
z1
1)

=
∑

z1,...,zj

CP,j,z1,...,zj · U(T zjj · · ·T
z1
1),

where the last equality comes from Equation (5) and most other equalities come from the linearity of
U . The matrix Y is computed exactly as in Game G2,j . Therefore, Games G1,j and G2,j are perfectly
indistinguishable, for j = 1, . . . , n.

Second, we prove that Game G2,j is perfectly indistinguishable from Game G0,j+1. The proof is similar
to the previous one. For that, we remark that T in G1,j can be seen as computed as T[l, i] = Ai

j+1 ·U(Ql),
for i = 0, . . . , d, with U

$← L(Zp[T1, . . . , Tj]≤d,Zk×mp) with L[l] = Ql ∈ Zp[T1, . . . , Tj]. Indeed, the
polynomials Ql are linearly independent, and so U(Ql) are independent uniform matrices in Zk×mp . We
also have:

QP,j+1,ν,i =
L∑
l=1

λ
(ν,i)
l Ql.

Thus, for a query P , we remark that the matrix Y is computed as:

Y =
NP,j+1∑
ν=1

d∑
i=0

CP,j+1,ν ·
L∑
l=1

λ
(ν,i)
l · T[l, i]

=
NP,j+1∑
ν=1

d∑
i=0

CP,j+1,ν ·
L∑
l=1

λ
(ν,i)
l ·Aij+1 · U(Ql)

=
NP,j+1∑
ν=1

d∑
i=0

CP,j+1,ν ·Aij+1 · U

(
L∑
l=1

λ
(ν,i)
l ·Ql

)

=
NP,j+1∑
ν=1

d∑
i=0

CP,j,ν ·Aij+1 · U(QP,j+1,ν,i)

=
NP,j+1∑
ν=1

d∑
i=0

CP,j,ν · U(
∑

z1,...,zj

cP,j+1,ν,z1,...,zj ,i · T
zj
j · · ·T

z1
1)

=
∑

z1,...,zj

NP,j+1∑
ν=1

d∑
i=0

CP,j,ν · cP,j+1,ν,z1,...,zj ,i

 · U(T zjj · · ·T
z1
1)

=
∑

z1,...,zj

CP,j,z1,...,zj · U(T zjj · · ·T
z1
1),

where the last equality comes from Equation (6) and most other equalities come from the linearity of U .
This is computed exactly as in Game G2,j . Therefore, games G1,j and G2,j are perfectly indistinguishable,
for j = 1, . . . , n.

21

We finally prove that Game G1,n is perfectly indistinguishable from the game defining the (n, d, k,m)-
PLP security of G when b = 1. Since Game G1,n is perfectly indistinguishable from Game G2,n, we just
need to prove the G2,0 is perfectly indistinguishable from the game defining the (n, d, k,m)-PLP security
of G when b = 1. This is the case, since QP,n = P is a polynomial with scalar coefficients, and in the
expression of the matrix Y =

∑
z1,...,zj

CP,n,z1,...,zn · U(T znn · · ·T
z1
1) (in Game G2,0), CP,n,z1,...,zn can be

seen as a scalar, and Y = U(QP,n) = U(P) by linearity.
Dealing with an Imperfect TestLin. To deal with an imperfect TestLin, we just remark that the only
part where we supposed TestLin to be perfect in the proof was to prove the perfect indistinguishability
of Game G1,j and Game G0,j+1, and the perfect indistinguishability between Game G0,1 (respectively
Game G1,n) with the game defining the (n, d, k,m)-PLP security of G when b = 0 (respectively b = 1).
All this properties are statistical, so that it is possible to replace the real TestLin (with error 1/p) by a
perfect (with error 0, as used in the proof). This just loses an additive factor at most (d+ 1)qN/p each
time, and so at most 2n(d+ 1)qN/p in total.

Equation (7) easily follows from the bounds arising in the different game hops.

D Proofs of Lemmas in Section 4
In order to prove the statements from Section 4, we will simply reduce the security of our constructions
to the PLP security and apply PLP theorem (Theorem 3.1).

D.1 Proof of Lemma 4.1
Let A be an adversary against the (Srof ,Γrof)-AGG-PRF security of NR that makes q oracle queries. We
design an adversary B against the (n, 1, 1)-PLP security in G as follows, where we denote by a1, . . . , an
and a0 = b the secret values chosen at random in the Initialize procedure of the game defining the
(n, 1, 1)-PLP security (it corresponds to A1, . . . ,An and B but since k = 1, these values are simply
scalars in Zp).

B runs A . The latter can make two types of queries, so let us first describe how B responds to both
these types of queries. The first type consists in standard PRF queries. When adversary A makes a
query x, then B makes the query Px =

∏n
i=1 T

xi
i and returns the value it gets to A . The second type of

queries consists in aggregate PRF values. When A makes an aggregate query Cφ ∈ ROFl, for some l ≤ n,
the adversary B computes ACφ,1(#”

T) using the efficient recursive evaluation, as described in Section 4.1,
then queries this polynomial PCφ = ACφ,1(#”

T), and returns the value it gets to A . As ACφ,1(#”

T) is a
multivariate polynomial in T1, . . . , Tl with degree at most 1 in any indeterminate (since it is a sum of
such multivariate polynomials), clearly, PCφ is a multivariate polynomial with degree at most 1 in any
indeterminate.

The only thing we need to prove is that B simulates correctly either the game AGGPRFReal or the
game AGGPRFRand, which is almost straightforward by definition of the PLP security. On the one
hand, it is clear that if B’s oracle responds to a query P by [P (#”a) · b], then A gets exactly the (standard
or aggregate) values of the Naor-Reingold PRF defined with the generator g = [1] and with the key
(b, a1, . . . , an) ∈ Zn+1

p . On the other hand, if B’s oracle responds to a query P by random values computed
taking into account related between P and previously queried polynomials, then the values A gets are
statistically indistinguishable from the values it would get from the AGGPRFRand oracles. Indeed, the
only difference lies in the fact that any value sent to A is random if the corresponding polynomial is
linearly independent from previous queries, or is computed from previous values if the corresponding
polynomial is linearly dependent, but these dependence are tested using a statistical procedure (which is
correct with probability at least p−1

p) while in AGGPRFRand, no error can occur.
Hence, in the first case, B simulates perfectly AGGPRFReal, while in the second game, the simulation

is statistically indistinguishable from AGGPRFRand. Thus, we have shown that

Advagg-prf
NR,Srof ,Γrof

(A) ≤ p

p− 1 ·Adv(n,1,1)-plp
G (B)

and Lemma 4.1 now follows from the PLP theorem (Theorem 3.1) and from the fact that the E1,1-MDDH
and the DDH assumptions are equivalent.

22

D.2 Proof of Lemma 4.2
Let l denotes

∑n
i=1 li. Let A be an adversary against the MPRF security of CH that makes q oracle

queries. We design an adversary B against the (l, 1, 1)-PLP security in G as follows, where we denote by
a1,1, . . . , a1,l1 , a2,1, . . . , an,ln the secret values chosen at random in the Initialize procedure of the game
defining the (l, 1, 1)-PLP security (these secret values correspond to A1 ·B,A2 ·B, . . . but since k = 1,
these values are simply scalars in Zp).

B runs A . When the latter makes a query #”x = (# ”x1, . . . ,
”xn) where #”xi ∈ Zlip , B does the following.

First, it starts by computing P #”x =
∏n
i=1〈

#”

Ti,
#”xi〉, where

#”

Ti = (Ti,1, . . . , Ti,li) is a vector of indeterminates.
The latter polynomial is a multivariate polynomial in Zp[T1,1, . . . , T1,l1 , T2,1, . . . , Tn,ln] with degree at
most 1 in any indeterminate.

Afterwards, B queries P #”x to its oracle and sends the value it gets to A . Hence, on the one hand, if
B’s oracle outputs [P #”x (a1,1, . . . , a1,l1 , a2,1, . . . , an,ln) · b], then the value A gets is exactly the evaluation
of CH in #”x with the key #”a = (#”a1, . . . ,

”an) where #”ai = (ai,1, . . . , ai,li), for i = 1, . . . , n, and with the
generator [b] (which is a generator as soon as b 6= 0). On the other hand, if B’s oracle responds to
a query P by random values computed taking into account related between P and previously queried
polynomials, then the values A gets are statistically indistinguishable from the values it would get from
the MPRFRand oracle, as this is exactly how the values output by the MPRFRand oracle are computed
in order to obtain a polynomial-time simulation (as mentioned in Section 2).

Hence, we have shown that

Advmprf
CH (A) ≤ p

p− 1 ·Adv(l,1,1)-plp
G (B)

and Lemma 4.2 now follows from the PLP theorem (Theorem 3.1) and from the fact that the E1,1-MDDH
and the DDH assumptions are equivalent.

D.3 Proof of Lemma 4.3
Let A be an adversary against the symmetric MPRF security of CHsym that makes q oracle queries. We
design an adversary B against the (l, 1, n)-PLP security in G as follows, where we denote by a1, . . . , al and
b the secret values chosen at random in the Initialize procedure of the game defining the (l, 1, n)-PLP
security (it corresponds to A1, . . . ,Al and B but since k = 1, these values are simply scalars in Zp).

B runs A . When the latter makes a query #”x = (# ”x1, . . . ,
”xn) where #”xi ∈ Zlip , B does the following.

First, it starts by computing P #”x =
∏n
i=1〈

#”

T , #”xi〉, where
#”

T = (T1, . . . , Tl) is a vector of indeterminates.
Hence, it computes a multivariate polynomial in Zp[T1, . . . , Tl] with degree at most n in any indeterminate.

Afterwards, B queries P #”x to its oracle and sends the value it gets to A . Hence, on the one hand, if B’s
oracle outputs [P #”x (a1, . . . , al) · b], then the value A gets is exactly the evaluation of CHsym in #”x with the
key #”a ∈ Zlp and with the generator [b] (which is a generator as soon as b 6= 0). On the other hand, if B’s
oracle responds to a query P by random values computed taking into account the linear relations between
P and the previously queried polynomials, then the values A gets are statistically indistinguishable from
the values it would get from the symmetric MPRFRand oracle, as this is exactly how the values output
by the symmetric MPRFRand oracle are computed in order to obtain a polynomial-time simulation (as
mentioned in Section 2).

Hence, we have shown that

Advmprf
CHsym

(A) ≤ p

p− 1 ·Adv(l,1,n)-plp
G (B)

and Lemma 4.2 now follows from the PLP theorem (Theorem 3.1) and from the fact that the E1,n-MDDH
is implied by the n-DDHI assumption.

E Proof of Security of Ek,d-MDDH
E.1 Definitions: Monomial Order and Leading Commutative Monomials
Definition E.1. [Monomial order] Let n be a positive integer. A monomial order for Zp[T1, . . . , Tn] is a
total order < such that, for any monomials u, v, w:

• if u < v, then uw < vw,

23

• 1 ≤ u.

We write #”

T
#”
i = T i11 · · ·T inn for #”

i = (i1, . . . , in). The leading monomial of a polynomial P (#”

T) =∑
#”
i α #”

i

#”

T
#”
i is the maximum of the set { #”

T
#”
i | α #”

i 6= 0} for the monomial order <, and is denoted LM(P).
The leading term of this polynomial P is α #”

i?
#”

T
#”

i? , when LM(P) = #”

T
#”

i? .
We extend this definition to non-commutative polynomials as follows: let

π: Zp〈T1, . . . , Tn〉 → Zp[T1, . . . , Tn]

be the (canonical) linear map from the set of non-commutative polynomials Zp〈T1, . . . , Tn〉 to the set of
(commutative) polynomials Zp[T1, . . . , Tn], defined by π(Tj1 · · ·Tjk) = Tj1 · · ·Tjk . The leading monomials
set of a non-commutative polynomial

P (#”

T) =
∑
k≥1

j1,...,jk∈{1,...,n}

αj1,...,jkTj1 · · ·Tjk

as the set of monomials Tj1 · · ·Tjk such that π(Tj1 · · ·Tjk) is the maximum of

{π(Tj1 · · ·Tjk) | αj1,...,jk 6= 0} .

It is denoted CLM(P). We say a polynomial has unique commutative leading monomial if CLM(P) is a
singleton {Tj1 · · ·Tjk}, in which case, we also often write CLM(P) = Tj1 · · ·Tjk , to simplify notations.

We remark that if we identify (commutative) polynomials with non-commutative polynomials (by
writing them as P =

∑
#”
i α #”

i

#”

T
#”
i =

∑
#”
i α #”

i T
i1
1 · · ·T inn), then polynomials have unique commutative

leading monomial.

Example E.2. For n = 2 and < the lexicographic order with T1 > T2, we have:

LM(5T 2
1 T2 + T1T

3
2 + T2) = T 2

1 T2 LM(T 3
1 + 3T1T

7
2) = T 3

1

for commutative polynomials, and

CLM(5T 2
1 T2 + T1T

3
2 + T2) = {T 2

1 T2}
CLM(5T 2

1 T2 + T1T2T1 + T2T
2
1 + T2 + T1) = {T 2

1 T2, T1T2T1, T2T
2
1 }

for non-commutative polynomials.

Finally, the partial degree of a polynomial P in a set S ⊆ {T1, . . . , Tn} of indeterminates is the degree
of the polynomial P seen as a polynomial with indeterminates (Ti)i∈S and coefficients in Zp[(Ti)i/∈S].

E.2 Main Lemma
We will make use of the following main lemma in the security proof of Ek,d-MDDH. But before that, we
need two technical lemmas.

Lemma E.3. Let k1, n1, n2, q1 be positive integers.
Let Q1,1, . . . , Q1,q1 ∈ Zp[X1,1, . . . , X1,n1] be q1 polynomials. We suppose that, if there exists a polyno-

mial R ∈ Zp[U1,1, . . . , U1,q1] of total degree at most k1 such that:

R(Q1,1, . . . , Q1,q1) = 0

then R = 0.
Then, the same is true when R is in Zp[X2,1, . . . , X2,n2][U1,1, . . . , U1,q1] instead of being in Zp[U1,1, . . . ,

U1,q1], i.e., when coefficients of R are polynomials in Zp[X2,1, . . . , X2,n2] instead of being scalars.

Proof. Let us suppose that R is a polynomial in Zp[X2,1, . . . , X2,n2][U1,1, . . . , U1,q1] of partial degree at
most k1 in {U1,1, . . . , U1,q1}, such that

R(Q1,1, . . . , Q1,q1) = 0.

We want to show that R = 0.

24

Let us look at R as a polynomial in Zp[U1,1, . . . , U1,q1][X2,1, . . . , X2,n2]:

R =
∑

i1,...,in2

λi1,...,in2
·Ri1,...,in2

(U1,1, . . . , U1,q1) ·Xi2,1
2,1 · · ·X

i2,n2
2,n2

, (8)

where λi1,...,in2
∈ Zp and R1,i1,...,in2

∈ Zp[U1,1, . . . , U1,q1]. Let R′ ∈ Zp[X1,1, . . . , X1,n1][X2,1, . . . , X2,n2]
be defined as:

R′ = R(Q1,1, . . . , Q1,q1)

=
∑

i1,...,in2

λi1,...,in2
·Ri1,...,in2

(Q1,1, . . . , Q1,q1) ·Xi2,1
2,1 · · ·X

i2,n2
2,n2

.

We know that R′ = 0. Since Ri1,...,in2
(Q1,1, . . . , Q1,q1) ∈ Zp[X1,1, . . . , X1,n1], the polynomials

λi1,...,in2
·Ri1,...,in2

(Q1,1, . . . , Q1,q1)

can be seen as the coefficients of the polynomial R′ (seen as a polynomial over Zp[X1,1, . . . , X1,n1]), we
have:

Ri1,...,in2
(Q1,1, . . . , Q1,q1) = 0 .

As Ri1,...,in2
has degree at most k1, from the assumption of the lemma, we have Ri1,...,in2

= 0. It implies
that R = 0 (from Equation (8)).

Lemma E.4. Let k1, k2, n1, n2, q1, q2 be positive integers. Let Q1,1, . . . , Q1,q1 ∈ Zp[X1,1, . . . , X1,n1] and
Q2,1, . . . , Q2,q2 ∈ Zp[X2,1, . . . , X2,n2] be q1 + q2 polynomials. We suppose that, if there exist polynomials
R1 ∈ Zp[U1,1, . . . , U1,q1] of total degree at most k1 and R2 ∈ Zp[U2,1, . . . , U2,q2] of total degree at most k2
such that:

R1(Q1,1, . . . , Q1,q1) = 0 R2(Q2,1, . . . , Q2,q2) = 0 (9)

then R1 = 0 and R2 = 0. This condition is called Condition ?.
Let us suppose there exists a polynomial R ∈ Zp[U1,1, . . . , U1,q1 , U2,1, . . . , U2,q2] such that any monomial

of R is of the form

U
i1,1
1,1 · · ·U

i1,q1
1,q1

· U i2,12,1 · · ·U
i2,q2
2,q2

with
{
i1,1 + · · ·+ i1,q1 ≤ k1

i2,1 + · · ·+ i2,q2 ≤ k2,

and such that
R(Q1,1, . . . , Q1,q1 , Q2,1, . . . , Q2,q2) = 0.

Then, R = 0.

Proof. Let us write R as follows:

R =
∑

i1+···+iq1≤k1

λi1,...,iq1
·R2,i1,...,iq1

(U2,1, . . . , U2,q2) · U i11,1 · · ·U
iq1
1,q1

(10)

where λi1,...,iq1
∈ Zp and R2,i1,...,iq1

∈ Zp[U2,1, . . . , U2,q2] of degree at most k2. Let R′ be the polynomial
in Zp[X2,1, . . . , X2,n2][U1,1, . . . , U1,q1], defined as:

R′ = R(U1,1, . . . , U1,q1 , Q2,1, . . . , Q2,q2)

=
∑

i1+···+iq1≤k1

λi1,...,iq1
·R2,i1,...,iq1

(Q2,1, . . . , Q2,q2) · U i11,1 · · ·U
iq1
1,q1

.

As a polynomial over Zp[X2,1, . . . , X2,n2] in U1,1, . . . , U1,q1 , R′ has degree at most k1 and we have that
R′(Q1,1, . . . , Q1,q1) = 0. Therefore, R′ = 0 thanks to Lemma E.3 and the assumption that there is no
non-zero polynomial R1 of degree at most k1 such that R1(Q1,1, . . . , Q1,q1) = 0.

This means that R2,i1,...,iq1
(Q2,1, . . . , Q2,q2) = 0 (which is a polynomial in Zp[X2,1, . . . , X2,n2]), for

all i1, . . . , iq1 . Since R2,i1,...,iq1
has degree at most k2, R2,i1,...,iq1

= 0. From Equation (10), we get that
R = 0.

25

Lemma E.5 (Main Lemma). Let k, n,m, q be positive integers. We suppose fixed a monomial order
< for Zp[T1, . . . , Tn]. Let (Ps)s=1,...,q be a family of polynomials with distinct and unique commutative
leading monomial. Let

R = Zp[(X`,i,j)`=1,...,n
i=1,...,k
j=1,...,k

, (Yi,j) i=1,...,k
j=1,...,m

].

Let us define #”

A ∈
(
Rk×k)n a vector of k × k matrices of (commutative) polynomials with indeterminates

X`,i,j, such that a`,i,j = X`,i,j. Let us also define B ∈ Rk×m, such that bi,j = Yi,j. In other words:

A` =

X`,1,1 . . . X`,1,k
...

...
X`,k,1 . . . X`,k,k

 B =

Y1,1 . . . Y1,m
...

...
Yk,1 . . . Yk,m

 .

Let Qs,i,j ∈ R be the polynomial corresponding to the coordinate (i, j) ∈ {1, . . . , k} × {1, . . . ,m} of the
matrix Ps(

#”

A) ·B (for any s = 1, . . . , q).
Finally, let us suppose there exists a polynomial R ∈ Zp[(Us,i,j) s=1,...,q

i=1,...,k
j=1,...,m

] of total degree at most k,

such that
R((Qs,i,j)s,i,j) = 0. (11)

Then, necessarily, R = 0 (R is the zero polynomial).

Proof. Let us assume, without loss of generality that:

CLM(P1) < . . . < CLM(Pq).

We do the proof by induction over k.

Base case (k = 1). When k = 1, Qs,1,1 = Ps((X`,1,1)`) and Equation (11) shows there is a linear
combination between the Ps’s, which is impossible as their leading monomials are distinct (here everything
is commutative, as matrices have size 1× 1).

Inductive step. We suppose the lemma holds for some value all values lower than k, and prove it for
k.

First, let us show that R contains no monomial of the form:

Us1,i1,j1 · · ·Usk1 ,ik1 ,jk1
· Usk1+1,ik1+1,jk1+1 · · ·Usk1+k2 ,ik1+k2 ,jk1+k2

,

with k1 and k2 two positive integers such that k1 + k2 ≤ k and

i1, . . . , ik1 ∈ {1, . . . , k1} ik1+1, . . . , ik1+k2 ∈ {k1 + 1, . . . , k}.

More precisely, let k1, k2 be two positive integers such that k1 + k2 ≤ k. Let us write R as a sum
R = R̃+ R̂, with R̃ containing the monomials of the above form, and R̂ the other monomials. We want
to show that R̃ = 0.

Now, in Equation (11), we set X`,i,j to 0 for all ` = 1, . . . , n and:

(i, j) /∈ ({1, . . . , k1} × {1, . . . , k1}) ∪ ({k1 + 1, . . . , k} × {k1 + 1, . . . , k})

Concretely, this means that:

A` =
(

A′` 0
0 A′′`

)
,

with

A′` =

X`,1,1 . . . X`,1,k1
...

...
X`,k1,1 . . . X`,k1,k1

 A′′` =

X`,k1+1,k1+1 . . . X`,k1+1,k
...

...
X`,k,k1+1 . . . X`,k,k

 .

Let us also write
B =

(
B′

B′′

)
,

26

with

B′ =

 Y1,1 . . . Y1,m
...

...
Yk1,1 . . . Yk1,m

 B′ =

Yk1+1,1 . . . Yk1+1,m
...

...
Yk,1 . . . Yk,m

 .

Therefore, we have:

Qs,i,j =
{
coefficient (i, j) of the matrix Ps(A′) ·B′ if 1 ≤ i ≤ k1

coefficient (i− k1, j) of the matrix Ps(A′′) ·B′′ if k1 + 1 ≤ i ≤ k

Thus, all monomials in R̃((Qs,i,j)s,i,j) have partial degree k1 in {Yi,j}i=1,...,k1
j=1,...,m

(coming from the poly-

nomials Qs1,i1,j1 , . . . , Qsk1 ,ik1 ,jk1
) and partial degree k2 in {Yi,j}i=k1,...,k

j=1,...,m
(coming from the polynomials

Qsk1+1,ik1+1,jk1+1 , . . . , Qsk1+k2 ,ik1+k2 ,jk1+k2
), while no monomial in R̂((Qs,i,j)s,i,j) has such partial degrees.

Since R((Qs,i,j)s,i,j) = 0, we have R̃((Qs,i,j)s,i,j) = 0.
Now we can apply Lemma E.4, where

(Q1,i)i corresponds to (Qs,i,j) s=1,...,q
i=1,...,k1
j=1,...,m

(X1,i)i corresponds to (Xi,j)i=1,...,k1
j=1,...,k1

∪ (Yi,j)i=1,...,k1
j=1,...,m

(Q2,i)i corresponds to (Qs,i,j) s=1,...,q
i=k1+1,...,k
j=1,...,m

(X2,i)i corresponds to (Xi,j)i=k1+1,...,k
j=k1+1,...,k

∪ (Yi,j)i=k1+1,...,k
j=1,...,m

R corresponds to R̃.

Condition ? is satisfied thanks to the induction hypothesis for k1 < k and k2 < k.

Second, let 1 ≤ j1, . . . , jk ≤ k be positive integers in {1, . . . , k}. These integers are fixed in all this
second step. Let us show that R contains no monomial of the form Us1,1,j1 · · ·Usk,1,jk . Let us write R as
a sum R = R̃ + R̂, with R̃ containing the monomials of the above form, and R̂ the other monomials. We
remark that all monomials in R̃((Qs,i,j)s,i,j) are multiple of Yi1,j1 · · ·Yik,jk (for some i1, . . . , ik), while
monomials in R̂((Qs,i,j)s,i,j) are not. Since R((Qs,i,j)s,i,j) = 0, R̃((Qs,i,j)s,i,j) = 0. We now just need to
prove that R̃ = 0.

We order monomials of R using the product order on {Yi,j}i,j×{X`,i,j}`,i,j , with the lexicographic order
on {Yi,j} corresponding to the lexicographic order on (i, j), and with the order on {X`,i,j} corresponding
to the lexicographic order on (i, j, `):

Yi,j < Yi′,j′ ⇐⇒
∣∣∣∣ i < i′

or i = i′ and j < j′

X`,i,j < X`′,i′,j′ ⇐⇒

∣∣∣∣∣∣
i < i′

or i = i′ and j < j′

or (i, j) = (i′, j′) and ` < `′

Now, we set X`,i,j to 0 for all ` = 1, . . . , n and i 6= j and i 6= 1. We also set X`,1,i = X`,i,i. For the
sake of simplicity, in this step, we write X`,1,i = X`,i,i = X`,i, and

#”

Xi = (X1,i, . . . , Xn,i). Concretely, this
means that:

A` =

X`,1 X`,2 X`,3 . . . X`,k

0 X`,2 0 . . . 0

0 0 X`,3
. . .

...
...

. 0
0 0 X`,k

 .

27

Then, we get (easily by induction):

Ps(
#”

A)

=

Ps(
#”

X1) LT(Ps(
#”

X2)) + . . . LT(Ps(
#”

X3)) + LT(Ps(
#”

Xk)) + . . .

0 Ps(
#”

X2) 0 . . . 0

0 0 Ps(
#”

X3)
. . .

...
...

. 0
0 0 Ps(

#”

Xk)

 ,

where LT(Ps(
#”

Xi)) + . . . corresponds to a polynomial with leading term LT(Ps(
#”

Xi)). Thus, we have:

Qs,1,j = Ps(
#”

X1) · Y1,j + (LT(Ps(
#”

X2)) + . . .) · Y2,j + · · ·+
(LT(Ps(

#”

Xk)) + . . .)Yk,j (12)

Let us now suppose by contradiction that R̃ 6= 0. Let Us1,1,j1 · · ·Usk,1,jk be the monomial of R̃, for
which the tuple (sσ(k), . . . , sσ(1)) is the highest for the lexicographic order, where σ is a permutation of
{1, . . . , k} such that sσ(k) ≥ · · · ≥ sσ(1). When R̃ is evaluated on (Qs,i,j)s,i,j this monomial corresponds
to Qs1,1,j1 · · ·Qsk,1,jk . From Equation (12), we get that the latter expression contains the following
monomial:

M = Psσ(1)(
#”

X1) · Y1,jσ(1) · LM(Psσ(2)(
#”

X2)) · Y2,jσ(2) · · ·LM(Psσ(k)(
#”

Xk)) · Yk,jσ(k) .

We just need to prove that this monomial M does not appear in any other polynomial Qs′
1,1,j1 · · ·Qs′

k
,1,jk ,

with (s′σ′(k), . . . , s
′
σ′(1)) lower or equal to (sσ(k), . . . , sσ(1)) for the lexicographic order (we write it

(s′σ′(k), . . . , s
′
σ′(1)) � (sσ(k), . . . , sσ(1))) and Us′

1,1,j′
k
· · ·Us′

k
,1,j′

k
6= Us1,1,j1 · · ·Usk,1,jk , where σ′ is defined

similarly to σ. This will implies that R̃((Qs,i,j)s,i,j) 6= 0 (as it contains the above monomial M which
does not get canceled out by other terms), which is impossible.

Let us suppose that Qs′
1,1,j1 · · ·Qs′

k
,1,jk contains the monomialM , with (s′σ′(k), . . . , s

′
σ′(1)) � (sσ(k), . . . ,

sσ(1)). We first remark that none of the terms in the “left” part of Qs,i,j :

Ps(
#”

X1) · Y1,j + (LT(Ps(
#”

X2)) + . . .) · Y2,j + · · ·+ (LT(Ps(
#”

Xk−1)) + . . .)Yk−1,j

contain monomials multiple of X`,i,j for i ≤ k− 1 (from the definition of the monomial order on R). The
monomial LM(Psσ(k)(

#”

Xk)) · Yk,jσ(k) divides the monomial M and can only come from the “right” part
of one Qs′

r,1,jr , because of Yk−1,j which is only present one time in the monomial M . As in addition,
s′σ′(1) ≤ · · · ≤ s′σ′(k) ≤ sσ(k) (because (s′σ′(k), . . . , s

′
σ′(1)) � (sσ(k), . . . , sσ(1))), we get that sσ′(k) = sσ(k)

and jσ′(k) = jσ(k). We can continue like that by induction and prove that s′σ′(k−1) = sσ(k−1), jσ′(k−1) =
jσ(k−1), . . . , s′σ′(1) = sσ(1), and jσ′(1) = jσ(1). We finally get that Us′

1,1,j′
k
· · ·Us′

k
,1,j′

k
6= Us1,1,j1 · · ·Usk,1,jk .

That was we wanted to prove.
Third, let us conclude by showing all the other cases come down to the first two cases after performing

some permutation. More precisely, let σ be a permutation of {1, . . . , k}. Let Σ ∈ Zk×kp be the corresponding
permutation matrix: Σi,j = 1 if and only if σ(j) = i, and Σi,j = 0 otherwise. We also set:

a′`,i,j = X ′`,i,j = X`,σ(i),σ(j)

b′i,j = Y ′i,j = Y ′σ(i),j

so that:

A′ = Σ−1 ·A · Σ
B′ = Σ−1 ·B

Ps(A) ·B = Σ · Ps(A′) ·B′

Qs,i,j = Qs,σ(i),j((X`,i,j ← X ′`,i,j)`,i,j , (Yi,j ← Y ′i,j)i,j)

Let R′ be the polynomial R where Us,i,j is replaced by Us,σ(i),j . We have:

R((Qs,i,j)) = R((Qs,σ(i),j((X`,i,j ← X ′`,i,j)`,i,j , (Yi,j ← Y ′i,j)i,j))s,i,j)

= R′((Qs,i,j)s,i,j)((X`,i,j ← X ′`,i,j)`,i,j , (Yi,j ← Y ′i,j)i,j).

28

Therefore, as R((Qs,i,j)s,i,j) = 0, we have R′((Qs,i,j)s,i,j) = 0. And it is clear that R = 0 if and only if
R′ = 0.

Let us now show that R contain no monomial M = Us1,i1,j1 · · ·Usk′ ,ik′ ,jk′ , with k′ ≤ k. This will
prove that R = 0. To do that, let us suppose by contradiction that R contains such monomial M . We
consider two cases:

• if k = k′ and i1 = · · · = ik, then choose σ to be an arbitrary permutation such that σ(i1) = 1. We
know that the corresponding polynomial R′ then contains the monomial M ′ = Us1,1,j1 · · ·Usk,k,jk .
But that is impossible according to the second step, as R′((Qs,i,j)s,i,j) = 0.

• otherwise, let k1 = |{p|ip = i1}| be the number of “i” indices equal to i1. We know that k1 < k.
Let k2 = k′ − k1 and let (I1, I2) be a partition of {1, . . . , k} such that |I1| = k1, |I2| = k − k1 ≥ k2,
i1 ∈ I1, and for all ip 6= i1, ip ∈ I2. Such a partition exist because there are only k2 values ip 6= i1.
Then, let σ be an arbitrary permutation such that σ(I1) = {1, . . . , k1} and σ(I2) = {k1 + 1, . . . , k}.
Finally, we remark that the corresponding polynomial R′ contains the monomial

Us1,i′1,j1 · · ·Usk1 ,i
′
k1
,jk1
· Usk1+1,i′k1+1,jk1+1 · · ·Usk1+k2 ,i

′
k1+k2

,jk1+k2
,

such that:

i′1, . . . , i
′
k1
∈ {1, . . . , k1} i′k1+1, . . . , i

′
k1+k2

∈ {k1 + 1, . . . , k},

where i′p = σ(ip). But the first step of our proof show it is impossible.

This concludes the proof.

E.3 Security of Ek,d-MDDH
Similarly to the proof of Theorem 3 of [EHK+13] and the proof for uber assumptions [BBG05, Boy08], to
prove the security of E2,d-MDDH in generic symmetric bilinear groups, we just need to show that there is
no (non-trivial) polynomial relation of degree k between entries of Γ and Z, both when Z = Γ ·W and
when Z = U , with

Γ =

B

A1 ·B
...

Ad ·B

 .

Indeterminates are entries of A1 and B (a1,i,j , bi,j , for i = 1, . . . , k, j = 1, . . . , k), entries of W (wi, for
i = 1, . . . , k), and entries of U (ui,j , for i = 1, . . . , k(d+ 1), j = 1, . . . , k). The polynomial independence
follows from Lemma E.5, with n = 1, q = d+ 1, and Ps = T s−1

1 , for s = 1, . . . , d+ 1.

29

	Introduction
	Definitions
	Polynomial Linear Pseudorandomness Security
	Intuition
	Formal Security Notion and Theorem

	Applications
	Aggregate Pseudorandom Functions
	Multilinear Pseudorandom Functions

	Supplementary Definitions
	Standard Assumptions.
	Random Self-Reducibility of E k,d-MDDH and (E k,d,N)-MDDH

	Multivariate Polynomial Representation
	Multivariate Polynomial Representation in Polynomial Linear Pseudorandomness Security
	Decomposition Lemmas

	Proof of the PLP Theorem
	Proofs of Lemmas in Section 4
	Proof of Lemma 4.1
	Proof of Lemma 4.2
	Proof of Lemma 4.3

	Proof of Security of E k,d-MDDH
	Definitions: Monomial Order and Leading Commutative Monomials
	Main Lemma
	Security of E k,d-MDDH

