
Feistel Networks: Indifferentiability at 10 Rounds

Yuanxi Dai and John Steinberger

shusdtc@gmail.com, jpsteinb@gmail.com

Abstract. We prove that a (balanced) 10-round Feistel network is indifferentiable from a random
permutation. In a previous seminal result, Holenstein et al. [17] had established indifferentiability of
Feistel at 14 rounds. Our simulator achieves security O(q8/2n) and query complexity O(q4), where n
is half the block length, similarly to the 14-round simulator of [17], so that our result is a strict (and
also the first) improvement of [17].

Our simulator is very similar to a 10-round simulator of Seurin [29] that was subsequently found
to be flawed [17,30]. Indeed, the main change of our simulator is to switch to “FIFO” path completion
from “LIFO” path completion. This relatively minor change results in an overall significant paradigm
shift, including a conceptually simpler proof.

1 Introduction

For many cryptographic protocols the only known analyses are in a so-called ideal primitive model.
In such a model, a cryptographic component is replaced by an idealized information-theoretic
counterpart (e.g., a random oracle takes the part of a hash function, or an ideal cipher substitutes
for a concrete blockcipher such as AES) and security bounds are given as functions of the query
complexity of an information-theoretic adversary with oracle access to the idealized primitive. Early
uses of such ideal models include Winternitz [33], Fiat and Shamir [16] (see proof in [26]) and Bellare
and Rogaway [2], with such analyzes rapidly proliferating after the latter paper.

Given the popularity of such analyses a natural question that arises is to determine the relative
“power” of different classes of primitives and, more precisely, whether one class of primitives can
be used to “implement” another. E.g., is a random function always sufficient to implement of an
ideal cipher, in security games where oracle access to the ideal cipher/random function is granted
to all parties? The challenge of such a question is partly definitional, since the different primitives
have syntactically distinct interfaces. (Indeed, it seems that it was not immediately obvious to
researchers that such a question made sense at all [7].)

A sensible definitional framework, however, was proposed by Maurer et al. [21], who introduce
a simulation-based notion of indifferentiability. This framework allows to meaningfully discuss the
instantiation of one ideal primitive by a syntactically different primitive, and to compose such
results. (Similar simulation-based definitions appear in [4, 5, 24, 25].) Coron et al. [7] are early
adopters of the framework, and give additional insights.

Informally, given ideal primitives P and Q, a construction CQ (where C is some stateless al-
gorithm making queries to Q) is indifferentiable from P if there exists a simulator S (a stateful,
randomized algorithm) with oracle access to P such that the pair (CQ, Q) is statistically indis-
tinguishable from the pair (P, SP ). Fig. 1 (which is adapted from a similar figure in [7]) briefly
illustrates the rationale for this definition. The more efficient the simulator, the lower its query
complexity, and the better the statistical indistinguishability, the more practically meaningful the
result.

For example, Coron et al. [7] already showed that random oracles can be instantiated from
ideal ciphers in this sense, using constructions that are similar to the Merkle-D̊amgard iteration of
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Fig. 1. The cliff notes of indifferentiability, after [7]: (left) adversary A interacts in a game with protocol π in which π
calls a construction C that calls an ideal primitive P and in which A calls P directly; (middle) by indifferentiability,
the pair (CP ,P) can be replaced with the pair (Z, SZ ), where Z is an ideal primitive matching C’s syntax, without
significantly affecting A’s probability of success; (right) folding S into A gives a new adversary A′ for a modified
security game in which the “real world” construction CP has been replaced by the “ideal world” functionality Z.
Hence, a lack of attacks in the ideal world implies a lack of attacks in the real world.

a blockcipher in Davies-Meyer mode. Naturally, one would also like to consider the reverse direction,
i.e., the implementation of an ideal cipher from a random function. This direction has revealed itself
to be more challenging.

The natural candidate for a construction (and echoing the construction of pseudorandom per-
mutations from pseudorandom functions by Luby and Rackoff [20]) is a (balanced, keyed) Feis-
tel network. (Since all our Feistel networks are going to be balanced, we will subsequently drop
this qualifier.) An unkeyed Feistel network is shown in Fig. 2. If each wire carries n bits, then
the network implements a 2n-bit to 2n-bit permutation for any choice of the round functions
Fi : {0, 1}n → {0, 1}n. “Keyeing” the network means extending the domain of each Fi from n
bits to n + κ bits, where κ is the length of the key; if the Fi’s are random, one then recovers 2κ

independent (though not necessarily “random”) permutations from 2n to 2n bits, i.e., one recovers
a blockcipher of key length κ and of word length 2n in which each key behaves independently from
every other key.

Due to the trick of domain extension just mentioned, it suffices1 to show that an unkeyed r-
round Feistel network with random round functions is indifferentiable from a random permutation
in order to implement a blockcipher from a random function. (The r independent round functions
from n bits to n bits can be implemented from a single random function with slightly larger domain.)
Consequently, much work has focused on the previous question.

The first paper directly in this line [9] shows that an r-round Feistel network cannot be in-
differentiable from a random permutation for r ≤ 5. The same paper also gives a proof that
indifferentiability is achieved at r = 6. The second result, however, was found to have a serious
flaw by Holenstein et al. [17], and who could indeed not repair the simulator at six rounds; instead,
Holenstein et al. could only show that a 14-round Feistel network is indifferentiable from a random

1 A fact that authors tend to gloss over, however, is that there is an additional security loss—specifically, a factor q
where q is the number of distinguisher queries—in going from the unkeyed to the keyed setting. Moreover this loss
seems intrinsic: consider the case of a family of functions F1, . . . , Fr : {0, 1}n+κ → {0, 1}n for which there exists a
(random) subset T ⊆ {0, 1}κ of size 2κ/1000 such that for all k ∈ T , the functions F1(·, k), . . . , Fr(·, k) : {0, 1}

n →
{0, 1}n are identically zero, while for all k /∈ T , the same functions are uniformly random and independent.
Then if r ≥ 10 (by the current paper’s result), the r-round Feistel network permutation induced by selecting and
fixing a random key is indifferentiable from a random permutation with high probability (specifically, probability
999/1000), while the keyed construction can be trivially differentiated from an ideal cipher in about 1000 queries.
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permutation. Holenstein et al. also found a flaw in the proof of indifferentiability for a 10-round
simulator of Seurin [29] (a simplified alternative to the 6-round simulator of [9]) and Seurin himself
subsequently found a clever attack against his own simulator, thus showing that the proof could
not be patched [30]. On the other hand, it should be noted that the 14-round simulator of Holen-
stein et al. follows design principles that are very similar to Seurin’s 10-round simulator; indeed,
the 14-round simulator essentially consists of Seurin’s 10-round simulator with four extra “buffer
rounds” flanking the simulator’s two “adapt zones”.

Our purpose in this work is to recommence the “downward journey” in the number of rounds
of Feistel that are known to be sufficient to achieve indifferentiability from a random permutation.
Specifically, we show that 10 rounds suffice, while achieving basically the same security and query
complexity as the 14-round simulator of Holenstein et al.2 Our simulator is also closely based
on Seurin’s 10-round simulator, with the minor (but technically significant) difference that our
simulator completes paths in LIFO fashion rather than in FIFO fashion: the last path detected
is given priority for completion over paths that are already under completion. In particular, this
change happens to circumvent Seurin’s 10-round attack.

We note that the change from FIFO to LIFO path completion has deep structural repercussions
for our proof, which ends up looking quite different from the indifferentiability proof of Holenstein
et al. [17]. In our case, in particular, the concurrent completion of several paths unfolds in a highly
structured manner that makes it easy to maintain a complete picture of the state of partially
completed paths at any point in time. The soundness of our simulator ends up being quite a bit
more intuitive than the simulator of [17].

Concurrent Work. Katz et al. [18] have also announced a 10-round indifferentiability result;
the two teams have been in communication in order to coordinate the release of results, but as of
going to print neither team has seen the technical details of the other’s work.

We also expect the techniques of this paper to yield further improvements in security and round
complexity for Feistel simulators. This is ongoing work.

Other Related Work. Even before [9] Dodis and Puniya [10] investigated the indifferentiability
of Feistel networks in the so-called honest-but-curious model, which is incomparable to the standard
notion of indifferentiability. They found that in this case, a super-logarithmic number of rounds is
sufficient to achieve indifferentiability. Moreover, [9] later showed that super-logarithmically many
rounds are also necessary.

Besides Feistel networks, the indifferentiability of many other types of constructions (and par-
ticularly hash functions and compression functions) have been investigated. More specifically on the
blockcipher side, however, [1] and [19] investigate the indifferentiability of key-alternating ciphers
(with and without an idealized key scheduler, respectively). In a recent eprint note, Dodis et al. [11]
investigate the indifferentiability of substitution-permutation networks, treating the S-boxes as in-
dependent idealized permutations; as we will mention later, our simulator is also partly inspired by
theirs.

It should be noted that indifferentiability does not apply to a cryptographic game for which the
adversary is stipulated to come from a special class that does not contain the computational class
to which the simulator belongs (the latter class being typically “probabilistic polynomial-time”).

2 Our query complexity is in fact quadratically lower, but this is because we apply an easy optimization (taken
from [11]) that could equally well be applied to the simulator from [17].

3



This limitation was first noted by Ristenpart et al. [27], who moreover give a interesting example
where indifferentiability serves no use.

Finally, Feistel networks have been the subject of a very large body of work in the secret-key
(or “indistinguishability”) setting, such as in [20,22,23,28] and the references therein.

Paper Organization. In Section 2 we give the few definitions necessary concerning Feistel net-
works and indifferentiability, and we also state our main result.

In Section 3 we give an intuitive overview of our simulator, focusing on high-level design prin-
ciples. A more technical description of the simulator (starting from scratch, and also establishing
some of the terminology used in the proof) is given in Section 4. Section 5 contains the proof itself,
starting with a short overview of the proof.

2 Definitions and Main Result

Feistel Networks. Let r ≥ 0 and let F1, . . . , Fr : {0, 1}
n → {0, 1}n. Given values x0, x1 ∈ {0, 1}

n

we define values x2, . . . , xr+1 by
xi+1 = Fi(xi)⊕ xi−1

for 1 ≤ i ≤ r. It is easy to see that the application

(x0, x1)→ (xr, xr+1)

is a permutation, since xi−1 can be computed from xi and xi+1 for 1 ≤ i ≤ r − 1. We denote the
resulting permutation of {0, 1}2n as

Ψ [F1, . . . , Fr].

We say that Ψ is an r-round Feistel network and that Fi is the i-th round function.
In this paper, whenever a permutation is given as an oracle, our meaning is that both forward

and inverse queries can be made to the permutation. This implies in particular to Feistel networks.

Indifferentiability. A construction is a stateless deterministic algorithm that evaluates by mak-
ing calls to an external set of primitives. The latter are functions that conform to a syntax that
is specified by the construction. For example, Ψ [F1, . . . , Fr] can be seen as a construction with
primitives F1, . . . , Fr. In the general case we notate a construction C with oracle access to a set of
primitives P as CP .

A primitive is ideal if it is drawn uniformly at random from the set of all functions meeting the
specified syntax. A random function F : {0, 1}n → {0, 1}n is a particular case of an ideal primitive.
Such a function is drawn uniformly at random from the set of all functions of domain {0, 1}n and
of range {0, 1}n.

A simulator is a stateful randomized algorithm that receives and answer queries, possibly being
given oracles of its own. We assume that a simulator is initialized to some default state (which
constitutes part of the simulator’s description) at the start of each experiment. A simulator S with
oracle(s) Z is notated as SZ .

A distinguisher is an algorithm that initiates a query-response session with a set of oracles, that
has a limited total number of queries, and that outputs 0 or 1 when the query-response session
is over. In our case distinguishers are information-theoretic; this implies, in particular, that the
distinguisher can “know by heart” the (adaptive) sequence of questions that will maximize its dis-
tinguishing advantage. In particular, one may assume without loss of generality that a distinguisher
is deterministic.
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Indifferentability seeks to determine when a construction CP , where P is a set of ideal primitives,
is “as good as” an ideal primitive Z that has the same syntax (interface) as CP . In brief, there
must exist a simulator S such that having oracle access to the pair (CP ,P) (often referred to as
the “real world”) is indistinguishable from the pair (Z, SZ) (often referred to as the “simulated
world”).

In more detail we refer to the following definition, which is due to Maurer et al. [21].

Definition 1. A construction C with access to a set of ideal primitives P is (tS , qS , ε)-indifferentiable
from an ideal primitive Z if there exists a simulator S = S(q) such that

Pr
[

DCP ,P = 1
]

− Pr
[

DZ,SZ

= 1
]

≤ ε

for every distinguisher D making at most q queries in total, and such that S runs in total time tS
and makes at most qS queries to Z. Here tS, qS and ε are functions of q, and the probabilities are
taken over the randomness in P, Z, S and (if any) in D.

As indicated, we allow S to depend on q.3 The notation

DCP ,P

indicates that D has oracle access to CP as well as to each of the primitives in the set P. We also
note that the oracle

SZ

offers one interface for D to query for each of the primitives in P; however the simulator S is
“monolithic” and treats each of these queries with knowledge of the others.

Thus, S’s job is to make Z look like CP by inventing appropriate answers for D’s queries to the
primitives in P. In order to do this, S requires oracle access to Z. On the other hand, S doesn’t
know which queries D is making to Z.

Informally, CP is indifferentiable from Z if it is (tS , qS, ε)-indifferentiable for “reasonable” values
of tS , qS and for ε negligibly small in the security parameter n. The value qS in Definition 1 is
called the query complexity of the simulator.

In our setting C will be the 10-round Feistel network and P will be the set {F1, . . . , F10} of
round functions, with each round function being an independent random function. Consequently,
Z (matching CP ’s syntax) will be a random permutation from {0, 1}2n to {0, 1}2n, queriable (like
CP) in both directions; this random permutation is notated P in the body of the proof.

Main Result. The following theorem is our main result. In this theorem, Ψ plays the role of the
construction C, while {F1, . . . , F10} (where each Fi is an independent random function) plays the
role of P, the set of ideal primitives called by C.

Theorem 1. The Feistel network Ψ [F1, . . . , F10] is (tS , qS , ε)-indifferentiable from a random 2n-bit
to 2n-bit permutation with tS = O(q10), qS = 16q4 and ε = 6191360q8/2n. Moreover, these bounds
hold even if the distinguisher is allowed to make q queries to each of its 11 (= 10 + 1) oracles.

3 This introduces a small amount of non-uniformity into the simulator, but which seems not to matter in practice.
While in our case the dependence of S on q is made mainly for the sake of simplicity and could as well be
avoided (with a more convoluted proof and a simulator that runs efficiently only with high probability), we note,
interestingly, that there is one indifferentiabiliy result that we are aware of—namely that of [13]—for which the
simulator crucially needs to know the number of distinguisher queries in advance.
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The simulator that we use to establish Theorem 1 is described in the two next sections. The three
seperate bounds that make up Theorem 1 (for tS, qS and ε) are found in Theorems 33, 31 and 83
of sections 5.1, 5.1 and 5.7 respectively.

Miscellaneous Notations. Our pseudocode uses standard conventions from object-oriented
programming, including consutrctors and dot notation ‘.’ for field accesses. (Our objects, however,
have no methods save constructors.)

We write [k] for the set {1, . . . , k}, k ∈ N.

The symbol ⊥ denotes an unitialized or null value (and can be taken to be synonymous with
a programming language’s null value, though we reserve the latter for uninitialized object fields).
If T is a table, moreover, we write x ∈ T to mean that T (x) 6= ⊥. Correspondingly, x /∈ T means
T (x) = ⊥.

3 High-Level Simulator Overview

In this section we try to convey the “design philosophy” of our simulator which, like [17], is a
modification of a 10-round simulator by Seurin [29].

Round Function Tables. We recall that the simulator is responsible for 10 interfaces, i.e., one
for each of the rounds functions. These interfaces are available to the adversary through a single
function, named

F

in our pseudocode (see Fig. 3 and onwards), and which takes two inputs: an integer i ∈ [10] and an
input x ∈ {0, 1}n.

Correspondingly to these 10 interfaces, the simulator maintains 10 tables, notated F1, . . . , F10,
whose fields are initialized to ⊥: initially, Fi(x) = ⊥ for all x ∈ {0, 1}n, all i ∈ [10]. (Hence we note
that Fi is no longer the name of a round function, but the name of a table, which should not cause
confusion. The i-th round function is now F(i, ·).) The table Fi encodes “what the simulator has
decided so far” about the i-th round function. For instance, if Fi(x) = y 6= ⊥, then any subsequent
distinguisher query of the form F(i, x) will return y. Moreover, entries in the tables F1, . . . , F10 are
never overwritten once they have been set to non-⊥ values.

The 2n-bit Random Permutation. Additionally, the distinguisher and the simulator both have
oracle access to a random permutation on 2n bits, notated

P

in our pseudocode (see Fig. 6), and which plays the role of the ideal primitive Z in Definition 1.
Thus P accepts an input of the form (x0, x1) ∈ {0, 1}

n×{0, 1}n and produces an output (x10, x11) ∈
{0, 1}n × {0, 1}n. P’s inverse P−1 is also available as an oracle to both the distinguisher and the
simulator.

Distinguisher Intuition and Completed Paths. One can think of the distinguisher as check-
ing the consistency of the oracles F(1, ·), . . ., F(10, ·) with P/P−1. For instance, the distinguisher
could choose random values x0, x1 ∈ {0, 1}

n, construct the values x2, . . . , x11 by setting

xi+1 ← F(i, xi)
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for i = 1, . . . , 10, and finally check if (x10, x11) = P(x0, x1). (In the real world, this will always be
the case; if the simulator is doing its job, it should also be the case in the simulated world.) In this
case we also say that the values

x1, . . . , x10

queried by the distinguisher form a completed path. (The definition of a “completed path” will
be made much more precise in the next section. The terminology that we use in this section is
hand-wavy through and through.)

Moreover, the distinguisher need not complete paths in left-to-right fashion: it might choose,
e.g., values x4 and x5 at random, and build a completed path outwards from those positions (“going
left” for x3, x2 and x1, “going right” for x6, . . . , x10). Or it might, say, choose random values x0,
x1, make the query

(x10, x11)← P(x0, x1)

and then complete from both ends at once (making some queries on the left starting from x0, x1,
and some queries on the right starting from x10, x11). Other possibilities can be imagined as well.
Moreover, the distinguisher may reuse the same queries for several different paths.

To summarize, and for the purpose of intuition, one can picture the distinguisher as trying to
complete all sorts of paths in a convoluted fashion in order to confuse and/or “trap” the simulator
in a contradiction.

The Simulator’s Dilemna. Clearly a simulator must to some extent detect which chains a
distinguisher is trying to complete, and “adapt” the values along chains such as to be compatible
with P. Concerning the latter, one can observe that a pair of missing consecutive queries is sufficient
to adapt the two ends of a chain to one another; thus if, say,

x1, x2, x5, x6, x7, x8, x9, x10

are values such that

Fi(xi) 6= ⊥

for all i ∈ {1, 2, 5, 6, 7, 8, 9, 10}, and such that

xi+1 = F (xi)⊕ xi−1

for i ∈ {6, 7, 8, 9}, and such that

P(x0, x1) = (x10, x11)

where x0 := F (x1)⊕ x2, x11 := x9 ⊕ F10(x10), and such that

F (x3) = F (x4) = ⊥

where x3 := x1 ⊕ F2(x2), x4 := F (x5)⊕ x6, then by making the assignments

F3(x3)← x2 ⊕ x4 (1)

F4(x4)← x3 ⊕ x5 (2)

the simulator turns x1, . . . , x10 into a completed path that is compatible with P. In such a case, we
say that the simulator adapts a path. The values F3(x3) and F4(x4) are also said to be adapted.
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In general, however, if the simulator always waits until the last minute (e.g., until only two
adjacent undefined queries are left) before adapting a path, it can become caught in an over-
constrained situation whereby several different paths request different adapted values at the same
position. Hence, it is usual for simulators give themselves a “safety margin” and to pre-emptively
complete paths some time in advance. When pre-emptively completing a path, typical simulators
sample all but two values along the path randomly, while “adapting” the last two spvalues as above.

Here it should be emphasized that our simulator, like previous simulators [9, 17, 29], makes no
distinction between a non-null value Fi(xi) that is non-null because the distinguisher has made the
query F(i, xi) or that is non-null because the simulator has set the value Fi(xi) during a pre-emptive
path completion. (Such a distinction seems tricky to leverage, particularly since the distinguisher
can know a value Fi(xi) without making the query F(i, xi), simply by knowing adjacent values and
by knowing how the simulator operates.) Moreover, the simulator routinely calls its own interface

F(·, ·)

during the process of path completion, and it should be noted that our simulator, again like previous
simulators, makes no difference between distinguisher calls to F and its own calls to F.

One of the basic dilemnas, then, is to decide at which point it is worth it to complete a path;
if the simulator waits too long, it is prone to finding itself in an over-constrained situation; if it is
too trigger-happy, on the other hand, it runs the danger of creating out-of-control chain reactions
of path completions, whereby the process of completing a path sets off another path, and so on.
We refer to the latter problem (that is, avoiding out-of-control chain reactions) as the problem of
simulator termination.

Seurin’s 10-Round Simulator. Our starting point is a 10-round simulator of Seurin [29], which
nicely handles the problem of simulator termination.

F1

x0

x1

F2

x2

F3

x3

F4

x4

F5

x5

F6

x6

F7

x7

F8

x8

F9

x9

F10

x10

x11

detectadapt adaptdetect detect

Fig. 2. A sketch of our 10-round simulator (and also Seurin’s). Rounds 5 and 6 form one detect zone; rounds 1, 2, 9
and 10 form another detect zone; rounds 3 and 4 constitute the left adapt zone, 7 and 8 constitute the right adapt
zone; blue arrows point from the position where a path is detected to the adapt zone for that path.

In a nutshell, Seurin’s simulator completes a path for every pair of values (x5, x6) such that
F5(x5) and F6(x6) are defined, as well as for every 4-tuple of values

x1, x2, x9, x10

such that
F1(x1), F2(x2), F9(x9), F10(x10)
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are all defined, and such that
P(x0, x1) = (x10, x11)

where x0 := F (x1)⊕ x2, x11 := x9 ⊕ F10(x10). Paths are adapted either at positions 3, 4 or else at
positions 7, 8. (See Fig. 2.)

In a little more detail, a function call F(5, x5) for which F5(x5) = ⊥ triggers a path completion
for every value x6 such that F6(x6) 6= ⊥; such paths are adapted at positions 3 and 4. Symmetrically,
a function call F(6, x6) for which F6(x6) = ⊥ triggers a path completion for every value x5 such that
F5(x5) 6= ⊥; such paths are adapted at positions 7 and 8. For the second type of path completion,
a call F(2, x2) such that F2(x2) = ⊥ triggers a path completion for every tuple of values x1, x9, x10
such that F1(x1), F9(x9) and F10(x10) are defined, and such that the constraints listed above are
satisfied (verifying these constraints thus requires a call to P or P−1); such paths are adapted at
positions 3, 4. Paths that are symmetrically triggered by a query F(9, x9) are adapted at positions 7,
8. Function calls to F(2, ·), F(5, ·), F(6, ·) and F(9, ·) are the only ones to trigger path completions.
(Indeed, one can easily convince oneself that sampling a new value F1(x1) or F10(x10) can only
trigger the second type of path completion with negligibly low probability; hence, this possibility
is entirely ignored by the simulator.) To summarize, in all cases the completed path is adapted at
positions that are immediately next to the query that triggers the path completion.

To more precisely visualize the process of path completion, imagine that a query

F(2, x2)

has just triggered the second type of path completion, for some corresponding values x1, x9 and
x10; then Seurin’s simulator (which would immediately lazy sample the value F2(x2) even before
checking if this query triggers any path completions) would (a) make the queries

F(8, x8), . . . ,F(6, x6),F(5, x5)

to itself in that order, where xi−1 := Fi(xi)⊕ xi+1 = F(i, xi)⊕ xi+1 for i = 9, . . . , 6, and (b) adapt
the values F3(x3), F4(x4) as in (1), (2) where x3 := x1 ⊕ F2(x2), x4 := F5(x5) ⊕ x6. In general,
some subset of the table entries

F8(x8), . . . , F5(x5)

(and more exactly, a prefix of this sequence) may be defined even before the queries F(8, x8),
. . . ,F(5, x5) are made. The crucial fact to argue, however, is that F3(x3) = F4(x4) = ⊥ right before
these table entries are adapted. Other types of path completions are carried out analogously; for
example, if F6(x6) = ⊥ when the query

F(6, x6)

is made, then this query F(6, x6) will trigger another path completion for every value x∗5 such that
F5(x

∗
5) 6= ⊥ at the moment when the query F(6, x6) occurs; and such a path completion proceeds

by making (possibly redundant) queries

F(4, x∗4), . . . ,F(1, x
∗
1),F(10, x

∗
10),F(9, x

∗
9)

for values x∗4, . . . , x
∗
1, x

∗
0, x

∗
11, x

∗
10, x

∗
9 that are computed in the obvious way (with a query to P to

go from (x∗0, x
∗
1) to (x∗10, x

∗
11), where x

∗
0 := F1(x

∗
1)⊕ x∗2), before adapting the path at positions 7, 8.

The crucial fact to argue is (again) that F7(x
∗
7) = F8(x

∗
8) = ⊥ when it comes time to adapt these

table values, where x∗8 := F10(x
∗
10)⊕ x∗11, x

∗
7 := x∗5 ⊕ F6(x6).
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In Seurin’s simulator, moreover, paths are completed on a first-come-first-serve (or FIFO4)
basis: while paths are “detected” immediately when the query that triggers the path completion
is made, this information is shelved for later, and the actual path completion only occurs after all
previously detected paths have been completed. The imbroglio of semi-completed paths is rather
difficult to keep track of, however, and indeed Seurin’s simulator was later found to suffer from a
real “bug” related to the simultaneous completion of multiple paths [17,30].

Changes to Seurin’s Simulator. For the following discussion, we will say that the table entries
F2(x2), F5(x5) constitute the endpoints of a completed path x1, . . . , x10 that is adapted at posi-
tions 3, 4; likewise, the table entries F6(x6), F9(x9) constitute the endpoints of a completed path
x1, . . . , x10 that is adapted at positions 7, 8. Hence, the endpoints are the two table entries that
“flank” the adapted entries. Succinctly, our simulator’s philosophy is to not sample the endpoints
of a completed path until right before the path is about to be adapted or (even more succinctly!) to
sample randomness at the moment it is needed. This essentially results in two main differences for
our simulator, which are (i) changing the order in which paths are completed and (ii) doing “batch
adaptions” of paths, i.e., adapting several paths at once, for paths that happen to share endpoints.

To illustrate the first point, return to the above example of a query

F(2, x2)

that triggers a path completion of the second type with respect to some values x1, x9, x10. Then
by definition

F2(x2) = ⊥

at the moment when the call F(2, x2) is made. Instead of immediately lazy sampling F2(x2), as in
the original simulator, we will keep this value “pending” (the technical term that we use in the
proof is “pending query”) until the path is ready to be adapted. (Technically, “ready to be adapted”
means, for a path that is adapted in positions 3 and 4, that both of the values x2 and x5 are known;
for a path adapted in positions 7 and 8, that both of the values x6, x9 are known.) Moreover, and
keeping the notations from the previous example, note that the query

F(6, x6)

will itself become a “pending query” at position 6 as long as there is at least one value x∗5 such that
F5(x

∗
5) 6= ⊥, since in such a case x6 is the endpoint of a path-to-be-completed (namely, the path

which we notated as x∗1, . . . , x
∗
5, x6, x

∗
7, . . . , x

∗
10 above), and, according to our policy, this endpoint

must be kept unsampled until the corresponding path is ready to be adapted. In particular, the
value x5 = F6(x6) ⊕ x7 from the “original” path cannot be computed until the “secondary” path
containing x∗5 and x6 has been completed (or even more: until all secondary paths triggered by the
query F(6, x6) have been completed). In other words, the query F(6, x6) “holds up” the completion
of the first path. In practical terms, paths that are detected during the completion of another
path take precedence over the original path, so that path completion becomes a LIFO process. (Of
course, one must show that cyclic dependencies don’t arise except with negligible probability; this
is done in the proof.)

Next, to describe the “batch adaption” of paths, say (for now) that a table entry

Fj(xj)

4 FIFO: First-In-First-Out. LIFO: Last-In-First-Out.
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for j ∈ {2, 5, 6, 9} is a pending query if Fj(xj) = ⊥ and the call F(j, xj) has been made and has
triggered at least one path completion. Moreover, say that two pending queries are linked if they
are the two endpoints of the same yet-to-be-completed path (in which case we say that the path is
“ready to be adapted”, as described above). Moreover a pending query Fj(xj) is stable if it does
not currently5 trigger a path completion. (Paths that are already ready to be adapted do not count
as potential triggers.)

Pending queries can be represented by a graph, with a node for each pending query and an
edge for each linked pair of pending queries. Thus, each edge corresponds to a path that is ready
to be adapted and vice-versa. If we say that a vertex corresponding to pending query Fj(xj) is in
“shore j”, then edges only exist between vertices in shores 2 and 5 on the one hand and between
vertices in shores 6 and 9 on the other hand. Moreover, one can show that, with high probability,
each connected component is a tree. We say that a tree is stable if all its nodes are stable.

To picture the evolution of this graph over time, when the distinguisher initially makes a query
F(j, xj) the graph is empty, because there are no pending queries. If j /∈ {2, 5, 6, 9} then the
simulator lazy samples the value Fj(xj) if does not already exist, and simply returns Fj(xj) to
the distinguisher. Otherwise, right after the query is made, the graph contains at most one node,
namely the pending query Fj(xj), which has triggered one or more path completions if the graph
is nonempty. From there, the simulator “grows”6 a tree containing this node; the tree spans shores
2, 5 if j ∈ {2, 5} and spans shores 6, 9 if j ∈ {6, 9}. At any point the growth of a tree spanning
shores 2, 5 may be interrupted by the apparition of a tree spanning shores 6 and 9, and vice-versa.
Hence a “stack of trees” (alternating between trees of shore 2, 5 and trees of shore 6, 9) is created,
where only the last (topmost) tree on the stack is being grown at any time. The topmost tree is also
the only tree that potentially becomes stable, with trees lower down in the stack being unstable by
virtue of still being under construction. The proof also shows that new trees do not “collide” with
older trees as they grow.

If and when the topmost tree on the stack becomes stable, the simulator adapts the paths
corresponding to edges in this tree all at once. This happens in two stages: first the simulator lazy
samples the values of all pending queries (a.k.a. nodes) in the tree; then, for each path (a.k.a. edge)
the simulator adapts last two queries on the path as in (1), (2) (or using the analogous equations
for F7, F8). This two-step process is what we refer to as “batch adaptation”. After the tree has
been adapted, it disappears and the simulator resumes work on the next topmost tree in the stack.

Structural vs. Conceptual Changes. Of the two main changes to Seurin’s simulator just
described it should be noted that the first (i.e., LIFO path completion) is crucial to the correctness
of our simulator, whereas the second (i.e., batch adaptations) is only a conceptual convenience, not
necessary for correctness. Indeed, one way or another every non-null value

Fj(xj)

for j /∈ {3, 4, 7, 8} ends up being randomly and independently sampled in our simulator, as well as
in Seurin’s; so one might as well load a random value into Fj(xj) as soon as the query F(j, xj) is

5 Here “currently” emphasizes that the query does not trigger a path completion with respect to the current contents

of the tables {Fi}
10
i=1 as opposed to with respect to the “old” contents of the same tables at the point in time when

the query F(j, xj) was originally made.
6 If this seems nebulous, consider that a distinguisher can make, for example, an arbitrary set of queries to the
functions F(1, ·), F(6, ·), F(7, ·), . . . ,F(10, ·) without triggering any path completions. Then a query to F(2, ·) or
to F(5, ·) may cause a large chain reaction of path completions.
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made, as in Seurin’s original simulator. This approach ends up being correct, but is conceptually
less convenient, since the “freshness” of the random value Fj(xj) is harder to argue when that
randomness is needed (e.g., to argue that adapted queries do not collide, etc). In fact, our simulator
is an interesting case where the search for a syntactically convenient usage of randomness naturally
leads to structural changes that turn out to be critical for correctness.

We also point out that the idea of batch adaptations already appears explicitly in the simulator
of [11], and which indeed formed part of the inspiration for our own work. In [11], however, batch
adaptations are purely made for conceptual convenience.

Finally, readers seeking even more concrete insights can consult Seurin’s attack against his own
10-round simulator [30] and check this attack fails when the simulator is switched to LIFO path
completion.

The Termination Argument. For completeness, we also briefly reproduce Seurin’s (by now
classic) termination argument.

The basic idea is that each path of the second type—that is, paths detected at position 2 or
9—is associated to a previously existing P-query, and one can show that this P-query is, with high
probability, first made by the distinguisher. Since the distinguisher only has q queries total, this
already implies that the number of path completions of the second type is at most q.

Secondly, path completions of the first type do not actually add any entries to either of the
tables F5 or F6. Hence, only two mechanisms add entries to the tables F5 and F6: queries directly
made by the distinguisher and path completions of the second type. Each of these accounts for at
most q table entries, so that the tables F5, F6 do not exceed size 2q. This implies that the number
of path completions of the first type is at most (2q)2 and the total number of all path completions
is at most 4q2 + q.

4 Technical Simulator Overview and Pseudocode Description

In this section we “reboot” the simulator description, with a view to the proof of Theorem 1. A
number of terms introduced informally in Section 3 are given precise definitions here. As already
admonished, indeed, the provisory definitions and terminology of Section 3 should not be taken
seriously as far as the main proof is concerned.

The pseudocode describing our simulator is given in Figs. 3–5, and more specifically by the
pseudocode for game G1, which is the simulated world. In Fig. 3, in particular, one finds the
function F (to be called with an argument (i, x) ∈ [10] × {0, 1}n), which is the simulator’s only
interface to the distinguisher. The random permutation P and its inverse P−1—which are the other
interfaces available to the distinguisher—can be found on the left-hand side of Fig. 6, which is also
part of game G1.

Our pseudocode uses explicit random tapes, similarly to [17]. On the one hand there are tapes
f1, ..., f10 where fi is a table of 2n random n-bit values for each 1 ≤ i ≤ 10, i.e., fi(x) is a uniform
independent random n-bit value for each 1 ≤ i ≤ 10 and each x ∈ {0, 1}n. Moreover there is a tape
p : {0, 1}2n → {0, 1}2n that implements a random permutation from 2n bits to 2n bits. The inverse
of p is accessible via p−1. The only procedures to access p and p−1 are P and P−1.

As described in the previous section, the simulator maitains a table Fi : {0, 1}
n → {0, 1}n for

the i-th round function, 1 ≤ i ≤ 10. Initially, Fi(x) = ⊥ for all 1 ≤ i ≤ 10 and all x ∈ {0, 1}n. The
simulator fills the tables Fi progressively, and never overwrites a value Fi(x) such that Fi(x) 6= ⊥.
If a call to F(i, x) occurs and Fi(x) 6= ⊥, the call simply returns Fi(x).

12



The permutation oracle P/P−1 also maintains a pair of private tables T/T−1 that encode a
subset of the random tapes p/p−1. We refer to Fig. 6 for details (briefly, however, the tables T/T−1

remember the values on which P/P−1 have already been called). These tables serve no tangible
purpose in G1, where P/P−1 implement black-box two-way access to a random permutation, but
they serve a role subsequent games, and they appear in some of the definitions below.

If a call F(i, x) occurs and Fi(x) = ⊥ and i /∈ {2, 5, 6, 9}, the simulator sets Fi(x) ← fi(x) and
returns this value. Otherwise, if i ∈ {2, 5, 6, 9} and if Fi(x) = ⊥, the pair (i, x) becomes a “pending
query”, as formally defined below.

In certain situations, and following [1], our simulator explicitly aborts (‘abort’). In such cases
the distinguisher is notified of the abort and the game ends.

In order to describe the operation of the simulator in further detail we introduce some more
terminology.

A query cycle is the portion of simulator execution from the moment the distinguisher makes a
query to F(·, ·) until the moment the simulator either returns a value to the distinguisher or aborts.
A query cycle is non-aborted if the simulator does not abort during that query cycle.

A query is a pair (i, x) ∈ [10]× {0, 1}n. The value i is the position of the query.
A query (i, x) is defined if Fi(x) 6= ⊥. Like many other predicates defined below, this is a

time-dependent property.
Our simulator’s central data type is a Node. (See Fig. 3.) Nodes are arranged into trees. A

node n is the root of its tree if and only if n.parent = null. Node b is the child of node a if and
only if b ∈ a.children and if and only if b.parent = a. Each tree has a root.

Typically, several disjoint trees will coexist during a given query cycle. Distinct trees are never
brought to merge. Moreover, new tree nodes are only added beneath existing nodes, as opposed to
above the root. (Thus the first node of a tree to be created is the root, and this node remains the
root as long as the tree exists.) Nodes are never deleted from trees, either. However, a tree is “lost”
once the last reference to the root pops off the execution stack, at which point we say that the
tree and its nodes have been discarded. Instead of garbage collecting discarded nodes, however, we
assume that such nodes remain in memory somewhere, for convenience of description within the
proof. Thus, once a node is created it is not destroyed, and we may refer to the node and its fields
even while the node has no more purpose for the simulator.

Besides the parent/child fields, a node contains a beginning and an end, that are both queries,
possibly null, i.e., beginning, end ∈ {[10] × {0, 1}n,null}. In fact

beginning, end ∈ {{2, 5, 6, 9} × {0, 1}n,null}

more precisely.
The beginning and end fields are never overwritten after they are set to non-null values. A

node n such that n.end 6= null is said to be ready, and a node cannot have children unless it is
ready. The root n of a tree has n.beginning = null, while a non-root node n has n.beginning =
n.parent.end (which is non-null since the parent is ready). Hence n is the root of its tree if and
only if n.beginning = null.

A query (i, x) is pending if and only if Fi(x) = ⊥ and there exists a node n such that n.end =
(i, x). In particular, one can observe from the pseudocode that when a call F(i, x) occurs such that
Fi(x) = ⊥ and such that i ∈ {2, 5, 6, 9}, a call NewTree(i, x) occurs that results a new tree being
created, with a root n such that n.end = (i, x), so that (i, x) becomes a pending query.

Intuitively, a query (i, x) is pending if Fi(x) = ⊥ but the simulator has already decided to assign
a value to Fi(x) during that query cycle. A query can only be pending for i = 2, 5, 6 or 9, since a
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pending query is the end field of some node (see the remark above about the limited positions at
which beginning and end appear).

The following additional useful facts about trees will be seen in the proof:

1. We have
a.end 6= b.end

for all nodes a 6= b, presuming a.end, b.end 6= null, and regardless of whether a and b are in the
same tree or not. (Thus all query fields in all trees are distinct, modulo the fact that a child’s
beginning is the same as its parent’s end.)

2. If n.beginning = (i, xi) 6= null, n.end = (j, xj) 6= null then

{i, j} ∈ {{2, 5}, {6, 9}}.

3. Each tree has at most one non-ready node, i.e., at most one node n with n.end = null. This
node is necessarily a leaf, and, if it exists, is called the non-ready leaf of the tree.

4. GrowTree(root) is only called once per root root, as syntactically obvious from the code. While
this call has not yet returned, moreover, we have Fi(x) = ⊥ for all (i, x) such that n.end = (i, x)
for some node n of the tree. (In other words, a pending query remains pending as long as the
node to which it is associated belongs to a tree which has not finished growing.)

The origin of a node n is the position of n.beginning, if n.beginning 6= null. The terminal of a
node n is the position of n.end, if n.end 6= null. (Thus, as per the second bullet above, if the origin
is 2 the terminal is 5 and vice-versa, whereas if the origin is 6 the terminal is 9 and vice-versa.)

A 2chain is a triple of the form (i, xi, xi+1) ∈ {0, 1, . . . , 10} × {0, 1}
n × {0, 1}n. The position of

the 2chain is i.
Each node has a 2chain field called id, which is non-null if and only if the node isn’t the root

of its tree. The position of id is i− 1 if the node has origin i ∈ {2, 6}; the position of id is i if the
node has origin i ∈ {5, 9}.

Intuitively, each node that is ready is associated to a path from its origin to its terminal, and
the id contains the first two queries on the path; indeed the first two queries are enough to uniquely
determine the path (provided the relevant table values are present).

The simulator also maintains a global list N of nodes that are ready. This list is maintained
for the convenience of the procedure IsPending, which would otherwise require searching through
all trees that have not yet been discarded (and, in particular, maintaining a set of pointers to the
roots of such trees).

Recursive call structure. Trees are grown according to a somewhat complex recursive mech-
anism. Here is the overall recursive structure of the stack:

– F calls NewTree (at most one call to NewTree per call to F)
– NewTree calls GrowTree (one call to GrowTree per call to NewTree)
– GrowTree calls GrowSubTree (one or more times)
– GrowSubTree calls FindNewChildren (one or more times) and also calls GrowSubTree (zero or

more times)
– FindNewChildren calls AddChild (zero or more times)
– AddChild calls MakeNodeReady (one call to MakeNodeReady per call to AddChild)
– MakeNodeReady calls Prev or Next (zero or more times)
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– Prev and Next call F (zero or once)

We observe that new trees are only created by calls to F. Moreover, a node n is not ready
(i.e., n.end = null) when MakeNodeReady(n) is called, and can be seen by direct inspection of
the pseudocode, and n is ready (i.e., n.end 6= null) when MakeNodeReady(n) returns, whence
the name of the procedure. Since MakeNodeReady calls Prev and Next (which themselves call F),
entire trees might be created and discarded while making a node ready.

Tree Growth Mechanism and Path Detection. Recall that every pending query (i, x) is
uniquely associated to some node n (in some tree) such that n.end = (i, x). Every pending query
is susceptible of triggering zero or more path completions, each of which incurs the creation of
a new node that will be a child of n. The trigger mechanism (implemented by the procedure
FindNewChildren) is now discussed in more detail.

Firstly we must define equivalence of 2chains. This definition relies on the functions Val+, Val−,
which we invite the reader to consult at this point. (See Fig. 4.) Briefly, a 2chain (1, x1, x2) is equiv-
alent to a 2chain (5, x5, x6) if and only if Val−(1, x1, x2, j) = xj for j = 5, 6 or, equivalently, if and
only if Val+(5, x5, x6, j) = xj for j = 1, 2. A 2chain (5, x5, x6) is equivalent to a 2chain (9, x9, x10) if
and only if Val+(9, x9, x10, j) = xj for j = 5, 6 or, equivalently, if and only if Val−(5, x5, x6, j) = xj
for j = 9, 10. Moreover any 2chain is equivalent to itself. (Equivalence is defined in these specific
cases only, and, in particular, we do not bother to extend the notion transitively, but which in any
case would make no difference.) It can be noted that equivalence is time-dependent (like most of
our definitions), in the sense that entries keep being added to the tables Fi.

Let (i, x) be a pending query. We will consider four cases according to the value of i. Let n be
the node such that n.end = (i, x). (We remind that such a node n exists and is unique; existence
follows by definition of pending, uniqueness is argued within the proof.)

If i = 2, let x2 := x. A value x1 ∈ {0, 1}
n is a trigger for (i, x) = (i, x2) if F1(x1) 6= ⊥,

if F10(x10) 6= ⊥ where (x10, x11) := P(x0, x1) where x0 := F1(x1) ⊕ x2, if F9(x9) 6= ⊥ where
x9 := F10(x10)⊕x11, and finally if the 2chain (1, x1, x2) is not equivalent to n.id and not equivalent
to c.id for any existing child c of n.

If i = 9, let x9 := x. A value x10 ∈ {0, 1}
n is a trigger for (i, x) = (i, x9) if F10(x10) 6= ⊥,

if F1(x1) 6= ⊥ where (x0, x1) := P−1(x10, x11) where x11 := F10(x10) ⊕ x9, if F2(x2) 6= ⊥ where
x2 := x0 ⊕ F1(x1), and finally if the 2chain (9, x9, x10) is not equivalent to n.id and not equivalent
to c.id for any existing child c of n.

If i = 5, let x5 := x. A value x6 is a trigger for the pending query (i, x) = (i, x6) if F6(x6) 6= ⊥
and if (5, x5, x6) is not equivalent to n.id and not equivalent to c.id for any existing child c of n.

If i = 6, let x6 := x. A value x5 is a trigger for the pending query (i, x) = (i, x6) if F5(x5) 6= ⊥
and if (5, x5, x6) is not equivalent to n.id and not equivalent to c.id for any existing child c of n.

The procedure that checks for triggers is FindNewChildren. Specifically, FindNewChildren takes
as argument a node n, and checks if there exist triggers for the pending query7 n.end. For each
trigger y that FindNewChildren identifies, it creates a new child c for n; the id of c is set to
(i − 1, y, x) if i ∈ {2, 6} and to (i, x, y) if i ∈ {5, 9}. After creating c, FindNewChildren calls
MakeNodeReady(c).

As a subtlety, one should observe that certain values y that are not triggers before a call to
MakeNodeReady might be triggers after the call. However one can also observe that FindNewChil-

7 Let n.end = (i, x). By definition, then, (i, x) is “pending” only if Fi(x) = ⊥. This is indeed always the case when
FindNewChildren(n) is called—and throughout the execution of that call—as argued within the proof.
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dren will in any case be called again on node n by virtue of having returned child added = true.
(Indeed, GrowTree(root) only returns after doing a complete traversal of the tree such that no calls
to FindNewChildren(·) during the traversal result in a new child.)

Partial Paths and Completed Paths. We define an (i, j)-partial path8 to be a sequence of
values xi, xi+1, . . . , xj if i < j, or a sequence xi, xi+1, . . . , x11, x0, x1, . . . , xj if i > j satisfying the
following properties: xh ∈ Fh and xh−1⊕ Fh(xh) = xh+1 for subscripts h such that h /∈ {i, j, 0, 11};
if i > j, then i ≤ 10, j ≥ 1, and T (x0, x1) = (x10, x11); if i < j, then 0 ≤ i < j ≤ 11.

We notate the partial path as {xh}
j
h=i regardless of whether i < j or i > j, with the under-

standing that x11 is followed by x0 if i > j.

The values i and j are called the endpoints of the path. One can observe that two adjacent
values xh, xh+1 on a partial path (h 6= 11) along with two endpoints (i, j) uniquely determine the
partial path, if it exists.

An (i, j)-partial path {xh}
j
h=i contains a 2chain (ℓ, yℓ, yℓ+1) if xℓ = yℓ and xℓ+1 = yℓ+1; moreover

if i = j + 1, the case ℓ = j is excluded.

We say an (i, j)-partial path {xh}
j
h=i is proper if i, j ∈ [10], if xi /∈ Fi, xj /∈ Fj , and if (i, j) ∈

{(2, 6), (5, 9), (5, 2), (6, 2), (9, 5), (9, 6)} (the latter technical requirement is clarified in the proof, and
needn’t be scrutinized now).

A completed path is a (0, 11)-partial path {xh}
11
h=0 such that T (x0, x1) = (x10, x11).

The MakeNodeReady Procedure. Next we discuss the procedure MakeNodeReady. One can
firstly observe that MakeNodeReady(node) is not called if node is the root of its tree, as clear from
the pseudocode. In particular node.beginning 6= null when MakeNodeReady(node) is called.

MakeNodeReady(node) behaves differently depending on whether the origin of node is i = 2, 5, 6
or 9. If i = 2 then node.id = (1, u1, u2) for some values u1, u2, where (i, u2) = node.beginning.
Starting with j = 1, MakeNodeReady executes the instructions

(u1, u2)← Prev(j, u1, u2)

j ← j − 1 mod 11

until j = 5. One can note (from the pseudocode of Prev) that after each call of the form Prev(j, u1, u2)
with j 6= 0, Fj(u1) 6= ⊥. (When j = 0 the call Prev(j, u1, u2) entails a call to P−1 instead of to
F.) Thus, after this sequence of calls, there exists a partial path x5, x6, . . . , x1, x2 with endpoints
(i, j) = (2, 5) and with (1, x1, x2) = node.id.

We also have F2(x2) = ⊥ by item 4 above and, if MakeNodeReady doesn’t abort, F5(x5) = ⊥ as
well when MakeNodeReady returns. In particular, x5, x6, . . . , x1, x2 is a proper (5, 2)-partial path
when MakeNodeReady returns, containing node.id.

For i = 5, MakeNodeReady similarly creates a (5, 2)-partial path x5, x6, . . . , x1, x2 such that
(5, x5, x6) = node.beginning, by repeated calls to Next. Here the partial path is also proper when
MakeNodeReady returns, and likewise contains node.id.

The cases i = 6 and i = 9 are symmetric, respectively, to the cases i = 5 and i = 2.

In summary, when MakeNodeReady(node) returns one has node.beginning 6= null, node.end 6=
null, and there exists a proper (i, j)-partial path xi, xi+1, . . . , x11, x0, . . . , xj containing node.id such

8 This is a slightly simplified definition. The “real” definition of a partial path is given by Definition 7, Section 5.1.
However, the change is very minor, and does not affect any statement or secondary definition made between here
and Definition 7.
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that (i, j) ∈ {(5, 2), (9, 6)} and such that

{(i, xi), (j, xj)} = {node.beginning,node.end}.

Path Completion Process. We say that node n is stable if no triggers exist for the query n.end.
When GrowTree(root) returns in NewTree, each node in the tree rooted at root is both ready

and stable. (This is rather easy to see syntactically from the pseudocode.) Moreover each non-root
node of the tree is associated to a partial path, which is the unique partial path containing that
node’s id and whose endpoints are the node’s origin and terminal.

After GrowTree(root) returns, SampleTree(root) is called, which calls ReadTape(i, x) for each
(i, x) such that (i, x) = n.end for some node n in the tree rooted at root. This effectively assigns a
uniform independent random value to Fi(x) for each such pair (i, x).

One can observe that the only nodes whose stability is potentially affected by a change to the
table F5 (resp. F6) are nodes with terminal 6 (resp. 5). Likewise, the only nodes whose stability
is potentially affected by a change to the table F2 (resp. F9) are nodes with terminal 9 (resp. 2).
Given that all the nodes in the tree either have terminals i ∈ {2, 5} or terminals i ∈ {6, 9}, the calls
to ReadTape that occur in SampleTree(root) do not affect the stability of the nodes the current
tree, i.e., the tree rooted at root. (On the other hand the stability of nodes of trees higher up in the
stack is potentially affected.)

After SampleTree(root) returns, AdaptTree(root) is called, which “adapts” the partial path
associated9 to each non-root node of the tree into a completed path. In more detail, if the endpoints
of the partial paths are 2 and 5 then F3 and F4 are adapted (by a call to the procedure ‘Adapt’)
as in equations (1) and (2); if the endpoints of the partial paths are 6 and 9 then F7 and F8 are
adapted, via similar assignments.

Further Pseudocode Details: The Tables Tsim/T
−1
sim. In order to reduce its query complexity,

and following an idea of [11], our simulator keeps track of which queries it has already made to
P or P−1 via a pair of tables Tsim and T−1

sim. These tables are maintained by the procedures SimP
and SimP−1 (Fig. 3), which are “wrapper functions” that the simulator uses to access P and P−1.
If the simulator did not use the tables Tsim and T−1

sim to remember its queries to P/P−1, the query
complexity would be quadratically higher: O(q8) instead of O(q4). (This is the route taken by [17],
and their query complexity could be indeed be lowered from O(q8) to O(q4) by using the trick of
remembering past queries to P/P−1.)

We also note that the tables Tsim, T
−1
sim are accessed by the procedures Val+ and Val− of game

G1 (see Fig. 5), while in games G2–G4 Val+ and Val− access the tables T and T−1 directly, which
are not accessible to the simulator in game G1. As it turns out, games G1–G4 would be unaffected
if the procedures Val+, Val− called SimP/SimP−1 (or even P/P−1) instead of doing table look-ups
“by hand”, because it turns out that Val+, Val− never return ⊥ in any of games G1–G4 (see Lemma
21); but we choose the latter presentation (i.e., accessing the tables Tsim/T

−1
sim or T/T−1, depending)

in order to emphasize—and to more easily argue within the proof—that calls to Val+, Val− do not
cause “new” queries to P/P−1.

5 Proof of Indifferentiability

In this section we give a proof for Theorem 1, using the simulator described in Section 4 as the
indifferentiability simulator.

9 The partial path is namely uniquely determined by the node’s id.
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In order to prove that our simulator successfully achieves indifferentiability as defined by Def-
inition 1, we need to upper bound the time and query complexity of the simulator, as well as the
advantage of any distinguisher. These three bounds are the objects of Theorems 33, 31 and 83
respectively.

Game Sequence.Our proof uses a sequence of five games, G1, . . . , G5, with G1 being the simulated
world and G5 being the real world. Games G1–G4 are described by the pseudocode of Figs. 3–6
while game G5 is given by the pseudocode of Fig. 7. Every game offers the same interface to the
distinguisher, consisting of functions F, P and P−1.

A brief synopsis of the changes that occur in the games is as follows:

In G2: The simulator’s procedure CheckP (Fig. 4) used by the simulator in FindNewChildren
(Fig. 3) “peeks” at the table T and returns ⊥ if (x0, x1) /∈ T ; this modification ensures that a call
to CheckP does not result in a “fresh” call to P. Also, the procedures Val+, Val− use the tables T ,
T−1 instead of Tsim, T

−1
sim. (As mentioned at the end of the last section, the second change does not

actually alter the behavior of Val+, Val−, despite the fact that the tables Tsim, T
−1
sim may be proper

subsets of the tables T , T−1 (see Lemma 21). On the other hand, the change to CheckP may result
in “false negatives” being returned by CheckP.)

In G3: The simulator adds a number of checks that may cause it to abort in places when it did
not abort in G2. Some of these involve peeking at the random permutation table T , which means
they cannot be included in G1. Otherwise, G3 is identical to G2, so the only difference between G2

and G3 is that G3 may abort when G2 does not. The pseudocode for the new checking procedures
called by G3 are in Fig. 8.

In G4: The only difference occurs in the implementation of the oracles P, P−1 (see Fig. 6). In G4,
these oracles no longer rely on the random permutation table p : {0, 1}2n → {0, 1}2n, but instead
evaluate a 10-round Feistel network using the random tapes f1, . . . , f10 as round functions.

In G5: This is the real world, meaning that F(i, x) directly returns the value fi(x). As will be
shown in the proof, the only “visible” difference between G4 and G5 is that G4 may abort, while
G5 does not.

The advantage of a distinguisher D at distinguishing games Gi and Gj is defined as

∆D(Gi,Gj) = Pr
Gi

[DF,P,P−1

= 1]− Pr
Gj

[DF,P,P−1

= 1] (3)

where the probabilities are taken over the coins of the relevant game as well as over D’s coins, if
any. Most of the proof is concerned with upper bounding ∆D(G1,G5) for a distinguisher D that is
limited to q queries (in a nonstandard sense defined below); the simulator’s efficiency, as well its
query complexity (Theorems 33 and 31 respectively) will be established as byproducts along the
way.

Normalizing the Distinguisher. In the following proof we fix an information-theoretic distin-
guisher D with access to oracles F, P, and P−1. The distinguisher can issue at most q queries to
F(i, ·) for each i ∈ [10] and at most q queries to P and P−1 in total. In particular, the distinguisher
is allowed to make q queries to each round of the Feistel network, which is a relaxed condition.
The same relaxation is implicitly made in most if not all previous work in the area, but explicitly
acknowledging the extra power of the distinguisher actually helps to improve the final bound, as
we shortly explain.
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SinceD is information-theoretic, we can assume without loss of generality thatD is deterministic
by fixing the best possible sequence of coin tosses for D. (See, e.g., the appendix in the proceedings
version of [6].)

We can also assume without loss of generality that D outputs 1 if an oracle abort. Indeed, since
the real world G5 does not abort, this can only increase the distinguishing advantage ∆D(G1,G5).

Some of our lemmas, moreover, only hold if D is a distinguisher that completes all paths, as per
the following definition:

Definition 1. A distinguisherD completes all paths if at the end of every non-aborted execution, D
has made the queries F(i, xi) for i = 1, 2, . . . , 10 where xi = F(i−1, xi−1)⊕xi−2 for i = 2, 3, . . . , 10,
for every pair (x0, x1) such thatD has either queried P at (x0, x1) at some point during the execution
or such that P−1 returned (x0, x1) to D at some point during the execution.

Lemmas that only hold if D completes all paths (and which are confined to sections 5.5, 5.7) are
marked with a (*).

It is not difficult to see that for every distinguisher D that makes at most q queries to each of its
oracles, there is a distinguisher D∗ that completes all paths, that achieves the same distinguishing
advantage as D, and that makes at most 2q queries to each of its oracles. Hence, the cost of
assuming a distinguisher that completes all paths is a factor of two in the number of queries.
(Previous papers [1, 17, 19] pay for the same assumption by giving r times as many queries to the
distinguisher, where r is the number of rounds. Our trick of explicitly giving the distinguisher the
power to query each of its oracles q times reduces this factor to 2 without harming the final bound;
indeed, current proof techniques effectively give the distinguisher q queries to each of its oracles
anyway. Our trick also partially answers a question posed in [1].)

Miscellaneous. Unless otherwise specified, an execution refers to a run of one of the games G1,
G2, G3, G4 (excluding, thus, G5) with the fixed distinguisher D mentioned above.

5.1 Efficiency of the Simulator

We start the proof by proving that the simulator is efficient in games G1 through G4. This part is
similar to previous efficiency proofs such as [11, 17], and ultimately relies on Seurin’s termination
argument, outlined at the end of Section 3.

Unless otherwise specified, lemmas in this section apply to games G1 through G4. As the proof
proceeds, and for ease of reference, we will restate some (but not all) of the definitions made in
Section 4.

Definition 2. A query (i, xi) is defined if Fi(xi) 6= ⊥. It is pending if it is not defined and there
exists a node n such that n.end = (i, xi).

Definition 3. A completed path is a sequence x0, . . . , x11 such that xi+1 = xi−1 ⊕ Fi(xi) for
1 ≤ i ≤ 10 and such that T (x0, x1) = (x10, x11).

Definition 4. A node n is created if its constructor has returned. It is ready if n.end = (i, xi) 6=
null, and it is sampled if Fi(xi) 6= ⊥. A node n is completed if there exists a completed path
x0, x1, . . . , x11 containing the 2chain n.id.

We emphasize that a completed node is also a sampled node, that a sampled node is also a ready
node, etc. We thus have the following chain of containments:

created nodes ⊇ ready nodes ⊇ sampled nodes ⊇ completed nodes
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We also note that a root node r cannot become completed because r.id = null (and remains null)
for root nodes. Moreover, we remind that nodes are never deleted (even after the last reference to
a node is lost).

Lemma 1. The parent, id, beginning, and end fields of a node are never overwritten after they are
assigned a non-null value.

Proof. This is easy to see from the pseudocode. The parent, id and beginning of a node are only
assigned in the constructor. The only two functions to edit the end field of a node are NewTree and
MakeNodeReady. NewTree creates a root with a null end field and immediately assigns the end
field to a non-null value, while MakeNodeReady(n) is only called for nodes n that are not roots,
and is called at most once for each node.

Lemma 2. A node is a root node if and only if it is a root node after its constructor returns, and
if and only if it is created in the procedure NewTree.

Proof. Recall that by definition a node n is a root node if and only if n.beginning = null. The first
“if and only if” therefore follows from the fact that the beginning field of a node is not modified
outside the node’s constructor.

The second “if and only if” follows by inspection of the procedures NewTree (Fig. 3) and
AddChild (Fig. 4), which are the only two procedures to create nodes.

The above lemmas show that all fields of a node are invariant after the node’s definition, except
for the set of children, which grows as new paths are discovered. Therefore when we refer to these
variables in the following discussions, we don’t need to specify exactly what time we are talking
about (as long as they are defined).

Lemma 3. The entries of the tables Fi are not overwritten after they are defined.

Proof. The only two procedures that modify tables Fi are ReadTape and Adapt. In both procedures
the simulator checks that xi /∈ Fi (and aborts if otherwise) before assigning a value to Fi(xi).

Lemma 4. Entries in tables T and T−1 are never overwritten and Tsim (T−1
sim) is a subset of T

(T−1). Moreover, in games G1, G2 and G3, T and T−1 are compatible with the permutation encoded
by tape p and its inverse.

Proof. The tables T and T−1 are only modified in P or P−1. Entries are added according to a
permutation, which is the permutation encoded by the random tape p in G1, G2 and G3, and is
the 10-round Feistel network built from the round functions (random tapes) f1, . . . , f10 in G4. By
inspection of the pseudocode, the entries are never overwritten.

The table Tsim is only modified in SimP and SimP−1. The entry added to Tsim is obtained via
a call to P or P−1, where the corresponding entry in T is returned, and hence the same entry also
exists in T .

Lemma 5. A node is immediately added to the set N after becoming ready.

Proof. A node becomes ready when its end is assigned a query. This only occurs in NewTree and
MakeNodeReady, and in both cases the node is added into N immediately after the assignment.

20



Lemma 6. Let n be a ready node with n.end = (i, xi). Then IsPending(i, xi) = true or xi ∈ Fi

from the moment when n is added to N until the end of the execution.

Proof. The procedure IsPending(i, xi) returns true while n is in N . Note that n is removed from
N only in SampleTree, right after ReadTape(n.end). Therefore, at the moment when n is removed
from N we already have xi ∈ Fi. Since entries in Fi are not overwritten, this remains true for the
rest of the execution.

Lemma 7. We have n1.end 6= n2.end for distinct nodes n1 and n2 with n1.end 6= null.

Proof. Assume by contradiction that there exist two nodes n1, n2 such that n1.end = n2.end =
(i, xi). Without loss of generality, suppose n1 becomes ready before n2.

If n2 is the root of a tree, it becomes ready after it is created in NewTree, called by F(i, xi).
Between the time when F(i, xi) is called and the time NewTree executes its second line, no modifi-
cation is made to the other nodes, so n1 is already ready when the call F(i, xi) occurs. By Lemmas 5
and 6, when F(i, xi) is called, we have IsPending(i, xi) = true or xi ∈ Fi. But F(i, xi) aborts if
IsPending(i, xi) = true, and it returns Fi(xi) directly if xi ∈ Fi. NewTree is not called in either
case, leading to a contradiction.

If n2 is not a root node, its end is assigned in MakeNodeReady. Before n2.end is assigned, two
assertions are checked. Since no modification is made to the other nodes during the assertions, n1 is
ready before the assertions. By Lemmas 5 and 6, we must have IsPending(i, xi) = true (violating
the second assertion) or xi ∈ Fi (violating the first assertion). In both cases the simulator aborts
before the assignment, which is also a contradiction.

Lemma 8. FindNewChildren(n) is only called if n is a ready node.

Proof. Recall that ready nodes never revert to being non-ready (cf. Lemma 1).

If n is created by NewTree then n.end is assigned by NewTree immediately after creation, and
hence n is ready.

If n is created by AddChild, on the other hand, then AddChild calls MakeNodeReady(n) imme-
diately, which does not return until n is ready. Moreover, while MakeNodeReady(n) calls further
procedures, it does not pass on a reference to n to any of the procedures that it calls, so it is impos-
sible for a call FindNewChildren(n) to occur while MakeNodeReady(n) has not yet returned.

Lemma 9. A node n is a child of n′ if and only if n.beginning = n′.end 6= null.

Proof. If n′ = n.parent, then in the constructor of n, its beginning is assigned the same value as
n′.end. Since FindNewChildren is only called on ready nodes, n′.end 6= null. By Lemma 1, both
n.beginning and n′.end are not overwritten, thus n.beginning = n′.end 6= null until the end of the
execution.

On the other hand, if n.beginning = n′.end 6= null, then n is a non-root node. As proved in the
“if” direction, we must have n.parent.end = n.beginning = n′.end. By Lemma 7, the end of ready
nodes are distinct, thus n.parent = n′.

Lemma 10. The end of a node must be in position 2, 5, 6 or 9. Moreover, queries in these positions
only become defined in calls to SampleTree.
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Proof. The end of a node is only assigned in NewTree and MakeNodeReady. NewTree(i, xi) is
only called by F(i, xi) for i ∈ {2, 5, 6, 9}. When the end of a node is assigned a query (j, xj) in
MakeNodeReady, we have j = Terminal(i), while the output of Terminal is 2, 5, 6 or 9.

A query can be defined a call to procedures F, Adapt, and SampleTree. F calls ReadTape only
if i /∈ {2, 5, 6, 9}, and Adapt is only called on queries in positions 3, 4, 7 and 8. Therefore, queries
in positions 2, 5, 6 and 9 must be defined (if at all) in SampleTree.

Lemma 11. For every node n, the query n.end is not defined until SampleTree(n) is called.

Proof. By Lemma 10, n.end is in position 2, 5, 6 or 9, and must be sampled in a call to Sample-
Tree(n′) for some node n′. The query defined in SampleTree(n′) is n′.end. By Lemma 7, if n′ 6= n,
n′.end 6= n.end. Therefore, the query n.end must be defined inside of SampleTree(n).

Lemma 12. The set N consists of all nodes that are ready but not sampled, except for the moments
right before a node is added to N or right before a node is deleted from N .

Proof. By Lemma 5, a node is added to N right after it becomes ready. On the other hand, a node
is added to N only in procedures NewTree and MakeNodeReady, and in both procedures the end
of the node is assigned a non-null value before it is added.

Then we only need to prove that a node is removed from N if and only if it becomes sampled.
A node n is deleted from N only in the procedure SampleTree. ReadTape is called on n.end before
the deletion, so the node is sampled when the deletion occurs. Moreover, by Lemma 11, the query
n.end can only be defined in SampleTree(n), following which the deletion occurs immediately.

Therefore, the set N always equals the set of nodes that are ready but not sampled, except for
the gaps between the two lines when the sets are changed.

Lemma 13. At all points when calls to IsPending occur in the pseudocode, the call IsPending(i, xi)
returns true if and only if the query (i, xi) is pending.

Proof. IsPending(i, xi) returns true if and only if there exists a node n in N such that n.end =
(i, xi). Since IsPending is not called immediately before a modification to N , Lemma 12 implies that
this occurs if and only if there exists a node n such that n.end = (i, xi) and such that Fi(xi) = ⊥.

Definition 5. Let F̃i denote the set of queries in position i that are pending or defined, for i ∈ [10].

For any i ∈ [10], since Fi is the set of defined queries in position i, we have Fi ⊆ F̃i. The sets
F̃i are time-dependent, like the sets Fi.

Lemma 14. The sets F̃i are monotone increasing, i.e., once a query becomes pending or defined,
it remains pending or defined for the rest of the execution.

Proof. By Lemma 3, we know that after an entry is added to a table, it will not be overwritten.
Therefore any defined query will remain defined through the rest of the execution.

For each pending query (i, xi), there exists a node n such that (i, xi) = n.end. By Lemma 1,
n.end will not change and thus (i, xi) must be pending if it is not defined.

Lemma 15. At the end of a non-aborted query cycle, there exist no pending queries (i.e., all
pending queries have been defined).
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Proof. Observe that in each call to NewTree, SampleTree is called on every node in the tree before
NewTree returns, unless the simulator aborts. Therefore, all pending queries in the tree become
defined before NewTree successfully returns. A non-aborted query cycle ends only after all calls to
NewTree have returned, so all pending queries are defined by then.

Next we upper bound the number of nodes created by the simulator and the sizes of the tables.
We will separate the nodes into two types as in the following definition, and upper bound the
number of each type. Recall that in the simulator overview we defined the origin and terminal of
a non-root node n to be the positions of n.beginning and n.end respectively.

Definition 6. A non-root node is an outer node if its origin is 2 or 9, and is an inner node if its
origin is 5 or 6.

The names imply by which detect zone a path is triggered: an inner node is associated with a
path triggered by the middle detect zone; an outer node is associated with a path triggered by the
outer detect zone.

Lemma 16. The number of outer nodes created in an execution is at most q.

Proof. It is easy to see from the pseudocode that before an outer node is added in FindNewChildren,
the counter NumOuter is incremented by 1. The simulator aborts when the counter exceeds q, so
the number of outer nodes is at most q.

Now we give a formal definition of partial path, superseding (or rather augmenting) the definition
given in Section 4.

Definition 7. An (i, j)-partial path is a sequence of values xi, xi+1, . . . , xj if i < j, or a sequence
xi, xi+1, . . . , x11, x0, x1, . . . , xj if i > j, satisfying the following properties: i 6= j and 0 ≤ i, j ≤ 11;
xh ∈ Fh and xh−1 ⊕ Fh(xh) = xh+1 for subscripts h such that h /∈ {i, j, 0, 11}; if i > j, we also
require (i, j) 6= (11, 0), T (x0, x1) = (x10, x11) if 1 ≤ j < i ≤ 10, T (x0, x1) = (∗, x11) if i = 11, and
T−1(x10, x11) = (x0, ∗) if j = 0.

As can be noted, the only difference with the definition given in Section 4 is that the cases i = 11
and j = 0 (though not both simultaneously) are now allowed.

Let {xh}
j
h=i be an (i, j)-partial path. Each pair (h, xh) with

h ∈ {i, i + 1, . . . , j}

if i < j, or with
h ∈ {i, i + 1, . . . , 11} ∪ {0, 1, . . . , j}

if i > j is said to be in the partial path. We also say the partial path contains (h, xh). We may
also say that xh is in the partial path (or that the partial path contains xh) without mentioning
the index h, if h is clear from the context.

Note that a partial path may contain pairs of the form (11, x11) and (0, x0) even though such
pairs aren’t queries, technically speaking.

As previously, a partial path {xh}
j
h=i contains a 2chain (ℓ, xℓ, xℓ+1) (with 0 ≤ ℓ ≤ 10) if (ℓ, xℓ)

and (ℓ+ 1, xℓ+1) are both in {xh}
j
h=i and if ℓ 6= j.

There are two different versions of Val+ and Val− in the pseudocode: one is used in G1 (the
G1-version) and the other is used in G2,G3,G4 (the G2-version). In the following definition, as
well as for the rest of the proof, Val+ and Val− refer to the G2-version of these procedures.
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Lemma 17. Given a 2chain (ℓ, xℓ, xℓ+1) and two endpoints i and j, there exists at most one
(i, j)-partial path {xh}

j
h=i that contains the 2chain. Moreover, the values in the partial path can be

obtained by xh = Val+(ℓ, xℓ, xℓ+1, h) if xh is to the right of xℓ+1 in the sequence xi, . . . , xj
10, and

by xh = Val−(ℓ, xℓ, xℓ+1, h) if xh is to the left of xℓ in the sequence xi, . . . , xj.

Proof. By Definition 7, we can see that each pair of values xi, xi+1 uniquely determines the previous
and the next value in the sequence (if they exist), and x10, x11 uniquely determines x0, x1 and vice
versa. Thus, starting from xℓ and xℓ+1, we can evaluate the path in each direction step by step
according to the definition.

Moreover, we can see from the pseudocode that the procedures Val+ and Val− implements the
above iterations and thus return the corresponding value in the partial path.

Definition 8. Define the length of a partial path {xh}
j
h=i as j− i+1 if i < j and equals j− i+13

if i > j.

Thus the length of a partial path {xh}
j
h=i is the number of distinct values of h for which there

exists a pair (h, xh) in the path, including possibly the values h = 0 and h = 11.

We note that a partial path cannot have length more than 12, because Definition 7 doesn’t
allow “self-overlapping” paths.

Definition 9. The left maximal path of a 2chain (ℓ, xℓ, xℓ+1) is the longest (i, j)-partial path
containing (ℓ, xℓ, xℓ+1) such that j = ℓ + 1. Similarly, the right maximal path of the 2chain is the
longest (i, j)-partial path containing (ℓ, xℓ, xℓ+1) such that i = ℓ.

Thus, a maximal path can have length at most 12, being defined as a partial path, even if the path
could be further extended past its endpoint (in the standard feistel sense) in some pathological
cases.

Lemma 18. Each 2chain has a unique left maximal path and a unique right maximal path.

Proof. We give a proof for the left maximal path, and the right maximal path is symmetric. Since
the partial paths have length at most 12, there exists a unique maximum length for the (i, ℓ+ 1)-
partial paths containing the 2chain. Moreover, the partial path of the maximum length is unique
by Lemma 17.

Definition 10. Let n be a non-root node. The maximal path of n is the left maximal path of n.id
if n’s origin is 2 or 6, and is the right maximal path of n.id if n’s origin is 5 or 9.

The following lemma gives the observation that if a query is added to the sets F̃i in a procedure
related to n, it must be in the maximal path of n.

Lemma 19. The following statements hold for every non-root node n:

1. If n.id = (i, xi, xi+1), then (i, xi) and (i+ 1, xi+1) are in the maximal path of n.

2. After F(i, xi) is called in MakeNodeReady(n), the query (i, xi) is in the maximal path of n.

3. After SimP(x0, x1) is called in MakeNodeReady(n), both (0, x0) and (1, x1) are in the maximal
path of n; after the call returns with value (x10, x11), (10, x10) and (11, x11) are in the maximal
path of n. Symmetrically for a call to SimP−1.

10 The sequence xi, . . . , xj has the form xi, . . . , x11, x0, . . . , xj if j < i and xi, xi+1, . . . , xj if j > i.
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4. The query that is assigned to n.end is in the maximal path of n (even if the assignment doesn’t
occur because an assertion fails).

Proof. In the following we assume that the origin of n is 2 or 6. The other two cases are symmetric.

We note that since the table entries and n.id are not overwritten, if (i, xi) is in the maximal
path of n at some point in the execution, it remains so until the end of the execution.

The first statement directly follows from the definition of a maximal path, which is a partial
path containing the 2chain n.id.

In a call to MakeNodeReady, F and SimP are called in Prev(i, xi, xi+1). We prove by induction
on the number of times Prev has been called in MakeNodeReady that both xi and xi+1 are in the
maximal path of n, and as well as the two output values of Prev(i, xi, xi+1) (whose positions may
be i− 1 and i or 10 and 11) are in the maximal path of n. In fact the latter statement follows from
the former, since if i > 0 the output values of Prev are xi and xi−1 = F(i, xi)⊕ xi+1, which are in
the same partial path as xi and xi+1, whereas if i = 0 the output values are (x10, x11) = T (x0, x1),
which are in the same partial path as x0 and x1, given that the partial path has origin 2 or 6 (i.e.,
that we are not overextending the partial path past length 12).

Since the next input to Prev is its former output (except for the first call) all that remains is
to show the base case, i.e., that the first argument (i, xi, xi+1) given to Prev in MakeNodeReady is
in the maximal path of n. However (i, xi, xi+1) = n.id for the first call, so this is the case.

The query (j, xj) is also in the output of Prev, so it is also in the maximal path by the above
argument.

Lemma 20. If a non-root node n is not ready, it has been created in a call to AddChild and the
call hasn’t returned. Specifically, each tree contains at most one non-ready node at any point of the
execution.

Proof. The first part is a simple observation: the call to AddChild returns only after MakeN-
odeReady(n) returns, at which point n has become ready.

Now consider any tree with root r. The node r becomes ready right after it is created. Non-root
nodes are created in FindNewChildren via AddChild; before AddChild returns, no new node is
added to the tree (the nodes created in F called by MakeNodeReady are in a new tree). Therefore,
other nodes can be added to the tree only after AddChild returns, when the previous new node has
become ready.

Lemma 21. The calls to Val+ and Val− in procedures Equivalent and AdaptNode don’t return
⊥.

Proof. The procedure Equivalent(C1, C2) is called inside FindNewChildren(n), either directly or
via NotChild, where C1 and C2 are 2chains. The first 2chain C1 is either n.id or the id of a child
of n. In the latter case, C1 has the same position as C2, therefore the values are directly compared
without calling Val+ or Val−.

Now consider the first case, when C1 = n.id. If n is the root of a tree, Equivalent returns
false without calling Val+ or Val−. Otherwise, since AddChild(n) must have returned before Find-
NewChildren(n) can be called, n is ready by Lemma 20. By Lemma 19, the maximal path of n
contains n.end. We can check that in every case, the calls to Val+ or Val− won’t “extend” over the
terminal of the node. We show the case where the terminal of n is 2 for example: the origin of n is
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5, and the position of n.id is also 5. A call to Equivalent(n.id, (1, x1, x2)) is made in FindNewChil-
dren(n), in which Val+(n.id, 1) and Val+(n.id, 2) are called. Since n is ready, by Lemma 19 we
know n.end is in the right maximal path of n.id, i.e., Val+(n.id, 2) = n.end 6= ⊥. This also implies
Val+(n.id, 1) 6= ⊥. The other cases are similar.

The call to AdaptNode(n) occurs after SampleTree(n), and both n.beginning and n.end are
defined at this point. Therefore, the path containing n.id has defined queries in all positions except
possibly the two positions to be adapted, and Val+ and Val− called in AdaptNode(n) will return a
non-⊥ value.

Lemma 22. After AdaptNode(n) returns, the node n is completed. In particular, the queries in
n’s maximal path forms a completed path.

Proof. Recall that n is completed if n.id is contained in a completed path. Consider the execution
in AdaptNode(n). Since the calls to Val+ and Val− don’t return ⊥ by Lemma 21, there exists
a partial path {xh}

m
h=m+1 containing n.id. Moreover, in AdaptNode(n) the queries (m,xm) and

(m + 1, xm+1) are adapted such that Fm(xm) = xm−1 ⊕ xm+1 and Fm+1(xm+1) = xm ⊕ xm+2.
Along with the properties of a partial path, it is easy to check that {xh}

11
h=0 is a completed path,

which contains n.id.

Lemma 23. The children of a node n must be created in AddChild called by FindNewChildren(n).
The following properties hold for any node n: (i) n doesn’t have two children with the same id;
(ii) If n is a non-root node, the maximal path of n doesn’t contain both queries in c.id for any
c ∈ n.children.

Proof. It is easy to see from the pseudocode that a non-root node is only created in AddChild,
which is only called in FindNewChildren(n) and the node becomes a child of n.

Before AddChild is called in FindNewChildren(n), a call to NotChild is made to check that the
id of the new node doesn’t equal the id of any existing child of n. All children of n have the same
position of id and in this case, Equivalent returns true only when the input 2chains are identical.

Property (ii) is ensured by the Equivalent call in FindNewChildren. By Lemma 21, the calls
to Val+ and Val− in Equivalent return non-⊥ values. Therefore, when c is created and c.id =
(i, xi, xi+1), the maximal path of n already contains queries in positions i and i + 1, and at least
one of them is different to the corresponding query in c.id.

Lemma 24. When FindNewChildren(n) is called, as well as during the call, n.end is pending.

Proof. By definition, we only need to prove that the query n.end has not been defined. By Lemma 11,
n.end is not defined before SampleTree(n) is called. Let r be the root of the tree containing n.
Observe that FindNewChildren(n) is only called before GrowTree(r) returns, while the call to
SampleTree(r) (and to SampleTree(n)) occurs after GrowTree(r) returns.

Lemma 25. If a non-root node n is an inner node or a ready outer node, its maximal path contains
pending or defined queries in positions 5 and 6. Moreover, for any two distinct nodes n1 and n2

each of which is an inner node or a ready outer node, their maximal paths contain different pairs
of queries in positions 5 and 6.
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Proof. If n is an inner node, then n.id contains queries in positions 5 and 6. One can observe from
the pseudocode of FindNewChildren that both of these queries are pending or defined, with at
least one of the two queries being defined. (The latter fact will be useful later in the proof of this
lemma.)

If n is a ready outer node, we show the proof when n’s origin is 2. In the last iteration in
MakeNodeReady(n), F(6, x6) is called and (6, x6) is defined; when n becomes ready, we have n.end =
(5, x5). The above queries are in the maximal path of n by Lemma 19, and they remain pending or
defined for the rest of the execution (Lemma 14). Therefore, the maximal path contains pending
or defined queries in positions 5 and 6, with the query in position 6 being defined.

Now we prove the second part of the lemma. Assume by contradiction that the maximal paths
of n1 and n2 both contain queries (5, x5) and (6, x6). By the above observations at least one of
these two queries is defined; without loss of generality, assume (5, x5) becomes defined after (6, x6),
and in particular, that (6, x6) is defined at the moment. The following discussion also relies on the
fact that the queries in n.id and the queries made in MakeNodeReady(n) are in the maximal path
of n, as per Lemma 19.

If both n1 and n2 are inner nodes, then n1.id = n2.id = (5, x5, x6) and n1.beginning =
n2.beginning = (5, x5). Indeed, the beginning of a node is defined later than the other query in
the id, because when the node is created in FindNewChildren, the beginning is pending (cf. Lemma
24) while the other query is defined. By Lemma 9, we have n1.parent.end = n2.parent.end = (5, x5).
Since the nodes have distinct end by Lemma 7, n1 and n2 have the same parent. However, this is
impossible because by Lemma 23, a parent can’t have two children with the same id.

If n1 and n2 are both ready outer nodes then we claim that n1.end = n2.end = (5, x5), which
will violate Lemma 7. Indeed, before the end of the node is assigned a query in MakeNodeReady
the query cannot be pending or defined (otherwise the simulator aborts before the assignment).
If end = (6, x6), then (5, x5) is defined in the call to Next(4, x4, x5), at which point (6, x6) is
not defined. This contradicts the assumption that (6, x6) becomes defined earlier. Thus n1.end =
n2.end = (5, x5), which contradicts Lemma 7.

The only possibility left is the case where one of the two nodes is an inner node and the other
is a ready outer node. Wlog, let n1 be the inner node. The analysis of the two previous cases shows
that n1.beginning = n2.end = (5, x5). Thus, n2 is the unique node whose end equals (5, x5), and
it must be the parent of n1. However, because n1.id = (5, x5, x6) and the maximal path of n2 also
contains (5, x5) and (6, x6), this contradicts Lemma 23.

Lemma 26. The simulator creates at most 4q2 − q inner nodes in an execution.

Proof. We can upper bound the number of inner nodes by upper bounding the number of pending
or defined queries in positions 5 and 6, i.e., the sizes of F̃5 and F̃6.

Other than the queries issued by the distinguisher, a query can only be added to F̃i in a call
to MakeNodeReady or AdaptNode. Specifically, for i ∈ {5, 6}, a query is added only in MakeN-
odeReady(n) where n is an outer node. Indeed, AdaptNode only defines queries at positions 3, 4,
7 and 8, while MakeNodeReady(n) creates no new queries at positions 5 or 6 if n is an inner node,
as the queries in n.id are already defined or pending when n is created.

For each outer node n, at most two queries in positions 5 and 6 become pending or defined in the
call to MakeNodeReady(n): one of them is queried in Next or Prev, and the other becomes pending
when the node becomes ready. Therefore, if an outer node n is not ready, this node accounts for at
most one query added to F̃5 and F̃6.
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Let Outer1 and Outer2 be the number of outer nodes that are ready and not ready, respectively.
By Lemma 16, we have Outer1 + Outer2 ≤ q. Since the distinguisher makes at most q queries in
each position, we have

|F̃5|+ |F̃6| ≤ 2q + 2 ·Outer1 + Outer2 ≤ 3q + Outer1. (4)

By Lemma 25, the maximal paths of inner nodes and ready outer nodes contain distinct pairs
of pending or defined queries in positions 5 and 6. Therefore, there exists an injection from the set
of inner nodes and ready outer nodes to F̃5 × F̃6. Let Inner be the number of inner nodes, then

Inner + Outer1 ≤ |F̃5| · |F̃6| ≤
((

|F̃5|+ |F̃6|
)

/2
)2

(5)

Combining equations (4) and (5), we have

Inner ≤ ((3q + Outer1) /2)
2 − Outer1 = (1/4) ·Outer21 + (3q − 1) · Outer1 + (3q/2)2

Since the right-hand side of the above inequality is monotone increasing with respect to Outer1 for
q ≥ 1 and since Outer1 ≤ q, we have Inner ≤ 4q2 − q.

Lemma 27. At most 4q2 non-root nodes are created in an execution.

Proof. A non-root node is either an inner node or an outer node. By Lemmas 26 and 16, The total
number of non-root nodes is upper bounded by (4q2 − q) + q = 4q2.

Lemma 28. At any point of an execution, the number of pending or defined queries satisfies
|F̃i| ≤ 2q for i ∈ {5, 6}, |F̃i| ≤ 4q2 for i ∈ {1, 2, 9, 10}, and |F̃i| ≤ 4q2 + q for i ∈ {3, 4, 7, 8}.

Proof. We will use the analysis in Lemma 26. A query is added to F̃i for i ∈ {5, 6} only if the
query is made by the distinguisher or if the query is in the maximal path of an outer node. The
distinguisher makes at most q queries in each position. By Lemma 16, there are at most q outer
nodes. Therefore, the sizes of F̃5 and F̃6 are upper bounded by q + q = 2q.

The queries in F̃i for i ∈ {1, 2, 9, 10} are added by distinguisher queries or if the query is in the
maximal path of an inner node (similarly to the proof of Lemma 26, the queries in positions 1, 2, 9
and 10 in the maximal path of an outer node are defined or pending when the node is created).
There are at most q distinguisher queries and at most 4q2 − q inner nodes by Lemma 26, therefore
each set contains at most 4q2 queries.

The queries positions 3, 4, 7 and 8 cannot be pending. They can become defined in MakeN-
odeReady(n) or AdaptNode(n). It is easy to check that for each non-root node n, at most one
query in each of these positions becomes defined in the two procedures: F is called on two of the
positions in MakeNodeReady(n), and Adapt is called on the other two positions in AdaptNode(n).
The distinguisher also makes at most q queries in each position, and there are at most 4q2 non-root
nodes, thus the size of F̃i is upper bounded by 4q2 + q for i ∈ {3, 4, 7, 8}.

Lemma 29. We have |Fi| ≤ 2q for i ∈ {5, 6}, |Fi| ≤ 4q2 for i ∈ {1, 2, 9, 10}, and |Fi| ≤ 4q2 + q
for i ∈ {3, 4, 7, 8}. In games G2,G3 and G4, we have |T | ≤ 4q2.
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Proof. Since Fi are subsets of F̃i, the upper bounds on |Fi| follow by Lemma 28.

In G2,G3 and G4, the CheckP procedure doesn’t add entries to T . Therefore, new queries are
added to T only by distinguisher queries or by simulator queries in MakeNodeReady. Moreover, if n
is an outer node, the permutation query made in MakeNodeReady(n) is the one queried in CheckP
before n is added (which preexists in T even before the call to CheckP occurs). Thus the simulator
makes new permutation queries only in MakeNodeReady(n) for inner nodes n. By Lemma 26, the
number of inner nodes is at most 4q2− q. The distinguisher queries the permutation oracle at most
q times, so the size of T is upper bounded by (4q2 − q) + q = 4q2.

Lemma 30. Consider an execution of G1. If the simulator calls SimP(x0, x1) = (x10, x11) or
SimP−1(x10, x11) = (x0, x1) (note that the answer must be returned because SimP and SimP−1

don’t abort in G1), we have x1 ∈ F1 and x2 := F1(x1) ⊕ x0 ∈ F̃2 at the end of the current query
cycle.

Proof. The simulator makes permutation queries in the CheckP procedure and in the MakeN-
odeReady procedure.

If the permutation query is made in a call to CheckP, we can see from the pseudocode that x1
and x2 equals the first two arguments of the call. CheckP is only called by FindNewChildren(n)
when the origin of n is 2 or 9. If the origin is 2, x1 ∈ F1 and (2, x2) = n.end (so x2 ∈ F̃2 by
Lemma 6); if the origin is 9, x1 ∈ F1 and x2 ∈ F2.

Now consider a call to MakeNodeReady(n). If n is an outer node, the permutation made in
MakeNodeReady(n) has been queried in CheckP before the node is added. If n is an inner node,
the origin of n is 5 or 6.

If n’s origin is 6, MakeNodeReady(n) calls Prev and make queries in positions 5, 4, 3, 2 and 1
before the permutation query is made in the next Prev call. By the time the permutation query is
called, both F(2, x2) and F(1, x1) have been called and thus both queries are defined.

Otherwise if n’s origin is 5, MakeNodeReady(n) makes queries via Next. Since the procedures
SimP−1 and F(1, x1) does not abort in G1, when SimP−1 is called in Next, the next two calls to
Next will successfully return. Therefore, another call to Next will be made, in which F(2, x2) is
called. Unless (2, x2) is already pending or defined, NewTree(2, x2) will be called and (2, x2) will
become pending immediately. Thus (1, x1) must be defined and (2, x2) must be pending or defined
at the end of the query cycle.

The next lemma upper bounds the query complexity of the simulator (in G1).

Theorem 31. In the simulated world G1, the simulator makes at most 16q4 queries to the permu-
tation oracle.

Proof. The simulator queries the permutation oracle via the wrapper functions SimP and SimP−1.
The functions maintain tables Tsim and T−1

sim, consisting of previously made permutation queries.
When SimP or SimP−1 is called, they first check whether the query is in the tables; if so, the
table entry is directly returned without actually querying the permutation oracle. Therefore, the
permutation oracle is queried only when a query is made for the first time, and we only need
to upper bound the number of distinct permutation queries issued by the simulator (note that a
permutation query and its inverse are considered as the same query).

By Lemma 30, if a permutation query SimP(x0, x1) = (x10, x11) or SimP−1(x10, x11) = (x0, x1)
is issued by the simulator, we have x1 ∈ F1 and x2 := F1(x1)⊕x0 ∈ F̃2 at the end of the current query
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cycle. Note that each pair of x1 and x2 determines a unique permutation query (F1(x1)⊕ x2, x1).
Thus, the number of distinct permutation queries issued by the simulator is at most

|F1 × F̃2| = |F1| · |F̃2| ≤ (4q2)2 = 16q4

where the inequality is due to Lemmas 28 and 29.

Lemma 32. The NewTree procedure is called at most 4q2 + 4q times, i.e., at most 4q2 + 4q root
nodes are created in an execution.

Proof. The NewTree procedure is only called in F, when the argument is an undefined query in
position 2, 5, 6, or 9 (we will call these positions the trigger positions, in this proof only).

The distinguisher can make q queries to F in each position, therefore at most 4q queries in
trigger positions are made by the distinguisher.

F is also called by the simulator in MakeNodeReady. We claim that in a call to MakeN-
odeReady(n), F is called on at most one undefined query in trigger positions. Indeed, if the origin
of n is 2, F is called on queries in positions 1, 10, 9, 8, 7, and 6, where the queries in positions 1, 10,
and 9 are defined before the node is created. Therefore, only the query in position 6 can be an
undefined query in a trigger position. If the origin of n is 5, F is called on queries in positions
6, 7, 8, 9, 10, and 1, where the query in position 6 is defined before the node is created. Only the
query in position 9 can be an undefined query in a trigger position. The cases where the origin of
n is 9 or 6 are symmetric to the above cases. By Lemma 27, there are at most 4q2 non-root nodes,
and MakeNodeReady is called once on each of them.

To summarize, F is called on undefined queries in trigger positions for at most 4q + 4q2 times,
which is also an upper bound for the number of calls to NewTree.

Finally we upper bound the time complexity of the simulator.

Theorem 33. The running time of the simulator in G1 is O(q10).

Proof. Note that most procedures in the pseudocode runs in constant time without making calls
to other procedures, thus can be treated as a single command. We only need to upper bound
the running time of the procedures with loops or calls other procedures. Note that the following
discussion considers the running time inside a procedure, i.e., the running time of called procedures
are not included in the running time of the caller.

First consider the procedures that are called at most once per node, including procedures
AddChild, MakeNodeReady, SampleTree, and AdaptNode. AdaptTree is called once for each tree
(i.e., each root node). Next and Prev are called in MakeNodeReady for a constant number of times.
F is called once in each call to Next or Prev, and at most 10q times by the distinguisher. NewTree
is only called in F, and IsPending is called in F and MakeNodeReady. By Lemmas 27 and 32, there
are at most 4q2 non-root nodes and at most 4q2 + 4q root nodes, thus each of these procedures is
called O(q2) times.

The running time of the above procedures are also related to the number of nodes. The loops
in IsPending, SampleTree, AdaptTree, and AdaptNode iterates over a subset of all nodes, i.e., the
iteration takes O(q2) time. The other procedures run in constant time. Therefore, the total running
time of the aforementioned procedures is O(q2) · O(q2) = O(q4).

We still need to upper bound the time spent in procedures GrowTree, GrowSubTree, Find-
NewChildren and NotChild. All these queries are called in the life cycle of a call to GrowTree.
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Consider a call to GrowTree(root) where root is the root of a tree that has τ nodes after
GrowTree returns. GrowTree repeatedly calls GrowSubTree to add newly triggered nodes into the
current tree, until no change is made in an iteration. At most τ − 1 calls can add new nodes to the
tree, therefore GrowSubTree(root) is called at most τ times. GrowSubTree is called recursively on
every node in the tree, and calls FindNewChildren on each node. Therefore, FindNewChildren is
called at most τ times in each iteration of GrowTree, and a total of τ2 times for each tree.

For i ∈ {2, 9}, FindNewChildren traverses three tables F9, F10, F1 or F1, F2, F10. By Lemma 29,
the number of triples in the tables is at most (4q2)3 = 64q6. Moreover, for each (x1, x2), CheckP(x1,
x2, x9, x10) outputs true for a unique (x9, x10). In the iteration, CheckP is called on at most
(4q2)2 = 16q4 different values of (x1, x2), so it returns true in at most 16q4 iterations and the
procedures Equivalent and NotChild are called at most 16q4 times. Equivalent runs in constant
time and NotChild runs in O(q2) time (since there are at most O(q2) nodes). On the other hand,
for i ∈ {5, 6}, FindNewChildren traverses one table F5 or F6 of size at most 2q. The running time
of each iteration, as in the previous case, is upper bounded by O(q2). Therefore, in both cases, each
call to FindNewChildren runs in time O(q6) (including time spent in NotChild).

By Lemmas 27 and 32, the total number of nodes in the trees is at most 4q2+4q2+4q = O(q2),
i.e.,

∑

τ = O(q2). The time complexity of the above four procedures is dominated by the the
running time of FindNewChildren, which is

(

∑

τ2
)

·O(q6) ≤
(

∑

τ
)2
·O(q6) =

(

O
(

q2
))2
· O(q6) = O(q10).

In conclusion, the time complexity of the simulator in G1 is O(q10).

5.2 Transition from G1 to G2

Modifications in G2. The game G2 differs from G1 in two places: the procedure CheckP and the
procedures Val+ and Val−. We will use the previous convention and call the version of a procedure
used in G1 the G1-version of the procedure, while the version used in G2 is called the G2-version
of the procedure. We note that the G2-version of CheckP, Val+ and Val− are also used in games
G3 and G4.

In the G2-version of CheckP, the simulator checks whether the permutation query already exists
in the table T , and returns false without calling SimP if not. Therefore, if a permutation query
is issued in CheckP, it must already exist in the table T , i.e., the query has been queried by the
distinguisher or by the simulator before.

Note that the CheckP procedure is called by FindNewChildren and is responsible for determin-
ing whether a quadruple of queries (x1, x2, x9, x10) is in the same path. The G2-version may return
false negatives if the permutation query in the path hasn’t been made, and the path is not triggered
in G2. We will prove that such a path is unlikely to be triggered in G1, either.

We say two executions of G1 and G2 are identical if every procedure call returns the same value
in the two executions. Since the distinguisher is deterministic and it only interacts with procedures
F, P, and P−1, it issues the same queries and outputs the same value in identical executions.

Lemma 34. We have

∆D(G1,G2) ≤ 512q8/22n.
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Proof. This proof uses the divergence technique from Lemma 40 in [11].

Note that if q ≥ 2n−2 the bound trivially holds, so we can assume q ≤ 2n−2.

Consider the executions of G1 and G2 with the same random tapes f1, . . . , f10, p. We say the
two executions diverge if in a call to CheckP(x1, x2, x9, x10) we have p(x0, x1) = (x10, x11) and
(x0, x1) /∈ T in the execution of G2, where x0, x1, x10, x11 are defined as in the pseudocode of
CheckP (i.e., x0 = F1(x1)⊕ x2 and x11 = x9 ⊕ F10(x10)). It is easy to check that a call to CheckP
returns the same answer in the two executions, unless the two executions diverge in this call.

Now we argue that two executions are identical if they don’t diverge. We do this by induction
on the number of function calls. Firstly note that the only procedures to use the tables T , T−1

and/or Tsim, T
−1
sim are CheckP, P, P−1, PSim, PSim−1, Val+ and Val−. CheckP always returns the

same answer as long as divergence doesn’t occur, as discussed above. The procedures P, P−1, PSim,
PSim−1 always return the same values as well, because the value returned by these procedures is
in any case compatible with p. Lastly the table entries read by Val+ and Val− in G1 and G2 must
exist by Lemma 21, and are in both cases compatible with the tape p by Lemma 4, so Val+ and
Val− behave identically as well. Moreover CheckP, P, P−1, PSim, PSim−1, Val+ and Val− do not
make changes to other global variables besides the tables T , T−1, Tsim and T−1

sim, so the changes to
these tables do not propagate via side-effects. Hence, two executions are identical if they do not
diverge.

Next we upper bound the probability that the two executions diverge. The probability is taken
over the choice of the random tapes. Note that divergence is well defined in G2 alone: An execution
of G2 diverges if and only if in a call to CheckP, we have (x0, x1) /∈ T and p(x0, x1) = (x10, x11).
We compute the probability of the above event in G2.

We will upper bound the probability that divergence occurs in each CheckP call, and then
apply a union bound. If (x0, x1) ∈ T , divergence won’t occur. Otherwise if (x0, x1) /∈ T , the tape
entry p(x0, x1) hasn’t been read in the execution, because p is only read in P and P−1 and an
entry is added to T immediately after it is read. The value of p(x0, x1) is uniformly distributed
over {0, 1}2n\{T (x′0, x

′
1) : x

′
0, x

′
1 ∈ {0, 1}

n}. By Lemma 29, the size of T is at most 4q2, so p(x0, x1)
is distributed over at least 22n − 4q2 values, and it equals (x10, x11) with probability at most
1/(22n − 4q2). In both cases, the probability that divergence occurs in the CheckP call is upper
bounded by 1/(22n − 4q2).

The procedure CheckP is only called in FindNewChildren, and its arguments correspond to four
queries that are pending or defined in positions 1, 2, 9, 10. By Lemma 28, the number of pending
or defined queries in each of these positions is at most 4q2, and CheckP is called on at most
(4q2)4 = 256q8 distinct arguments.

If CheckP is called multiple times with the same argument (x1, x2, x9, x10) divergence either
occurs for the first of these calls or else occurs for none of these calls. Thus we only need to consider
the probability of divergence in the first call to CheckP with a given argument. Using a union bound
over the set of all distinct arguments with which CheckP is called, the probability that divergence
occurs is at most

256q8 ·
1

22n − 4q2
≤ 256q8 ·

1

22n − 22n/4
≤

512q8

22n

where the first inequality is due to the assumption mentioned at the start of the proof that q ≤ 2n−2.

The distinguisher D outputs the same value in identical executions, so the probability that
D has different outputs in the two executions is upper bounded by 512q8/22n, which also upper
bounds the advantage of D in distinguishing G1 and G2.
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5.3 Transition from G2 to G3

Modifications in G3. Compared to G2, the calls to procedures CheckBadP, CheckBadR, and
CheckBadA are added in G3. These procedures make no modification to the tables; they only cause
the simulator to abort in certain situations. Thus a non-aborted execution of G3 is identical to the
G2-execution with the same random tapes.

There is no need to compute ∆D(G2,G3); instead, we prove that the advantage of D in distin-
guishing between G3 and G5 is greater than or equal to that between G2 and G5.

Lemma 35. We have

∆D(G2,G5) ≤ ∆D(G3,G5).

Proof. By the definition of advantage in equation (3), we have

∆D(Gi,G5) = Pr
Gi

[DF,P,P−1

= 1]− Pr
G5

[DF,P,P−1

= 1].

Thus we only need to prove that D outputs 1 in G3 with at least as high a probability as in
G2. This trivially follows from the observation that the only difference between G3 and G2 is
that additional abort conditions are added in G3, and that the distinguisher outputs 1 when the
simulator aborts.

5.4 Bounding the Abort Probability in G3

Categorizing the Aborts. The simulator in G3 aborts in many conditions. We can categorize
the aborts into two classes: those that occur in the Assert procedure, and those that occur in
procedures CheckBadP, CheckBadR, and CheckBadA. As will be seen in the proof, the Assert
procedure never aborts in G3. On the other hand, CheckBadP, CheckBadR and CheckBadA will
abort with small probability.

Let BadP, BadR, and BadA denote the events that the simulator aborts in CheckBadP, Check-
BadR, and CheckBadA respectively. These three events are collectively referred to as the bad events.
CheckBadP is called in P and P−1, CheckBadR is called in ReadTape, and CheckBadA is called
right before the nodes are adapted in NewTree. A more detailed description of each bad event will
be given later.

This section consists of two parts. We first upper bound the probability of bad events. Then we
prove that in an execution of G3, the simulator does not abort inside of calls to Assert.

5.4.1 Bounding Bad Events

We start by making some definitions. In this section, we say a query is active if it is pending or
defined, and a 2chain is active if it is both left active and right active as defined below:

Definition 11. A 2chain (i, xi, xi+1) is left active if i ≥ 1 and the query (i, xi) is active, or if i = 0
and (xi, xi+1) ∈ T . Symmetrically, the 2chain is right active if i ≤ 9 and the query (i + 1, xi+1) is
active, or if i = 10 and (xi, xi+1) ∈ T−1.
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The procedures IsLeftActive, IsRightActive, and IsActive in the pseudocode check whether a 2chain
is left active, right active, and active, respectively.

The explicit definitions of the bad events BadP, BadR and BadA given below in definitions 12,
14 and 17 are equivalent to the abort conditions that are checked in the procedures CheckBadP,
CheckBadR and CheckBadA respectively.

Bad Permutation. The procedure CheckBadP is called in P and P−1. BadP is the event that a
new permutation query “hits” a defined query in position 1 or 10 (depending on the direction of
the permutation query):

Definition 12. BadP occurs in P(x0, x1) if at the beginning of the procedure, we have (x0, x1) /∈ T
and x10 ∈ F10 for (x10, x11) = p(x0, x1). Similarly, BadP occurs in P−1(x10, x11) if at the beginning
of the procedure, (x10, x11) /∈ T−1 and x1 ∈ F1 for (x0, x1) = p−1(x10, x11).

Lemma 36. The probability that BadP occurs in an execution of G3 is at most 32q4/2n.

Proof. As in Lemma 34 we can assume that q ≤ 2n−2 since the statement trivially holds otherwise.
When a query P(x0, x1) is issued with (x0, x1) /∈ T , the tape entry p(x0, x1) has not been read.

Since p encodes a permutation, and since whenever an entry of p is read it is added to the table T ,
the value of p(x0, x1) is uniformly distributed on the 2n-bit strings that are not in T . By Lemma 29
we have |T | ≤ 4q2, thus p(x0, x1) is distributed on at least 22n−4q2 values, and each value is chosen
with probability at most 1/(22n − 4q2).

BadP occurs in P(x0, x1) only if x10 ∈ F10 where x10 is the first half of the tape entry p(x0, x1) =
(x10, x11). By Lemma 29 we have |F10| ≤ 4q2, and there are at most 2n possible values for x11.
Therefore, BadP occurs when (x10, x11) equals one of the 4q

2 ·2n pairs. The probability of each pair
is at most 1/(22n − 4q2), so BadP occurs in P(x0, x1) with probability at most 2n · 4q2/(22n − 4q2).

The same bound can be proved symmetrically for a call to P−1(x10, x11) with (x10, x11) /∈ T−1.

Each call to P(x0, x1) with (x0, x1) /∈ T or to P−1(x10, x11) with (x10, x11) /∈ T−1 adds an entry
to the table T . By Lemma 29, the size of T is at most 4q2, so the total number of such calls is
upper bounded by 4q2. With a union bound, the probability that BadP occurs in at least one of
these calls is at most

4q2 ·
2n · 4q2

22n − 4q2
=

16q4

2n − 4q2/2n
.

Since q ≤ 2n−2, 4q2/2n < 2n−1 and 16q4/(2n − 4q2/2n) < 32q4/2n.

Incidences Between 2Chains and Queries. The following definitions involve the procedures
Val+ and Val−, which are defined in the pseudocode. Recall that we are using the G2-version of
the procedures.

The answers of Val+ and Val− are time dependent: ⊥ may be returned if certain queries in the
path hasn’t been defined. Thus the following definitions are also time dependent.

The notion of a query being “incident” with a 2chain is defined below, which will be used in
the events BadR and BadA.

Definition 13. A query (i, xi) is incident with a 2chain (j, xj , xj+1) if i /∈ {j, j + 1} and if either
Val+(j, xj , xj+1, i) = xi or Val

−(j, xj , xj+1, i) = xi.

Lemma 37. A query (i, xi) is incident with an active 2chain if and only if at least one of the
following is true:
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– i ≥ 2 and there exists an active 2chain (i−2, xi−2, xi−1) such that Val+(i−2, xi−2, xi−1, i) = xi;

– i ∈ {0, 1} and there exists an active 2chain (10, x10, x11) such that Val+(10, x10, x11, i) = xi;

– i ≤ 9 and there exists an active 2chain (i+1, xi+1, xi+2) such that Val−(i−2, xi−2, xi−1, i) = xi;

– i ∈ {10, 11} and there exists an active 2chain (0, x0, x1) such that Val−(0, x0, x1, i) = xi.

Proof. The “if” direction is trivial since the query (i, xi) is incident with the active 2chain in each
case.

For the “only if” direction, suppose the query is incident with an active 2chain (k, x′k, x
′
k+1)

where i /∈ {k, k + 1}. We assume Val+(k, x′k, x
′
k+1, i) = xi, and the other case is symmetric.

From the implementation of Val+, we observe that there exists a partial path {x′h}
i
h=k such

that x′i = xi, where x′h equals the value of the variable xh in the pseudocode.

If i ≥ 2, since i /∈ {k, k + 1}, x′i−2 and x′i−1 exist in the partial path. If k = i − 2, the 2chain
(i− 2, x′i−2, x

′
i−1) = (k, x′k, x

′
k+1) and is active by assumption. Otherwise, neither i− 1 nor i− 2 is

an endpoint of the partial path, which implies that x′i−1 ∈ Fi−1 and that x′i−2 ∈ Fi−2 if i > 2 and
(x′i−2, x

′
i−1) ∈ T if i = 2. Thus the 2chain is active. Moreover, Val+(i− 2, x′i−2, x

′
i−1, i) = x′i = xi.

If i ∈ {0, 1}, we have k > i. Similarly one can see that the 2chain (10, x′10, x
′
11) is active by

looking separately at the cases k = 10 and k < 10, and that Val+(10, x′10, x
′
11, i) = xi.

Bad Read. The procedure CheckBadR is called in ReadTape, before the new query is written to
the table. We emphasize that the new entry has not been added to the tables at this moment. It
aborts if the following event occurs:

Definition 14. Let ReadTape be called with argument (i, xi) such that xi /∈ Fi. Then we define
the following two events:

nosep BadRHit is the event that there exists xi−1 and xi+1 such that xi−1 ⊕ xi+1 = fi(xi), such that
the 2chain (i− 1, xi−1, xi) is left active, and such that the 2chain (i, xi, xi+1) is right active.

nosep BadRCollide is the event that there exists xi−1 such that the 2chain (i− 1, xi−1, xi) is left active
and the query (i + 1, xi−1 ⊕ fi(xi)) is incident with an active 2chain, or that there exists xi+1

such that the 2chain (i, xi, xi+1) is right active and the query (i − 1, fi(xi) ⊕ xi+1) is incident
with an active 2chain.

Moreover, we let BadR = BadRHit ∨ BadRCollide.

In order to upper bound the probability of BadR, we need to upper bound the number of active
2chains.

Recall F̃i is the set of active queries in position i. By Definition 11, if a 2chain (i, xi, xi+1) is
left active and i ≥ 1, we must have xi ∈ F̃i; if (i, xi, xi+1) is right active and i ≤ 9, xi+1 ∈ F̃i+1.

We extend the definition of sets F̃i for i = 0, 11 as follows: F̃0 is the set of values x0 such that
(0, x0, x1) is left active for some x1, while F̃11 is the set values of x11 such that (10, x10, x11) is right
active for some x10. Or, equivalently:

F̃0 := {x0 : ∃x1 s.t. T (x0, x1) 6= ⊥}, and

F̃11 := {x11 : ∃x10 s.t. T−1(x10, x11) 6= ⊥}.

In particular we have |F̃0| ≤ |T | and |F̃11| ≤ |T |.

Lemma 38. If a 2chain (i, xi, xi+1) is left active, xi ∈ F̃i; if it is right active, xi+1 ∈ F̃i+1.
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Proof. Recall that F̃i is the set of active queries (i, xi) for 1 ≤ i ≤ 10. This lemma follows from the
definition of left active, right active, and from the definition of the sets F̃i for 0 ≤ i ≤ 11.

We note that Lemma 38 is not if-and-only-if; for example, if x0, x1 are values such that x0 ∈ F̃0

and T (x0, x1) = ⊥, then (0, x0, x1) is not left active. (However, the first part of Lemma 38 is
if-and-only-if for 1 ≤ i ≤ 10, and symmetrically, the second part is if-and-only-if for 0 ≤ i ≤ 9.)

Lemma 39. We have |F̃i| ≤ 4q2 for i ∈ {0, 11}, and |F̃i| ≤ 4q2 + q for all F̃i.

Proof. By Lemma 29, we have |F̃0| ≤ |T | ≤ 4q2 and |F̃11| ≤ |T | ≤ 4q2. The second statement then
follows by Lemma 28.

Definition 15. Let Ci denote the set of xi such that (i, xi) is incident with an active 2chain.

Lemma 40. We have |Ci| ≤ 2(4q2 + q)2, i.e., the number of queries in position i that are incident
with an active 2chain is at most 2(4q2 + q)2.

Proof. By Lemma 37, a query (i, xi) is incident with an active 2chain only if there exists an active
2chain (j, xj , xj+1) for

j =

{

i− 2 if i ≥ 2

10 if i ≤ 1

such that Val+(j, xj , xj+1, i) = xi, or if there exists an active 2chain (j, xj , xj+1) for

j =

{

i+ 1 if i ≤ 9

0 if i ≥ 10

such that Val−(j, xj , xj+1, i) = xi. Moreover, the total number of active 2chains in each position is
at most (4q2 + q)2 by Lemma 39.

Lemma 41. BadRHit occurs in a call to ReadTape(i, xi) with probability at most (4q2 + q)2/2n.

Proof. BadRHit only occurs if xi /∈ Fi, in which case the value of fi(xi) is uniformly distributed
over {0, 1}n.

By Lemma 38, BadRHit occurs only if there exists xi−1 ∈ F̃i−1 and xi+1 ∈ F̃i+1 such that
fi(xi) = xi−1 ⊕ xi+1, i.e., only if fi(xi) ∈ F̃i−1 ⊕ F̃i+1. By Lemma 39, we have

|F̃i−1 ⊕ F̃i+1| ≤ |F̃i−1| · |F̃i+1| ≤ (4q2 + q)2.

Therefore, the probability that BadRHit occurs is at most (4q2 + q)2/2n.

Lemma 42. BadRCollide occurs in a call to ReadTape(i, xi) with probability at most 4(4q2+q)3/2n.

Proof. BadRCollide only occurs if xi /∈ Fi, in which case the value of fi(xi) is uniformly distributed
over {0, 1}n.

Consider the first part of BadRCollide. If (i−1, xi−1, xi) is left active, we must have xi−1 ∈ F̃i−1

by Lemma 38. We also require that xi+1 := xi−1 ⊕ fi(xi) ∈ Ci+1. Therefore, fi(xi) = xi−1 ⊕ xi+1 ∈
F̃i−1 ⊕ Ci+1. By Lemmas 39 and 40, we have

|F̃i−1 ⊕ Ci+1| ≤ (4q2 + q) · 2(4q2 + q)2 = 2(4q2 + q)3.

Symmetrically, the same bound can be proved for the second part of BadRCollide. Thus BadRCollide
occurs for at most 2 · 2(4q2 + q)3 = 4(4q2 + q)3 values of fi(xi).
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Lemma 43. In an execution of G3, BadR occurs with probability at most 21000q8/2n.

Proof. Every time ReadTape(i, xi) is called with xi /∈ Fi, an entry is added to the tables. Therefore
the number of such calls is at most

∑

i|Fi| ≤ 8q+32q2 ≤ 40q2, where the first inequality is obtained
by Lemma 29.

By Lemmas 41 and 42 and by applying a union bound, the probability that BadRHit or BadR-
Collide occurs in one of the calls to ReadTape(i, xi) with xi /∈ Fi is thus upper bounded by

40q2 ·
((4q2 + q)2

2n
+

4(4q2 + q)3

2n

)

≤
21000q8

2n
.

(2, 5)-Trees and (6, 9)-Trees. At this point it will be useful to establish some terminology for
distinguishing trees that have nodes with origin/terminal 2 and 5 from trees that have nodes with
origin/terminal 6 and 9. Indeed:

Lemma 44. A ready node with origin 2 (resp. 5, 6, 9) has terminal 5 (resp. 2, 9, 6).

Proof. This is obvious from MakeNodeReady.

Moreover, recall that a non-root node’s origin is the terminal of its parent (Lemma 9). In particular,
it follows from Lemma 44 that if r.end has position 2 or 5 (resp. 6 or 9) where r is the root of a
tree, then n.end has position 2 or 5 (resp. 6 or 9) for every ready node n in the tree rooted at r.

Definition 16. A tree is called a (2, 5)-tree if its root has terminal 2 or 5; a tree is a (6, 9)-tree if
its root has terminal 6 or 9.

By the above remarks, every ready node of a (2, 5)-tree has terminal 2 or 5, and every ready node
of a (6, 9)-tree has terminal 6 or 9.

Bad Adapt. The CheckBadA procedure is called once per tree. The call is made after Sample-
Tree(r) is called and before AdaptTree(r) is called for a tree with root r, i.e., right after the pending
queries in the tree have been sampled.

Recall that by Lemmas 11 and 19, before SampleTree(r) is called, each node n in the tree is
associated to a (unique) proper partial path containing n.id and whose endpoints are the origin
and terminal of the node. Each such proper partial path thus has the form {xh}

2
h=5 in the case of a

(2, 5)-tree, and has the form {xh}
6
h=9 in the case of a (6, 9)-tree. The call to SampleTree assigns the

values fi(xi) and fj(xj) to Fi(xi), Fj(xj) where (i, j) ∈ {(2, 5), (6, 9)} are the endpoints of the path,
for each such partial path. After the call to SampleTree, thus, the partial path can be extended
by one query in each direction, meaning that each node in the tree can be associated to a unique
(4, 3)-partial path {xh}

3
h=4 containing n.id in the case of a (2, 5)-tree and to a unique (8, 7)-partial

path {xh}
7
h=8 in the case of a (6, 9)-tree. We will refer to these partial paths as, respectively, the

(4, 3)-partial path associated to n (for (2, 5)-trees) and the (8, 7)-partial path associated to n (for
(6, 9)-trees).

The (4, 3)- (resp. (8, 7)-) partial path associated to n thus becomes well-defined after SampleTree(r)
returns, where r is the root of the tree containing n.
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Focusing for concreteness on the case of a (2, 5)-tree, AdaptTree assigns

F3(x3)← x2 ⊕ x4

F4(x4)← x3 ⊕ x5

for each non-root node n, where {xh}
3
h=4 is the (4, 3)-partial path associated to n. (See the proce-

dures AdaptTree, AdaptNode and Adapt.) We say that the queries (3, x3) and (4, x4) are adapted
in the call to AdaptTree. The assignments to F3 and F4 are also called adaptations. Thus, two
adaptations occur per non-root node in the three.

As mentioned, the procedure CheckBadA(r) is called before any adaptations take place. To
briefly describe this procedure, CheckBadA starts by “gathering information” about all the adap-
tations to take place for the current tree, i.e., two adaptations per non-root node. For this it uses
the Adapt class. The Adapt class has four fields: query, value, left and right.

For example, given a non-root node n in a (2, 5)-tree with associated (4, 3)-partial path {xh}
3
h=4,

and letting

y3 = x2 ⊕ x4

y4 = x3 ⊕ x5

be the future values of F3(x3) and F4(x4) respectively, GetAdapts will create the two instances of
Adapt with the following settings:

(query, value, left, right) = ((3, x3), y3, x2, x5),

(query, value, left, right) = ((4, x4), y4, x2, x5).

These two instances are added to the set A, which contains all the instance of Adapt for the
current tree (A is reset to ∅ at the top of CheckBadA).

In our proof, A refers to the state of this set after GetAdapts(r) returns. Abusing notation a
little, we will write

(i, xi, yi) ∈ A

as a shorthand to mean that there exists some a ∈ A of the form

((i, xi), yi, ∗, ∗).

after GetAdapts returns.

Lemma 45. Assume that GetAdapts(r) has returned. Then for every (i, xi, yi) ∈ A there exists a
unique a ∈ A of the form ((i, xi), ∗, ∗, ∗).

Proof. For simplicity we let i = 3. Other cases can be proved similarly.
The Lemma is equivalent to the statement that for a given query (3, x3), there is at most one

non-root node n in the tree rooted at r whose associated partial path {xh}
3
h=4 contains (3, x3). By

contradiction, assume that n′ 6= n is a second non-root node whose associated partial path {x′h}
3
h=4

contains (3, x3), i.e., x
′
3 = x3.

If x2 = x′2 then (x2, x3) = (x′2, x
′
3) and, by extension, {xh}

3
h=4 = {x

′
h}

3
h=4. Since n.end 6= n′.end

by Lemma 7 we must have n.beginning = n′.end and n.end = n′.beginning, but this contradicts
Lemma 9. Hence x2 6= x′2.
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The values F2(x2) and F2(x
′
2) are sampled in SampleTree. We can assume wlog that F2(x2)

is sampled before F2(x
′
2) since x2 6= x′2. But then BadRCollide occurs in ReadTape(2, x′2), since

the 2chain (1, x′1, x
′
2) is left active and the query (3, x′3) where x′3 = x′1 ⊕ f2(x

′
2) is incident with

the active 2chain (1, x1, x2). The simulator would have aborted in the procedure, leading to a
contradiction.

By Lemma 45 each tuple (i, xi, yi) ∈ A can be uniquely associated to a node in the tree being
adapted, specifically the node n whose associated partial path {xh}

3
h=4 or {xh}

7
h=8 contains (i, xi).

For convenience we will say that (i, xi, yi) is adapted in n or, equivalently, adapted in the path {xh},
where {xh} is a shorthand for {xh}

3
h=4 (for (2, 5)-trees) or for {xh}

7
h=8 (for (6, 9)-trees).

Definition 17. Let r be a root node, and consider the point in the execution after GetAdapts(r)
is called. Then we define the following two bad events with respect to the state of the tables at this
point (in particular, before AdaptTree(r) is called):

nosep BadAHit is the event that for some (i, xi, yi) ∈ A, there exist x′i−1 ∈ F̃i−1 and x′i+1 ∈ F̃i+1 such
that yi = x′i−1 ⊕ x′i+1.

nosep BadAPair is the event that there exists two tuples (i, xi, yi) ∈ A and (i + 1, ui+1, vi+1) ∈ A
adapted in different paths {xi} and {ui}, such that xi−1 6= ui−1 and the query (i+2, xi⊕vi+1) is
active or is incident with an active 2chain, or such that xi+2 6= ui+2 and the query (i−1, yi⊕ui+1)
is active or is incident with an active 2chain.

Moreover, we let BadA = BadAHit ∨ BadAPair.

In the rest of this section, we will let r denote the root of the tree being adapted as in the above
definition.

The probabilities in the following lemmas are over the randomness of tape entries read in
SampleTree(r). By Lemma 11, the end of the nodes in the tree haven’t been defined and are
sampled uniformly at random in SampleTree. When we use the notations {xh}

3
h=4 or {xh}

7
h=8

(often shortened to {xh}, as above) for the path associated to a node n in the tree rooted at r,
our meaning is that the endpoints x4, x3 or x8, x7 (depending) of the path are random variables
defined over the coins read by SampleTree. By extension, each (i, xi, yi) ∈ A is a random variable
over the same set of coins.

Also note that the sets F̃i are not changed during the call to SampleTree(r) (though some
pending queries become defined), therefore the sets are fixed before SampleTree(r) is called and
are independent of the randomly sampled queries.

On the other hand, the sets Ci (Definition 15) are affected by SampleTree(r) and should therefore
also be seen as random variables. In more detail, Lemma 38 implies that changing a query from
pending to defined at position i ∈ {2, 5, 6, 9}, can only affect Ci−1 and Ci+1. (Note indeed that such
a change does not affect the set of active 2chains, as the tables F̃j do not change.) Thus if r is
the root of a (2, 5)-tree then C1 and C3 are affected by the new entries added to F2 (and only by
those entries), while C4 and C6 are affected by the new entries added to F5 (and only by those
entries). The other Ci’s are not affected by the call to SampleTree(r), and can be seen as static sets.
Symmetric observations hold for (6, 9)-trees.

Lemma 46. Let n be a non-root node in the tree rooted at r, then the probability that BadAHit

occurs for a query adapted in n is at most 2(4q2 + q)2/2n.
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Proof. First consider an adapted query in position 3. Let (3, x3, y3) ∈ A be adapted in the path
{xh}. We have y3 = x2 ⊕ x4 = x2 ⊕ f5(x5)⊕ x6, where f5(x5) is uniformly distributed and x2 and
x6 are fixed before SampleTree(r) is called. Both F̃2 and F̃4 contain at most 4q2 + q queries by
Lemma 39, and are independent of f5(x5). Therefore, the probability that x2 ⊕ f5(x5)⊕ x6 equals
a value in F̃2 ⊕ F̃4 is at most (4q2 + q)2/2n. Similarly, the same bound can be proved for adapted
queries in other positions.

Since two queries are adapted per node, the lemma follows by a union bound.

Lemma 47. Let n1 and n2 be non-root nodes in the tree rooted at r. The probability that BadAPair

occurs for the position-i query adapted in n1 and the position-(i+1) query adapted in n2 is at most
(8q2 + 2q + 4(4q2 + q)2)/2n.

Proof. We have i = 3 if r is the root of a (2, 5)-tree, or i = 7 if r is the root of a (6, 9)-tree. Let
(i, xi, yi) and (i+ 1, ui+1, vi+1) be adapted in paths {xh} and {uh} of n1 and n2 respectively.

We have xi = xi−2⊕ fi−1(xi−1) and vi+1 = ui⊕ui+2 = ui−2⊕ fi−1(ui−1)⊕ui+2. If xi−1 6= ui−1,
the value of xi ⊕ vi+1 is uniformly distributed since fi−1(xi−1) and fi−1(ui−1) are uniform and
independent. Moreover, the value is also independent of F̃i+2 and of Ci+2, as discussed before
Lemma 46. Thus the probability that the value is in F̃i+2 ∪ Ci+2 is

|F̃i+2 ∪ Ci+2|/2
n ≤ (|F̃i+2|+ |Ci+2|)/2

n ≤ (4q2 + q + 2(4q2 + q)2)/2n

where the second inequality uses Lemmas 39 and 40.
By a symmetric argument, the same bound can be proved for the event that xi+2 6= ui+2 and

(i− 1, yi, ui+1) is active or is incident with an active 2chain. The lemma follows by a union bound
on these two events.

Lemma 48. The probability that BadA occurs in an execution of G3 is at most 1960q8/2n.

Proof. By Lemma 27, there are at most 4q2 non-root nodes in an execution. By Lemmas 46 and
47, and with a union bound over all non-root nodes in an execution, the probability that either
BadAHit or BadAPair occurs in an execution of G3 is at most

4q2 ·
2(4q2 + q)2

2n
+ (4q2)2 ·

8q2 + 2q + 4(4q2 + q)2

2n
≤

1960q8

2n

We say that an execution of G3 is good if none of the bad events occurs. (Note that a good execution
is not defined as “one that doesn’t abort”; however, the two notions are shown to be equivalent for
G3 in Lemma 69.)

Lemma 49. An execution of G3 is good with probability at least 1− 22992q8/2n.

Proof. With a union bound on the results in Lemmas 36, 43 and 48, the probability that at least
one of BadP, BadR and BadA occurs is upper bounded by

32q4

2n
+

21000q8

2n
+

1960q8

2n
≤

22992q8

2n
.

Thus the probability of obtaining a good execution is at least 1− 22992q8/2n.
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5.4.2 Assertions don’t Abort in G3

Now we prove that assertions never fail in executions of G3. All lemmas of this section apply to G3

(which is sometimes reminded) except for Lemma 52, which applies both to G3 and G4.

We recall that assertions appear in procedures F, ReadTape, FindNewChildren, MakeNodeReady,
and Adapt.

Lemma 50. In an execution of G3, the simulator doesn’t abort in Assert called by FindNewChil-
dren.

Proof. The counter NumOuter is increased only before an outer node is added in FindNewChildren.
Therefore, an assertion fails only if the (q+1)th outer node is about to be added. Thus we only need
to prove that even without the assertions in FindNewChildren at most q outer nodes are created
in G3.

When an outer node is created, the permutation query in its maximal path has been defined
because of the call to CheckP in FindNewChildren. Therefore each outer node can be associated
with an entry in T .

Next we prove that the outer nodes are associated with distinct entries in T . Assume by
contradiction that two outer nodes n1 and n2 are associated to the same permutation query
T (x0, x1) = (x10, x11), and let x2 = F1(x1) ⊕ x0, x9 = F10(x10) ⊕ x11. When n1 or n2 is cre-
ated in FindNewChildren, one of the queries (2, x2) and (9, x9) is pending and the other is defined,
and the pending one is the end of its parent. Assuming without loss of generality that (2, x2) be-
comes defined after (9, x9), we have n1.parent.end = n2.parent.end = (2, x2). By Lemma 7, the end
of nodes are distinct and hence n1.parent = n2.parent. But then we have n1.id = n2.id = (1, x1, x2)
for the siblings, contradicting property (i) in Lemma 23.

Next we consider the entries in the table T , each of which is added when the permutation oracle
is called by the simulator or by the distinguisher.

In an execution of G3, the simulator makes permutation queries only in MakeNodeReady(n).
Moreover, if n is an outer node, the permutation query made in MakeNodeReady(n) already exists
when n is created, because otherwise CheckP will return false. Therefore, new entries are added
to T in MakeNodeReady(n) only if n is an inner node.

Next we prove that no outer node corresponds to an entry in T added by MakeNodeReady(n)
where n is an inner node. Assume n.beginning = (5, x5) without loss of generality, and let SimP−1

(x10, x11) = (x0, x1) be the permutation query made in MakeNodeReady(n), which does not exist
in T before.

When the entry T (x0, x1) = (x10, x11) is added, the queries (10, x10) and (9, x9) for x9 =
F10(x10) ⊕ x11 have been defined in MakeNodeReady(n) (or before). Moreover, after making the
permutation query, the simulator immediately calls F(1, x1) (which cannot abort) and then sets
n.end = (2, x2) for x2 = x0⊕F1(x1) (or aborts if (2, x2) is already defined or pending). During the
above process, no new node is created. Hence if an outer node n′ is associated to the permutation
query T (x0, x1) = (x10, x11), it must be created after MakeNodeReady(n) successfully returns.

Since (9, x9) is defined and the beginning of a newly created node is pending, we must have
n′.beginning = (2, x2). Then n.end = n′.beginning, which implies n′.parent = n by Lemma 9.
However, n′.id = (1, x1, x2) and the maximal path of n contains both queries (1, x1), and (2, x2),
contradicting property (ii) of Lemma 23.
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Therefore, the permutation queries associated to the outer nodes must be added to T by a
distinguisher query. Since the distinguisher makes at most q permutation queries, at most q outer
nodes are created.

Lemma 51. In an execution of G3, the assertions in procedures ReadTape and Adapt always
hold.

Proof. In a call to ReadTape made in F, the assertion always holds because F calls ReadTape only
if x /∈ Fi.

ReadTape is also called in SampleTree(n), where n.end is sampled. By Lemma 11, the query
n.end is not defined when SampleTree(n) is called. ReadTape is called at the beginning of Sample-
Tree, therefore the query is not defined when ReadTape is called.

Now consider Adapt(i, xi, yi) called in AdaptNode(n). The arguments of the call are determined
in SampleTree(r), where r is the root of the tree containing n. We will give the proof for i = 3,
with the proof for other positions being similar.

Let {xh}
3
h=4 be the path associated to the node n, where x3 = F2(x2)⊕x1. When F2(x2) = f2(x2)

is sampled in SampleTree(r), the query (1, x1) is already defined. If (3, x1 ⊕ f2(x2)) is defined at
this point, BadRHit occurs and the simulator aborts. Thus the query (3, x3) is not defined when
SampleTree(r) is called.

No query in position 3 gets defined during SampleTree(r). By Lemma 45 and since A contains
all queries to be adapted in AdaptTree(r), the query (3, x3) is not adapted between the time
SampleTree(r) returns and Adapt(i, xi, yi) is called. Therefore, the query (3, x3) is not defined
when Adapt(3, x3, y3) is called, i.e., the assertion must hold.

We are left with the assertions in MakeNodeReady and F. The procedure F is only called by the
distinguisher and by MakeNodeReady.

A call to NewTree can be split into two phases: the construction phase consists of the first
part of NewTree until GrowTree returns, and the completion phase consists of the next three
instructions in NewTree, i.e., until AdaptTree returns. By extension, we say that a tree is in its
construction phase or in its completion phase if the call to NewTree that created the tree is in the
respective phase. The phase of the simulator is the phase of the tree being handled currently, i.e.,
is the phase of the last call to NewTree that has not yet returned.

A tree is completed if its completion phase is over, i.e., if AdaptTree(r) has returned, where r
is the root of the tree. This is quasi-synonymous with a tree being discarded, where we recall that
a tree is “discarded” when its root drops off the stack, i.e., when the call to NewTree in which the
tree was created returns.

The simulator switches from the construction phase of a tree to the construction phase of another
tree when a call to F causes a new tree to be created. The simulator will enter the construction
phase of the new tree and will only resume the construction phase of the previous tree after the new
tree is completed (and discarded). On the other hand, once the simulator enters the completion
phase of a tree, it remains inside the completion phase of that tree until the phase is finished. In
particular, at most one tree is in its completion phase at a time, and if the simulator is not in a
completion phase then no tree is in its completion phase.

We note that calls to F and to MakeNodeReady do not occur when the simulator is in a com-
pletion phase, and, in particular, the assertions in these procedures take place when the simulator
is not in a completion phase. This explains why for the following proof, we focus on properties that
hold when the simulator is not in a completion phase.
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Lemma 52. In G3 or G4, if x5 ∈ F5 and x6 ∈ F6, there exists a node n whose maximal path
contains x5 and x6.

Similarly, if x1 ∈ F1, x2 ∈ F2, x9 ∈ F9 and x10 ∈ F10 such that T (x0, x1) = (x10, x11) for
x0 = F1(x1)⊕ x2 and x11 = x9 ⊕ F10(x10), there exists a node n whose maximal path contains x1,
x2, x9 and x10.

Proof. By Lemma 10, (5, x5) becomes defined in a call SampleTree(n) where n is a node such that
n.end = (5, x5) and, likewise, (6, x6) becomes defined in a call SampleTree(m) where m is a node
such that m.end = (6, x6). Let r be the root of the tree containing n and let s be the root of the
tree containing m. Since n is in a (2, 5)-tree and m is in a (6, 9)-tree, r 6= s. Thus we can assume
wlog that SampleTree(s) is called before SampleTree(r). In particular, since calls to SampleTree
aren’t nested, SampleTree(s) has already returned when SampleTree(r) is called.

Now consider the last call to GrowSubTree(r) in GrowTree(r). The calls to FindNewChildren
don’t add any new nodes during this call, otherwise the variable modified will be set to true, and it
wouldn’t be the last call to GrowSubTree(r). Therefore, no change (to any data structure) is made
during the last call to GrowSubTree(r). In particular, when the call occurs, n is already in the tree
rooted at r and SampleTree(s) has already been called and returned.

When FindNewChildren(n) is called during the last call to GrowSubTree(r), and since no chil-
dren are added, when x6 ∈ F6 is checked we must have either Equivalent(n.id, (5, x5, x6)) = true or
NotChild(n, (5, x5, x6)) = false. In both cases, a node n′ (either n′ = n or n′ ∈ n.children) exists in
the tree rooted at r such that the maximal path of n′ contains (5, x5, x6). Therefore, a node exists
whose maximal path contains (5, x5, x6).

The proof for the second statement is similar.

Since the lemma considers a point in time when SampleTree(r) and AdaptTree(r) have returned
(as otherwise the simulator is in a completion phase), a call AdaptNode(n′) has occurred and
returned in AdaptTree(r), so the queries in the maximal path of n′ form a completed path by
Lemma 22. Since the maximal path of n′ contains (5, x5, x6), this completes the proof for this case.

We first prove that the last query being defined is either (2, x2) or (9, x9). By contradiction,
assume that (1, x1) is defined after the other three queries (the case for (10, x10) is symmetric).
Note that (1, x1) can only be sampled in a call to ReadTape(1, x1). When ReadTape(1, x1) is called,
the query T (x0, x1) mustn’t have been added to T , otherwise BadRHit occurs since (0, x0, x1) is left
active and (1, x1, x2) is right active. In this case, however, BadP occurs when T (x0, x1) = (x10, x11)
is added in a call to P(x0, x1) or P

−1(x10, x11), since x10 ∈ F10 and x1 ∈ F1 at the moment.

Now consider the second statement. We first prove that the last query being defined is either
(2, x2) or (9, x9). By contradiction, assume that (1, x1) is defined after the other three queries (the
case for (10, x10) is symmetric). Note that (1, x1) can only be sampled in a call to ReadTape(1, x1).
When ReadTape(1, x1) is called, the query T (x0, x1) mustn’t have been added to T , otherwise
BadRHit occurs since (0, x0, x1) is left active and (1, x1, x2) is right active. In this case, however,
BadP occurs when T (x0, x1) = (x10, x11) is added in a call to P(x0, x1) or P−1(x10, x11), since
x10 ∈ F10 and x1 ∈ F1 at the moment.

The rest of the proof is similar to the first statement, and we only give a sketch here. By Lemma
10, (2, x2) and (9, x9) become respectively defined in calls SampleTree(r) and SampleTree(s) where
r 6= s are the roots of (2, 5)- and (6, 9)-trees respectively. Wlog, we assume that SampleTree(s) is
called (and returns) before SampleTree(r). Then the queries (1, x1), (9, x9) and (10, x10) are defined
when the last call to GrowSubTree(r) occurs. Since no new node is added during this call, there is
a node n′ in the tree rooted at r whose maximal path contains (1, x1, x2).
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(Subsequent lemmas of this section only relate to G3.)

Lemma 53. The following statements hold if the simulator is not in a completion phase.

If x5 ∈ F5 and x6 ∈ F6, there exists a completed path {xh}
11
h=0 containing x5 and x6.

Similarly, if x1 ∈ F1, x2 ∈ F2, x9 ∈ F9 and x10 ∈ F10 such that T (x0, x1) = (x10, x11) for
x0 = F1(x1) ⊕ x2 and x11 = x9 ⊕ F10(x10), there exists a completed path {xh}

11
h=0 containing x1,

x2, x9 and x10.

Proof. Consider the first statement. By Lemma 52, there exists a node n whose maximal path
contains x5 and x6. We claim that either n.beginning or n.end is in {(5, x5), (6, x6)}, depending on
the origin of n. In all cases, one of the two queries is the end of n or n’s parent, thus is the end of
a node in the tree containing n. Let r denote the root of the tree containing n. Since the queries
are both defined and by Lemma 11, SampleTree(r) must has been called; and since the lemma
considers a point when SampleTree(r) and AdaptTree(r) have returned (as otherwise the simulator
is in a completion phase), a call AdaptNode(n) has occurred and returned in AdaptTree(r), so the
queries in the maximal path of n form a completed path by Lemma 22. Since the maximal path of
n contains (5, x5, x6), this completes the proof in this case.

The second statement is proved in a similar manner. There exists a node containing queries
(9, x9) and (2, x2), and one of the queries must be the end of either n or n.parent. Let r be the root
of the tree containing n. Since the queries are defined, calls to SampleTree(n) and to AdaptTree(n)
have returned. Therefore the queries in the maximal path of n form a completed path, which
contains the four queries required by the problem.

Lemma 54. The first assertion in MakeNodeReady always holds.

Proof. The assertions in MakeNodeReady(n) occur right before n.end is assigned. As in the pseu-
docode, let (j, xj) be the query that is about to be assigned to n.end. Thus j is the terminal of
n.

First consider j = 2. The origin of n is 5 and F(9, x9), F(10, x10) and F(1, x1) are called in
MakeNodeReady(n). By Lemma 19, the queries (9, x9), (10, x10), (1, x1) and (2, x2) are in the
maximal path of n. If x2 ∈ F2, then all four queries are defined. By Lemma 53 (MakeNodeReady
is only called in the construction phase), they are contained in a completed path. By extension,
the completed path also contains (5, x5) in the maximal path of n, which equals n.beginning =
n.parent.end. However, since SampleTree hasn’t been called on nodes in the tree containing n and
n.parent, the query n.parent.end is not defined by Lemma 11. This contradicts the definition of a
completed path, in which each query should be defined.

The case where j = 5 can be proved similarly: if x5 ∈ F5, since x6 ∈ F6 and by Lemma 53,
the queries (5, x5) and (6, x6) are in a completed path when the first assertion of MakeNodeReady
is reached. The completed path also contains n.beginning, which is not defined at the moment by
Lemma 11, leading to a contradiction.

The cases j = 6, 9 are symmetric to the above cases.

The following group of lemmas build up to the proof that the second assertion in MakeNodeReady
as well as the assertion in F do not abort.

We begin the analysis by giving some definitions that enable us to discuss all non-completed
trees collectively.
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Definition 18. The tree stack is a list of trees (T1,T2, . . . ,Tℓ) consisting of all trees such that
SampleTree(ri) hasn’t been called yet, where ri is the root of Ti, and where Ti is created before Tj
for i < j.

A new tree is created when F calls NewTree, and NewTree creates a new root node. Since a tree Ti
with root ri is removed from the tree stack when SampleTree(ri) is called in NewTree, and since
only the last call to NewTree on the stack can be in its completion phase, Tℓ will be the first to
be removed from the tree stack. Hence the tree stack behaves in LIFO fashion, as indicated by its
name.

If the simulator is in a construction phase and a tree rooted at r is not in the tree stack then
the tree rooted at r must be completed. Indeed, the call SampleTree(r) has occurred by definition,
so AdaptTree(r) must already have occurred and returned, given that the simulator is not in a
completion phase.

Definition 19. A node n is is in the tree stack if n is in a tree Ti in the tree stack.

Lemma 55. Assume the simulator is not in a completion phase. Then a query (i, xi) is pending if
and only if (i, xi) = n.end for some node n in the tree stack.

Proof. Recall that a query is pending if and only if there exists a node n such that n.end equals
the query, and the query hasn’t been defined. We only need to prove that n.end is defined if and
only if n is not in a tree in the tree stack.

If a tree rooted at r is not in the tree stack, then SampleTree(r) has been called. Moreover, as
the simulator is not in a completion phase, SampleTree(r) has returned and thus the end of each
node in the tree has been sampled.

On the other hand, SampleTree(ri) hasn’t been called for the roots ri of trees in the tree stack,
thus by Lemma 11 the end of the nodes in the tree stack are not defined.

Lemma 56. Let (T1,T2, . . . ,Tℓ) be the tree stack. If ℓ ≥ 1 the tree T1 is created by a distinguisher
query to F. Moreover Ti+1 is created during the call to MakeNodeReady(ni), where ni is the unique
non-ready node in Ti, for 1 ≤ i < ℓ.

Proof. The first tree to be created during a query cycle obviously comes from a distinguisher query
to F, since if the distinguisher query to F does not cause a call to NewTree the simulator returns
an answer immediately to the distinguisher. Moreover, this tree is only removed from the tree stack
when the first call to NewTree enters its completion phase, after which no more calls to NewTree
occur, since the simulator returns an answer to the distinguisher once the first call to NewTree
returns.

The simulator calls F only in MakeNodeReady. Whenever a new tree is created, the simulator
will not call MakeNodeReady on nodes in the old tree until the new tree is completed. Therefore
Ti+1 must be created in MakeNodeReady(n) for some n in Ti, since Ti is the newest tree that
hasn’t been completed at the moment when Ti+1 is created. Moreover, a call to F is made in
MakeNodeReady(n) only when n is not ready. By Lemma 20, there is at most one non-ready node
in a tree. Therefore, n must be the unique non-ready node in tree Ti at the moment when Ti+1 is
created.

Later, nodes may be added to Ti+1 (and more trees may be added to the tree stack), but the
root of Ti+1 never changes and the state of Ti doesn’t change until after Ti+1 leaves the tree stack.
This completes the lemma.

45



For the rest of the proof ℓ will denote the number of trees in the tree stack. The above lemma
implies that each tree Ti for i < ℓ in the tree stack contains a non-ready node. The non-ready node
is a leaf, because non-ready nodes cannot have children. Thus each tree in the tree stack (except
possibly Tℓ) contains a unique non-ready leaf, where the uniqueness is by Lemma 20.

In the following discussion, we will focus on a point in time when MakeNodeReady(n) aborts
or when F called by MakeNodeReady(n) aborts. In such a case n must be a node in Tℓ since a tree
is always “put on hold” while a new tree is created and completed. Thus n must be the unique
non-ready leaf of Tℓ and, in particular, the last tree on the tree stack has a non-ready leaf.

We let ri denote the root of Ti and ni denote the unique non-ready leaf in Ti, 1 ≤ i ≤ ℓ.

Definition 20. An (i, j)-partial path {xh}
j
h=i is proper if (i, j) ∈ {(2, 6), (5, 9), (5, 2), (6, 2), (9, 5),

(9, 6)} and xi /∈ Fi, xj /∈ Fj . Moreover, a proper (i, j)-partial path is a proper outer partial path if
i > j, and is a proper inner partial path if i < j.

(Proper partial paths were already defined in Section 4, but the rest Definition 20 is new.) Observe
that a proper inner partial path must be a (2, 6)-partial path or a (5, 9)-partial path.

Lemma 57. A 2chain is contained in at most one proper partial path.

Proof. This is easy to see, but we provide a detailed proof for completeness.

Let {xh}
j
h=i be a partial path containing the 2chain (k, xk, xk+1). Then the sequence xk+1, . . . , xj

(where, as usual, x11 is followed by x0) is uniquely determined by (k, xk, xk+1) and j, and the
sequence xk, xk−1, . . ., xi (where, as usual, x0 is followed by x11) is uniquely determined by
(k, xk, xk+1) and i. Also, we have Fh(xh) 6= ⊥ for h 6= i, j, 0, 11 by the definition of a partial
path. The proper partial path containing (k, xk, xk+1) (if it exists) is thus uniquely determined by
the additional requirement that xi /∈ Fi, xj /∈ Fj .

Definition 21. The queries (i, xi) and (j, xj) are called the endpoint queries of the partial path

{xh}
j
h=i.

Definition 22. An oriented partial path is a pair R = (P, σ) where P = {xh}
j
h=i is a partial path

and where σ ∈ {+,−}. The starting point of R is (i, xi) if σ = + and is (j, xj) if σ = −. The ending
point of R is (j, xj) if σ = + and is (i, xi) if σ = −.

Definition 23. A path cycle is a sequence of oriented proper partial paths ((P1, σ1), . . . , (Pt, σt)),
t ≥ 2, such that:

1. Adjacent paths in the cycle are distinct, i.e., Ps 6= Ps+1 for all 1 ≤ s ≤ t, where (Pt+1, σt+1) :=
(P1, σ1).

2. The ending point of (Ps, σs) is the starting point of (Ps+1, σs+1) for 1 ≤ s ≤ t.

3. Not both Ps and Ps+1 are inner proper partial paths for 1 ≤ s ≤ t.

Next we prove that if abortion occurs in the second assertion in MakeNodeReady or in the assertion
in F, there must exists a path cycle in the sense of Definition 23.

Lemma 58. For i < ℓ, if the origin of ni is 2 (resp. 5, 6, 9), then the position of ri+1.end is
6 (resp. 9, 2, 5). Moreover the endpoint queries of the maximal path of ni are ni.beginning and
ri+1.end.
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Proof. As per the discussion in Lemma 32, when the origin of n is 2 (resp. 5, 6, 9) the only call
F(j, xj) made in MakeNodeReady(n) that can create a new tree is the one with j = 6 (resp. 9,
2, 5). The reason is that the other calls are either in positions other than 2, 5, 6 or 9 or else the
corresponding query has already been defined.

By Lemma 56, Ti+1 is created during the call to MakeNodeReady(ni). Therefore ri+1.end =
(j, xj) where j is determined by the origin of ni as above. The fact that (j, xj) is in the maximal
path of ni follows by Lemma 19. Since SampleTree(ri+1) hasn’t been called by definition of the tree
stack, ri+1.end is pending by Lemma 11 and, being undefined, must be an endpoint of the maximal
path of ni.

Finally, the fact that ni.beginning is also an endpoint of the maximal path follows directly by
Definition 10.

Lemma 59. If Ti is a (2, 5)-tree (resp. (6, 9)-tree) and i < ℓ, then Ti+1 is a (6, 9)-tree (resp.
(2, 5)-tree).

Proof. This is a direct consequence of the first part of Lemma 58.

Lemma 60. When the simulator aborts in a call to F(i, xi) by MakeNodeReady(n), we have n = nℓ

and if the origin of nℓ is 2 (resp. 5, 6, 9) then i = 6 (resp. 9, 2, 5).

Proof. The first statement follows from the fact that MakeNodeReady is only called on a node in
the latest tree in the tree stack, and the node is not ready when abortion occurs.

The second statement is proved similarly to Lemma 58: Abortion occurs only if (i, xi) is pending,
which implies that i ∈ {2, 5, 6, 9} and that (i, xi) is not defined when n is created. With the same
argument as in the proof for Lemma 32, when the origin of n is 2 (resp. 5, 6, 9) only the call with
i = 6 (resp. 9, 2, 5) may abort.

Lemma 61. If the second assertion in MakeNodeReady or the assertion in F fails, then the
maximal path of each non-root node in the tree stack is a proper partial path. Moreover, the endpoint
queries of the proper partial path are pending.

Proof. As a preliminary to the proof, we remind that pending queries are undefined.

Let n be a non-root node in the tree stack. By Lemma 55, the end of ready nodes in the tree
stack are all pending. Since n.beginning = n.parent.end, n.beginning is pending.

In particular, if n is ready the statement follows by Lemmas 19 and 44 because n.end and
n.beginning are both pending. Thus we can assume that n is not ready, in which case n is the
non-ready leaf of a tree in the tree stack.

If n = nk for k < ℓ then the statement follows by Lemma 58 and because nk.beginning and
rk+1.end are both pending.

If n = nℓ then the abortion occurs during the call to MakeNodeReady(n) (possibly within a
subcall to F). If the second assertion in MakeNodeReady(n) fails, then the statement follows by
part 4 of Lemma 19 since the query which was going to be assigned to n.end is pending by the
abort condition.

Otherwise the abortion occurs in a call F(h, xh) made by MakeNodeReady(n), and in which
case (h, xh) is necessarily pending. The statement then follows by Lemma 19 (which tells us that
(h, xh) is in the maximal path of n) and Lemma 60 (which tells us the value of h).
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Lemma 62. If a node’s maximal path is an inner path, then the node has origin 5 or 6 and
moreover the node is not ready.

Proof. Recall that an inner path must be a proper (2, 6)- or (5, 9)-partial path. In particular, the
maximal path of a ready node is not an inner path, which establishes the last part of the statement.

When a node n with origin 2 or 9 is created, its maximal path contains n.id, which includes
a query in position 1 or 9. But inner paths don’t contain queries in position 1 or 9, by definition,
which establishes the first part of the statement.

Lemma 63. If the second assertion in MakeNodeReady or the assertion in F fails, then the nodes
in the tree stack have distinct maximal paths.

Proof. We assume by contradiction that there exists two distinct nodes m1 and m2 whose maximal
paths are identical. Observe that the maximal path of a ready non-root node n has length 10 (and
the two endpoint queries are n.beginning and n.end), while the maximal path of a non-ready leaf
ni 6= nℓ is strictly shorter. Therefore, we consider the following two cases.

If the maximal paths of both m1 and m2 have length 10, then at least one of them is ready
(since the only possible non-ready node with maximal path of length 10 is nℓ), and we assume
wlog that m1 is ready. If m1.beginning = m2.beginning, then their parents have the same end and
by Lemma 7, we have m1.parent = m2.parent. By statement (i) of Lemma 23, the id of sibling
nodes must contain at least one different query, and hence their maximal paths are different. If
m1.beginning 6= m2.beginning then we must have m2.beginning = m1.end. By Lemma 9, m1 is
the parent of m2; then by statement (ii) of Lemma 23, the maximal paths of m1 and m2 are not
identical.

Now we consider the case where both m1 and m2 are of length strictly shorter than 10. Then
neither m1 nor m2 is ready, i.e., they must be the non-ready leaves: let m1 = ni and m2 = nj

for 1 ≤ i < j ≤ ℓ. In particular, if j = ℓ, the abortion must occur in a call to F, otherwise the
maximal path of m2 = nℓ has length 10. We note that if two partial paths are identical, their
endpoints must be identical11. By Lemmas 58 and 60, the endpoints of the maximal paths of ni

and nj are determined12 by the origins of ni and nj, and their endpoints are identical only if the
origins are the same (this also holds when j = ℓ, because the positions in Lemma 60 are the same
as in Lemma 58).

Since ni and nj are in different trees, they must have different parent nodes, and by Lemma 7
we have ni.beginning 6= nj.beginning. By Lemma 58 and since i < ℓ, the endpoint queries of the
maximal path of ni are ni.beginning and ri+1.end, so we must have ri+1.end = nj.beginning. By
Lemma 58 again, however, this implies that nj does not have the same origin as ni. As remarked
above, however, this implies that the maximal paths of ni and nj have different endpoints, and
hence cannot be the same.

Lemma 64. If the second assertion in MakeNodeReady or the assertion in F fails, there exists a
path cycle.

11 To wit, an (i, j)-partial path and an (i′, j′)-partial path have identical endpoints if and only if i = i′ and j = j′.
12 In more detail, Lemmas 58 and 60 imply that if the origin of n ∈ {ni, nj} is 2, 5, 6, 9 respectively, then the maximal

path of n is a (6, 2)-, (5, 9)-, (2, 6)- and (9, 5)-partial path, respectively.
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Proof. If F is called by the distinguisher, since there is no pending query at the moment, the
assertion trivially holds. We only need to consider calls to F issued by MakeNodeReady in the
following proof.

As usual, let (T1, . . . ,Tℓ) be the tree stack when the simulator aborts, and let ri and ni denote
the root and the non-ready leaf respectively in Ti for i = 1, . . . , ℓ. Then the abortion occurs in
MakeNodeReady(nℓ) or in a call to F made by MakeNodeReady(nℓ), as discussed before Lemma 58.

When the second assertion in MakeNodeReady or the assertion in F fails, both endpoint queries
of the maximal path of nℓ are pending by Lemma 61. Let (h, xh) be the query which causes the
assertion to fail, and which is therefore one of the endpoint queries of the maximal path of nℓ (the
other endpoint query being nℓ.beginning). By Lemma 55 there exists a node n′ in the tree stack
such that n′.end = (h, xh). Let Tk be the tree containing n′.

In each tree Ti, there exists a unique route from ni to ri. Let τi be the sequence of nodes in the
route except the last node ri. Note that ni 6= ri, therefore τi contains at least one node ni.

Moreover, in the tree Tk, there exists a unique route from nk to n′. Let γ be the sequence of
nodes in this route, and let ntop be the highest node in the sequence (i.e., ntop is the node in the
sequence closest to the root). Let γ1 be the prefix of γ consisting of nodes to the left of ntop, and let
γ2 be the suffix of γ consisting of nodes to the right of ntop, with neither sub-sequence containing
ntop.

Because nk is a non-ready leaf while n′ is ready, we have nk 6= n′ and γ contains at least two
nodes. The leaf nk can only be adjacent to its parent, thus nk 6= ntop. Thus nk must be in the
prefix γ1 since it is the first node in γ, so γ1 is not empty. (However, γ2 may be empty if ntop = n′.
This is also the only case in which n′ /∈ γ1 ∪ γ2.) Moreover, if the root rk is in γ, then we must
have ntop = rk. This implies that neither γ1 nor γ2 may contain rk, i.e., the nodes in γ1 and γ2 are
non-root nodes.

For each non-root node n we define the following two oriented partial paths:

– Let n+ denote the positive oriented path of n, whose partial path equals the maximal path of
n and whose starting point equals n.beginning;

– Let n− denote the negative oriented path of n, whose partial path equals the maximal path of
n and whose ending point equals n.beginning.

Moreover, for a sequence τ of non-root nodes, let τ+ and τ− be the sequences of positive and
negative oriented paths of the nodes respectively. We claim that the concatenated sequence

(τ−ℓ , τ−ℓ−1, . . . , τ
−
k+1, γ

−
1 , γ

+
2 ) (6)

is a path cycle.
Each oriented path in (6) contains the maximal path of a non-root node n in the tree stack.

By Lemma 61, these maximal paths are proper partial paths. The sequence is of length at least 2:
if k < ℓ, both τℓ and γ1 contain at least one node; otherwise k = ℓ, and it suffices to show that
n′ 6= nℓ and that n′ is not the parent of nℓ; the former follows from the fact that n′ is ready whereas
nℓ is not, while the latter follows from the fact that n′.end = (h, xh) 6= nℓ.beginning.

By Lemma 63, the maximal paths of non-root nodes in the tree stack are distinct. Since each
node appears in (6) at most once, the partial paths in the cycle are distinct and property 1 of
Definition 23 holds. In the following we therefore focus on the remaining two properties.

Let t ≥ 2 be the length of (6). Let Rs = (Ps, σs) and Rs+1 = (Ps+1, σs+1) be adjacent oriented
paths in (6), with s + 1 = 1 if s = t, and let ms and ms+1 be the nodes corresponding to Rs and
Rs+1. We will distinguish between the following four cases: (case 1) ms is not the last node of τi,
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γ1 or γ2, (case 2) ms is the last node of τi, (case 3) ms is the last node of γ1, and (case 4) ms is
the last node of γ2.

Case 1. If ms is in τi or γ1 and is not the last node in that sequence then ms+1 is in the same
sequence and is the parent of ms since these sequences represent a route towards the root (or
towards ntop). Only ready nodes have children, so ms+1 is ready and Ps+1 is an outer path by
Lemma 62, giving property 3 of Definition 23. Moreover we have Rs = m−

s and Rs+1 = m−
s+1 so

the ending point of Rs and the starting point of Rs+1 are ms.beginning = ms+1.end.

Similarly, if ms is in γ2 and is not the last node of γ2, ms+1 is also in γ2 and is a child of ms.
We have Rs = m+

s and Rs+1 = m+
s+1, and the proof is symmetric to the previous case.

Case 2. If ms is the last node of τi then its parent is ri, ms+1 = ni−1 and Rs = m−
s , Rs+1 = n−

i−1.
The ending point of m−

s is ms.beginning and, by Lemma 58, the starting point of n−
i−1 is ri.end =

ms.beginning. This establishes property 2 of a path cycle.

If the origin of ms+1 = ni−1 is 2 (resp. 5, 6, 9), the position of ri.end = ms.beginning is 6 (resp.
9, 2, 5). Either way at most one of the origins of ms, ms+1 is 2 or 9, thus at most one of Ps and
Ps+1 is an inner path by Lemma 62.

Case 3. If ms is the last node in γ1 and γ2 is not empty, then ms+1 is the first node in γ2. Both
ms and ms+1 are children of ntop, so we have ms.beginning = ms+1.beginning = ntop.end. The
beginning of the two nodes are the ending point of m−

s and the starting points of m+
s+1 respectively,

thus property 2 holds. Since nk is the unique non-ready node in Tk and nk ∈ γ1, the node ms+1 ∈ γ2
is ready and, by Lemma 62, Ps+1 is an outer path.

On the other hand, if γ2 is empty, then ms is the last node of (6) and ms+1 = m1 = nℓ and
ntop = n′. The ending point of m−

s is ms.beginning = n′.end = (h, xh), which is in the maximal
path of nℓ. More precisely, since this query is pending, it is the starting point of n−

ℓ (while the
ending point of n−

ℓ is nℓ.beginning).

Next we prove that the maximal paths of ms and nℓ can’t both be inner paths. By Lemma 20,
the paths are inner paths only if both ms and nℓ have origins 5 or 6. If nℓ has origin 5 or 6, then
no matter whether the abortion occurs in the second assertion of MakeNodeReady or in the call
to F, the query (h, xh) is in position 2 or 9, i.e., the origin of ms is h ∈ {2, 9}. Thus, ms cannot be
an inner path at the same time.

Case 4. If ms is the last path in γ2 (assuming γ2 is non-empty), then ms = n′ and ms+1 = nℓ. The
ending point of n′+ is n′.end = (h, xh), which is also the starting point of n−

ℓ . Since n′ is ready, its
maximal path is an outer path by Lemma 62 and property 3 holds.

Next we will prove that path cycles never exist in executions of G3. Note that a path cycle can
only be created when the tables are modified. The procedures that modify the tables are P, P−1,
ReadTape and Adapt. We will go through these procedures one-by-one and prove that none of
them may create a path cycle, provided that a path cycle didn’t previously exist.

Lemma 65. In an execution of G3, no path cycle is created during a call to P or P−1.

Proof. We prove the lemma for a call to P, with the argument being symmetric for a call to P−1.

Suppose an entry T (x0, x1) = (x10, x11) is added in a call to P. We must have x10 /∈ F10,
otherwise CheckBadP aborts and the entry is not added. If a path cycle is created, one of the proper
partial paths in the cycle must be an outer proper partial path that uses the new permutation query.
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However, since x10 /∈ F10, this contradicts Definition 20, which does not allow endpoints at position
10.

Lemma 66. In an execution of G3, no path cycle is created during a call to ReadTape.

Proof. Consider a call ReadTape(i, xi). If a path cycle is created, at least one of the proper partial
paths in the cycle contains the query (i, xi). Let {xh}

t
h=s denote a proper partial path containing

xi. Since xi ∈ Fi, it cannot be in an endpoint of the path. Moreover, (i, xi) must be adjacent to an
endpoint of the path; otherwise (i − 1, xi−1, xi) is left active and (i, xi, xi+1) is right active (since
neither xi−1 nor xi+1 is an endpoint query), so BadRHit would occur (and ReadTape would abort)
before Fi(xi) becomes defined.

Without loss of generality, assume i− 1 is an endpoint of the path, i.e., s = i− 1. Because the
length of a proper partial path is at least 5, i+1 is not an endpoint of the path and hence the 2chain
(i, xi, xi+1) is right active. On the other hand, an adjacent path in the path cycle, which we can
denote {x′h}

t′

h=s′ , also contains the endpoint query xi−1. If {x
′
h}

t′

h=s′ also contains xi, by Lemma 57,
the two paths are identical, violating the definition of a path cycle. Therefore {x′h}

t′

h=s′ cannot
contain xi, and exists before ReadTape(i, xi) is called. The endpoint query of a proper partial
path is incident with an active 2chain. Indeed, it can be checked from the definition that a proper
partial path must contain an active 2chain, which is incident with the endpoint queries of the path.
However, BadRCollide occurs when ReadTape(i, xi) is called, because the 2chain (i, xi, xi+1) is right
active and (i− 1, xi−1) = (i− 1, fi(xi)⊕ xi+1) is incident with a pre-existing active 2chain.

Finally we are left with the Adapt procedure. We will not prove the result for each individual
adaptation; instead, we will consider the adaptations that occur in a call to AdaptTree(r) all at
once, where r is a root node.

In the following discussion, we will use the same notations and shorthands as in Definition 17.
E.g., A denotes the set of adapted queries in AdaptTree (constructed by GetAdapts), while {xh}
denotes the partial path associated to a node, which either has the form {xh}

3
h=4 (for (2, 5)-trees)

or {xh}
7
h=8 (for (6, 9)-trees).

We start by giving a useful observation about adapted queries.

Lemma 67. When AdaptTree(r) is called, for every adapted query (i, xi, yi) ∈ A adapted in path
{xh}, there does not exist a pair (x′i+1, x

′
i+2) ∈ F̃i+1 × F̃i+2, such that x′i+1 6= xi+1 and such that

xi = Fi+1(x
′
i+1)⊕ x′i+2. The statement also holds if we replace all “+”s with “−”s.

Proof. Assume by contradiction that a pair (x′i+1, x
′
i+2) ∈ F̃i+1 × F̃i+2 satisfying the properties

exist.

Note that only pending queries become defined in SampleTree(r), so SampleTree(r) does not
change any of the tables F̃h. Thus the queries (i + 1, x′i+1) and (i+ 2, x′i+2) are already defined or
pending when SampleTree(r) is called. Note that xi = Fi±1(xi±1) ⊕xi±2, where “±” is “+” when
i ∈ {4, 8} and is “−” when i ∈ {3, 7}, and where Fi±1(xi±1) is sampled in SampleTree(r) while
(i± 2, xi±2) is already defined when SampleTree(r) is called.

If (i+1, x′i+1) is defined when ReadTape(i±1, xi±1) is called, then the query (i, xi) = (i, Fi±1(xi±1)
⊕xi±2) is incident with an active 2chain (i + 1, x′i+1, x

′
i+2) and BadRCollide occurs. Otherwise if

(i + 1, x′i+1) is not defined when ReadTape(i ± 1, xi±1) is called, since it is defined when Adapt-
Tree(r) is called, it is also sampled in SampleTree(r) after ReadTape(i ± 1, xi±1) returns. Thus
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when ReadTape(i + 1, x′i+1) is called, the query (i, xi) = (i, Fi+1(x
′
i+1) ⊕ x′i+2) is incident with an

active 2chain (i± 1, xi±1, xi±2) and BadRCollide occurs.

Therefore no matter which one of (i + 1, x′i+1) and (i ± 1, xi±1) is sampled first, BadRCollide
occurs when the other is sampled. Thus such x′i+1 and x′i+2 cannot exist when AdaptTree(r) is
called.

The proof is the same if the “+”s are replaced with “−”s.

Lemma 68. In an execution of G3, if no path cycle has existed before a call to AdaptTree, no
path cycle is created during the call.

Proof. Consider a call to AdaptTree(r) where r is a root node. If a path cycle is created in the call,
one of the proper partial paths in the cycle must contain an adapted query. Let (i, xi, yi) ∈ A be
such a query and let the query be adapted in the path {xh}. Without loss of generality, assume r
is the root of a (2, 5)-tree. Then queries in A are in position 3 or 4, and in particular i ∈ {3, 4}.

Let P = {x′h} be the proper path in the cycle that contains xi, i.e., x
′
i = xi. First we claim that

P does not contain two consecutive queries in a path being completed: Otherwise, by extending
the path in the feistel way, we can prove that

If P also contains xi−1 or xi+1, it contains two consecutive queries in the path {xh} being
completed. Then the queries in P are also in the path being completed; but since SampleTree has
been called on the path, queries in positions 2, 5, 6 and 9 of the path are all defined. Since P is
proper, its endpoints must be in these positions and so its endpoint queries are defined, contradicting
the definition of a proper partial path. Thus we have x′i−1 6= xi−1 and x′i+1 6= xi+1 (if the positions
are in the path P ).

If P does not contain another query adapted in AdaptTree(r), then the other queries in P have
been defined when AdaptTree(r) is called. If P contains a query in position i− 2, the query x′i−2 is
not active since otherwise x′i−1 6= xi−1 and Fi−1(x

′
i−1) = x′i−2 ⊕ xi, violating Lemma 67. Similarly,

if x′i+2 exists in the path, x′i+2 /∈ F̃i+2. Then P contains at most three defined queries. Since a
proper partial path contains at least three defined queries (which is easy to check by definition), P
must contain three defined queries (i − 1, x′i−1), (i, xi) and (i + 1, x′i+1). The queries (i − 1, x′i−1)
and (i+ 1, x′i+1) are defined when AdaptTree(r) is called and yi = x′i−1 ⊕ x′i+1, so BadAHit occurs
and simulator aborts before AdaptTree(r) is called.

Therefore, P must contain two adapted queries. Similarly, the two queries cannot be adapted
in the same path, because otherwise P contains two consecutive queries in a path being completed.
Let the two adapted queries be (3, x3, y3) ∈ A and (4, u4, v4) ∈ A, adapted in paths {xh} and {uh}
respectively. Note that the defined queries in P other than (3, x3) and (4, u4) are defined before
AdaptTree is called. As before, if P contains x′1 or x′6, they must not be active, or Lemma 67 is
violated for (3, x3) and (4, u4) respectively. Thus P only contains queries in positions 1 through 6,
and since it is a proper partial path, it can only be a proper (2, 6)-partial path. This proves that if
a proper partial path contains a query in A, it must be an inner path.

Moreover, we have x′5 ∈ F5 since (5, x′5) is not an endpoint query. This should hold when
AdaptTree(r) is called since no queries in position 5 become defined in AdaptTree. Note that
x′5 = x3 ⊕ v4, then if x2 6= u2, BadAPair occurs for the pair (3, x3, y3) and (4, u4, v4) and the
simulator aborts before AdaptTree(r) is called. Thus we must have x2 = u2.

Now consider the path adjacent to P in the cycle that also contains the endpoint query (2, x′2).
Let P̃ = {x′′h} denote the path, then x′′2 = x′2 and the path is a proper partial path. The path
P̃ cannot contain a query in A, otherwise it is also an inner path (as proved above), violating
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property 3 of Definition 23. This implies that the non-endpoint queries in P̃ are defined when
AdaptTree(r) is called, i.e, the proper partial path P̃ exists at that moment. As discussed in the
proof for Lemma 66, the endpoint query of a proper partial path is incident with an active 2chain.
Thus (2, x′2) is incident with an active 2chain when AdaptTree(r) is called. Since x′2 = y3 ⊕ u4,
BadAPair occurs for the pair (3, x3, y3) and (4, u4, v4) if x5 6= u5. Hence AdaptTree(r) can be called
only when x5 = u5.

From the above discussion, we have x2 = u2 and x5 = u5. However, when SampleTree(r)
is called, both {xh} and {uh} are proper (5, 2)-partial paths, and ({xh},+) and ({uh},−) form
a path cycle of length 2. This contradicts the assumption that no path cycle has existed before
AdaptTree(r) is called!

Lemma 69. The simulator does not abort in good executions of G3.

Proof. In good executions, bad events don’t occur and the simulator doesn’t abort in CheckBadP,
CheckBadR or CheckBadA.

By Lemmas 65, 66 and 68, the first query cycle cannot be created in P, P−1, ReadTape or Adapt,
which are the only procedures that modify the tables. This implies that no query cycle exists in
any execution of G3. By Lemma 64 the assertion in F and the second assertion in MakeNodeReady
never fail. Moreover, by Lemmas 50, 51 and 54, the other assertions don’t fail, either.

Therefore, no abortion occurs in good executions of G3.

Lemma 70. The probability that an execution of G3 aborts is at most 23648q8/2n.

Proof. This directly follows by Lemmas 49 and 69.

5.5 Transition from G3 to G4

With the result in the previous section, we can prove the indistinguishability of G3 and G5. We
will upper bound ∆D(G3,G4) and ∆D(G4,G5), and use a triangle inequality to complete the
transition. Our upper bound on ∆D(G3,G4) holds only if D completes all paths (see Definition
1), which means that our final upper bound on ∆D(G1,G5) holds only if D completes all paths.
However, an additional reduction (see Theorem 83) implies the general case, at the cost of doubling
the number of distinguisher queries. We also remind that lemmas marked with (*) are only hold
under the assumption that D completes all paths.

The general idea for the following section is similar to the randomness mapping in [17], but since
(and following [1]) we didn’t replace the random permutation with a two-sided random function
in intermediate games, the computation is slightly different. We also adapt a trick from [11] that
ensures the probability of abortion in G3 is not counted twice in the transition from G3 to G5,
saving a factor of two overall.

Footprints. In the following discussion, we will rename the random tapes used in G4 as g1, g2,
. . . , g10 (all of which are random oracle tapes), in contrast to the tapes f1, f2, . . . , f10 used in G3.
The permutation tape p is only used in G3, so need not be renamed.

We will use the notion of a footprint (from [1]) to characterize an execution of G3 or G4.
Basically, the footprint of an execution is the subset of the random tapes that are actually used.
Note that the footprint is defined with respect to the fixed distinguisher D.
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Definition 24. We can treat each random tape fi (or p) as a set of (x, y) pairs, i.e.,

{(x, y) |x ∈ {0, 1}n and y = fi(x)}.

We define a partial tape to be a subset of a random tape. A random tape is compatible with a
partial tape if it is an extension of the partial tape.

A partial tape f̃ of the tape f can also be represented as a mapping: f̃(x) = f(x) if (x, f(x)) is in
the partial path, and f̃(x) = ⊥ otherwise.

Definition 25. Given an execution of G3 with random tapes f1, f2, . . . , f10, p, the footprint of the
execution is the set of partial tapes f̃1, f̃2, . . . , f̃10, p̃ consisting of entries of the corresponding tapes
that are accessed during the execution. Note that an entry can be accessed by ReadTape, P and
P−1.

Similarly, for an execution of G4 with random tapes g1, g2, . . . , g10, the footprint is the set
of partial tapes g̃1, g̃2, . . . , g̃10, with g̃i containing the entries of gi that are accessed during the
execution.

Note that for the fixed distinguisherD, not all combinations of partial tapes can be a footprint of
some execution. Let FP3 and FP4 denote the set of obtainable footprints in G3 and G4 respectively,
and for i = 3, 4, let PrGi

[ω] denote the probability of obtaining the footprint ω ∈ FPi in an execution
of Gi.

We say the random tapes of an execution is compatible with a footprint ω if every random tape
is compatible with the corresponding partial tape in ω.

Lemma 71. For i = 3, 4 and ω ∈ FPi, an execution of Gi has footprint ω if and only if the random
tapes are compatible with ω.

Proof. In this proof, we let T denote the random tapes of an execution of Gi. I.e., T = (f1, f2, . . . , f10, p)
if i = 3 and T = (g1, g2, . . . , g10) if i = 4.

The “only if” direction is trivial: If the footprint of the execution with tapes T is ω, then by
definition, ω consists of partial tapes of tapes in T .

For the “if” direction, consider an arbitrary ω ∈ FPi. There exist random tapes T ′ such that
the execution of Gi with T

′ has footprint ω. During the execution with T ′, only entries in ω are
read. Let T be an arbitrary set of tapes compatible with ω. If we run in parallel the executions
of Gi with T and with T ′, the two executions can never diverge: as long as they don’t diverge,
the tape entries read in both executions exist in ω and hence are answered identically in the two
execution. This implies that the executions with T ′ and T are identical and should have identical
footprints.

A corollary of the above lemma is that for ω ∈ FPi, PrGi
[ω] equals the probability that the random

tapes are compatible with ω. Let |f̃ | denote the size of the partial tape f̃ (i.e., |f̃ | equals the number
of distinct x such that f̃(x) 6= ⊥). Then the probability that random tapes in G3 are compatible
with a footprint ω = (f̃1, . . . , f̃10, p̃) ∈ FP3 is

( 10
∏

i=1

1

2n|f̃i|

)( |p̃|−1
∏

ℓ=0

1

22n − ℓ

)

= Pr
G3

[ω], (7)
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because p encodes a permutation and the other tapes encode random oracles. Similarly, the prob-
ability that random tapes in G4 are compatible with ω = (g̃1, . . . , g̃10) ∈ FP4 is

10
∏

i=1

1

2n|g̃i|
= Pr

G4

[ω]. (8)

As every execution corresponds to a unique footprint, the events of obtaining different footprints
are mutually exclusive. Let PrGi

[S] denote the probability that one of the footprints in a set S ⊆ FPi

is obtained. Then we have

Pr
Gi

[S] =
∑

ω∈S

Pr
Gi

[ω].

Since the distinguisher D is deterministic, we can recover an execution using its footprint by
simulating the execution, answering tape queries using entries in the footprint (all entries used are
in the footprint, by definition). We will refer to an execution whose footprint is ω as an execution
with footprint ω. The above argument also implies that executions with the same footprint are
identical.

We say a footprint is non-aborting if the corresponding execution does not abort. Let FP⋆
3 ⊆ FP3

and FP⋆
4 ⊆ FP4 be the set of all non-aborting footprints of G3 and G4 respectively.

Randomness Mapping. We use the randomness mapping argument to prove that the distribution
of the distinguisher’s output is similar in G3 and G4. We will define an injection ζ : FP⋆

3 → FP⋆
4

such that executions with footprints ω and ζ(ω) have the same output. Moreover, the probability
of obtaining ω in G3 is close to that of obtaining ζ(ω) in G4.

Definition 26. The injection ζ : FP⋆
3 → FP⋆

4 is defined as follows: for ω = (f̃1, . . . , f̃10, p̃) ∈ FP⋆
3,

ζ(ω) = (g̃1, . . . , g̃10) where

g̃i = {(x, y) ∈ {0, 1}
n × {0, 1}n : Fi(x) = y}

and where Fi refers to the table Fi at the end of the execution of G3 with footprint ω.

Since we can recover an execution using its footprint, the states of the tables Fi at the end of the
execution, as well as the output of the distinguisher, are determined by the footprint. Thus, the
mapping ζ is well-defined. We still need to prove that ζ is an injection and that ζ(ω) ∈ FP⋆

4 (i.e.,
ζ(ω) is a footprint of G4 and is non-aborting).

We start by showing that answers to permutation queries in G3 are compatible with the Feistel
construction of the tables Fi.

Lemma 72. (*) At the end of a non-aborting execution in G3 or G4, a permutation query
T (x0, x1) = (x10, x11) exists in T if and only if there exists a non-root node whose maximal path
contains x0, x1, x10 and x11.

Proof. By Lemma 22, at the end of a non-aborting execution, each non-root node corresponds to a
completed path formed by the queries in its maximal path. Therefore, if the maximal path contains
x0, x1, x10 and x11, then we have T (x0, x1) = (x10, x11) due to the definition of a completed path.

To prove the “only if” direction, consider an arbitrary entry T (x0, x1) = (x10, x11). If the entry
is added by a simulator query, then it must be added during a call to MakeNodeReady(n) and, by
Lemma 19, the values x0, x1, x10 and x11 are in the maximal path of n. Otherwise the entry is
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added by a distinguisher query. Since the distinguisher completes all paths, the distinguisher calls
F(i, xi) for i ∈ {1, 2, . . . , 6}, where xi := xi−2 ⊕ F(i − 1, xi−1) for 2 ≤ i ≤ 6. In particular, the
queries (5, x5) and (6, x6) are defined before the end of the execution. By Lemma 52, there exists
a node whose maximal path contains x5 and x6. The path also contains x0 and x1 (by definition
of a completed path), as well as x10 and x11 (since T (x0, x1) = (x10, x11) and by definition of a
completed path).

In the following lemma, we will prove that an execution of G3 with footprint ω has the same output
as an execution of G4 with footprint ζ(ω). Note that the simulators of G3 and G4 are not identical,
thus the two executions cannot be “totally identical”. Nonetheless, we can run an execution of G3

and an execution of G4 in parallel, and say they are identical if neither execution aborts, if the
tables are identical anytime during the executions, and if calls to procedures that return a value
return the same value in the two executions (note that some procedure calls only occur in G3, but
none of them return a value). In particular, if two executions of G3 and G4 are identical, then
the answers to distinguisher queries are identical in the two executions and thus the deterministic
distinguisher outputs the same value.

Lemma 73. (*) The executions of G3 and G4, with footprints ω and ζ(ω) respectively, are identical.

Proof. Let ω = (f̃1, . . . , f̃10, p̃) ∈ FP⋆
3. First we prove that ζ(ω) ∈ FP4, i.e., ζ(ω) is the footprint

of some execution of G4. We arbitrarily extend the partial tapes in ζ(ω) = (g̃1, . . . , g̃10) into a set
of full random tapes λ = (g1, . . . , g10). We will prove that the execution of G4 with tapes λ has
footprint ζ(ω).

Consider an execution of G3 with footprint ω, and an execution of G4 with random tapes λ.
We will prove that the two executions are identical as defined before this lemma. Note that the
only differences between G3 and G4 are in the calls to CheckBadR and CheckBadA in G3, in the
permutation oracles P and P−1, and in the different random tapes. Since ω ∈ FP⋆

3, the execution
of G3 does not abort. Moreover, the procedures CheckBadP, CheckBadR and CheckBadA don’t
modify the global variables, therefore they can be ignored without affecting the execution. Now
we prove by induction that as long as the executions are identical until the last line, they remain
identical after the next line is executed. We only need to consider the case where the next line of
code is different in G3 and G4.

If the next line reads a tape entry fi(xi) in G3, this must occur in a call to ReadTape and the
entry will be written to Fi(xi) = fi(xi). By Lemma 3 the entry is never overwritten, so we have
Fi(xi) = fi(xi) at the end of the execution and hence g̃i(xi) = fi(xi). Moreover, gi is an extension
of g̃i, which implies that the entry read in G4 is gi(xi) = fi(xi).

If the next line calls P or P−1(issued by the distinguisher or by the simulator), the call outputs
an entry of T . If the entry pre-exists before the call, then by the induction hypothesis, the output
is identical in the two executions. Otherwise, the entry does not pre-exist in either execution, and
a new entry will be added in both executions. We only need to prove that the same entry is added
in both executions.

Let T (x0, x1) = (x10, x11) be the new entry added by the call to P or P−1 in the G3-execution.
By Lemma 72, there exists a node whose maximal path contains x0, x1, x10, x11. By Lemma 22, the
queries are in a completed path, which implies Val+(0, x0, x1, i) = xi for i = 10, 11. As discussed
above, the defined queries also exist in gi. Because in G4 the call to P and P−1 is answered according
to the Feistel network of gi, the new entry in the G4-execution is also T (x0, x1) = (x10, x11).
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By induction, we can prove that the two executions are identical. Furthermore, we can observe
from the above argument that an entry gi(xi) is read in G4 if and only if the corresponding table
entry Fi(xi) is defined in G3: The calls to ReadTape are identical in the two executions, thus the
query defined in G3 is the same as the tape entry read in G4. Entries of gi read by P and P−1 in
the G4-execution are in a completed path in the G3-execution and thus are defined. The queries
defined by Adapt in the G3-execution must be read in G4 when the corresponding permutation
query is being answered for the first time. Therefore, the footprint of the G4-execution with tapes
λ is ζ(ω).

The G4-execution does not abort by the definition of identical executions, so ζ(ω) ∈ FP⋆
4.

Lemma 74. (*) The mapping ζ defined in Definition 26 is an injection from FP⋆
3 to FP⋆

4.

Proof. By Lemma 73, for any ω ∈ FP⋆
3, the G4-execution with footprint ζ(ω) is identical to the

G3-execution with footprint ω. In particular, neither execution aborts and thus ζ(ω) ∈ FP⋆
4.

That the executions are identical also implies that ζ is injective: Given ζ(ω), the execution of
G4 can be recovered. In particular, we have the state of tables Fi and T at the end of the execution,
which we denote by Σ = (F1, . . . , F10, T ). Since the execution of G3 with footprint ω is identical,
the state of tables at the end of the execution is also Σ. We note that all tape entries read in a
G3-execution will be added to the corresponding table (entries of fi are added to Fi, and entries of
p are added to T ). Thus ω can only contain entries in Σ.13 Assume ω′ ∈ FP⋆

3 is also a preimage of
ζ(ω) under ζ, i.e., ζ(ω′) = ζ(ω). Similarly ω′ only contains entries in Σ. In both executions with
footprints ω and ω′, tape queries receive answers compatible with Σ and the two executions can
never diverge. This implies that the executions are identical and the footprints ω = ω′. Therefore,
ζ(ω) has a unique preimage ω ∈ FP⋆

3, i.e., ζ is injective.

Lemma 75. (*) At the end of a non-aborting execution of G3, the size of T equals the number of
non-root nodes created throughout the execution.

Proof. We only need to prove that maximal paths of different non-root nodes contain distinct
(x0, x1) pairs, then by Lemma 72, there is a one-one correspondence between non-root nodes and
permutation queries in T , implying that the numbers are equal.

By contradiction, assume that the maximal paths of two nodes both contain x0 and x1. By
Lemma 22, the queries in the maximal paths of the nodes form two completed paths. Since a
completed path can be determined by two queries in consecutive positions, the completed paths of
the two nodes are identical. However, this is impossible in a non-aborting execution: After one of
the nodes is completed, all queries in the completed path are defined. When AdaptNode is called
on the other node (which must occur by the end of the execution), the queries to be adapted are
defined and abortion will occur in the call to Adapt.

Lemma 76. (*) Let ω = (f̃1, . . . , f̃10, p̃) ∈ FP⋆
3 and ζ(ω) = (g̃1, . . . , g̃10) ∈ FP⋆

4. Then

10
∑

i=1

|g̃i| =
10
∑

i=1

|f̃i|+ 2 · |p̃|.

13 More accurately, ω only contains entries in the corresponding tables in Σ, where Fi corresponds to fi and T
corresponds to p. We will abuse notations and not mention the transformation explicitly.
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Proof. Consider an execution of G3 with footprint ω, and in the following discussion let Fi and T
denote the state of the tables at the end of the execution. By the definition of the mapping ζ, gi
consists of entries in Fi, so the left-hand side of the equality equals the sum of |Fi|.

The queries in Fi are added exactly once, by either ReadTape or Adapt. We split Fi into
two sub-tables FR

i and FA
i consisting of queries added by ReadTape and Adapt respectively. Let

FA =
⋃

i({i} × FA
i ) be the set of adapted queries in all positions (note that elements of FA also

include the position of the query).
In the execution of G3, fi are only read by ReadTape, and it is easy to see that fi(xi) is read

if and only if xi ∈ FR
i , which implies |f̃i| = |F

R
i |.

The queries in FA are adapted in Adapt called by AdaptNode. Two queries are adapted for
each non-root node. By Lemma 75, the number of non-root nodes equals the size of T at the end
of a non-aborting execution. Moreover, entries in T are only added by P and P−1, and each entry
T (x0, x1) = (x10, x11) exists if and only if p(x0, x1) = (x10, x11) is read. Thus |T | = |p̃| and the
number of adapted queries is |FA| = 2 · |T | = 2 · |p̃|.

Putting everything together, we have

10
∑

i=1

|g̃i| =
10
∑

i=1

|Fi| =
10
∑

i=1

|FR
i |+ |F

A| =
10
∑

i=1

|f̃i|+ 2 · |p̃|.

Lemma 77. (*) For every ω ∈ FP⋆
3, we have

Pr
G4

[ζ(ω)] ≥ Pr
G3

[ω] · (1− 25q4/22n)

Proof. Let ω = (f̃1, . . . , f̃10, p̃) ∈ FP⋆
3, then by Lemma 74, ζ(ω) = (g̃1, . . . , g̃10) ∈ FP⋆

4. By equa-
tions (7) and (8), we have

Pr
G4

[ζ(ω)]/Pr
G3

[ω] = 2−n
∑

|g̃i|

/(

2−n
∑

|f̃i| ·

|p̃|−1
∏

ℓ=0

1

22n − ℓ

)

= 2−n(
∑

|f̃i|+2|p̃|) · 2n
∑

|f̃i| ·

|p̃|−1
∏

ℓ=0

(22n − ℓ)

= 2−2n·|p̃| ·

|p̃|−1
∏

ℓ=0

(22n − ℓ)

≥

(

22n − |p̃|

22n

)|p̃|

(9)

where the second equality uses Lemma 76.
Note that each entry in p̃ corresponds to a distinct permutation query in T . By Lemma 29, we

have |T | ≤ 5q2, so |p̃| ≤ 5q2. Since (9) is monotone decreasing with respect to |p̃|, we have

(

22n − |p̃|

22n

)|p̃|

≥

(

22n − 5q2

22n

)5q2

≥ 1−
25q4

22n

and the lemma follows.
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Lemma 78. (*) We have

∆D(G3,G4) ≤ Pr
G4

[FP⋆
4]− Pr

G3

[FP⋆
3] +

25q4

22n
.

Proof. Let DG3(ω) denote the output of D in an execution of G3 with footprint ω ∈ FP3, and let
DG4(ω) denote the output of D in an execution of G4 with footprint ω ∈ FP4.

Recall that by assumption D outputs 1 when it sees abortion. Also note that abortion occurs
in an execution of G3 (resp. G4) if and only if the footprint is not in FP⋆

3 (resp. FP⋆
4). For i ∈ {3, 4}

we have
Pr
Gi

[DF,P,P−1

= 1] = 1− Pr
Gi

[FP⋆
i ] +

∑

ω∈FP⋆
i ,D

Gi(ω)=1

Pr
Gi

[ω]. (10)

By Lemma 73, executions with footprints ω and ζ(ω) have the same output; by Lemma 74, ζ
is injective. So ζ(ω) is distinct for distinct ω and {ζ(ω) : ω ∈ FP⋆

3, D
G3(ω) = 1} is a subset of

{ω : ω ∈ FP⋆
4, D

G4(ω) = 1}. Thus we have

∑

ω∈FP⋆
4
,DG4(ω)=1

Pr
G4

[ω] ≥
∑

ω∈FP⋆
3
,DG3(ω)=1

Pr
G4

[ζ(ω)]

≥ (1−
25q4

22n
)

∑

ω∈FP⋆
3 ,D

G3(ω)=1

Pr
G3

[ω] (11)

where the second inequality is due to Lemma 77.
Furthermore, combining (3) and (10), we have

∆D(G3,G4) = Pr
G3

[DF,P,P−1

= 1]− Pr
G4

[DF,P,P−1

= 1]

= Pr
G4

[FP⋆
4]− Pr

G3

[FP⋆
3] +

∑

ω∈FP⋆
3
,DG3(ω)=1

Pr
G3

[ω]−
∑

ω∈FP⋆
4
,DG4(ω)=1

Pr
G4

[ω]

≤ Pr
G4

[FP⋆
4]− Pr

G3

[FP⋆
3] +

(

1−
(

1−
25q4

22n

)

)

∑

ω∈FP⋆
3
,DG3(ω)=1

Pr
G3

[ω]

≤ Pr
G4

[FP⋆
4]− Pr

G3

[FP⋆
3] +

25q4

22n

where the first inequality follows by (11), and the second inequality uses the fact that the sum of
probabilities of obtaining a subset of footprints is at most 1.

5.6 Transition from G4 to G5

Lemma 79. At the end of a non-aborting execution of G4, the tables Fi are consistent with the
tapes gi.

Proof. The entries of Fi added by ReadTape are read from gi and thus are consistent with gi.
For the entries added by Adapt, we prove the claim by induction on the number of calls to

AdaptNode. Consider a call to AdaptNode(n), assuming that the entries added during the previous
calls to AdaptNode are consistent with the tapes. Since the node n is ready when AdaptNode is
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called, its maximal path contains x0, x1, x10, x11 such that T (x0, x1) = (x10, x11). The entry of T is
added by P or P−1, and from the pseudocode of G4, we observe that there exists x2, x3, . . . , x9 such
that xi = gi−1(xi−1)⊕xi−2 for i = 2, 3, . . . , 11. By the induction hypothesis, pre-existing queries in
Fi are compatible with tapes gi. Furthermore, because n is ready when the call to AdaptNode(n)
occurs, the maximal path of n contains x0, x1, . . . , x11, and all these queries except the two queries
to be adapted are defined. Note that gi(xi) = xi−1⊕xi+1 also holds for each (i, xi) to be adapted. By
the pseudocode of AdaptNode, we can see that the queries adapted during the call to AdaptNode(n)
are compatible with gi.

Lemma 80. In a non-aborting execution of G4, the distinguisher queries are answered identically
to an execution of G5 with the same random tapes. In particular, the distinguisher outputs the
same value in the two executions.

Proof. The permutation oracles in the two executions are identical and are independent to the state
of tables, the answers to the permutation queries are identical in the two executions.

In G4, calls to F return the corresponding entry in Fi. By Lemma 79, the tables Fi at the end of
a G4-execution are compatible with tapes gi, and so are the answers of calls to F. In G5, F directly
returns the entry of gi, which is the same as the answer in G4.

Lemma 81. We have
∆D(G4,G5) ≤ 1− Pr

G4

[FP⋆
4].

Proof. By Lemma 80, if random tapes g1, . . . , g10 result in a non-aborting execution of G4, the
execution of G5 with the same random tapes have the same output. Therefore, the probabilities
of outputting 1 with such tapes cancel out. The distinguisher only gains advantage in aborting
executions of G4, whose probability is 1− PrG4

[FP⋆
4].

5.7 Concluding the Indifferentiability

Now we can put pieces together and conclude the indistinguishability of G1 and G5.

Lemma 82. (*) ∆D(G1,G5) ≤ 24185q8/2n.

Proof. Since the advantage satisfies the triangle inequality (which is in fact an equality under our
definition of advantage, but nevermind), we have

∆(G1,G5) ≤ ∆(G1,G2) +∆(G2,G5)

≤ ∆(G1,G2) +∆(G3,G5)

≤ ∆(G1,G2) +∆(G3,G4) +∆(G4,G5)

≤
512q8

22n
+ (Pr

G4

[FP⋆
4]− Pr

G3

[FP⋆
3] +

25q4

22n
) + (1− Pr

G4

[FP⋆
4])

≤
537q8

22n
+ 1− Pr

G3

[FP⋆
3]

≤
537q8

22n
+

23648q8

2n

≤
24185q8

2n
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where the second inequality is due to Lemma 35, the fourth inequality uses Lemmas 34, 78 and 81,
and the second-to-last inequality is due to Lemma 70.

As indicated, Lemma 82 only holds for q-query distinguishersD that complete all paths, as described
at the start of Section 5. Our next (final) theorem drops this limitation.

Theorem 83. ∆D(G1,G5) ≤ 6191360q8/2n.

Proof. Recall that D is an arbitrary, information-theoretic, deterministic distinguisher that makes
at most q queries to each of its oracles.

As discussed in the proof overview, there exists a deterministic distinguisher D∗ that makes
at most 2q queries to each of its oracles, that completes all paths, and such that ∆D(G1,G5) ≤
∆D∗(G1,G5). Then D∗ fulfills the conditions of Lemma 82 with 2q substituted for q. Hence the
theorem follows from the fact that 24185 · 28 = 6191360.
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G1, G2, G3, G4:
Global variables:

Tables F1, . . . , F10

Permutation table Tsim, T−1

sim

Set of nodes N
Counter NumOuter

Random oracle tapes: f1, . . . , f10

class Node

Node parent

Set of Node children

2chain id

Queries beginning, end
constructor Node(p, c)

self.parent ← p
self.children← ∅
self.id← c
self.beginning← null

if (p 6= null) then
self.beginning ← p.end

self.end← null

private procedure SimP(x0, x1)
if (x0, x1) /∈ Tsim then

(x10, x11)← P(x0, x1)
Tsim(x0, x1)← (x10, x11)
T−1

sim(x10, x11)← (x0, x1)
return Tsim(x0, x1)

private procedure SimP−1(x10, x11)
if (x10, x11) /∈ T−1

sim then

(x0, x1)← P−1(x10, x11)
Tsim(x0, x1)← (x10, x11)
T−1

sim(x10, x11)← (x0, x1)
return T−1

sim(x10, x11)

private procedure Assert(fact)
if ¬fact then abort

public procedure F(i, xi)
if xi ∈ Fi then return Fi(xi)
Assert(¬IsPending(i, xi))
if i ∈ {2, 5, 6, 9} then

return NewTree(i, xi)
else return ReadTape(i, xi)

private procedure ReadTape(i, xi)
Assert(xi /∈ Fi)
CheckBadR(i, xi) // G3

Fi(xi)← fi(xi)
return Fi(xi)

private procedure NewTree(i, xi)
root← new Node(null,null)
root.end← (i, xi)
N.add(root)
GrowTree(root)
SampleTree(root)
CheckBadA(root) // G3

AdaptTree(root)
return Fi(xi)

private procedure GrowTree(root)
do

modified← GrowSubTree(root)
while modified

private procedure GrowSubTree(node)
modified← FindNewChildren(node)
forall c in node.children do

modified← modified or GrowSubTree(c)
return modified

private procedure IsPending(i, xi)
forall n in N do

if (i, xi) = n.end then return true

return false

private procedure FindNewChildren(node)
(i, x)← node.end
child added← false

if i = 2 then forall (x9, x10, x1) in (F9, F10, F1) do
if CheckP(x1, x, x9, x10) and
¬Equivalent(node.id, (1, x1, x)) and
NotChild(node, (1, x1, x)) then

Assert(++NumOuter ≤ q)
AddChild(node, (1, x1, x))
child added← true

if i = 9 then forall (x1, x2, x10) in (F1, F2, F10) do
if CheckP(x1, x2, x, x10) and
¬Equivalent(node.id, (9, x, x10)) and
NotChild(node, (9, x, x10)) then

Assert(++NumOuter ≤ q)
AddChild(node, (9, x, x10))
child added← true

if i = 5 then forall x6 in F6 do

¬Equivalent(node.id, (5, x, x6)) and
NotChild(node, (5, x, x6)) then

AddChild(node, (5, x, x6))
child added← true

if i = 6 then forall x5 in F5 do

¬Equivalent(node.id, (5, x5, x)) and
NotChild(node, (5, x5, x)) then

AddChild(node, (5, x5, x))
child added← true

return child added

Fig. 3. First part of pseudocode for games G1–G4. Game G1 implements the simulator. Lines commented with ‘// Gi’
appear in game Gi only.
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private procedure AddChild(parent, id)
new child← new Node(parent, id)
parent.children.add(new child)
MakeNodeReady(new child)

private procedure CheckP(x1, x2, x9, x10)
if x1 /∈ F1 or x10 /∈ F10 then return false

x0 ← F1(x1)⊕ x2

x11 ← x9 ⊕ F10(x10)
if (x0, x1) /∈ T then return false // G2,G3,G4

return SimP(x0, x1) = (x10, x11)

private procedure Equivalent(C1, C2)
if C1 = null then return false

(i, xi, xi+1), (j, x
′

j , x
′

j+1)← C1, C2

if i = j then return xi = x′
j and xi+1 = x′

j+1

if i = 9 and j = 5 or i = 5 and j = 1 then

return x′

j = Val+(C1, j) and
x′
j+1 = Val+(C1, j + 1)

if i = 5 and j = 9 or i = 1 and j = 5 then

return x′

j = Val−(C1, j) and

x′

j+1 = Val−(C1, j + 1)

private procedure NotChild(node, C)
forall n in node.children do

if Equivalent(n.id, C) then return false

return true

private procedure MakeNodeReady(node)
(i, x)← node.beginning
(j, u1, u2)← node.id
if i ∈ {2, 6} then

while j 6= Terminal(i) do

(u1, u2)←Prev(j, u1, u2)
j ← j − 1 mod 11

xj ← u1

else

while j + 1 6= Terminal(i) do
(u1, u2)←Next(j, u1, u2)
j ← j + 1 mod 11

j ← j + 1
xj ← u2

Assert(xj /∈ Fj)
Assert(¬IsPending(j, xj))
node.end← (j, xj)
N.add(node)

private procedure Terminal(i)
if i = 2 then return 5
if i = 5 then return 2
if i = 6 then return 9
if i = 9 then return 6

private procedure Next(i, xi, xi+1)
if i = 10 then

(x0, x1)← SimP−1(xi, xi+1)
return (x0, x1)

else

xi+2 = xi ⊕ F(i+ 1, xi+1)
return (xi+1, xi+2)

private procedure Prev(i, xi, xi+1)
if i = 0 then

(x10, x11)← SimP(xi, xi+1)
return (x10, x11)

else

xi−1 = F(i, xi)⊕ xi+1

return (xi−1, xi)

private procedure SampleTree(node)
ReadTape(node.end)
N.delete(node)
forall c in node.children do

SampleTree(c)

private procedure AdaptTree(root)
forall c in root.children do

AdaptNode(c)

private procedure AdaptNode(node)
C ← node.id
(i, xi)← node.beginning
(j, xj)← node.end
m← min{i, j}+ 1
xm−1, xm ← Val+(C,m− 1),Val+(C,m)
xm+1, xm+2 ← Val−(C,m+ 1),Val−(C,m+ 2)
Adapt(m,xm, xm−1 ⊕ xm+1)
Adapt(m+ 1, xm+1, xm ⊕ xm+2)
forall c in node.children do

AdaptNode(c)

private procedure Adapt(i, xi, yi)
Assert(xi /∈ Fi)
Fi(xi)← yi

Fig. 4. Second part of games G1, G2, G3 and G4.
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private procedure Val+(i, xi, xi+1, k)
if k ∈ {i, i+ 1} then return xk

j ← i+ 1
U,U−1 ← Tsim, T−1

sim

U,U−1 ← T, T−1 // G2,G3,G4

while j 6= k do

if j < 11 then

if xj /∈ Fj then return ⊥
xj+1 ← xj−1 ⊕ Fj(xj)
j ← j + 1

else

if (x10, x11) /∈ U−1 then return ⊥
(x0, x1)← U−1(x10, x11)
if k = 0 then return x0

j ← 1
return xk

private procedure Val−(i, xi, xi+1, k)
if k ∈ {i, i+ 1} then return xk

j ← i
U, U−1 ← Tsim, T−1

sim

U,U−1 ← T, T−1 // G2,G3,G4

while j 6= k do

if j > 0 then

if xj /∈ Fj then return ⊥
xj−1 ← Fj(xj)⊕ xj+1

j ← j − 1
else

if (x0, x1) /∈ U then return ⊥
(x10, x11)← U(x0, x1)
if k = 11 then return x11

j ← 10
return xk

Fig. 5. Third part of games G1, G2, G3 and G4.

G1,G2,G3:
Variables:

Permutation table T, T−1

Random permutation tape: p

public procedure P(x0, x1)
if (x0, x1) /∈ T then

(x10, x11)← p(x0, x1)
CheckBadP(10, x10) // G3

T (x0, x1)← (x10, x11)
T−1(x10, x11)← (x0, x1)

return T (x0, x1)

public procedure P−1(x10, x11)
if (x10, x11) /∈ T−1 then

(x0, x1)← p−1(x10, x11)
CheckBadP(1, x1) // G3

T (x0, x1)← (x10, x11)
T−1(x10, x11)← (x0, x1)

return T−1(x10, x11)

G4:
Variables:

Table with two-way access T

public procedure P(x0, x1)
if (x0, x1) /∈ T then

for i← 2 to 11 do

xi ← xi−2 ⊕ fi−1(xi−1)
T (x0, x1)← (x10, x11)
T−1(x10, x11)← (x0, x1)

return T (x0, x1)

public procedure P−1(x10, x11)
if (x10, x11) /∈ T−1 then

for i← 9 to 0 do

xi ← fi+1(xi+1)⊕ xi+2

T (x0, x1)← (x10, x11)
T−1(x10, x11)← (x0, x1)

return T−1(x10, x11)

Fig. 6. Permutation oracles for G1, G2, G3 (at left) and G4 (at right).

G5:
Variables:
Random tapes: f1, . . . , f10

public procedure F(i, xi)
return fi(xi)

public procedure P(x0, x1)
for i← 2 to 11 do

xi ← xi−2 ⊕ fi−1(xi−1)
return (x10, x11)

public procedure P−1(x10, x11)
for i← 9 to 0 do

xi ← fi+1(xi+1)⊕ xi+2

return (x0, x1)

Fig. 7. Game G5 (the real world).
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G3:
Variables: Set A // Set of adapted queries

class Adapt

Query query

String value, left, right
constructor Adapt(i, xi, yi, l, r)

self.query ← (i, xi)
self.value← yi
self.left← l // Left edge
self.right ← r // Right edge

private procedure CheckBadP(i, xi)
if xi ∈ Fi then abort

private procedure CheckBadR(i, xi)
CheckBadlyHit(i, xi, fi(xi))
CheckRCollide(i, xi, fi(xi))

private procedure CheckBadA(root)
A ← ∅
GetAdapts(root)
forall a in A do

(i, xi), yi ← a.query, a.value
CheckBadlyHit(i, xi, yi)
forall b in A do

CheckAPair(a, b)

private procedure GetAdapts(node)
if node.id 6= null

(i, xi), (j, xj)← node.beginning,node.end
C ← node.id
m,n← min{i, j},max{i, j}
xm−1, xm+1 ← Val+(C,m− 1),Val+(C,m+ 1)
xn−1, xn+1 ← Val−(C, n− 1),Val−(C, n+ 1)
ym+1, yn−1 ← xm ⊕ xn−1, xm+1 ⊕ xn

A.add(new Adapt(m+ 1, xm+1, ym+1, xm, xn))
A.add(new Adapt(n− 1, xn−1, yn−1, xm, xn))

forall c in node.children do

GetAdapts(c)

private procedure ActiveQueries(i)
P ← ∅
forall n in N do

(j, xj)← n.end
if j = i then P.add(xj)

return P ∪ Fi

private procedure IsRightActive(i, xi, xi+1)
if i ≤ 9 then

return xi+1 ∈ Fi+1 or IsPending(i+ 1, xi+1)
else return (xi, xi+1) ∈ T−1

private procedure IsLeftActive(i, xi, xi+1)
if i ≥ 1 then

return xi ∈ Fi or IsPending(i, xi)
else return (xi, xi+1) ∈ T

private procedure IsIncident(i, xi)
if i ≥ 2 then j ← i− 2 else j ← 10
forall uj , uj+1 in {0, 1}n × {0, 1}n do

if IsLeftActive(j, uj , uj+1) and
Val+(j, uj , uj+1, i) = xi then return true

if i ≤ 9 then j ← i+ 1 else j ← 0
forall uj , uj+1 in {0, 1}n × {0, 1}n do

if IsRightActive(j, uj , uj+1) and
Val−(j, uj , uj+1, i) = xi then return true

return false

private procedure CheckBadlyHit(i, xi, yi)
forall xi−1 in {0, 1}n do

xi+1 ← xi−1 ⊕ yi
if IsRightActive(i, xi, xi+1) and

IsLeftActive(i− 1, xi−1, xi) then abort

private procedure CheckRCollide(i, xi, yi)
forall xi−1 in {0, 1}n do

if IsLeftActive(i− 1, xi−1, xi) then
if IsIncident(i+ 1, xi−1 ⊕ yi) then abort

forall xi+1 in {0, 1}n do

if IsRightActive(i, xi, xi+1) then
if IsIncident(i− 1, yi ⊕ xi+1) then abort

private procedure CheckAPair(a, b)
(i, xi), yi ← a.query, a.value
(j, uj), vj ← b.query, b.value
if j 6= i+ 1 then return

if (a.left, a.right) = (b.left, b.right) then return

if a.left 6= b.left then
if xi ⊕ vj ∈ ActiveQueries(i+ 2) then abort

if IsIncident(i+ 2, xi ⊕ vj) then abort

if a.right 6= b.right then
if yi ⊕ uj ∈ ActiveQueries(i− 1) then abort

if IsIncident(i− 1, yi ⊕ uj) then abort

Fig. 8. The abort-checking procedures for G3.
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