
Computing information on domain parameters

from public keys selected uniformly at random

Martin Eker̊a∗

September 10, 2015

Abstract

The security of many cryptographic schemes and protocols rests on the
conjectured computational intractability of the discrete logarithm problem
in some group 〈g〉 of prime order. Such schemes and protocols require
domain parameters that specify 〈g〉 and a specific generator g. In this
paper we consider the problem of computing information on the domain
parameters from public keys selected uniformly at random from 〈g〉.

We show that it is not possible to compute any information on the
generator g regardless of the number of public keys observed.

In the case of elliptic curves E(Fp) or E(F2n) on short Weierstrass
form, or E(K) on Edwards form, twisted Edwards form or Montgomery
form, where K is a non-binary field, we show how to compute the domain
parameters excluding the generator from four keys on affine form.

Hence, if the domain parameters excluding the generator are to be
kept private, points may not be transmitted on affine form. It is an open
question whether point compression is a sufficient requirement.

Regardless of whether points are transmitted on affine or compressed
form, it is in general possible to create a distinguisher for the domain
parameters, excluding the generator, both in the case of the elliptic curve
groups previously mentioned, and in the case of subgroups of F∗

p.
We propose that a good method for preventing all of the above attacks

may be to use blinding schemes, and suggest new applications for existing
blinding schemes originally designed for steganographic applications.

1 Introduction

The security of many cryptographic schemes and protocols rests on the conjec-
tured computational intractability of the discrete logarithm problem in some
group 〈g〉 of prime order. Such schemes and protocols require domain param-
eters that specify the group 〈g〉 and a specific generator g. In this paper, we
consider the problem of computing information on the domain parameters from
a set of public keys selected uniformly at random from 〈g〉.

One instance of this problem, that may be of particular interest, and that
serves as motivation for this work, is the Diffie-Hellman key exchange where
a passive adversary observes exchanges of public keys selected uniformly at
random from 〈g〉 and where the domain parameters are not transmitted.

∗Swedish NCSA, Swedish Armed Forces, SE-107 85 Stockholm, Sweden.

1



Although the domain parameters used for a Diffie-Hellman key exchange are
ordinarily considered to be public, this is an interesting problem to study since
the generic approach to breaking the Diffie-Hellman key exchange in this setting
is to compute the discrete logarithm of one of the public keys to the base of the
generator. It is not possible to perform this computation without knowledge of
the domain parameters.

If the domain parameters are not transmitted on explicit form in the key
exchange, but are rather kept private, they could hence potentially serve the
role of a long term secret. The purpose of this paper is in part to explore to
what extent it is possible to have the domain parameters serve such a role.

1.1 The post-quantum era

With the advent of quantum computers, it will become computationally feasible
to compute discrete logarithms in the elliptic curve groups and subgroups of F∗

p

that are in general use today, assuming that the domain parameters are known.
If the domain parameters are kept private, and may not be computed, the

security of existing schemes that rely on the computational intractability of
the discrete logarithm problem will be weakened and properties such a perfect
forward secrecy in schemes such as Diffie-Hellman will be irrevocably lost.

However, the security of such schemes will not necessarily be completely
compromised, since knowledge of the domain parameters is required to compute
discrete logarithms using Shor’s algorithm.

If the domain parameters are kept private, and may not be computed us-
ing either classical or quantum computers, the domain parameters could still
potentially serve the role of a long term secret in the post-quantum era.

1.2 Selecting the domain parameters

A good guiding principle when selecting domain parameters is to use different
domain parameters in different applications that need not be interoperable, so
as not to put all eggs in one basket if some domain parameters would turn out
to be weak. Adherence to this principle furthermore reduces susceptibility to
massive pre-computation attacks, of the kind described in [1].

Another good guiding principle when selecting domain parameters is to select
the domain parameters in a randomized but easily verifiable manner, see for
example [3, 5]. Adherence to this principle makes it non-trivial to guess the
parameters, allows trust in the parameters to be built, and helps to avoid small
unknown classes of weak parameters.

Unfortunately, these guiding principles are seldom adhered to in practise.
Instead, a very small set of standardized domain parameters are used in the
vast majority of applications. This may potentially be a security concern.

We believe that this is in part caused by a need for interoperability, but
also in part by existing standards and regulations that require that specific
domain parameters be used. In some cases it is furthermore non-trivial to
create cryptographically strong domain parameters.

2



1.3 Protecting the domain parameters

In many applications, the domain parameters will have to be public in order
to enable interoperability. However, there are applications where this is not
necessary. In such applications, it makes sense not to volunteer the domain
parameters to potential adversaries by transmitting them in the clear, but to
rather attempt to keep the parameters private.

However, this is only the case provided that the domain parameters have
been selected in accordance with the guiding principles in the previous sub-
section, so that they cannot be trivially guessed, and provided that the adversary
is unable to compute information on the domain parameters from public keys
that have to be transmitted in the clear.

2 Domain parameters

The domain parameters specify the group 〈g〉 of large prime order q in which the
discrete logarithm problem is conjectured to be computationally intractable, and
a specific generator g. Although there are many groups that could conceivably
be used in cryptographic applications, the most commonly used groups are
subgroups of F∗

p and elliptic curve groups.
In the case of elliptic curve groups, curves on various forms are in use.

Common choices include curves on short Weierstrass form, on Montgomery
form, on Edwards form and twisted Edwards form, defined over prime fields
and various extension fields of small characteristic.

Below, we introduce notation and very briefly describe what information
makes up the domain parameters for the aforementioned groups. In the case of
elliptic curve groups, we denote the generator by G, since it is common to use
capital letters to denote elements of such groups.

• In the case of subgroups of F∗
p, the domain parameters consist of the prime

p that defines the multiplicative group F∗
p, and of a generator g ∈ F∗

p.

It must be the case that p = 2rq + 1 for some r ≥ 1 for g to have order q.

• In the case of elliptic curve groups E(Fp) on short Weierstrass form

y2 = x3 + ax + b,

the domain parameters consist of a prime p > 3 that defines the field Fp,
of the two Weierstrass coefficients a, b ∈ Fp, and of a generator G ∈ E.

• In the case of elliptic curve groups E(F2n) on the Weierstrass form

y2 + xy = x3 + ax2 + b,

the domain parameters consist of an irreducible polynomial of degree n
with coefficient in F2 that defines the field F2n , of the two Weierstrass
coefficients a, b ∈ F2n , and of a generator G ∈ E.

• In the case of elliptic curve groups E(K) on Edwards form

x2 + y2 = c2(1 + dx2y2),

the domain parameters consist of parameters that define a non-binary field
K, of the two coefficients c, d ∈ K, and of a generator G ∈ E.

3



• In the case of elliptic curve groups E(K) on twisted Edwards form

ax2 + y2 = 1 + dx2y2,

the domain parameters consist of parameters that define a non-binary field
K, of the two coefficients a, d ∈ K, and of a generator G ∈ E.

• In the case of elliptic curve groups E(K) on Montgomery form

by2 = x3 + ax2 + x,

the domain parameters consist of parameters that define a non-binary field
K, of the two coefficients a, b ∈ K, and of a generator G ∈ E.

In this paper, we consider the problem of computing information on the
domain parameters in the general case, and in the specific cases described above.

3 Public keys

The public keys that we observe are on different forms depending on from which
group the public keys are selected.

• In the case of subgroups of F∗
p a public key z = ge is an element selected

uniformly at random from 〈g〉.

• In the case of subgroups of elliptic curves a public key Z = (x, y) = [e]G
is a point selected uniformly at random from 〈G〉.
The public key may be transmitted on affine form (x, y), or on compressed
form (x, sgn(y)) provided that the curve form does admit standard point
compression, see appendix A.

To decompress a compressed point y2 = f(x) is first computed, where
f(x) is obtained by re-writing the curve equation, again see appendix
A. Then y is computed by taking the square root. The function sgn(y)
outputs a single sign bit that serves to identify which of the two roots
should be returned. A common choice for elliptic curves E(Fp) of prime
characteristic p > 3 is to let sgn(y) = y mod 2.

4 Distinguishing the group

If an adversary suspects that the public keys may have been selected from a
specific group, she or he may test whether this is indeed the case, by using the
methods described below.

• In the case of subgroups of F∗
p, the adversary may for example test that

all public keys are in F∗
p and that the order of all public keys is q.

• In the case of elliptic curve groups E(K), where the public keys are on
affine form, the adversary may for example test if the coordinates of all
public keys are in K, and if the coordinates of all public keys fulfill the
curve equation.

In the case of 〈G〉 being a strict subgroup of E(K) the adversary may
optionally proceed to test that the order of all public keys is q.

4



• In the case of elliptic curve groups E(K), where the public keys are on
compressed form, the adversary first tests that the x coordinate is in K and
that the point can be decompressed to affine form, that is the adversary
forms the number she or he expects to equal y2 and verifies that it is
indeed a square in K.

In the case of 〈G〉 being a strict subgroup of E(K) the adversary may
optionally proceed to test that the order of all public keys is q.

The above tests should in general allow the adversary to distinguish between
groups. It may conceivably be the case that two groups could be crafted such
that the above tests does not allow an efficient distinguisher to be created.

However, if we assume that the groups have not been deliberately selected to
be hard to distinguish, the probability of the groups being difficult to distinguish
may be conjectured to be negligible.

The fact that groups may in general be distinguished implies that even if
the domain parameters are kept private in an application, an adversary seeking
to determine the parameters can test the public keys against a database of
previously observed domain parameters in the hope of finding a match.

Consequently, it makes little sense to attempt to keep the domain parameters
private in an application, if the same domain parameters are used in other
applications where they are not kept private, or if the parameters are known to
have been otherwise published or disclosed.

5 Distinguishing or computing the generator

The tests described above provide no information on the generator.
Of course, if the adversary has access to a database of domain parameters

previously observed that includes generators, she or he may guess that the
generator in the database was used to select the public keys.

If the public keys have been selected uniformly at random, however, the
adversary can not determine whether this guess is correct, nor can she or he
hope to compute the generator from the information in the public keys.

To see why this is the case, let g, g̃ 6= g both be generators of the same group
〈g〉 = 〈g̃〉 of prime order q. In multiplicative notation this implies that g̃ = gk

for some k. Furthermore, let e1, e2, . . . be private keys selected independently
and uniformly at random from the interval 0 ≤ ei < q.

Then the two sets {ge1 , ge2 , . . . } and {g̃e1 , g̃e2 , . . . } = {ge1k, ge2k, . . . } both
contain public keys selected independently and uniformly at random from 〈g〉.

If the adversary is allowed to observe one of these sets of public keys, the
adversary cannot distinguish between the case that it was selected using g or
g̃ as generator. This is true even if the adversary is able to compute discrete
logarithms, since the exponents will be selected uniformly at random from the
above stated interval regardless of which generator is used as base.

Since the group 〈g〉 has prime order q it has q − 1 distinct generators. If
the generator is selected uniformly at random, then by definition all of these
generators q − 1 are equally likely to have been used.

The method for computing the private key given a public key is to compute
the discrete logarithm of the public key to the base of the generator. This
requires knowledge of the generator. If g is used as base when g̃ was actually

5



used to select the public keys, the resulting private keys will all be concealed by
the same unknown k = logg g̃.

The above implies that the generator could potentially serve the role of a
long term secret, provided that it is selected uniformly at random and is kept
private. This is attractive since it is trivial to select a new generator given some
existing domain parameters. It may be considerably more difficult to generate
new domain parameters from scratch. Furthermore existing implementations
of elliptic curve cryptography that support domain parameters being loaded
should easily be able to accommodate a change of generator.

6 Computing the domain parameters

In this section, we consider the problem of computing the domain parameters,
excluding the generator, from a set of observed public keys.

6.1 Elliptic curves and public keys on affine form

Let us start by considering the case of elliptic curve groups E(Fp) on short
Weierstrass form. We seek to compute a, b and p, the order r of E and the
order q of G given a set of public keys on affine form.

The trick to accomplishing this is to first compute the prime p by forming
one or more expressions that depend only on the coordinates of the public keys,
and that are congruent to zero modulo p but that are non-zero over Z. We
demonstrate one way of doing this below.

If (x1, y1) and (x2, y2) are public keys, it must hold that

y21 − x3
1 − ax1 − b ≡ 0, y22 − x3

2 − ax2 − b ≡ 0,

so the b coefficient may be eliminated by subtracting the expressions

(y21 − y22)− (x3
1 − x3

2)− a(x1 − x2) ≡ 0.

If (x3, y3) and (x4, y4) are two more public keys, it must hold that

(y23 − y24)− (x3
3 − x3

4)− a(x3 − x4) ≡ 0,

so the a coefficient may be eliminated by forming the expression

(x3 − x4)
[
(y21 − y22)− (x3

1 − x3
2)− a(x1 − x2)

]
−

(x1 − x2)
[
(y23 − y24)− (x3

3 − x3
4)− a(x3 − x4)

]
=

(x3 − x4)
[
(y21 − y22)− (x3

1 − x3
2)
]
− (x1 − x2)

[
(y23 − y24)− (x3

3 − x3
4)
]
≡ 0.

This expression depends only on the coordinates of the public keys, is con-
gruent to zero modulo p, and is non-zero over Z with high probability.

Hence, we may compute p by evaluating the expression and factoring the
resulting number. From the factored number, we obtain one or more candidates
for p. In the vast majority of cases, we only obtain a single candidate that is of
the correct bit length and greater than all of the x-coordinates observed.

If factoring the number proves difficult, another approach is to compute
several numbers that are congruent to zero modulo p by permuting the indices
in the above expression, or by involving additional public keys.

6



By computing the greatest common divisor of these numbers, and then elim-
inating any small prime factors in the result using trial division, we very effi-
ciently compute p. In our practical experiments, knowledge of the affine coor-
dinates of four points proved sufficient to compute p.

Once p has been computed, it is a trivial matter to compute a and b as

a ≡ (x1 − x2)−1
[
(y21 − y22)− (x3

1 − x3
2)
]
,

b ≡ y21 − x3
1 − ax1.

The order r of the elliptic curve may then be computed using standard point
counting algorithms. Assuming that r = hq, where h is some small cofactor,
this allows us to compute q and to identify the subgroup 〈G〉. However, as
previously stated, we cannot compute the specific generator G.

It is trivial to see that the above approach may be generalized to elliptic
curves E(F2n) on short Weierstrass form, and to elliptic curves E(K) on Edwards
form, twisted Edwards form and Montgomery form, see appendix A, as well as
to elliptic curves on general Weierstrass form over arbitrary finite fields.

To summarize, we observe that in the elliptic curve setting, the domain
parameters, excluding the generator, may be computed very efficiently from
only a very small set of public keys on affine form selected uniformly at random.

If the domain parameters are to be kept private, it is necessary therefore to
at least employ point compression, and furthermore to not use parameters that
the adversary may previously have observed.

6.2 Elliptic curves and public keys on compressed form

Let us now consider the case of public keys on standard compressed form.

6.2.1 The compressed y coordinate

When point compression is employed, the compressed y coordinate provides no
information since for all x coordinates on the curve, except for up to three points
with zero y coordinate, there is exactly one point with compressed y coordinate
equal to one, and exactly one point with compressed y coordinate equal to zero.

Assuming the public keys were selected uniformly at random, the compressed
y coordinate may hence for all intents and purposes be modelled as a single bit
selected uniformly at random and independently of the x coordinate. We shall
therefore ignore the compressed y coordinate henceforth.

6.2.2 The x coordinate

Let E(Fp) be an elliptic curve on short Weierstrass form over a field of prime
characteristic p > 3 and let G ∈ E be a generator of prime order q.

In analogy, let Ẽ(Fp̃) be an elliptic curve on short Weierstrass form over a

field of prime characteristic p̃ > 3 such that p̃ ∼ p, and let G̃ ∈ Ẽ be a generator
of prime order q̃ such that q̃ ∼ q, where ∼ denotes equal length in bits.

Given an x coordinate on E it is then easy to show that the probability that
x < p̃ is greater than or equal to 1/2. Let ã, b̃ be the coefficients in the short
Weierstrass equation of Ẽ. Then, the probability of u = x3

i + ãxi + b̃ being
a square in Fp̃ should be about 1/2. Again, it is conceivable that two groups

7



such that u is a square with considerably higher probability than 1/2 could
be deliberately crafted. However, if we assume that the curves are selected at
random then the above statements should hold.

We may use the above probabilities not only to build distinguishers but also
to set a näıve upper bound on how many x coordinates the adversary should
need to observe for an elliptic curve E(Fp) on short Weierstrass form to be
uniquely determined. If p is of length m bits, then less than 3m randomly
selected public keys should be sufficient to determine the curve.

However, we have yet to find an efficient algorithm that allows the prime
p and the two Weierstrass coefficients to be computed. To the best of our
knowledge, it is still an open question whether such an efficient algorithm exists,
or whether this is a hard problem.

6.2.3 Simplifications and generalizations

Possible ways of simplifying this problem include assuming that portions of the
domain parameters are known. For instance, it is plausible to assume that
a ≡ −3 since this is a very common choice. Also, one may perhaps assume that
p is known since there are those who advocate selecting non-random primes with
certain properties that allow fast arithmetic.

It is easy to see that the above discussion may be generalized to elliptic
curves E(K) on Edwards form, twisted Edwards form and Montgomery form.

6.3 Subgroups of F∗
p

Finally, let us briefly consider public keys selected from subgroups of F∗
p.

If we assume that p can somehow first be computed from the public keys
observed, then the subgroup 〈g〉 may be identified by testing if zq ≡ 1 for
different q such that q | p− 1. Typically this requires factoring (p− 1)/2 = rq.

It is common to set r = 1 ⇒ q = (p − 1)/2. Another common choice is
to set q sufficiently large for näıve cycle-finding algorithms to run slower in the
subgroup of order q than GNFS-based algorithms do in F∗

p. In the latter case,
computing q by factoring rq may be difficult if r has large prime factors.

This having been said, it is by no means evident how one would efficiently
compute p from the public keys observed. If this may be accomplished, it may
well be that some information on the subgroup of order q would have to be used
or derived. To the best of our knowledge, it is still an open question whether an
efficient algorithm for computing p exists, or whether this is a hard problem.

7 Blinding schemes

As was described in section 4, if we are allowed to observe public keys selected
uniformly at random from some unknown group, we may in general distinguish
whether these public keys all belong to some known group.

We propose that a good method for preventing the creation of such distin-
guishers is to use blinding schemes. Furthermore, we propose that by using
blinding schemes we may prevent adversaries from computing information on
the domain parameters in cases where efficient methods for performing such
computations from non-blinded public keys do exist.

8



In particular, we propose to consider blinding schemes with the following
property: Let S be a set of groups and let G and G̃ 6= G be any two groups
selected from S by the adversary. Let the adversary observe a set of blinded
public keys selected at random from either G or G̃. Then, the adversary should
be unable to determine whether the keys were selected from G or G̃.

7.1 Existing blinding schemes

In [6] Fouque, Joux, and Tibouchi introduced an efficient injective map from
bit strings to a subset of the points on an elliptic curve. This map was subse-
quently used as a basis for the Elligator blinding scheme [4] originally introduced
by Bernstein, Krasnova and Lange and subsequently revised by Bernstein, Ham-
burg, Krasnova and Lange to support larger classes of elliptic curves.

After the introduction of the Elligator blinding scheme a few related works
have been published, for example [2] by Aranha, Fouque, Qian, Tibouchi and
Zapalowicz to extend support for blinding to elliptic curves over binary fields,
and [7] by Tibouchi to support larger classes of elliptic curves, including curves
of prime order, and to complete prime order subgroups of such curves.

7.2 A new application for existing blinding schemes

The motivation for the Elligator blinding scheme, and the recent related works,
has thus far been to conceal the use of elliptic curve cryptography in various
steganographic schemes. In this paper, we make the observation that these
blinding schemes have an additional application.

More specifically, since these schemes may be used as is to prevent an adver-
sary from creating distinguishers for elliptic curve groups, they may be used to
prevent an adversary from computing information on the elliptic curve domain
parameters in the settings where the domain parameters are to be kept private.

Using the above notation, assume that the blinding scheme describes efficient
injective maps ϕ : D → G and ϕ̃ : D → G̃. Then elements may be selected
uniformly at random from the image of ϕ or ϕ̃ and mapped to D prior to
transmission. This will result in the adversary observing an element selected
uniformly at random from D regardless of whether the public key was selected
from G or G̃. Hence, the adversary cannot distinguish between these two groups.

The above referenced blinding schemes describe maps from D to a large
set S of distinct groups. This implies that the adversary will be unable to
distinguish between any two groups in this set, which in turn implies that it will
be impossible for the adversary to compute information on the group.

7.2.1 Practical considerations and limitations

It should be noted that previously in this paper we have assumed that the public
keys are selected uniformly at random from G. Above we instead assume that
they are selected uniformly at random from the image of ϕ. These two sets are
not necessarily identical.

The use of a blinding scheme may hence in some cases introduce a bias in
the public keys selected from G. Care must be exercised so as to ensure that
any such bias does not result in any adverse consequences for the security of the
cryptographic scheme in which blinding is used.

9



In order to ensure that all maps to the groups in S have the same domain
D it may furthermore be necessary to impose additional restrictions on the size
of the domain D, resulting in the introduction of an additional bias.

8 Encryption as an alternative to blinding

An obvious alternative to using a blinding scheme is to encrypt the public
keys using a symmetric cipher under some pre-shared symmetric key. Since it
is possible to distribute the symmetric key alongside the domain parameters,
which are also private, the fact that a key needs to be distributed need not
entail any increased complexity from a key distribution perspective.

Encrypting the public keys gives protection against distinguishing attacks
and attacks where the adversary attempts to compute the domain parameters
for as long as the private key is kept secret and for as long as the symmetric
cipher itself cannot be broken by the adversary. However, if the private key is
compromised the adversary can mount distinguishing attacks.

If a blinding scheme is used instead of point encryption, it is impossible to
mount distinguishing attacks. Even if all information, including the domain
parameters, are available to the adversary she or he cannot prove or disprove
the hypothesis that these domain parameters are used. This is a clear advantage
of using a blinding scheme compared to standard symmetric encryption.

9 Open problems

Below we list some open problems that may be of interest for further study by
the academic community.

• Compute p in the case where the public keys belong to a subgroup of F∗
p,

or demonstrate that this is a hard problem.

• Develop blinding schemes for public keys belonging to a subgroup of F∗
p.

• Compute p, a and b in the case where the public keys are on compressed
form and belong to an elliptic curve group E(Fp) on short Weierstrass
form, or demonstrate that this is a hard problem. Possible simplifications
include assuming a subset of {p, a, b} to be known.

• In the more general case, determine K and the coefficients on the curve
equation in the case where the public keys are on compressed form and
belong to an elliptic curve group E(K) on short Weierstrass form, Edwards
form, twisted Edwards form or Montgomery form.

There are various ways of simplifying this problem, in analogy with the
simplifications proposed in the previous bullet.

Above it is assumed that a set of public keys selected uniformly at random
are observed by a passive adversary. The settings where the adversary is ac-
tive, or where the public keys have a bias, or where the adversary can impose
requirements on the public keys selected, are not considered.

In some special cases where the public keys are not selected uniformly at
random, we are aware that information on the domain parameters may be com-
puted. However, these special cases are not very likely to occur in practise.

10



Final remarks

In the above discussion, we have considered the setting where the adversary is
only allowed to observe a set of public keys.

In order to implement a cryptologic scheme or protocol it is often necessary
to transmit additional messages that bear some relation to the public keys and
hence to the domain parameters. It may be the case that an adversary who is
allowed to observe these messages in addition to the public keys will be able
to compute additional information on the domain parameters. However, such
attacks are out of the scope of this paper.

References

[1] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A. Hal-
derman, N. Heninger, D. Springall, E. Thomé, L. Valenta, B. van der
Sloot, E. Wustrow, S. Zanella-Béguelin and P. Zimmerman, “Imperfect
Forward Secrecy: How Diffie-Hellman Fails in Practise”. Accessible via
https://weakdh.org/imperfect-forward-secrecy.pdf.

[2] D. F. Aranha, P.-A. Fouque, C. Qian, M. Tibouchi and J.-C. Zapalowicz,
“Binary Elligator Squared”. IACR ePrint 2014/486.

[3] The Brainpool Group, “ECC Brainpool Standard – Curves and Curve Gen-
eration”, 2005. Accessible via http://www.ecc-brainpool.org.

[4] D. J. Bernstein, M. Hamburg, A. Krasnova and T. Lange, “Elligator:
Elliptic-curve points indistinguishable from uniform random strings”, in
ACM SIGSAC CCS 2013, p.p. 967-980. IACR ePrint 2013/325.

[5] J.-P. Flori, J. Plût, J.-R. Reinhard and M. Eker̊a, “Diversity and Trans-
parency for ECC ”, in the NIST Workshop on Elliptic Curve Cryptography
Standards, 2015. IACR ePrint 2015/659.

[6] P.-A. Fouque, A. Joux and M. Tibouchi, “Injective Encodings to Elliptic
Curves”, in ACISP (2013), C. Boyd and L. Simpson, Eds., vol. 7959 of
LNCS, Springer, pp. 203–218.

[7] M. Tibouchi, “Elligator Squared: Uniform Points on Elliptic Curves of
Prime Order as Uniform Random Strings”. IACR ePrint 2014/043.

11

https://weakdh.org/imperfect-forward-secrecy.pdf
http://www.ecc-brainpool.org


A Equations

In this appendix we provide congruence equations for elliptic curves on all forms
previously mentioned as a matter of convenience. Furthermore, we provide the
equations used for standard point compression on curves of these forms.

Below it is assumed that (x1, y1), . . . , (x4, y4) are four public keys selected
uniformly at random from 〈G〉 or from E.

• Elliptic curves E(Fp) on short Weierstrass form y2 = x3 + ax + b:

(x3 − x4)
[
(y21 − y22)− (x3

1 − x3
2)
]
− (x1 − x2)

[
(y23 − y24)− (x3

3 − x3
4)
]
≡ 0

It is assumed that p > 3 is a prime. This equation also hold for elliptic
curves E(Fpn) but such curves are not common in practical applications.

• Elliptic curves E(F2n) on short Weierstrass form y2 + xy = x3 + ax2 + b:

(x2
1 − x2

2)
[
(y23 − y24) + (x3y3 − x4y4)− (x3

3 − x3
4)
]
−

(x2
3 − x2

4)
[
(y21 − y22) + (x1y1 − x2y2)− (x3

1 − x3
2)
]
≡ 0

Curves on this form do not admit standard point compression. Alternative
point compression techniques exist.

• Elliptic curves E(K) on Montgomery form by2 = x3 + ax2 + x:

(x2
3y

2
4 − x2

4y
2
3)

[
(x3

1y
2
2 − x3

2y
2
1) + (x1y

2
2 − x2y

2
1)
]
−

(x2
1y

2
2 − x2

2y
2
1)

[
(x3

3y
2
4 − x3

4y
2
3) + (x3y

2
4 − x4y

2
3)
]
≡ 0

For point compression rewrite the equation as y2 = (x3 + ax2 + x)/b.

• Elliptic curves E(K) on Edwards form x2 + y2 = c2(1 + dx2y2):

(x2
3y

2
3 − x2

4y
2
4)

[
(x2

1 − x2
2) + (y21 − y22)

]
−

(x2
1y

2
1 − x2

2y
2
2)

[
(x2

3 − x2
4) + (y23 − y24)

]
≡ 0

For point compression rewrite the equation as y2 = (c2− x2)/(1− dc2x2).

• Elliptic curves E(K) on twisted Edwards form ax2 + y2 = 1 + dx2y2:

x2
3x

2
4 (y23 − y24)

[
(x2

2y
2
1 − x2

1y
2
2)− (x2

2 − x2
1)
]
−

x2
1x

2
2 (y21 − y22)

[
(x2

4y
2
3 − x2

3y
2
4)− (x2

4 − x2
3)
]
≡ 0

For point compression rewrite the equation as y2 = (1− ax2)/(1− dx2).

It is possible to develop similar equations for other curves, including for
example the generalized Weierstrass form. However, such forms are not common
in practical applications so we do not list these equations.

12


	Introduction
	The post-quantum era
	Selecting the domain parameters
	Protecting the domain parameters

	Domain parameters
	Public keys
	Distinguishing the group
	Distinguishing or computing the generator
	Computing the domain parameters
	Elliptic curves and public keys on affine form
	Elliptic curves and public keys on compressed form
	The compressed y coordinate
	The x coordinate
	Simplifications and generalizations

	Subgroups of F*p

	Blinding schemes
	Existing blinding schemes
	A new application for existing blinding schemes
	Practical considerations and limitations


	Encryption as an alternative to blinding
	Open problems
	Equations

