
Revisiting Sum of CBC-MACs and Extending

NI2-MAC to Achieve Beyond-Birthday Security

Avijit Dutta and Goutam Paul

Cryptology and Security Research Unit (CSRU),
R. C. Bose Centre for Cryptology & Security,

Indian Statistical Institute, Kolkata 700 108, India.
avirocks.dutta13@gmail.com, goutam.paul@isical.ac.in

Abstract. In CT-RSA 2010, Kan Yasuda has shown that the sum of two independent En-
crypted CBC (ECBC) MACs is a secure PRF with security beyond birthday bound. It was
mentioned in the abstract of the paper that “no proof of security above the birthday bound
(2n/2) has been known for the sum of CBC MACs” (where n is the tag size in bits). Kan
Yasuda’s paper did not consider the sum of actual CBC outputs and hence the PRF-security
of the same has been left open. In this paper, we solve this problem by proving the beyond
birthday security of sum of two CBC MACs. As a tool to prove this result, we develope a
generalization of the result of S. Lucks from EUROCRYPT 2000 that the sum of two secure
PRPs is a secure PRF. We extend this to the case when the domain and the range of the per-
mutations may have some restrictions. Finally, we also lift the birthday bound of NI2 MAC
construction (the bound was proven in CRYPTO 2014 by Gazi et al.) to beyond birthday by
a small change in the existing construction.

Keywords: Beyond Birthday, CBC, ECBC, MAC, NI, NI2, Sum of PRP

1 Introduction

In symmetric key paradigm, MAC (Message Authentication Code) is used for pre-
serving message integrity and message origin authentication. The design of a MAC
should not only consider achieving security, but also target attaining efficiency. In the
literature, three different approaches of designing a MAC exists: (a) universal hash
function based MAC, a popular example of which is UMAC [8], (b) a compression
function based MAC, like NMAC [2], HMAC [2], NI [1] etc. (c) Block cipher based
MAC, such as CBC MAC [5], PMAC [9], OMAC [11]. etc.

Most of the popular MACs are block cipher based MACs, but each one of them
suffers from the same problem - security is guaranteed up to the birthday bound. When
the block length of the underlying block cipher is 128-bit, then birthday bound does
not seem to be a problem, as we are guaranteed to have 64 bits of security which is
well acceptable for many practical applications. But when we deal with 64-bit block

cipher as used in many light weight crypto devices, then birthday bound problem
becomes the main bottleneck.

In recent researches, many MAC constructions have been proposed with security
beyond the birthday barrier without degrading the performance. The first attempt
was made in ISO 9797-1 [3] without security proof. But Algorithm 4 of ISO 9797-1
was attacked by Joux et al. [13] that falsified the security bound. Algorithm 6 of
ISI 9797-1 was proven to be secure against O(22n/3) queries with restrictions on the
message length [19].

1.1 Motivations and Contributions

Our present work has three distinct contributions. We discuss the motivation behind
and the summary of each contribution one by one.

First contribution. We generalize the result of S. Lucks [15] in EUROCRYPT
2000 related to the sum of permutation. In [15], it was shown that the sum of two
independent random permutations is a secure PRF with security beyond birthday
bound, however there was no restrictions on the domain or range of the permutations.
When the inputs to the permutations come from a nested MAC construction (like
CBC), that uses the same permutation(s) as its primitives, then one needs to consider
restricted domain and range for the security analysis of the sum of permutation. We
show that even with such restrictions, the sum of two permutations is a secure PRF
(Section 4). This result is used in our subsequent analysis.

Second contribution. CBC-MAC [5] allows only prefix-free queries. To circumvent
this restriction, the ECBC construction [17] was proposed, though it achieves only
birthday security just like CBC. In CT-RSA 2010, K. Yasuda [19] came up with an
extension of ECBC to lift the security beyond birthday. We note that though the
title of the paper [19] says that it is the sum of two CBC constructions, actually
the proposal of [19] involved the sum of two ECBC constructions, requiring 4 keys.
In the conclusion, the author mentioned that their approach “do not seem to be
directly applicable to the sum of one-key CBC MACs” and “the problem of reducing
the number of keys remains open”. In this paper, we show that the sum of two CBC
MACs is a secure MAC with PRF-security beyond birthday bound, requiring only
two keys instead of 4-keys (used in Sum of Two ECBC construction [19]). Thus we
solve (Section 5) an open problem since the work of [19].

Third contribution. In CRYPTO 1999, J. An and M. Bellare [1] proposed a
Merkle-Damg̊ard iteration based MAC construction called NI-MAC. The construc-
tion of NI-MAC is similar to that of NMAC [2], the only difference is that in NI-MAC
the compression function f takes an additional input key k at each invocation. The
motivation of designing NI was to avoid constant rekeying on multiblock messages
in NMAC and to allow for a security proof starting by the standard switch from a
PRF to a random function, followed by information-theoretic analysis.

In CRYPTO 2014, Gazi et al. [10] revisited the proof of NI-MAC in the view of
structure graph introduced by Bellare et al. in CRYPTO 2005 [6] and gave a tight

bound of order lq2

2n
, which is an improvement over trivial bound of order l2q2

2n
, for q

queries, each of length at most ` blocks. But this is again restricted to the birthday
security. In order to prove the security of NI-MAC, Gazi et al. [10] introduced a
variant of NI-MAC, called NI2-MAC, and then derived the security of NI-MAC from
the security analysis of NI2-MAC. As our third contribution in this paper, we propose
an extension of NI2-MAC with a single invocation of an additional pseudo-random
function and prove (Section 6) that it achieves beyond-birthday security using similar
proof-technique of NI-MAC.

2 Preliminaries

In this section, we briefly discuss the notations and definitions used in this paper.
We also state some existing basic results.

2.1 PRP, PRF and Secure MAC

We denote |S| as the cardinality of set S and Sc as the complement set of S. Let

x
$←− S denote that x is chosen uniformly at random from S. Let Perm(n) denote the

set of all permutations over {0, 1}n, Func(A,B) denote the set of all functions from
A to B and Bij(A,B) denote the set of all bijective functions from A to B (of course,
here we need |A| = |B|). A permutation π is said to be a random permutation over

{0, 1}n, if π
$←− Perm(n). A function ρ : A → B is said to be a random function, if

ρ is chosen uniformly at random from the Func(A,B).
We will specify a random permutation π which is defined over {0, 1}n by per-

forming lazy sampling. In lazy sampling initially the permutation π is undefined at
every point of its domain. We maintain two sets that grows dynamically. One is
domain, Dom(π) and another is Range, Ran(π) both of them are initialized to be
empty. Dom(π), Ran(π) keeps the record of already defined domain points and range
points of permutation π respectively. Therefore, if x /∈ Dom(π) then we will choose

y
$←− {0, 1}n \ Ran(π) and add y in Ran(π) and x in Dom(π). In this regard, x

is said to be fresh. Similarly, we can lazy-sample a random function ρ maintaining
consistency.

We consider that an adversary A is an oracle machine with access to its oracle
O(·) and outputs either 1 or 0. Accordingly, we write AO(·) = 1 or 0. The resource of
A is measured in terms of the time complexity T (n) that it takes to interacts with
its oracle O(·) and the query complexity q(n) which says the number of queries and
replies exchanged between the adversary and its oracle. For practical purpose, we
restrict to probabilistic polynomial time (PPT) adversaries only.

Let Ek be a keyed permutation over {0, 1}n, i.e., a bijective function from {0, 1}n
to {0, 1}n . We define the PRP-advantage of Ek with respect to an adversary A as

AdvPRP
Ek

(A) = Pr
[
AEk(·) = 1 : k

$←− K
]
− Pr

[
Aπ(·) = 1 : π

$←− Perm(n)
]
.

If this advantage is negligible in n for all PPT adversaries, we say that Ek is a secure
PRP. Note that the first probability in the definition of advantage is calculated over

the internal coin tosses ofA and the randomness of k
$←− K and the second probability

is calculated over the randomness of π
$←− Perm(n).

Similarly, the PRF-advantage of a function Fk : A→ B is defined as

AdvPRF
Fk

(A) = Pr
[
AFk(·) = 1 : k

$←− K
]
− Pr

[
Af(·) = 1 : f

$←− Func(A,B)
]
.

If this advantage is negligible in the length of the input for all PPT adversaries, F is
said to be a secure PRF. Note that the first probability is calculated over the internal

coin tosses of the algorithm A and randomness of k
$←− K and second probability is

calculated over the randomness of f
$←− Func(A,B).

The length of M in bits is denoted by len(M). When it is not a multiple of n,
we append 10n−1−len(M) mod n to M to make len(M) a multiple of n. We denote the
maximum number of block in a query by l. We denote the partition of a message M
as M = M1||M2|| . . . ||Ml where each Mi is an n-bit block and the number of blocks
of M is denoted by l.

A MAC construction uses smaller primitives such as PRP or PRF that works on
n-bit message blocks to build a larger primitive that works on variable-length message
to produce a fixed-length tag. An adversary attacking a MAC with q queries obtains
q tags for q distinct messages and produces a valid tag of a fresh message that he
has not queried earlier. It is known that any secure PRF is a secure MAC. Thus, to
show that a MAC construction is secure, one needs to show that the PRF-advantage
(which is a function of q, l and n) of an adversary for the construction is negligible.

2.2 Structure Graphs

In this section, we briefly revisit the structure graph analysis of CBC-MAC [6] by
Bellare et al. and that of NI-MAC [10] by Gazi et al.

Consider an iterated/cascaded construction with a function f , where f could
be a random permutation or a random function, that works on a message M =
M1||M2|| . . . ||Ml of length l blocks as follows:

Y0 = 0, and Yi = f(Yi−1,Mi) for i = 1, . . . , l.

Note that for CBC-MAC analysis, f(α, β) is taken as π(α ⊕ β) and for the NI-
MAC analysis, f(α, β) is taken as ρ(α||β), where π is a random permutation from
Perm(n) and ρ is a random function from b+n bits to n bits, where b is the message
block-length and n is the length of the chaining variable as well as the tag.

For a set of any two fixed distinct messagesM = {M (1),M (2)} and a function f ,
we construct the structure graph Gf (M) with {0, 1}n as the set of nodes as follows.
We follow the computations for M (1) followed by those of M (2) by creating nodes
labelled by the values yi of the intermediate chaining variables Yi with the edge
(Yi, Yi+1) labelled by the block Mi+1. In this process, if we arrive at a vertex already
labelled, while not following an existing edge, we call this event an f -collision. An
accident is an f -collision that does not close a cycle with alternating edge-directions
such that the XOR of the labels of the cycle becomes 0.

More formally, let for two distinct messages M (1) and M (2) of l1 and l2 blocks
respectively, where

M (1) = M
(1)
1 ||M

(1)
2 || . . . ||M

(1)
l1

and M (2) = M
(2)
1 ||M

(2)
2 || . . . ||M

(2)
l2
,

the corresponding Y -values be given by

Y
(1)
0 , Y

(1)
1 , Y

(1)
2 , . . . , Y

(1)
l1

and Y
(2)
0 , Y

(2)
1 , Y

(2)
2 , . . . , Y

(2)
l2

respectively. Let σ = l1 + l2. We use the notation Mi to refer to the block M
(1)
i , when

i < l1, otherwise to refer to the block M
(2)
i−l1 . Similarly, let Yi to refer to 0 when i = 0;

Y
(1)
i , when 1 ≤ i ≤ l1; and Y

(2)
i−l1 , when l1 + 1 ≤ i ≤ σ. Now, consider the mappings

[[·]] and [[·]′ on {0, . . . , σ}

so that [[i]] = min {j : Yi = Yj} and [[i′]] = [[i]] for i 6= l1 except that [[l1]]
′ = 0.

For any fixed f and any two distinct messages M = {M (1),M (2)}, we define the
structure graph Gf (M) to be the triple Gf (M) = (V,E, L), where

V = {[[i]] : 0 ≤ i ≤ σ}, E = {([[i− 1]]′, [[i]]) : 1 ≤ i ≤ σ}

and L = E → {0, 1}n is an edge-labeling function defined as

L((u, v)) = {Mi : [[i− 1]]′ = u and [[i]] = v}.

Let (Vi, Ei, Li) be the graph obtained after processing only the first i out of σ blocks
of M. We say that (i, [[i]]) is an f -collision if [[i]] < i and Mi /∈ Li−1([[i − 1]]′, [[i]]).
Note that the last condition on Mi implies that collision occurred due to parallel
edges with the same message label is not considered.

In [6], a general collision is called a true collision (except the collision that occurs
due to parallel edges with same label on the edges). Further, a true collision is called
an accident if it is not followed from a cycle C with alternating edges with the sum of
the labels of the edges involved in C to 0, otherwise it is called an induced collision.
However, for NI2-MAC, all f -collisions are accidents. In our work, irrespective of
whether f = π or ρ, we need to consider the accidents in Gf (M). Let G(M) denote
the set of all structure graphs corresponding to the set of messagesM (by varying f
over a function family). For a fixed graph G, let Acc(G) denote the set of all accidents
in G. We state the following known results.

Proposition 1. [10, Lemma 2] For a fixed graph G, Prf [Gf (M) = G] ≤ 2−n|Acc(G)|.

Proposition 2. [6, Lemma 7] Pr[G
$←− G(M) : |Acc(G)| ≥ 2] ≤ 8l4

22n
.

3 Proposed Constructions for Beyond-Birthday Secure
MAC

We introduce here the construction of two separate MACs. One is Sum of Two CBC
MACs and another is NI2+ MAC.

3.1 Sum of Two CBC MACs

In this section we present the algorithm for Sum of Two CBC MACs followed by its
schematic diagram in Fig.3.1.

For any message M ∈ {0, 1}∗, the sum of CBC algorithm calls the two subroutines
Internal(K1,M) and Internal(K2,M), described in Algorithm 1 and 2 respectively,
and obtains Σ and Θ respectively. Final tag T is computed by XOR-ing the outputs
of EK1(Σ) and EK2(Θ).

Internal subroutine (after suitably padding with 10∗ if the message length is not
a multiple of the block length n) partitions the message M into l many blocks each
of which is n bits long. Then it iteratively processes the message up to l − 1 many
blocks. The output of (l − 1)th block is XOR-ed with the last block of the message
Ml and the output is returned.

EK1 EK1 EK1 EK1 EK1

EK2 EK2 EK2 EK2 EK2

⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕

⊕ T

0n

M1 M2 M3 Ml−1 Ml

· · ·

0n

M1 M2 M3 Ml−1 Ml

· · ·

X1 X2 X3 Xl−1 Σ

X
′
1 X

′
2 X

′
3 X

′
l−1 Θ

Y1 Y2 Y3 Yl−1

Yl

Y
′
1 Y

′
2 Y

′
3 Y

′
l−1

Y
′
l

Fig. 3.1: Construction of Sum of Two CBC MACs

Input: K1,K2
$←− K, M ← {0, 1}∗

Output: T ∈ {0, 1}n
Σ ← Internal(K1,M);1

Θ ← Internal(K2,M);2

T ← EK1(Σ)⊕ EK2(Θ);3

Return T ;4

Algorithm 1: Algorithm for Sum of Two CBC MACs

Input: K
$←− K, M ← {0, 1}∗

Output: Z ∈ {0, 1}n
M1||M2|| . . .Ml ←M ||10∗;1

Y ← 0n;2

for i = 1 to l − 1 do
X ← Y ⊕Mi; Y ← EK(X);3

end
Z ← Y ⊕Ml;4

Return Z;5

Algorithm 2: Algorithm for Subroutine Internal

3.2 NI2+ MAC

For this construction, we present the schematic diagram in Fig. 3.2 followed by the
description in Algorithm 3.

fk1 fk1 fk1 fk1 fk20n

Y1 Y2 Y3 Yl−1 Yl

� � � ��2l 2l−1 22 212l−2

⊕ ⊕ ⊕ ⊕⊕0n

Σ

Θ

fk3 T

M1 M2 M3 Ml 0b

. . .

Fig. 3.2: Construction of NI2+ MAC

Input: fK1 , fK2 , fK3 : K1,K2,K3
$←− K, M ← {0, 1}∗

Output: T ∈ {0, 1}n
M1||M2|| . . .Ml ←M ||10∗; //l is the number of message blocks in M1

Z ← 0n;2

Y ← 0n;3

for i = 1 to l do
Y ← fK1(Mi, Y);4

Z ← 2 · (Z ⊕ Y);5

end
Θ ← Z;6

Σ ← fK2(0b, Y);7

T ← fK3(Σ,Θ);8

Return T ;9

Algorithm 3: Algorithm for NI2+ MAC

fK1 , fK2 and fK3 are three independently chosen keyed functions such that fK1 , fK2 :
{0, 1}n+b → {0, 1}n and fK3 : {0, 1}2n → {0, 1}n. We denote

CascfK1 (M) := fK1(. . . (fK1(fK1(fK1(0,M1),M2),M3), . . . ,)Ml)

to be the output of the last message block in the upper lane of the construction
depicted in Fig.3.2.

For any message M ∈ {0, 1}∗, NI2+ MAC (after suitably padding with 10∗ if the
message length is not a multiple of the block length b) partitions M into l many blocks

each of which is b bits long. Then the blocks are iteratively processed as depicted
in Fig.3.2. Final output Yl of CascfK1 (M) as depicted in Fig.3.2 and 0b becomes the
input of fK2(·, ·) and the output of fK2(·, ·) is denoted as Σ. This is the so-called NI2
construction which we extend as follows. A linear combination of the intermediate
chaining value of CascfK1 (M) is denoted as Θ. The symbol ‘2’ in the construction is
the root of an irreducible polynomial of degree n. Σ and Θ are then fed into fK3(·, ·)
and the output is returned as tag T .

4 Analysis of Sum of Two Independent Random
Permutations over Restricted Domain and Range

Stefan Lucks, in [15], used the concept of a fair set, to show that the statistical
distance between uniform distribution and that of the sum of (d ≥ 2) independent

random permutations sampled from Perm(n) is 1
2dn−1 ·

q∑
i=0

id. For d = 2, when the

inputs are distinct, Π1(x)⊕Π2(x) is a secure PRF with security bound q3

3∗22n−1 . In [4,
Section 4.3], using ratio based comparison theorem, Bellare et al. have shown that
sum construction S(x) = Π(x||0) ⊕ Π(x||1) where x ∈ {0, 1}n−1 is a secure PRF

with security bound q
2n

+O(n) · q3/2
23n/2

where Π is a random permutation sampled from
Perm(n). In this section, for the first time, we analyze the sum of two independent
random permutations in a more general setting, where the domains and the ranges
of the permutations may have certain restrictions.

4.1 Modeling the Restrictions

Let D = R = {0, 1}n. Let D1, D2 ⊂ D and R1, R2 ⊂ R (all arbitrary but large
subsets; bound on the cardinality of the subset is given in Theorem 1), such that
|D1| = |R1| = σ1 and |D2| = |R2| = σ2. Consider two fixed bijective functions g1 :
D1 → R1 and g2 : D2 → R2. For s = 1, 2, we set D

′
s = D\Ds, R

′
s = R\Rs, and sample

Πs uniformly at random from Bij(D
′
s, R

′
s), and then extend its definition over the full

domain D and range R such that ∀x ∈ Ds, Πs(x) = gs(x). Thus, the fixed mapping
gs determines the common restriction on each randomly selected permutation Πs,
s = 1, 2. We show that the sum construction CS(x, y) = Π1(x)⊕Π2(y) where x ∈ D′1
and y ∈ D′2 is a secure PRF with security bound O(q(σ+q)

2

22n
). In this regard, like [15]

our analysis is carried out using the fair-set technique.

4.2 Analysis of the PRF advantage of the construction CS

We consider an adversary A that is presented with an on oracle O. A is allowed to
make pair of query (xi, yi) to oracle O such that xi 6= xj and yi 6= yj, ∀1 ≤ i, j ≤ q.
We define the advantage of A with respect to CS as follows:

AdvPRF
CS

(A) := Pr[ACS = 1 : Π1
$←− Bij(D

′

1, R
′

1), Π2
$←− Bij(D

′

2, R
′

2)]

− Pr[Aρ = 1 : ρ
$←− Func({0, 1}n × {0, 1}n, {0, 1}n)].

For any adaptive adversary A, Theorem 1 establishes an upper bound of the advan-
tage for construction CS.

Theorem 1. Let Π1
$←− Bij(D

′
1, R

′
1) and Π2

$←− Bij(D
′
2, R

′
2), where |D′s| = (2n −

σs) and the definition of Πs is extended to the full domain and range following the
restrictions gs as defined above, for s = 1, 2. Suppose z1 = Π1(x) and z2 = Π2(y),
where x ∈ D′1 and y ∈ D′2. Then CS(x, y) := Π1(x) ⊕ Π2(y) = z1 ⊕ z2 is a secure

PRF with advantage at most q(σ+q)2

22n
.

The proof of Theorem 1 requires a fair-set construction. For the analysis purpose,
we use the same definition of fair set which was originally proposed by Lucks in [15]:

Definition 1. A set F ⊆ {0, 1}n × {0, 1}n is said to be a fair set, if for any v ∈
{0, 1}n, we have | {(z1, z2) ∈ F : (z1 ⊕ z2) = v} | = |F |

2n
.

Note that, if (z1, z2) ∈ F then (z1 ⊕ z2) is uniformly distributed over {0, 1}n.

Construction of the Fair Set. Let R
′′
1 = {y1, y2, . . . , yσ1+i} denotes the consumed

range set of Π1 up to ith query. R
′′
2 = {y′1, y

′
2, . . . , y

′
σ2+i
} denotes the consumed range

set of Π2 up to ith query. More formally,

R
′′

1 = R1 ∪
{
yj : Π1(xj) = yj, xj ∈ D

′

1, σ1 + 1 ≤ j ≤ σ1 + i
}
.

Similarly,

R
′′

2 = R2 ∪
{
y
′

j : Π2(x
′

j) = y
′

j, x
′

j ∈ D
′

2, σ2 + 1 ≤ j ≤ σ2 + i
}
.

At the time of (i + 1)th query where i ≥ 0, we define the Consumed set Si+1 to
be the set of values that (z1, z2) can’t take due to domain reduction. It is easy to see
that,

Si+1 = (y1, ∗) ∪ (y2, ∗) ∪ . . . ∪ (yσ1+i, ∗) ∪ (∗, y′1) ∪ (∗, y′2) ∪ . . . ∪ (∗, y′σ2+i),

where (a, ∗) denotes the set {(a, i) : i ∈ {0, 1}n} and (∗, a) denotes the set {(i, a) :
i ∈ {0, 1}n}.

It is to be noted that if all of these (σ1 + σ2 + 2i) sets were distinct then we
would have |Si+1| = 2n(σ1 + σ2 + 2i). But for each two sets (ys, ∗) and (∗, y′t), where
s ∈ {1, . . . , σ1 + i} and t ∈ {1, . . . , σ2 + i}, there is a common element namely (ys, y

′
t).

Let I = {(yα, y
′

β) : yα ∈ R
′′
1 , y

′

β ∈ R
′′
2} be the set of (σ1 + i)(σ2 + i) common elements

in Si+1. Therefore,

|Si+1| = 2n(σ1 + σ2 + 2i)− (σ1 + i)(σ2 + i).

Suppose U = {(x, y) : x, y ∈ {0, 1}n} be the set of values that (z1, z2) can take when
we consider two independent random permutation sampled from Perm(n). We call
Sci+1 = U \ Si+1 as the Unconsumed set. It is easy to see that

|Sci+1| = 22n − 2n(σ1 + σ2 + 2i) + (σ1 + i)(σ2 + i).

It is easy to see that Sci+1 is not a fair set as |Sci+1| is not multiple of 2n. Thus at
the time of (i+1)th query, we will construct a set Fi+1 ⊂ Sci+1 so that Fi+1 becomes a
fair set. Therefore, at the time of (i+ 1)th query, we will construct a set Fi+1 ⊂ Sci+1

according to Algorithm 4.
For each of the element (yα, y

′

β) ∈ I, we find an element (yg, yh) ∈ Sci+1, such that

yα ⊕ y
′

β = yg ⊕ yh. We say (yg, yh) to be a representative of (yα, y
′

β). Therefore, for
each element of I we find a unique representative in Sci+1. Let

Li+1 :=
{

(yg, yh) ∈ Sci+1 : ∃(yα, y
′

β) ∈ I, yα ⊕ y
′

β = yg ⊕ yh
}
.

Now, we define a set Si+1 which is initially to be empty. For each (yα, y
′

β) ∈
I, we choose a pair (yg, yh) ∈ Li+1 such that yα ⊕ y

′

β = yg ⊕ yh. Then, Si+1 ←
Si+1 ∪ {(yg, yh)}. Note that |Si+1| = (σ1 + i)(σ2 + i). The fair-set thus we construct
Fi+1 := Sci+1 \ Si+1. We show the fair-set construction in Algorithm 4.

Note that the algorithm doesn’t abort, i.e., Y will not be an empty set set, i.e.,
some (yg, yh) pair will exist in Sci+1 in step 3 of Algorithm 4, can be easily verified
from the following Lemma.

Lemma 1. At the time of making (i+ 1)th query and for any field element v, there
is exactly 2n − (σ1 + σ2 + 2i) + tv many pairs (yg, yh) in Sci+1, for which yg ⊕ yh = v,
where Iv = {(yα, y

′

β) ∈ I : yα ⊕ y
′

β = v} with |Iv| = tv ≤ (σ1 + i)(σ2 + i).

Proof. The first thing to observe that any finite field element can be written as a
sum of two distinct field elements in 2n ways. Since |Iv| = tv, therefore, to express

Input: Sci+1, I
Output: Fi+1

Set Fi+1 ← Sci+1 ;1

For each element (yα, y
′
β) ∈ I ;2

Find the set Y = {(yg, yh) ∈ Sci+1 : (yg ⊕ yh) = (yα ⊕ y
′
β)} ;3

If Y ← φ, Abort ;4

Randomly choose an element (z1, z2) ∈ Y ;5

Update Fi+1 ← Fi+1 \ {(z1, z2)} ;6

Algorithm 4: Algorithm for Construction of Fair Set Fi+1 ⊂ Sci+1.

v as a sum of two distinct field elements we have already exhausted tv many field
elements.
Now if we look at Si+1\Iv, then we will have (σ1+σ2+2i)−tv many (yγ, yδ) ∈ Si+1\Iv
such that (yγ ⊕ yδ) = v. Therefore, total (σ1 + σ2 + 2i) − tv field elements are
consumed to write v as a sum of two distinct field elements. Therefore, the number
of remaining field element is 2n−(σ1+σ2+2i)+ tv. Therefore the number of ways we
can write v as a sum of two distinct field elements (yg, yh) such that (yg, yh) ∈ Sci+1

is 2n − (σ1 + σ2 + 2i) + tv. Therefore, to write v as a sum of (yg, yh) ∈ Sci+1 is
2n − (σ1 + σ2 + 2i) + tv. ut

Thus, we have

|Fi+1| = 22n − 2n(σ1 + σ2 + 2i).

The next lemma establishes the fairness of Fi+1.

Lemma 2. The set Fi+1 constructed in Algorithm 4 is fair.

Proof. Fix any field element v. Now two cases are possible: (a) when there exists
tv many pairs (yα, y

′

β) ∈ I such that yα ⊕ y
′

β = v. (b) when there exists no pairs

(yα, y
′

β) ∈ I such that yα ⊕ y
′

β = v. Consider set Si+1. For case (a), the number of
pairs (yγ, yδ) ∈ Si+1 \ Iv such that yγ ⊕ yδ = v is (σ1 + σ2 + 2i)− tv. For case (b), the
number of pairs (yγ, yδ) ∈ Si+1 such that yγ ⊕ yδ = v is (σ1 + σ2 + 2i). That means,
for case (a), number of pairs (yg, yh) ∈ Sci+1 is 2n − (σ1 + σ2 + 2i) + tv and for case
(b), number of pairs (yg, yh) ∈ Sci+1 is 2n− (σ1 +σ2 +2i). Therefore to keep the count
same for each element we remove all the tv many pairs (yγ, yδ) from I. Therefore,
we remove a unique representative for each of the elements of I and thus producing
a set Fi+1, where for each non zero element z, number of pairs (yγ, yδ) such that
yγ ⊕ yδ = z is same. Thus Fi+1 is a fair set. ut

Proof of Theorem 1. Now we are in a position to complete the proof of Theorem 1.
At the time of sampling the output for (i + 1)th query, bad event will occur when
(zi+1

1 , zi+1
2) ∈ Sci+1 \ Fi+1. Therefore, we bound the probability of the bad event as

follows:

Pr[bad = 1] =

q−1∑
i=0

Pr[(zi+1
1 , zi+1

2) /∈ Fi+1] =

q−1∑
i=0

|Sci+1| − |Fi+1|
|Sci+1|

=

q−1∑
i=0

(σ1 + i)(σ2 + i)

22n − 2n(σ1 + σ2 + 2i) + (σ1 + i)(σ2 + i)
≤ q(σ1 + q)2

22n
≤ q(σ + q)2

22n
,

assuming (σ1 + q) < 2n−1, and (without loss of generality) σ2 ≤ σ1 ≤ σ.

5 Security Analysis of Sum of Two CBC MACs

In this section, we show that the Sum of Two CBC-MACs construction is a secure
PRF with security beyond birthday bound. We start our analysis in the same line
as [19, Section 5] that showed the security beyond birthday of the Sum of Two ECBC-
MACs construction. However, we observe that the proof for Sum of Two independent
ECBC-MACs is relatively simpler as the output of two independent CBC-MACs,
namely, Σ = CBCπ1(M) and Θ = CBCπ2(M), are fed into two independent random
permutations π3 and π4 respectively. However author mentioned in [19, Section 6]
that their result for sum of two ECBC-MACs do not seem to be directly applicable
to the sum of one key CBC-MACs such as CMAC or GCBC-MAC. In this section,
we proceed to analyze the case of sum of two independent CBC-MACs which was
remain open in [19, Section 6].

We use the standard trick of replacing the block ciphers EK1 and EK2 with inde-
pendent random permutations π1 and π2 from n bits to n bits respectively. We call
the resulting scheme SUM-CBC[π1, π2]. The following result is immediate.

AdvPRFSUM-CBC[EK1
,EK2

](t, q, l) ≤ AdvPRFSUM-CBC[π1,π2]
(q, l) + 2ε, (1)

where ε = AdvPRPE (t′, lq). The time complexity t′ is of the order of the original
running time t plus the time to compute block cipher E for lq times.

5.1 Our Main Result

Now we state our main theorem related to the PRF-advantage of SUM-CBC[π1, π2].

Theorem 2. We have

AdvPRFSUM-CBC[π1,π2]
(q, l) ≤ 196l3q3

22n
.

Proof. LetA be an adaptive adversary that makes at most q queries, each query being
at most l blocks. The goal of A is to distinguish between the SUM-CBC[π1, π2](·)
oracle and a truly random function ρ : {0, 1}∗ → {0, 1}n. Upon making a query M ,
we consider the algorithm in Algorithm 5.

Input: Message M
Output: Tag T

π1, π2
$←− Perm(n); Σ ← Internal(π1,M);1

Θ ← Internal(π2,M);2

if Σ /∈ Dom(π1) and Θ /∈ Dom(π2) then
go to Case A; (computes T and may set bad flag true)3

end
if Σ ∈ Dom(π1) and Θ /∈ Dom(π2) then

go to Case B; (computes T and may set bad flag true)4

end
if Σ /∈ Dom(π1) and Θ ∈ Dom(π2) then

go to Case C; (computes T and may set bad flag true)5

end
if Σ ∈ Dom(π1) and Θ ∈ Dom(π2) then

go to Case D; (computes T and set bad flag true)6

end
Return T ;7

Algorithm 5: Main Algorithm

Algorithm 5 shows the algorithm using which the random permutations π1 and
π2 are lazily sampled. The sub-routines for Case A, Case B and Case D are given
in subsequent subsections.

For all of the queried messages M (i) where i ∈ [1, q], if the bad flag is not set to
be true, then the distribution of the output of SUM-CBC[π1, π2] will be identical to
the uniformly random distribution. Therefore, by the fundamental lemma of game
playing [7],

AdvPRFSUM-CBC[π1,π2]
(A) = Pr[ASUM-CBC[π1,π2](·) = 1]− Pr[Aρ(·) = 1]

≤ Pr[bad event occurs].

Since our setting is information-theoretic, we can assume that A is deterministic.
Also, the adversary A learns nothing from the values returned by the oracles, as the

values are mere random strings and do not help A set bad flags (until one of the
bad flags gets set). Hence, we can assume that A is non-adaptive and so we consider
only a fixed sequence of queries M (1), . . . ,M (q) output by A. Therefore, it amounts
to compute the probability that the sequence of queries M (1), . . . ,M (q) output by
A sets the bad flag true. Let li be the number of blocks in M (i), and as already
assumed, each li ≤ l.

In subsequent sections we will analyze the probability of bad flag set to true
corresponding to the four different cases and will show the upper-bounds on these
probabilities as 4l2q3

22n
, 32l3q2

22n
, 32l3q2

22n
and 128l3q3

22n
respectively. Adding these, we get the

result. ut

5.2 Analysis of Case A: Σ /∈ Dom(π1) and Θ /∈ Dom(π2)

The subroutine for this case is given in Algorithm 6. Since Σ and Θ are fresh, output

T is calculated by sampling two range points π1(Σ) and π2(Θ) as z1
$←− {0, 1}n \

Ran(π1) and z2
$←− {0, 1}n \ Ran(π2) respectively. Note that T will not be random if

(z1, z2) /∈ F where F is a fair-set.

Z1 ← {0, 1}n \ Ran(π1);1

Z2 ← {0, 1}n \ Ran(π2);2

Choose a fair set F ⊂ Z1 × Z2;3

(z1, z2)
$←− Z1 × Z2;4

if (z1, z2) /∈ F then
bad set to true;5

end
T ← z1 ⊕ z2;6

Return T ;7

Algorithm 6: Subroutine for Case A

Therefore, in this case, bad flag set to true when (z1, z2) do not fall in the fair
set F , as shown in Algorithm 6. In this case, the maximum number of consumed
elements after q queries is given by σ = lq, because each of the q queries is at most
l blocks long. Therefore, substituting σ = lq in Theorem 1, we get

Pr[bad set to true in Case A] ≤ q(lq + q)2

22n
≤ 4l2q3

22n
.

5.3 Analysis of Case B: Σ ∈ Dom(π1) and Θ /∈ Dom(π2)

The subroutine for this case is presented in Algorithm 7. In this case, Σ has been
collided with an element of domain of π1 and Θ is fresh. Therefore, z1 = π1(Σ)

is already defined and sample the range point of π2(Θ) as z2
$←− {0, 1}n. Then the

output T = z1⊕z2 will be uniformly distributed if z2 ∈ {0, 1}n \ Ran(π2). Therefore,
T will not be uniformly distributed if z2 ∈ Ran(π2). Hence the bad flag set to true
when z2 ∈ Ran(π2) which is shown in Algorithm 7. Note that the code without boxed
statement simulates the random function ρ.

z1 ← π1(Σ);1

z2
$←− {0, 1}n;2

if z2 ∈ Ran(π2) then

bad set to true; z2
$←− {0, 1}n \Ran(π2)3

end
T ← z1 ⊕ z2;4

Return T ;5

Algorithm 7: Subroutine for Case B

Note that

Pr[bad set to true in Case B]

≤
q∑
i=2

Pr[Σ(i) ∈ Dom(π1) ∧ z(i)2 ∈ Ran(π2) : π1, π2
$←− Perm(n)]

≤
q∑
i=2

Pr[Σ(i) ∈ Dom(π1) : π1
$←− Perm(n)] · Pr[z

(i)
2 ∈ Ran(π2) : π2

$←− Perm(n)]

≤
q∑
i=2

i−1∑
j=1

(Pr[Σ(i) = Σ(j) : π1
$←− Perm(n)]

+ Pr[Σ(i) = Xα : π1
$←− Perm(n)]) · Pr[z

(i)
2 ∈ Ran(π2) : π2

$←− Perm(n)]

≤
q∑
i=2

i−1∑
j=1

Pr[Σ(i) = Σ(j) : π1
$←− Perm(n)] · Pr[z

(i)
2 ∈ Ran(π2) : π2

$←− Perm(n)]

+

q∑
i=2

i−1∑
j=1

Pr[Σ(i) = Xα : π1
$←− Perm(n)] · Pr[z

(i)
2 ∈ Ran(π2) : π2

$←− Perm(n)],

where 1 ≤ α ≤ li + lj.
We can now prove the following result.

Lemma 3. Let M (1),M (2), . . . ,M (q) are the distinct prefix-free message queries, each
of length at most l blocks, asked by any non-adaptive adversary A. Then,

Pr[bad set to true in Case B] ≤ 32l2q3

22n
,

where l ≤ 2n/2.

Proof. The proof follows from Claim 1 and 2. From Equation (2) and Equation (5)
we have,

Pr[bad set to true in Case B]≤
q∑
i=2

i−1∑
j=1

2(
8l

2n
+

8l4

22n
) · |Ran(π2)|

2n

≤
q∑
i=2

i−1∑
j=1

2(
8l

2n
+

8l4

22n
) · 2l

2n

≤
q∑
i=2

i−1∑
j=1

32l3

22n
·
(

1 +
l2

2n

)
, assuming l ≤ 2n/2

≤ q2

2
· 64l3

22n

≤ 32q2l3

22n
.

ut

Now we state and prove the two claims used in the above Lemma.

Claim 1 Fix any two distinct messages M and M
′

each of which is at most l blocks
long such that M is not a prefix of M

′
and vice-versa. Then

Pr[Σ = Σ
′
] ≤ 8l

2n
+

8l4

22n
(2)

Proof. We prove the claim using the structure graph. After fixing two messages M
and M

′
and choosing a permutation π uniformly at random from the set of all

permutations, we analyze the structure graph G := Gπ(M,M
′
). In particular, we

analyze the probability of the event Σ = Σ
′

in view of the number of accidents
occurred in the corresponding structure graph G. Therefore, we have,

Pr[Σ = Σ
′
] = Pr[Σ = Σ

′ ∧ |Acc(G)| = 1] + Pr[Σ = Σ
′ ∧ |Acc(G)| ≥ 2]

Now, when the number of accident in the graph G is 1, then we have the following:

Pr[Σ = Σ
′ ∧ |Acc(G)| = 1] ≤ 8l

2n

Now, when the number of accident in the graph G is 1, then we have the following:

Pr[Σ = Σ
′ ∧ |Acc(G)| = 1] ≤ 8l

2n

Note that, according to Figure 3.1, Σ = Σ
′ ⇐⇒ Yl = Y

′

l′
, where l is the number of

blocks of M and l
′

is the number of blocks of M
′
. Therefore,

Pr[Σ = Σ
′ ∧ |Acc(G)| = 1] = Pr[Yl = Y

′

l′
∧ |Acc(G)| = 1]

= Pr[CBCπ(M) = CBCπ(M
′
) ∧ |Acc(G)| = 1] (3)

According to Equation (3), calculating Pr[Σ = Σ
′ ∧ |Acc(G)| = 1] is the same as

calculating the collision probability of CBC for a pair of prefix free messages when
the number of accident in the structure graph is 1. Thus, using [6, Lemma 17] we
have, Pr[CBCπ(M) = CBCπ(M

′
) ∧ |Acc(G)| = 1] ≤ 8l

2n
.

Again, when the number of accident in the graph G is at least 2, then using Propo-
sition 2 we have the following:

Pr[Σ = Σ
′ ∧ |Acc(G)| ≥ 2] ≤ Pr[|Acc(G)| ≥ 2] ≤ 8l4

22n
(4)

Therefore,

Pr[Σ = Σ
′
] ≤

(
8l

2n
+

8l4

22n

)
ut

Claim 2 Fix any two distinct messages M and M
′

such that M is not a prefix of
M
′

and vice-versa. Then

Pr[Σ = X] ≤ 8l

2n
+

8l4

22n
, (5)

where X is any intermediate input of CBC MAC computation for
{
M,M

′}
.

Proof. Proof sketch of the Claim 2 is exactly same to the proof sketch of the Claim
1. ut

5.4 Analysis of Case C: Σ /∈ Dom(π1) and Θ ∈ Dom(π2)

This case is symmetric to Case B where the role of Σ and Θ has interchanged.
Therefore,

Pr[bad set to true in Case C] ≤ 32q2l3

22n
,

where l ≤ 2n/2.

5.5 Analysis of Case D: Σ ∈ Dom(π1) and Θ ∈ Dom(π2)

We present the subroutine for this case in Algorithm 8.

bad set to true;1

z1 ← π1(Σ); z2 ← π2(Θ);2

Return T ← z1 ⊕ z2;3

Algorithm 8: Subroutine for Case D

Since both Σ and Θ are not fresh, output T is defined and the bad flag set to
true. Therefore, in Case D bad flag set to true when both Σ and Θ are not fresh.

We show the following lemma.

Lemma 4. Let M (1),M (2), . . . ,M (q) are the distinct prefix-free message queries, each
of length at most l blocks, asked by any non-adaptive adversary A. Then,

Pr[bad set to true in Case D] ≤ 128l3q3

22n
,

if l ≤ 22n/5.

Proof. It is to be noted that,

Pr[bad set to true in Case D]

≤
q∑
i=2

Pr[Σ(i) ∈ Dom(π1) ∧Θ(i) ∈ Dom(π2) : π1, π2
$←− Perm(n)]

≤
q∑
i=2

Pr[Σ(i) ∈ Dom(π1) : π1
$←− Perm(n)] · Pr[Θ(i) ∈ Dom(π2) : π2

$←− Perm(n)]

≤
q∑
i=2

i−1∑
j=1

i−1∑
k=1

(Pr[Σ(i) = Σ(j) : π1
$←− Perm(n)] + Pr[Σ(i) = Xα : π1

$←− Perm(n)])

·(Pr[Θ(i) = Θ(k) : π2
$←− Perm(n)] + Pr[Θ(i) = Xβ : π2

$←− Perm(n)])

where 1 ≤ α, β ≤ li + lj + lk.
From Equation (2) and Equation (5) we obtain the following.

Pr[bad gets true in Case D]≤
q∑
i=2

i−1∑
j=1

i−1∑
k=1

(
8l

2n
+

8l4

22n
)2

≤
q∑
i=2

i−1∑
j=1

i−1∑
k=1

(
64l2

22n
+

128l5

23n
+

64l8

24n
)

≤
q∑
i=2

i−1∑
j=1

i−1∑
k=1

l3

22n
· (64 +

128l2

2n
+

64l5

22n
)

≤ q3

6
· 256l3

22n

≤ 128q3l3

22n
, if l ≤ 22n/5.

Note that, Pr[Θ(i) = Θ(k) : π2
$←− Perm(n)], or Pr[Θ(i) = Xβ : π2

$←− Perm(n)] ≤
8l
2n

+ 8l4

22n
as the role of Θ in the second lane of CBC-MACπ2(M) is same as that of Σ

in first lane of CBC-MACπ1(M)).

6 Security Analysis of NI2+ MAC

Gazi et. al in [10] have shown that the advantage of distinguishing the output of NI-

MAC from random output is bounded above by q2

2n

(
l + 64l4

2n

)
and that for NI2-MAC

is q2

2n

(
ld
′
(l) + 64l4

2n

)
where d

′
(l) = max

l′∈{1,...,l}
|
{
d ∈ N : d|l′

}
|. In this section we analyze

the advantage of our construction NI2+-MAC and show that the advantage of our
construction achieves beyond birthday bound security; better than that of NI-MAC
or NI2-MAC. Thus we have the following theorem.

Theorem 3. Let f : {0, 1}n × {0, 1}n × {0, 1}b → {0, 1}n be a (ε1, t, q) secure PRF
and (ε2, t, lq) secure PRF. Let h : {0, 1}n × {0, 1}n × {0, 1}n → {0, 1}n be a (ε3, t, q)
secure PRF. Then NI2+ be a

(
ε
′
, t
′
, q, l

)
secure PRF, where

ε
′ ≤ ε1 + ε2 + ε3 +

15q2l4

22n
,

such that t = t
′
+ Õ (lq).

Proof. We below give the sketch of the proof of Theorem 3. Let A be a adaptive
PRF-adversary against NI2+ running in time t and asking at most q queries, each
of length at most l blocks. NI2+ uses three independent keyed functions f1, f2 and
h3. Now if we replace f1, f2 and h3 by three different random functions r1, r2 and r3

respectively such that r1, r2
$←− Func({0, 1}n × {0, 1}n × {0, 1}b , {0, 1}n) and r3

$←−
Func({0, 1}n × {0, 1}n × {0, 1}n , {0, 1}n) and call the resulting construction NI2+

r ,
then we have

∆A(NI2+, R) ≤ ε1 + ε2 + ε3 +∆A(NI2+
r , R),

where εi is the PRF-advantage of fi, i = 1, 2 and ε3 is the PRF-advantage of h3 and
R : {0, 1}∗ → {0, 1}n be a uniform random function.

Therefore to prove Theorem 3, we only need to prove

∆A(NI2+
r , R) ≤ 15q2l4

22n
.

In the experiment where A interacts with NI2+
r , let Ci denotes the event that during

the first i queries, the inputs to r3 i.e (Σ,Θ) for any two distinct queries M (j)

and M (k) are also distinct. That means (Σ(j), Θ(j)) 6= (Σ(k), Θ(k)), ∀1 ≤ j, k ≤ i.
Therefore, as long as the monotone condition [16] C = C0, C1, . . . remains satisfied,
the distribution of the responses of NI2+

r to distinct queries will be exactly identical
to the distribution of the outputs of r3 on distinct inputs and thus to independent
uniform random values. In other words, we have

NI2+
r |C ≡ R.

Thus, using Lemma 1 in [10] we have, ∆A(NI2+
r , R) is upper-bounded by the proba-

bility that a distinguisher A issuing q queries to NI2+
r makes the monotone condition

C fail. This probability is denoted by PrA[NI2+
r ;C]. Thus,

∆A(NI2+
r , R) ≤ PrA[NI2+

r ;C]. (6)

Now we explain how to construct a non-adaptive PRF adversary Ana from the above
adaptive PRF adversary A.

Construction of Non-adaptive PRF Adversary. Let Ana be the non adaptive
PRF adversary that we want to construct from the adaptive PRF adversary A. Ana
will simulate the adaptive PRF adversary A in the following way. At the time of ith

query, M (i), where 1 ≤ i ≤ q, asked by adversary A, Ana will return random string in
response of ith query to A. After all the q queries are over, Ana will (non-adaptively)
ask all the queries that A asked during simulated interaction.

Therefore, we have the following

PrA[NI2+
r ;C] = PrAna [NI2+

r ;C]. (7)

The maximum probability over all such non-adaptive distinguishers Ana is given by

Pr[NI2+
r ;C] = max

Ana
PrAna [NI2+

r ;C] (8)

With respect to the NI2+
r construction, let Coll(l) denotes the probability that for

random choice of the compression function f1 and f2, results in a collision in Σ and
Θ maximized over the choice of two distinct inputs M (i),M (j), each of which is at
most l blocks long.

More formally, for f1, f2
$←− Func

(
{0, 1}n × {0, 1}n × {0, 1}b → {0, 1}n

)
we de-

fine,

Coll(l) := max
M(i) 6=M(j)||M(i)||,||M(j)||≤l

Prf1,f2 [
(
Σ(i), Θ(i)

)
=
(
Σ(j), Θ(j)

)
]

Note that, (Σ(i), Θ(i)) = (Σ(j), Θ(j)) implies Σ(i) = Σ(j) and Θ(i) = Θ(j). Therefore,
to bound the probability of occurrence of a collision in the input of r3 necessarily
implies to bound the probability of occurrence of a collision in Σ and a collision in
Θ. That means

Prf1,f2 [
(
Σ(i), Θ(i)

)
=
(
Σ(j), Θ(j)

)
] = Prf1,f2 [Σ(i) = Σ(j) ∧Θ(i) = Θ(j)] (9)

Note that, Ana violates the monotone condition C only when the collision occurs at
the input of r3. Therefore from Equation (6), (7) and (8), and using union bound we
obtain,

∆A(NI2+
r , R) ≤ Pr[NI2+

r ;C] ≤ q2

2
Coll(l). (10)

In Lemma 5 of Section 6.1, we show that Coll(l) ≤ 30l4

22n
. Therefore, plug-in the bound

of Coll(l) into Equation (10), we get the result. ut

6.1 Computation of Coll(l)

Recall that, Coll(l) was defined as Pr[Σ(i) = Σ(j) ∧ Θ(i) = Θ(j)] maximized over
the choice of pair of distinct inputs M (i) and M (j), each of length at most l blocks.
Therefore, to establish the bound on Coll(l), we derive the bound on Pr[Σ(i) =
Σ(j) ∧Θ(i) = Θ(j)]

Lemma 5. Given two fixed distinct messages M (i),M (j), each of length is at most l
blocks. Then

Pr[Σ(i) = Σ(j) ∧Θ(i) = Θ(j)] ≤ 30l4

22n
.

Proof. Let Z(i) = Y
(i)
li

denote the input to the function r2 for message M (i)(refer to

Fig.3.2). Similarly, we set Z(j) = Y
(j)
lj

. So, we have,

Pr[Σ(i) = Σ(j) ∧Θ(i) = Θ(j)]

= Pr[Σ(i) = Σ(j) ∧Θ(i) = Θ(j) ∧ Z(i) = Z(j)] +

Pr[Σ(i) = Σ(j) ∧Θ(i) = Θ(j) ∧ Z(i) 6= Z(j)] (11)

≤ Pr[Z(i) = Z(j) ∧Θ(i) = Θ(j)] +

Pr[Σ(i) = Σ(j) ∧Θ(i) = Θ(j)|Z(i) 6= Z(j)] · Pr[Z(i) 6= Z(j)] (12)

≤ Pr[Z(i) = Z(j) ∧Θ(i) = Θ(j)] +(
Pr[Σ(i) = Σ(j)|Z(i) 6= Z(j)] · Pr[Θ(i) = Θ(j)|Z(i) 6= Z(j)]

)
· Pr[Z(i) 6= Z(j)].(13)

Since the event Z(i) = Z(j) is a subset of the event Σ(i) = Σ(j), the first term of
Equation (11) is equal to Pr[Z(i) = Z(j) ∧ Θ(i) = Θ(j)]. Further, the two events
Σ(i) = Σ(j) and Θ(i) = Θ(j) are independent, conditioned on the event that there is
no collision in the input of r2. Therefore, the second term of Equation (12) is equal
to Pr[Σ(i) = Σ(j)|Z(i) 6= Z(j)] · Pr[Θ(i) = Θ(j)|Z(i) 6= Z(j)].

According to Claim 3 we have, Pr[Z(i) = Z(j) ∧ Θ(i) = Θ(j)] ≤ ld′(l)
22n

+ 8l4

22n
and

according to Claim 4 we have, Pr[Θ(i) = Θ(j)|Z(i) 6= Z(j)] ≤ 4l2+1
2n

+ 16l4

22n
. Moreover, it

is easy to see that, Pr[Σ(i) = Σ(j)|Z(i) 6= Z(j)] ≤ 1
2n

, collision probability of a random
function. Therefore,

Pr[Σ(i) = Σ(j) ∧Θ(i) = Θ(j)] ≤ ld
′
(l)

22n
+

8l4

22n
+

[
1

2n

(
4l2 + 1

2n
+

16l4

22n

)
(1− ε)

]
≤ ld

′
(l)

22n
+

8l4

22n
+

[
4l2 + 1

22n
+

16l4

23n

]
≤ 30l4

22n
,

where ε = Pr[Z(i) = Z(j)], i.e., collision probability of Cascr1 . In other words,

ε = Pr[Cascr1(M i) = Cascr1(M j)].

ut

In the next two sections, we state and prove the two claims above.

7 Details of the Proof of Claim 3

Claim 3 Fix two distinct messages M (i),M (j) each of length at most l blocks. Then,

Pr[Z(i) = Z(j) ∧Θ(i) = Θ(j)] ≤ ld′(l)

22n
+

8l4

22n
,

where Z(i) = Y
(i)
li
, Z(j) = Y

(j)
lj

, and li, lj are the number of blocks of M (i),M (j) re-
spectively.

Proof. We prove the claim using the structure graph. After fixing two messages M (i)

and M (j) and choosing a function f uniformly at random from the set of all functions
over {0, 1}b×{0, 1}n → {0, 1}n, we analyze the structure graph G := Gf (M (i),M (j)).
In particular, we analyze the probability of the event Z(i) = Z(j)∧Θ(i) = Θ(j) in view
of number of collisions (say, NCOL) occurred in the corresponding structure graph
G. Therefore, we have,

Pr[Z(i) = Z(j) ∧Θ(i) = Θ(j)] = Pr[Z(i) = Z(j) ∧Θ(i) = Θ(j) ∧NCOL = 1]

+Pr[Z(i) = Z(j) ∧Θ(i) = Θ(j) ∧NCOL ≥ 2].

In Section 7.1, we show that

Pr[Z(i) = Z(j) ∧Θ(i) = Θ(j) ∧NCOL = 1] ≤ ld′(l)

22n
, (14)

where d′(l) is the maximum number of positive divisors of the integer l
′

from [1, l].
When NCOL in the graph is at least 2, then using Proposition 2 we have,

Pr[Z(i) = Z(j) ∧Θ(i) = Θ(j) ∧NCOL ≥ 2] ≤ Pr[NCOL ≥ 2] ≤ 8l4

22n
. (15)

Therefore, combining Equations (14) and (15), we get the result. ut

Now the only part of the proof that remains is to prove Equation (14).

7.1 Proof of Equation (14)

We can write
Pr[Z(i) = Z(j) ∧Θ(i) = Θ(j) ∧NCOL = 1]

= Pr[Z(i) = Z(j) ∧NCOL = 1] · Pr[Θ(i) = Θ(j) | Z(i) = Z(j) ∧NCOL = 1]. (16)

In Equation (16), there are two probabilities that need to be computed. First,
we compute Pr[Z(i) = Z(j) ∧ NCOL = 1] by considering different structure graphs
with NCOL = 1, corresponding to the construction NI2+

r . Let G denote the set of
all structure graphs with NCOL = 1 and Z(i) = Z(j). Without loss of generality, let
li and lj be the lengths of the messages M (i) and M (j) respectively, with li ≥ lj. Let
G1 ⊂ G be the set of all structure graphs such that the M (i)-path does not contain
any loop. The G2 = G \G1 is the set of the remaining structure graphs. For the ease
of understanding blue colored path represents the M (i) path and red colored path
represents the M (j) path.

Analysis of G1. If M (j) is a proper prefix of M (i), then |G1| = 0, since in that case
Z(i) won’t be equal to Z(j). So without loss of generality, lets assume that M (j) is
not a prefix of M (i). Suppose the first p blocks constitute the common prefix. Define
t∗ = min {t > li + p : [[t]] ≤ li}. Thus, the edge ([[t∗ − 1]]′, [[t∗]]) in G creates the
collision and from that point onwards, M (j) path will follow the rest of M (i) path
which is nothing but the common suffix part of M (i) and M (j).

p [[t∗]]

Fig. 7.1: Structure Graph of type G1

The scenario is explained in Fig. 7.1. Since there are ≤ l choices for t∗, we have
|G1| ≤ l.

Analysis of G2. In graph G2, M
(i) path creates a collision by creating a self loop.

We define t∗ = min {t : [[t]] ≤ t} and let p∗ = [[t∗]]. Therefore, (t∗, p∗) denotes the
collision in M (i) path. Now we can split M (i) into three mutual disjoint strings x, y, z
such that x := M

(i)
1 || . . . ||M

(i)
p∗ , y := M

(i)
p∗+1|| . . .M

(i)
t∗ and some z chosen to be the

smallest string so that we can write M (i) = x||ya||z for some a ≥ 1.
Note that to have Z(i) = Z(j) and one collision has already been occurred in the

loop, therefore, M (j)-path must be a subpath of M (i)-path and it cannot bifurcate
from M (i) path and then collide with the last output block of M (i) as that would
increases the number of collisions to 2. Thus, the M (j)-path must be of the form

x||yb||z, where b < a (since li > lj in this case). Hence, the number of blocks in y,
i.e., t∗− p∗, in the diagram must divide li− lj. This scenario is explained in Fig. 7.2.

[[t∗]] = p∗x

y

z

Fig. 7.2: Structure Graph of type G2

There are at most l choices for such a t∗ and d′(l) choices for such a p∗. Hence,
|G2| ≤ ld′(l). In the special case, when li = lj, then obviously, |G2| = 0.

Therefore, considering G1 and G2 together, by Proposition 1, we have

Pr[Z(i) = Z(j) ∧NCOL = 1] ≤ ld′(l)

2n
. (17)

Now, we compute the second probability of Equation 16, i.e., Pr[Θ(i) = Θ(j) | Z(i) =
Z(j) ∧NCOL = 1]. Note that Θ(i) = Θ(j) gives an equation of the form

2liY
(i)
1 + 2li−1Y

(i)
2 + · · ·+ 2Y

(i)
li

= 2ljY
(j)
1 + 2li−1Y

(i)
2 + · · ·+ 2Y

(j)
lj
. (18)

Given the condition Z(i) = Z(j), i.e., Y
(i)
li

= Y
(j)
lj

, the above equation becomes

2liY
(i)
1 + 2li−1Y

(i)
2 + · · ·+ 22Y

(i)
li−1 = 2ljY

(j)
1 + 2li−1Y

(i)
2 + · · ·+ 22Y

(j)
lj−1. (19)

Now, for both the graphs G1 and G2, we will be able to find at least one Y variable
belonging to the part between p and t∗, such that Equation (19) becomes non-trivial
for such variable Y , giving a probability of 1

2n
for the second term of Equation (16).

When this along with Equation (17) is plugged in Equation (16), the probability in

Equation (16), i.e., in Equation (14),becomes bounded by ld′(l)
22n

.

8 Details of the Proof of Claim 4

Claim 4 Fix two distinct messages M (i),M (j) each of length at most l blocks. Then,

Pr[Θ(i) = Θ(j)|Z(i) 6= Z(j)] ≤ 4l2 + 1

2n
+

16l4

22n
,

where Z(i) = Y
(i)
li
, Z(j) = Y

(j)
lj

, li, lj is the number of blocks of M (i),M (j) respectively.

Proof. It is to be noted that,

Pr[Θ(i) = Θ(j)|Z(i) 6= Z(j)] = Pr[Θ(i) = Θ(j) ∧NCOL = 0 | Z(i) 6= Z(j)]

+ Pr[Θ(i) = Θ(j) ∧NCOL = 1 | Z(i) 6= Z(j)]

+ Pr[Θ(i) = Θ(j) ∧NCOL ≥ 2 | Z(i) 6= Z(j)]. (20)

Now,

Pr[Θ(i) = Θ(j) ∧NCOL ≥ 2 | Z(i) 6= Z(j)]

=
Pr[Θ(i) = Θ(j) ∧NCOL ≥ 2 ∧ Z(i) 6= Z(j)]

Pr[Z(i) 6= Z(j)]

≤ Pr[NCOL ≥ 2]

Pr[Z(i) 6= Z(j)]

≤ 8l4

22n(1− ε)

≤ 8l4(1 + 2ε)

22n
(Since ε <

1

2
)

≤ 16l4

22n
. (21)

Now, we need to bound Pr[Θ(i) = Θ(j) ∧NCOL = 0 | Z(i) 6= Z(j)] and Pr[Θ(i) =
Θ(j) ∧NCOL = 1 | Z(i) 6= Z(j)] separately.

Again we consider two distinct messages M (i) and M (j) with lengths li and
ljrespectively, with li ≥ lj. Since we are given the condition Z(i) 6= Z(j), the struc-

ture graphs will have the common feature that the end-point Y
(i)
li

of M (i)-path and

the end-point Y
(j)
lj

of M (j)-path must be different, i.e., from Equation (18), we have

Y
(i)
li
⊕ Y (j)

lj
= c 6= 0. Thus, Equation (18) becomes non-trivial, with probability 1

2n
.

Now, we need to count the number of distinct structure graphs for each of the
cases NCOL = 0 and NCOL = 1.

Clearly, when NCOL = 0, only such structure graph is possible, as shown in
Fig. 8.1. Thus, we have

Pr[Θ(i) = Θ(j) ∧NCOL = 0 | Z(i) 6= Z(j)] ≤ 1

2n
. (22)

Now, let us consider the case NCOL = 1. Let G be the set of all structure graphs
with NCOL = 1 with Z(i) 6= Z(j). Let G1 ⊂ G be the set of all structure graphs
such that the M (i)-path does not contain any loop. The G2 = G \ G1 is the set of
remaining structure graphs.

Fig. 8.1: Structure Graph of accident 0

Analysis of G1. For G1, the M (j) path can either intersect with M (i) exactly once
or M (j) path does not intersect with M (i) but it creates a loop with itself. In the first
case, M (j)-path cannot have any loop as shown in Fig. 8.2 as that would increase
the number of collision to 2, and in the second case, the M (j) path cannot intersect
M (i)-path at all as that would again increase the number of collision to 2 as shown
in Fig. 8.3. In either case, the number of such graphs is at most l2.

p

Fig. 8.2: Structure Graph of type G1; M
(i) path has no loop

p

Fig. 8.3: Structure Graph of type G1; M
(i) path has no loop, M (j) path has loop

Analysis of G2. For G2, note that M (i) path contains a loop. Now the M (j) path
may or may not intersects M (i) path. If it does, then it must follow the same loop as
M (i) and then exit either from the loop or afterwards, as shown in Fig. 8.4. M (j) path
may also bifurcate from M (i) path before the loop and then it should not intersect

with M (i) path again or it should not make any self loop with itself as both of
the cases would increases the number of collision to 2. Note that M (j) path cannot
intersect M (i) path before the loop as that would increase the number of collision to
2.

[[t∗]] = p∗x

y

Fig. 8.4: Structure Graph of type G2; M
(i),M (j) both path contain a loop

If M (j) path does not intersect M (i) path, then M (j) path cannot make a loop
with itself as that would increase the number of collision to 2. Therefore, again the
case is similar to Fig. 8.3 where the blue colored path will then represent the M (j)

path and red colored path will represent M (i) path. In either case, the number of
such graphs is at most l2.

Thus, for the above 4l2 graphs (combined G1 and G2),

Pr[Θ(i) = Θ(j) ∧NCOL = 1 | Z(i) 6= Z(j)] ≤ 4l2

2n
. (23)

Now, plugging in the probabilities from Equations (21), (22) and (23) into Equa-
tion (20), we get

Pr[Θ(i) = Θ(j)|Z(i) 6= Z(j)] ≤ 1

2n
+

4l2

2n
+

16l4

22n
.

ut

9 Conclusion and Future Work

In this paper, we first show that the sum of two independent random permutations
with restricted domain and range gives a security bound of beyond birthday. While
we use this result in our subsequent proofs, this leave open the security of the sum
of a single permutation with restricted domain and range set.

Next, we solve an open problem that the sum of two CBC MACs is a secure PRF
with security bound beyond birthday. While ours is a better construction compared
to Kan Yasuda’s in terms of number of keys, a further research work in this direction
is to reduce the number of key to 1 and achieves beyond birthday bound security.

Finally, we show a modified construction of NI2 MAC and prove its security to
be beyond birthday. While we use we use an extra keyed function (fK3) in NI2+, an
interesting research problem would be to avoid the usage of this extra keyed function
and achieves beyond birthday security.

References

1. Jee Hea An and Mihir Bellare. Constructing vil-macsfrom fil-macs: Message authentication under
weakened assumptions. In Wiener [18], pages 252–269.

2. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for message authentication.
In Neal Koblitz, editor, Advances in Cryptology - CRYPTO ’96, 16th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 18-22, 1996, Proceedings, volume 1109 of Lecture
Notes in Computer Science, pages 1–15. Springer, 1996.

3. Mihir Bellare, Oded Goldreich, and Hugo Krawczyk. Stateless evaluation of pseudorandom functions:
Security beyond the birthday barrier. In Wiener [18], pages 270–287.

4. Mihir Bellare and Russell Impagliazzo. A tool for obtaining tighter security analyses of pseudorandom
function based constructions, with applications to PRP to PRF conversion. IACR Cryptology ePrint
Archive, 1999:24, 1999.

5. Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of cipher block chaining. In Yvo Desmedt,
editor, Advances in Cryptology - CRYPTO ’94, 14th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 21-25, 1994, Proceedings, volume 839 of Lecture Notes in Computer
Science, pages 341–358. Springer, 1994.

6. Mihir Bellare, Krzysztof Pietrzak, and Phillip Rogaway. Improved security analyses for CBC macs. In
Victor Shoup, editor, Advances in Cryptology - CRYPTO 2005: 25th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 14-18, 2005, Proceedings, volume 3621 of Lecture
Notes in Computer Science, pages 527–545. Springer, 2005.

7. Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for code-based
game-playing proofs. In Serge Vaudenay, editor, Advances in Cryptology - EUROCRYPT 2006, 25th
Annual International Conference on the Theory and Applications of Cryptographic Techniques, St.
Petersburg, Russia, May 28 - June 1, 2006, Proceedings, volume 4004 of Lecture Notes in Computer
Science, pages 409–426. Springer, 2006.

8. John Black, Shai Halevi, Hugo Krawczyk, Ted Krovetz, and Phillip Rogaway. UMAC: fast and secure
message authentication. In Wiener [18], pages 216–233.

9. John Black and Phillip Rogaway. A block-cipher mode of operation for parallelizable message authen-
tication. In Knudsen [14], pages 384–397.

10. Peter Gazi, Krzysztof Pietrzak, and Michal Rybár. The exact prf-security of NMAC and HMAC. In
Juan A. Garay and Rosario Gennaro, editors, Advances in Cryptology - CRYPTO 2014 - 34th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I, volume
8616 of Lecture Notes in Computer Science, pages 113–130. Springer, 2014.

11. Tetsu Iwata and Kaoru Kurosawa. OMAC: one-key CBC MAC. In Johansson [12], pages 129–153.
12. Thomas Johansson, editor. Fast Software Encryption, 10th International Workshop, FSE 2003, Lund,

Sweden, February 24-26, 2003, Revised Papers, volume 2887 of Lecture Notes in Computer Science.
Springer, 2003.

13. Antoine Joux, Guillaume Poupard, and Jacques Stern. New attacks against standardized macs. In
Johansson [12], pages 170–181.

14. Lars R. Knudsen, editor. Advances in Cryptology - EUROCRYPT 2002, International Conference on
the Theory and Applications of Cryptographic Techniques, Amsterdam, The Netherlands, April 28 -
May 2, 2002, Proceedings, volume 2332 of Lecture Notes in Computer Science. Springer, 2002.

15. Stefan Lucks. The sum of prps is a secure PRF. In Bart Preneel, editor, Advances in Cryptology -
EUROCRYPT 2000, International Conference on the Theory and Application of Cryptographic Tech-
niques, Bruges, Belgium, May 14-18, 2000, Proceeding, volume 1807 of Lecture Notes in Computer
Science, pages 470–484. Springer, 2000.

16. Ueli M. Maurer. Indistinguishability of random systems. In Knudsen [14], pages 110–132.
17. Erez Petrank and Charles Rackoff. CBC MAC for real-time data sources. J. Cryptology, 13(3):315–338,

2000.
18. Michael J. Wiener, editor. Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryp-

tology Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings, volume 1666 of
Lecture Notes in Computer Science. Springer, 1999.

19. Kan Yasuda. The sum of CBC macs is a secure PRF. In Josef Pieprzyk, editor, Topics in Cryptology
- CT-RSA 2010, The Cryptographers’ Track at the RSA Conference 2010, San Francisco, CA, USA,
March 1-5, 2010. Proceedings, volume 5985 of Lecture Notes in Computer Science, pages 366–381.
Springer, 2010.

