
General Circuit Realizing Compact Revocable
Attribute-Based Encryption from Multilinear Maps∗

Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Department of Mathematics
Indian Institute of Technology Kharagpur

Kharagpur-721302, India
{pratishdatta,ratna,sourav}@maths.iitkgp.ernet.in

Abstract. This paper demonstrates new technique for managing revocation in the context of
attribute-based encryption (ABE) and presents two selectively secure directly revocable ABE (RABE)
constructions

– supporting decryption policies realizable by polynomial size Boolean circuits of arbitrary fan-out
and

– featuring compactness in the sense that the number of revocation controlling components in
ciphertexts and decryption keys are constant.

In fact, our RABE schemes are the first to achieve these parameters. Both our constructions utilize
multilinear maps. The size of public parameter in our first construction is linear to the maximum
number of users supported by the system while in the second construction we reduce it to logarith-
mic.

Keywords: RABE for circuits, polynomial size circuits, multilinear map.

1 Introduction

In recent times, the cost effectiveness and greater flexibility of cloud technology has triggered an
emerging trend among individuals and organizations to outsource potentially sensitive private
data to the “cloud”, an external large and powerful server. Attribute-based encryption (ABE),
a noble paradigm for public key encryption in which ciphertexts are encrypted for entities
possessing specific decryption credentials, has been extensively deployed to realize complex access
control functionalities in cloud environment. ABE comes in two flavors, namely, key-policy and
ciphertext-policy. However, in spite of its promising properties, the adoption of ABE in cloud
management requires further refinements.

A crucial feature of ABE systems is the expressiveness of the supported decryption policies.
Recently, few independent seminal works [GGH+13b], [BGG+14] have extended the class of
admissible policies for ABE to arbitrary polynomial size Boolean circuits of unbounded fan-out
in contrast to circuits of fan-out one realized by all ABE constructions prior to their works.

The other significant requirement in the context of ABE is user revocation, a tool for changing
the users’ decryption rights. Over time many users’ private keys might get compromised, users
might leave or be dismissed due to the revealing of malicious activities. In the literature several
revocation mechanisms have been proposed in ABE setting [YWRL10], [BGK08], [LLLS10],
[AI09b], [AI09a], [QD11], [SZLH15]. The direct revocation technique [AI09b], [AI09a], [QD11],
[SZLH15], that controls revocation by specifying a revocation list directly during encryption,
does not involve any additional proxy server [YWRL10] or key update phase [BGK08], [AI09a],
[LLLS10]. Consequently, the non-revoked users remain unaffected and revocation can take effect
instantly without requiring to wait for the expiration of the current time period.

However, in all the above revocable ABE (RABE) systems the decryption policies were re-
stricted to circuits of fan-out one, paving the way for a “backtracking” attack [GGH+13b] on
∗ This is the full version of the paper that appeared in Proceedings of the 18th Information Security Conference

(ISC 2015), LNCS 9290, pp. 336–354, Springer.

2 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

the policy circuits by unauthorized users, thereby completely breaking the confidentiality of ci-
phertexts. Further, all currently available standard model RABE constructions supporting direct
revocation mode [AI09b], [AI09a], [QD11] essentially follow the tree-based revocation mecha-
nism of Naor et al. [NNL01], as a result of which the number of components for managing user
revocation contained in the ciphertexts and decryption keys are respectively O(r̂ log Nmax

r̂
) and

O(logNmax), where Nmax is the maximum number of users supported by the system and r̂ is
the number of revoked users.

Our Contribution: In this paper, we apply the revocation technique introduced in [BGW05]
and its improved variant [BWZ14] in the ABE setting and propose two RABE schemes for general
circuit realizable decryption policies supporting direct revocation and featuring constant number
of components for enforcing revocation in the ciphertexts and decryption keys.

More precisely, we integrate the revocation strategy of [BGW05] and [BWZ14] with the ABE
scheme of [GGH+13b]. As an outcome, we develop the first RABE constructions that support
the most expressive form of decryption policies achieved so far for ABE, namely, arbitrary poly-
nomial size circuits having unbounded fan-out with bounded depth and input length. Although
the basic conception may sound simple, its exact realization involves many subtleties that we
address with innovative ideas. Our schemes employ multilinear map for which some approxi-
mate candidates have recently been proposed [GGH+13b], [CLT13], [CLT15]. Both our schemes
support direct revocation and are proven secure in the selective revocation list model under the
Multilinear Diffie-Hellman Exponent [BGG+14] and the Compressed Multilinear Diffie-Hellman
Exponent assumptions [PLL13], which are multilinear equivalents of the Bilinear Diffie-Hellman
Exponent assumption. Our security analyses do not use random oracles or generic multilinear
group framework. We emphasize that selective security can be a reasonable trade-off for perfor-
mance in some circumstances. Moreover, applying a standard complexity leveraging argument,
as in [BGG+14], our selectively secure constructions can be made adaptively secure.

Our first RABE scheme, which is a blend of the revocation technique of [BGW05] and an
improved version of the ABE construction proposed in [GGH+13b], has ciphertext consisting
of only 3 group elements (or encodings). The decryption keys comprise of ` + 4q + 1 group
elements in the worst case, ` and q being the input length and number of gates in the policy
circuits. This is the same as all currently available vanilla ABE constructions for general circuits
based on multilinear maps [GGH+13b], [BGG+14]. Consequently, we achieve very short cipher-
text size without imposing any extra overhead on the decryption key for the added revocation
functionality. To the best of our knowledge, our work is the first to achieve this property.

However, the number of group elements in the public parameters in our first RABE construc-
tion is linear to Nmax. In order to overcome this bottleneck, we modify our first construction by
replacing the revocation method with that of [BWZ14] taking advantage of a multilinear map of
(possibly) slightly higher multilinearity level compared to the one used in the first scheme. We
reduce the number of group elements in the public parameters to logNmax in our second RABE
scheme. This is comparable with the previous standard model RABE constructions supporting
direct revocation [AI09b], [AI09a], [QD11]. However, we retain the same property for ciphertext
and decryption keys, i.e., the number of ciphertext and decryption key components do not grow
with Nmax.

Finally, while both our RABE schemes are of key-policy variety, using the notion of universal
circuits, as in [GGH+13b], both our constructions can be extended to realize ciphertext-policy
style RABE for arbitrary bounded size circuits achieving the same parameters.

2 Preliminaries

A function ε is negligible if, for every integer c, there exists an integer K such that for all λ > K,
|ε(λ)| < 1/λc.

General Circuit Realizing Compact RABE from Multilinear Maps 3

2.1 Circuit Notation

We adopt the same notations for circuits as in [GGH+13b]. First note that without loss of
generality we can consider only those circuits which are monotone, where gates are either OR
or AND having fan-in two, and layered (see [GGH+13b] for details). Our circuits will have a
single output gate. A circuit will be represented as a six-tuple f = (`, q, d,A,B,GateType).
Here, `, q respectively denote the length of the input, the number of gates, and d represents the
depth of the circuit which is one plus the length of the shortest path from the output wire to
any input wire. We designate the set of input wires as Input = {1, . . . , `}, the set of gates as
Gates = {`+1, . . . , `+q}, the total set of wires in the circuit asW = Input ∪ Gates = {1, . . . , `+q},
and the wire ` + q as the output wire. Let A,B : Gates → W\{` + q} be functions. For all
w ∈ Gates, A(w) and B(w) respectively identify w’s first and second incoming wires. Finally,
GateType : Gates→ {AND,OR} defines a functions that identifies a gate as either an AND or an
OR gate. We follow the convention that w > B(w) > A(w) for any w ∈ Gates.

We also define a function depth : W → {1, . . . , d} such that if w ∈ Input, depth(w) = 1,
and in general depth(w) of wire w is equal to one plus the length of the shortest path from w
to an input wire. Since our circuit is layered, we have, for all w ∈ Gates, if depth(w) = t then
depth(A(w)) = depth(B(w)) = t− 1.

We will abuse notation and let f(x) be the evaluation of the circuit f on input x ∈ {0, 1}`,
and fw(x) be the value of wire w of the circuit f on input x.

2.2 The Notion of RABE for General Circuits

We adopt the concept of RABE from [AI09b], [AI09a], [QD11] in the context of general circuits
realizable decryption policies.

� Syntax of RABE for circuits: Consider a circuit family F`,d that consists of all circuits
f with input length ` and depth d characterizing decryption rights. A (key-policy) revocable
attribute-based encryption (RABE) scheme for circuits in F`,d with message space M consists of
the following algorithms:

RABE.Setup(1λ, `, d,Nmax): The trusted key generation center takes as input a security pa-
rameter 1λ, the length ` of Boolean inputs to decryption circuits, the allowed depth d of the
decryption circuits, and the maximum number Nmax of users supported by the system. It pub-
lishes the public parameters PP along with the empty user list UL = ∅, while keeps the master
secret key MK to itself.

RABE.KeyGen(PP,MK,UL, ID, f): On input the public parameters PP, the master secret key
MK, the current user list UL, and a user identity ID together with the decryption policy circuit
description f ∈ F`,d of that user, the key generation center provides a decryption key SKf,ID to
the user and publishes the updated user list UL.

RABE.Encrypt(PP,UL, x,RL,M): Taking as input the public parameters PP, the current user
list UL, a descriptor input string x ∈ {0, 1}`, a set of revoked user identities RL, and a message
M ∈M, the encrypter prepares a ciphertext CTx,RL.

RABE.Decrypt(PP,UL,CTx,RL,SKf,ID): A user takes as input the public parameters PP, the
current user list UL, a ciphertext CTx,RL encrypted for x along with a list RL of revoked user
identities, and its decryption key SKf,ID corresponding to its decryption policy circuit f ∈ F`,d as
well as user identity ID. It attempts to decrypt the ciphertext and outputs the message M ∈M
if successful; otherwise, it outputs the distinguished symbol ⊥.

4 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

� Correctness: The correctness of RABE for arbitrary circuits is defined as follows: For all
PP,UL,MK generated by RABE.Setup(1λ, `, d,Nmax), SKf,ID produced by RABE.KeyGen(PP,MK,
UL, ID, f) for any ID and f ∈ F`,d, CTx,RL constructed by RABE.Encrypt(PP,UL, x,RL,M)
for any x ∈ {0, 1}`,RL and M ∈ M, it is required that if [f(x) = 1] ∧ [ID /∈ RL], then
RABE.Decrypt(PP,UL,CTx,RL,SKf,ID) = M .

� Security Model: The security of RABE under selective revocation list model against chosen
plaintext attacks (CPA) is defined in terms of the following experiment between a probabilistic
challenger B and a probabilistic polynomial-time adversary A:

Init: A commits to a challenge descriptor input string x∗ ∈ {0, 1}` along with a challenge
revoked user identity list RL∗.

Setup: B creates a user list UL including all users with identities in RL∗ in it; generates a master
secret key MK together with the public parameters PP by running RABE.Setup(1λ, `, d,Nmax);
keeps MK to itself; and gives PP,UL to A.

Phase 1: A adaptively requests a polynomial number of decryption keys for circuit descrip-
tion f ∈ F`,d along with user identity ID of its choice subject to the restriction that [f(x∗) =
0] ∨ [ID ∈ RL∗]. B returns the corresponding decryption keys SKf,ID along with the updated
user list UL to A by executing RABE.KeyGen(PP,MK,UL, ID, f).

Challenge: A submits two equal length messages M∗0 ,M∗1 ∈M. B flips a random coin b ∈ {0, 1}
and hands the challenge ciphertext CT∗ to A by performing RABE.Encrypt(PP,UL, x∗,RL∗,M∗b).

Phase 2: A may continue adaptively to make a polynomial number of decryption key queries
as in Phase 1 with the same constraint as above.

Guess: Finally, A outputs a guess b′ ∈ {0, 1} and wins the game if b = b′.

The advantage of the adversary A in the above game is defined as

AdvRABE,SRL-CPA
A (λ) = |Pr[b′ = b]− 1/2|.

Definition 1. An RABE scheme for circuits is said to be secure under selective revocation list
model against CPA if for all probabilistic polynomial-time adversaries A, AdvRABE,SRL-CPA

A (λ) is
at most negligible.

2.3 Multilinear Maps and Complexity Assumptions

A (leveled) multilinear map [GGH13a], [CLT13], [CLT15] consists of the following two algo-
rithms:

(I) GMLM(1λ, κ): It takes as input a security parameter 1λ and a positive integer κ indicating
the number of allowed pairing operations. It outputs a sequence of groups #»G = (G1, . . . ,Gκ)
each of large prime order p > 2λ together with the canonical generators gi of Gi. We
call G1 the source group, Gκ the target group, and G2, . . . ,Gκ−1 intermediate groups. Let
PPMLM = (#»G, g1, . . . , gκ) be the description of the multilinear group with canonical genera-
tors.

(II) ei,j(g, h) (for i, j ∈ {1, . . . , κ} with i + j ≤ κ): On input two elements g ∈ Gi and h ∈ Gj

with i + j ≤ κ, it outputs an element of Gi+j such that ei,j(gai , gbj) = gabi+j for a, b ∈ Zp. We

General Circuit Realizing Compact RABE from Multilinear Maps 5

often omit the subscripts and just write e. We can also generalize e to multiple inputs as
e(h(1), . . . , h(t)) = e(h(1), e(h(2), . . . , h(t))).

We refer gai as a level-i encoding of a ∈ Zp. The scalar a itself is referred to as a level-0
encoding of a. Then the map e combines a level-i encoding of an element a ∈ Zp and a level-j
encoding of another element b ∈ Zp, and produces level-(i+ j) encoding of the product ab.

We note that current candidates of multilinear maps, also known as graded encoding systems
(GES) [GGH13a], [CLT13], [CLT15], depart from the ideal notions of multilinear maps described
above. In particular, in these candidates representations of group elements are not unique and
contain noise terms that can cause errors during group and multilinear operations. Although we
present our RABE constructions using ideal multilinear maps for simplicity, our constructions
can be instantiated using current non-ideal candidates of multilinear map in a manner similar
to [GGH+13b].

Assumption 1 [(κ,N)-Multilinear Diffie-Hellman Exponent: (κ,N)-MDHE [BGG+14]].
The (κ,N)-Multilinear Diffie-Hellman Exponent ((κ,N)-MDHE) problem is to guess b̃ ∈ {0, 1}
given %̃

b
= (PPMLM, ϑ1, . . . , ϑN , ϑN+2, . . . , ϑ2N , Υ, τ1, . . . , τκ−2,<b̃) generated by G(κ,N)-MDHE

b̃
(1λ),

where

G(κ,N)-MDHE
b̃

(1λ) :

– runs GMLM(1λ, κ) to generate PPMLM of order p;
– picks random α, ς, ψ1, . . . , ψκ−2 ∈ Zp;
– computes ϑj = gα

(j)
1 for j = 1, . . . , N,N + 2, . . . , 2N,Υ = gς1, τi = gψi1 for i = 1, . . . , κ− 2;

– sets <0 = g
α(N+1)ς

∏κ−2
i=1 ψi

κ , <1 = some random element in Gκ;
– returns %̃

b
= (PPMLM, ϑ1, . . . , ϑN , ϑN+2, . . . , ϑ2N , Υ, τ1, . . . , τκ−2,<b̃).

The advantage of a probabilistic algorithm B in solving the (κ,N)-MDHE problem is defined as

Adv(κ,N)-MDHE
B (λ) = |Pr[B(1λ, %0)→ 1]− Pr[B(1λ, %1)→ 1]|.

The (κ,N)-MDHE assumption is that for all probabilistic polynomial-time algorithms B,
Adv(κ,N)-MDHE

B (λ) is at most negligible.

Assumption 2 [(n,k, l)-Compressed Multiliinear Diffie-Hellman Exponent: (n,k, l)-
cMDHE [PLL13]]. The (n, k, l)-Compressed Multilinear Diffie-Hellman Exponent ((n, k, l)-cMDHE)
problem is to guess b̃ ∈ {0, 1} given %̃

b
= (PPMLM, ξ0, . . . , ξn, τ1, . . . , τk, Υ,<b̃) generated by

G(n,k,l)-cMDHE
b̃

(1λ), where

G(n,k,l)-cMDHE
b̃

(1λ) :

– runs GMLM(1λ, κ = n+ k + l − 1) to generate PPMLM of order p;
– picks random α, ς, ψ1, . . . , ψk ∈ Zp;
– computes ξι = gα

(2ι)
1 for ι = 0, . . . , n, τh = gψh1 for h = 1, . . . , k, Υ = gςl ;

– sets <0 = g
α(2n−1)ς

∏k

h=1 ψh
n+k+l−1 , <1 = some random element of Gn+k+l−1;

– returns %̃
b

= (PPMLM, ξ0, . . . , ξn, τ1, . . . , τk, Υ,<b̃).

The advantage of a probabilistic algorithm B in solving the (n, k, l)-cMDHE problem is defined
as

Adv(n,k,l)-cMDHE
B (λ) = |Pr[B(1λ, %0)→ 1]− Pr[B(1λ, %1)→ 1]|.

The (n, k, l)-cMDHE assumption is that for all probabilistic polynomial-time algorithms B,
Adv(n,k,l)-cMDHE

B (λ) is at most negligible.

6 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

3 RABE-I
In this section we present RABE-I, our first revocable attribute-based encryption scheme with
short ciphertext and decryption keys supporting general circuits of polynomial size with bounded
depth and input length. As in [GGH+13b], we use the convention that (multi-bit) messages are
encoded as group elements.

3.1 The Construction

RABE.Setup(1λ, `, d,Nmax): The trusted key generation center takes as input a security pa-
rameter 1λ, the length ` of Boolean inputs to the decryption circuits, the allowed depth d of
decryption circuits, and the maximum number Nmax of users supported by the system. Let
N = {1, . . . , Nmax} be the set of user key indices. It proceeds as follows:

1. It runs GMLM(1λ, κ = `+ d+ 1) to produce

PPMLM =
(#»G = (G1, . . . ,Gκ), g1, . . . , gκ

)
of prime order p > 2λ.

2. It selects random (a1,0, a1,1), . . . , (a`,0, a`,1) ∈ Z2
p, and computes

Ai,β = g
ai,β
1 for i = 1, . . . , `; β ∈ {0, 1}.

3. It selects random α, γ, θ ∈ Zp and computes

ϑj = gα
(j)

1 for j = 1, . . . , Nmax, Nmax + 2, . . . , 2Nmax,

Y = gγ1 , Z = gθd−1, Ω = gα
(Nmax+1)θ

d+1 .

4. It initializes the user list UL, which would consist of ordered pairs (ID, u) such that ID is
the identity of an user who has participated in the system and u ∈ N is the unique index
assigned to ID by the key generation center at the time of subscription, as an empty set, i.e.,
it sets UL = ∅.

5. Finally it publishes the public parameters

PP =
(
PPMLM, {Ai,β}i=1,...,`;β∈{0,1}, {ϑj}j=1,...,Nmax,Nmax+2,...,2Nmax , Y, Z,Ω

)
along with the empty user list UL, while keeps the master secret key MK = (α, γ, θ) to itself.

RABE.KeyGen(PP,MK,UL, ID, f): The key generation center takes the public parameters PP,
the master secret key MK, the current user list UL, and the user identity ID together with the
description f = (`, q, d,A,B,GateType) of the decryption circuit from a user as input. Our circuit
has ` + q wires {1, . . . , ` + q} where {1, . . . , `} are ` input wires, {` + 1, . . . , ` + q} are q gates
(OR or AND gates), and the wire `+ q is designated as the output wire. It proceeds as follows:

1. It first assigns an index u ∈ N such that (·, u) /∈ UL to ID and updates UL by adding the
pair (ID, u).

2. It chooses random r1, . . . , r`+q ∈ Zp where we think of randomness rw as being associated
with wire w ∈ {1, . . . , `+ q}. It produces the “header” component

K = g
α(u)θγ−r`+q
d .

3. It generates key components for every wire w. The structure of the key component depends
upon the category of w, i.e., whether w is an Input wire, OR gate, or AND gate. We describe
below how it generates the key components in each case.

General Circuit Realizing Compact RABE from Multilinear Maps 7

• Input wire: If w ∈ {1, . . . , `} then it corresponds to the w-the input. It computes the
key component

Kw = e(Aw,1, g1)rw = g
rwaw,1
2 .

• OR gate: Suppose that wire w ∈ Gates, GateType(w) = OR, and t = depth(w). It picks
random µw, νw ∈ Zp and creates the key component

Kw =
(
Kw,1 = gµw1 ,Kw,2 = gνw1 ,Kw,3 = g

rw−µwrA(w)
t ,Kw,4 = g

rw−νwrB(w)
t

)
.

• AND gate: Let wire w ∈ Gates, GateType(w) = AND, and t = depth(w). It selects random
µw, νw ∈ Zp and forms the key component

Kw =
(
Kw,1 = gµw1 ,Kw,2 = gνw1 ,Kw,3 = g

rw−µwrA(w)−νwrB(w)
t

)
.

4. It provides the decryption key SKf,ID =
(
f, ID,K, {Kw}w∈{1,...,`+q}

)
to the user and publishes

the updated user list UL.

RABE.Encrypt(PP,UL, x,RL,M): Taking as input the public parameters PP, the current user
list UL, a descriptor input string x = x1 . . . x` ∈ {0, 1}`, a list RL of revoked user identities, and
a message M ∈ Gκ, the encrypter forms the ciphertext as follows:

1. It first defines the revoked user key index set RI ⊆ N corresponding to RL using UL, i.e., if
ID ∈ RL and (ID, j) ∈ UL it includes j in RI. It then determines SI = N\RI.

2. It picks random s ∈ Zp and computes

CM = e(Ω,A1,x1 , . . . , A`,x`)
sM = g

α(Nmax+1)θs
∏`

i=1 ai,xi
κ M = gα

(Nmax+1)θsδ(x)
κ M,

C = gs1, C
′ =

(
Y
∏
j∈SI

ϑNmax+1−j
)s =

(
gγ1
∏
j∈SI

gα
(Nmax+1−j)

1
)s
,

where we define δ(x) =
∏`
i=1 ai,xi for the ease of exposition.

3. It outputs the ciphertext CTx,RL = (x,RL, CM , C, C ′).

RABE.Decrypt(PP,UL,CTx,RL,SKf,ID): A user, on input the public parameters PP, the current
user list UL, a ciphertext CTx,RL = (x,RL, CM , C, C ′) encrypted for descriptor input string
x = x1 . . . x` ∈ {0, 1}` along with a list of revoked user identities RL, along with its de-
cryption key SKf,ID =

(
f, ID,K, {Kw}w∈{1,...,`+q}

)
corresponding to its decryption circuit f =

(`, q, d,A,B,GateType) as well as its user identity ID, where u ∈ N is the index assigned to ID
(say), outputs ⊥, if [f(x) = 0] ∨ [ID ∈ RL]; otherwise, (if [f(x) = 1] ∧ [ID /∈ RL]) proceeds as
follows:

1. First, as a “header” computation it computes

D = e(A1,x1 , . . . , A`,x`) = g
δ(x)
` ,

Ê = e(K, D,C) = e
(
g
α(u)θγ−r`+q
d , g

δ(x)
` , gs1

)
= g

(α(u)θγ−r`+q)sδ(x)
κ ,

extracting {Ai,xi}i=1,...,` from PP.
2. Next, it performs the bottom-up evaluation of the circuit. For every wire w with correspond-

ing depth(w) = t, if fw(x) = 0, nothing is computed for that wire, otherwise (if fw(x) = 1),
it attempts to compute Ew = g

rwsδ(x)
`+t+1 as follows. The user proceeds iteratively starting with

computing E1 and moves forward in order to finally compute E`+q. Note that computing
these values in order ensures that the computation on a wire w with depth(w) = t− 1 that
evaluates to 1 will be defined before the computation on a wire w with depth(w) = t. The
computation procedure depends on whether the wire is an Input wire, OR gate, or AND gate.

8 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

• Input wire: If w ∈ {1, . . . , `} then it corresponds to the w-th input and t = depth(w) = 1.
Suppose that xw = fw(x) = 1. Extracting Kw from its decryption key SKf,ID, the user
computes

Ew = e(Kw, A1,x1 , . . . , Aw−1,xw−1 , Aw+1,xw+1 , . . . , A`,x` , C)

= e
(
g
rwaw,xw
2 , g

a1,x1
1 , . . . , g

aw−1,xw−1
1 , g

aw+1,xw+1
1 , . . . , g

a`,x`
1 , gs1

)
= g

rwsδ(x)
`+2

= g
rwsδ(x)
`+1+1 .

• OR gate: Consider a wire w ∈ Gates with GateType(w) = OR and t = depth(w). Assume
that fw(x) = 1. Then the user checks whether fA(w)(x) = 1, i.e., the first input of gate w
evaluated to 1, and if so, then the user extracts Kw,1,Kw,3 from Kw included in SKf,ID and
computes

Ew = e(EA(w),Kw,1)e(Kw,3, D,C)

= e
(
g
rA(w)sδ(x)
`+t , gµw1

)
e
(
g
rw−µwrA(w)
t , g

δ(x)
` , gs1

)
= g

rwsδ(x)
`+t+1 .

Note that EA(w) is already computed at this stage in the bottom-up circuit evaluation as
depth(A(w)) = t− 1.
Alternatively, if fA(w)(x) = 0 then it must be the case that fB(w)(x) = 1 as fw(x) = 1, and
it computes

Ew = e(EB(w),Kw,2)e(Kw,4, D,C) = g
rwsδ(x)
`+t+1

extracting Kw,2,Kw,4 from Kw contained in SKf,ID.

• AND gate: Consider a wire w ∈ Gates with GateType(w) = AND and t = depth(w).
Suppose that fw(x) = 1. Then fA(w)(x) = fB(w)(x) = 1. The user computes

Ew = e(EA(w),Kw,1)e(EB(w),Kw,2)e(Kw,3, D,C)

= e
(
g
rA(w)sδ(x)
`+t , gµw1

)
e
(
g
rB(w)sδ(x)
`+t , gνw1

)
e
(
g
rw−µwrA(w)−νwrB(w)
t , g

δ(x)
` , gs1

)
= g

rwsδ(x)
`+t+1

extracting Kw,1,Kw,2,Kw,3 from Kw in SKf,ID.
The user finally computes E`+q = g

r`+qsδ(x)
κ , as f(x) = f`+q(x) = 1.

3. It determines the revoked user key index set RI ⊆ N corresponding to RL using UL and
obtains SI = N\RI which contains all the non-revoked user key indices. Note that since
ID /∈ RL, u ∈ SI. The user retrieves the message by the following computation:

CM ÊE`+qe
(∏
j∈SI\{u}

ϑNmax+1−j+u, Z,D,C
)
e
(
ϑu, Z,D,C

′)−1

= gα
(Nmax+1)θsδ(x)

κ M · g(α(u)θγ−r`+q)sδ(x)
κ · gr`+qsδ(x)

κ ·
∏

j∈SI\{u}
gα

(Nmax+1−j+u)θsδ(x)
κ ·

[
gα

(u)θγsδ(x)
κ ·

∏
j∈SI

gα
(Nmax+1−j+u)θsδ(x)

κ

]−1

= gα
(Nmax+1)θsδ(x)

κ M · g(α(u)θγ−r`+q)sδ(x)
κ · gr`+qsδ(x)

κ ·
∏

j∈SI\{u}
gα

(Nmax+1−j+u)θsδ(x)
κ ·

[
gα

(u)θγsδ(x)
κ · gα(Nmax+1)θsδ(x)

κ ·
∏

j∈SI\{u}
gα

(Nmax+1−j+u)θsδ(x)
κ

]−1

= M.

General Circuit Realizing Compact RABE from Multilinear Maps 9

Note that the correctness holds with high probability even when the scheme is implemented
using current non-ideal multilinear map candidates [GGH13a], [CLT13], [CLT15].

3.2 Security Analysis

Theorem 1. RABE-I is secure in the selective revocation list model against CPA as per the se-
curity model of Section 2.2 if the (`+ d+ 1, Nmax)-MDHE assumption holds for the underlying
multilinear group generator GMLM, described in Section 2.3, where `, d, and Nmax denote respec-
tively the input length of decryption circuits, depth of the decryption circuits, and the maximum
number of users supported by the system. More precisely, for any probabilistic polynomial-time
adversary A against RABE-I there exists a probabilistic algorithm B, whose running time is
essentially the same as that of A, such that for any security parameter λ,

AdvRABE,SRL-CPA
A (λ) ≤ Adv(`+d+1,Nmax)-MDHE

B (λ).

Proof. Suppose that there exists a probabilistic polynomial-time adversaryA that attacks RABE-
I as per the selective revocation list model under CPA with a non-negligible advantage. We
construct a probabilistic algorithm B that attempts to solve an instance of the (`+d+1, Nmax)-
MDHE problem using A as a sub-routine. B is given a challenge instance

%̃
b

= (PPMLM, ϑ1, . . . , ϑNmax , ϑNmax+2, . . . , ϑ2Nmax , Υ, τ1, . . . , τ`+d−1,<b̃)

where {ϑj = gα
(j)

1 }j=1,...,Nmax,Nmax+2,...,2Nmax , {τi = gψi1 }i=1,...,`+d−1, Υ = gς1

such that α, ς, ψi are random elements of Zp, and <
b̃

is gα
(Nmax+1)ς

∏`+d−1
i=1 ψi

`+d+1 or some random
element in G`+d+1 according as b̃ is 0 or 1. B plays the role of the challenger in the CPA secu-
rity game as per the selective revocation list model of Section 2.2 and interacts with A as follows:

Init: A declares the challenge input string x∗ = x∗1 . . . x
∗
` ∈ {0, 1}` along with the challenge

revocation list RL∗ to B. Let N = {1, . . . , Nmax} be the set of user key indices. B first initializes
the user list UL = ∅. Next for each ID ∈ RL∗ it selects an index j ∈ N such that (·, j) /∈ UL and
adds (ID, j) to UL. Let RI∗ ⊆ N be the revoked set of user key indices corresponding to RL∗ and
SI∗ = N\RI∗.

Setup: B chooses random z1, . . . , z`, ϕ ∈ Zp and sets

Ai,β = τi = gψi1 , if β = x∗i , Ai,β = gzi1 , if β 6= x∗i , for i = 1, . . . , `; β ∈ {0, 1},

Y = gϕ1
(∏
j∈SI∗

ϑNmax+1−j
)−1 = gγ1 ,

Z = e(τ`+1, . . . , τ`+d−1) = g

∏`+d−1
h=`+1 ψh

d−1 = g
Γ (`+1,`+d−1)
d−1 = gθd−1,

Ω = e(ϑNmax , ϑ1, τ`+1, . . . , τ`+d−1) = gα
(Nmax+1)θ

d+1 ,

where we define Γ (v1, v2) =
∏v2
h=v1

ψh for positive integers v1, v2 with the convention that
Γ (v1, v2) = 1 if v1 > v2 for the purpose of enhancing readability in subsequent discussion.
Note that the above setting corresponds to (possibly implicitly) letting

ai,β = ψi, if β = x∗i , ai,β = zi, if β 6= x∗i , for i = 1, . . . , `; β ∈ {0, 1},
γ = ϕ−

∑
j∈SI∗

α(Nmax+1−j), θ = Γ (`+ 1, `+ d− 1).

B hands the public parameters PP =
(
PPMLM, {Ai,β}i=1,...,`;β∈{0,1}, {ϑj}j=1,...,Nmax,Nmax+2,...,2Nmax ,

Y, Z,Ω
)

along with the user list UL to A.

10 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Phase 1 and Phase 2: Both the key query phases are executed in the same manner by
B. So, we describe them once here. A adaptively queries a decryption key for a circuit f =
(`, q, d,A,B,GateType) and user identity ID to B subject to the restriction that [f(x∗) = 0] ∨ [ID ∈
RL∗]. B answers the query as follows:

Case (I) (ID ∈ RL∗): B retrieves the index u already assigned to ID in the initialization
phase from UL. B forms the decryption key components Kw corresponding to all the wires
w ∈ {1, . . . , ` + q} of the circuit f exactly as in the real scheme. Next B sets the “header”
component K of the decryption key as

K = e(ϑu, Z)ϕ
[∏
j∈SI∗

e(ϑNmax+1−j+u, Z)
]−1

g
−r`+q
d ,

where r`+q ∈ Zp is the randomness associated with the wire ` + q already selected by B at the
time of computing the decryption key component K`+q. The above simulation of K = g

α(u)θγ−r`+q
d

is valid since

α(u)θγ − r`+q = α(u)Γ (`+ 1, `+ d− 1)
[
ϕ−

∑
j∈SI∗

α(Nmax+1−j)]− r`+q
= α(u)Γ (`+ 1, `+ d− 1)ϕ− Γ (`+ 1, `+ d− 1)

∑
j∈SI∗

α(Nmax+1−j+u) − r`+q. (1)

Further, notice that since ID ∈ RL∗, u /∈ SI∗. Hence, none of the α(Nmax+1−j+u) in equation (1)
equals α(Nmax+1), enabling B to simulate K as above using the available information.

Case (II) (ID /∈ RL∗): In this case B assigns an index u ∈ N such that (·, u) /∈ UL to ID
and adds (ID, u) to UL. Now observe that due to the restriction on A’s decryption key queries
we must have f(x∗) = 0 in this case. As in [GGH+13b], we will think of the simulation as having
some invariant property on the depth of the wire we are looking at. Consider a wire w with
depth(w) = t. B views rw, the randomness associated with the wire w, as follows:

– If fw(x∗) = 0, then B will implicitly view rw as the term −α(Nmax+1)Γ (`+ 1, `+ t− 1) plus
some additional known randomization term.

– If fw(x∗) = 1 then B will view rw as 0 plus some additional known randomization term.

We keep this property intact for the bottom-up key simulation of the circuit. This makes B to
view r`+q as −α(Nmax+1)Γ (`+1, `+d−1) plus some additional known randomization term since
f`+q(x∗) = f(x∗) = 0. Then B can simulate the “header” component K by cancelation as will
be explained shortly.

The bottom-up simulation of the key component for each wire w by B varies depending on
whether w is an Input wire, OR gate, or AND gate as follows:

• Input wire: Consider w ∈ {1, . . . , `}, i.e., an input wire.

– If x∗w = 1 then B picks random rw ∈ Zp (as is done honestly) and sets the key component

Kw = e(τw, g1)rw = grwψw2 = g
rwaw,1
2 .

– Otherwise, if x∗w = 0 then B implicitly lets rw = −α(Nmax+1) + ηw = −α(Nmax+1)Γ (`+ 1, `+
1− 1) + ηw, where ηw ∈ Zp is randomly selected by B, and sets the key component

Kw = e(ϑNmax , ϑ1)−zwgηwzw2 = g
(−α(Nmax+1)+ηw)zw
2 = g

rwaw,1
2 .

General Circuit Realizing Compact RABE from Multilinear Maps 11

• OR gate: Consider a wire w ∈ Gates with GateType(w) = OR and t = depth(w).

– If fw(x∗) = 1 then B chooses random µw, νw, rw ∈ Zp as in the real scheme, and forms the
key component as

Kw =
(
Kw,1 = gµw1 ,Kw,2 = gνw1 ,Kw,3 = g

rw−µwrA(w)
t ,Kw,4 = g

rw−νwrB(w)
t

)
.

Lets have a closer look to the simulation ofKw,3 andKw,4 inKw by B above. Since fw(x∗) = 1,
the A(w) and B(w) gates might evaluate to 1 or 0 upon input x∗ with the only restriction
that both of them cannot be 0 at the same time. Consider the case of Kw,3. As our circuit is
layered, depth(A(w)) = t− 1. Observe that if fA(w)(x∗) = 1, then rA(w) is a random element
in Zp already selected by B at this stage due to the bottom-up key simulation. Thus, in this
case B can simulate Kw,3 exactly as in the real scheme. Now, let fA(w)(x∗) = 0. Therefore,
rA(w) has been implicitly set as −α(Nmax+1)Γ (` + 1, ` + t − 2) + ηA(w) by B in th ecourse of
its bottom-up key simulation, where ηA(w) ∈ Zp is randomly chosen by B. Thus, in this case
B can create Kw,3 as

Kw,3 = e(ϑNmax , ϑ1, τ`+1, . . . , τ`+t−2)µwgrw−µwηA(w)
t = g

rw−µwrA(w)
t .

A similar argument holds for Kw,4.
– On the other hand, if fw(x∗) = 0 then B picks random σw, ζw, ηw ∈ Zp, implicitly sets
µw = ψ`+t−1 + σw, νw = ψ`+t−1 + ζw, along with rw = −α(Nmax+1)Γ (` + 1, ` + t − 1) + ηw,
and creates the key component Kw = (Kw,1,Kw,2,Kw,3,Kw,4) as follows:

Kw,1 = τ`+t−1g
σw
1 = gµw1 , Kw,2 = τ`+t−1g

ζw
1 = gνw1 ,

Kw,3 = e(τ`+t−1, gt−1)−ηA(w)e(ϑNmax , ϑ1, τ`+1, . . . , τ`+t−2)σwgηw−σwηA(w)
t

= g
ηw−ψ`+t−1ηA(w)−σw(−α(Nmax+1)Γ (`+1,`+t−2)+ηA(w))
t = g

rw−µwrA(w)
t ,

Kw,4 = e(τ`+t−1, gt−1)−ηB(w)e(ϑNmax , ϑ1, τ`+1, . . . , τ`+t−2)ζwgηw−ζwηB(w)
t

= g
ηw−ψ`+t−1ηB(w)−ζw(−α(Nmax+1)Γ (`+1,`+t−2)+ηB(w))
t = g

rw−νwrB(w)
t .

Note that since fw(x∗) = 0, fA(w)(x∗) = fB(w)(x∗) = 0. Therefore, B’s bottom-up key
simulation has implicitly set rA(w) = −α(Nmax+1)Γ (`+ 1, `+ t− 2) + ηA(w), where ηA(w) ∈ Zp
is randomly selected by B. Hence,

rw − µwrA(w) =
(
− α(Nmax+1)Γ (`+ 1, `+ t− 1) + ηw

)
−

(ψ`+t−1 + σw)
(
− α(Nmax+1)Γ (`+ 1, `+ t− 2) + ηA(w)

)
= ηw − ψ`+t−1ηA(w) − σw

(
− α(Nmax+1)Γ (`+ 1, `+ t− 2) + ηA(w)

)
(2)

establishing that the distribution of simulated Kw,3 by B is identical to that in the actual
construction. Analogous argument holds for Kw,4.

• AND gate: Consider wire w ∈ Gates with GateType(w) = AND and t = depth(w). Then
depth(A(w)) = depth(B(w)) = t− 1 for the reason that our circuit is layered.

– Let fw(x∗) = 1. Then fA(w)(x∗) = fB(w)(x∗) = 1. B selects random µw, νw, rw ∈ Zp and
forms the key component

Kw =
(
Kw,1 = gµw1 ,Kw,2 = gνw1 ,Kw,3 = g

rw−µwrA(w)−νwrB(w)
t

)
exactly as in the real scheme. Observe that, since fA(w)(x∗) = fB(w)(x∗) = 1, rA(w) and rB(w)
are random elements of Zp already chosen by B in the course of the bottom-up simulation.

12 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

– Alternatively, let fw(x∗) = 0. Then, fA(w)(x∗) = 0 or fB(w)(x∗) = 0. If fA(w)(x∗) = 0,
then B selects σw, ζw, ηw ∈ Zp, implicitly defines µw = ψ`+t−1 + σw, νw = ζw, and rw =
−α(Nmax+1)Γ (` + 1, ` + t − 1) + ηw, and determines the decryption key component Kw =
(Kw,1,Kw,2,Kw,3) by setting

Kw,1 = τ`+t−1g
σw
1 = gµw1 , Kw,2 = gζw1 = gνw1 ,

Kw,3 = e(τ`+t−1, gt−1)−ηA(w)e(ϑNmax , ϑ1, τ`+1, . . . , τ`+t−2)σwgηw−σwηA(w)
t

(
g
rB(w)
t

)−ζw
= g

ηw−ψ`+t−1ηA(w)−σw(−α(Nmax+1)Γ (`+1,`+t−2)+ηA(w))
t g

−ζwrB(w)
t

= g
rw−µwrA(w)−νwrB(w)
t .

The simulated Kw,3 by B above is identically distributed as that in the original construction.
This follows from the fact that, the A(w) gate being evaluated to 0, rA(w) has already been
implicitly set as rA(w) = −α(Nmax+1)Γ (`+1, `+t−2)+ηA(w) by B in the course of the bottom-
up key simulation, where ηA(w) ∈ Zp is randomly picked by B.Therefore, as in equation (2),
we have

rw − µwrA(w) = ηw − ψ`+t−1ηA(w) − σw
(
− α(Nmax+1)Γ (`+ 1, `+ t− 2) + ηA(w)

)
.

Notice that grB(w)
t is always computable by B from the available information regardless of

whether the B(w) gate evaluates to 1 or 0 upon input x∗. If fB(w)(x∗) = 1, then rB(w) is a
random element of Zp chosen by B itself during the bottom-up simulation process. Hence,
the computation of grB(w)

t is straightforward in this case. Otherwise, if fB(w)(x∗) = 0,then
B has already set rB(w) as rB(w) = −α(Nmax+1)Γ (` + 1, ` + d − 2) + ηB(w) at this stage by
selecting random ηB(w) ∈ Zp. Therefore, in this case B can compute grB(w)

t as

g
rB(w)
t = e(ϑNmax , ϑ1, τ`+1, . . . , τ`+t−2)−1g

ηB(w)
t .

The case where fB(w)(x∗) = 0 and fA(w)(x∗) = 1 can be argued analogously, with the roles
of µw and νw reversed.

Since f(x∗) = f`+q(x∗) = 0, r`+q = −α(Nmax+1)Γ (`+ 1, `+ d− 1) + η`+q, where η`+q ∈ Zp is
randomly selected by B. Also, since ID /∈ RL∗, u ∈ SI∗. These two facts allow B to compute the
“header” component of the key as

K = e(ϑu, Z)ϕ
[∏
j∈SI∗\{u}

e(ϑNmax+1−j+u, Z)
]−1

g
−η`+q
d

= g
α(u)Γ (`+1,`+d−1)ϕ−Γ (`+1,`+d−1)

∑
j∈SI∗\{u} α

(Nmax+1−j+u)−η`+q
d

= g
α(u)Γ (`+1,`+d−1)ϕ−Γ (`+1,`+d−1)

∑
j∈SI∗ α

(Nmax+1−j+u)−[−α(Nmax+1)Γ (`+1,`+d−1)+η`+q]
d

= g
α(u)Γ (`+1,`+d−1)

[
ϕ−
∑

j∈SI∗ α
(Nmax+1−j)

]
−r`+q

d

= g
α(u)θγ−r`+q
d .

B provides A the decryption key SKf,ID =
(
f, ID,K, {Kw}w∈{1,...,`+q}

)
along with the updated

user list UL.

Challenge: A submits two challenge messages M∗0 ,M∗1 ∈ G`+d+1 to B. B flips a random coin
b ∈ {0, 1}, sets the challenge ciphertext

CT∗ =
(
x∗,RL∗, C∗M = <

b̃
M∗b , C

∗ = Υ = gς1, C
′∗ = Υϕ = gϕς1 = (Y

∏
j∈SI∗

ϑNmax+1−j)ς
)
,

General Circuit Realizing Compact RABE from Multilinear Maps 13

and gives it to A.

Guess: B eventually receives back the guess b′ ∈ {0, 1} from A. If b = b′, B outputs b̃′ = 1;
otherwise, it outputs b̃′ = 0.

Note that if b̃ = 0, then

C∗m = <
b̃
M∗b = g

α(Nmax+1)ς
∏`+d−1
i=1 ψi

`+d+1 M∗b = g
α(Nmax+1)ςΓ (1,`+d−1)
`+d+1 M∗b

= g
α(Nmax+1)Γ (`+1,`+d−1)ςΓ (1,`)
`+d+1 M∗b = gα

(Nmax+1)θςδ(x∗)
κ M∗b ,

where δ(x∗) =
∏`
i=1 ai,x∗i . Thus, we can see that the challenge ciphertext CT∗ is properly gener-

ated by B in this case by implicitly letting s, the randomness used to prepare the ciphertext, as
ς. On the other hand, if b̃ = 1, then <

b̃
is a random element of G`+d+1, so that, the challenge

ciphertext is completely random. Hence the result. ut

4 RABE-II
In this section we present RABE-II, our second revocable attribute-based encryption scheme
supporting general circuits of polynomial size with bounded depth and input length that has
shorter public parameter size compared to RABE-I. Here also we use the convention that (multi-
bit) messages are encoded as group elements.

4.1 The Construction

RABE.Setup(1λ, `, d,Nmax): Taking as input a security parameter 1λ, the length ` of Boolean
inputs to the decryption circuits, the allowed depth d of decryption circuits, and the maximum
number Nmax of users supported by the system, the trusted key generation center proceeds as
follows:

1. It chooses two positive integers n,m suitably such that Nmax ≤
(n
m

)
. Let N denotes the set

of all integers j ∈ {1, . . . , 2n − 2} of Hamming weight HW(j) = m when expressed as a bit
string of length n. N is considered as the set of possible user key indices.

2. It executes GMLM(1λ, κ = n+ d+m− 1) to generate

PPMLM =
(#»G = (G1, . . . ,Gκ), g1, . . . , gκ

)
of prime order p > 2λ.

3. It picks random a1, . . . , a` ∈ Zp and computes

Ai = gaim for i = 1, . . . , `.

4. It chooses random α, γ, θ ∈ Zp and computes

ξι = gα
(2ι)

1 for ι = 0, . . . , n, Y = gγn−1, Z = gθd, Ω = gα
(2n−1)θ

κ .

5. It initializes the user list UL, which would consist of ordered pairs (ID, u) such that ID is
the identity of an user who has participated in the system and u ∈ N is the unique index
assigned to ID by the key generation center at the time of subscription, as an empty set, i.e.,
it sets UL = ∅.

6. It publishes the public parameters

PP =
(
PPMLM, n,m, {Ai}i=1,...,`, {ξι}ι=0,...,n, Y, Z,Ω

)
along with the empty user list UL, while keeps the master secret key MK = (α, γ, θ) to itself.

14 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

RABE.KeyGen(PP,MK,UL, ID, f): The key generation center takes the public parameters PP,
the master secret key MK, the current user list UL, and the user identity ID together with the
description f = (`, q, d,A,B,GateType) of the decryption circuit from a user as input. Our circuit
has `+q wires {1, . . . , `+q} where {1, . . . , `} are ` input wires, {`+1, . . . , `+q} are q gates (OR
or AND gates), and the wire `+ q is distinguished as the output wire. It proceeds as follows:

1. It first assigns to ID an index u ∈ N such that (·, u) /∈ UL and updates UL by adding the
pair (ID, u).

2. It chooses random r1, . . . , r`+q ∈ Zp where we think of randomness rw as being associated
with wire w ∈ {1, . . . , `+ q}. It produces the “header” component

K = g
α(u)θγ−r`+q
n+d−1 .

3. It forms key components for every wire w. The structure of the key component depends upon
the category of w, i.e., whether w is an Input wire, OR gate, or AND gate. We describe below
how it generates the key components in each case.

• Input wire: If w ∈ {1, . . . , `} then it corresponds to the w-th input. It chooses random
zw ∈ Zp and computes the key component

Kw =
(
Kw,1 = grwn e(Aw, gn−m)zw = grwn gawzwn , Kw,2 = g−zwn

)
.

• OR gate: Suppose that wire w ∈ Gates, GateType(w) = OR, and t = depth(w). It picks
random µw, νw ∈ Zp and creates the key component

Kw =
(
Kw,1 = gµw1 ,Kw,2 = gνw1 ,Kw,3 = g

rw−µwrA(w)
n+t−1 ,Kw,4 = g

rw−νwrB(w)
n+t−1

)
.

• AND gate: Let wire w ∈ Gates, GateType(w) = AND, and t = depth(w). It selects random
µw, νw ∈ Zp and forms the key component

Kw =
(
Kw,1 = gµw1 ,Kw,2 = gνw1 ,Kw,3 = g

rw−µwrA(w)−νwrB(w)
n+t−1

)
.

4. It provides the decryption key SKf,ID =
(
f, ID,K, {Kw}w∈{1,...,`+q}

)
to the user and publishes

the updated user list UL.

RABE.Encrypt(PP,UL, x,RL,M): On input the public parameters PP, the current user list UL,
a descriptor input string x = x1 . . . x` ∈ {0, 1}`, a revoked user identity list RL, and a message
M ∈ Gκ, the encrypter prepares the ciphertext as follows:

1. It first defines the revoked user key index set RI ⊆ N corresponding to RL using UL, i.e., if
ID ∈ RL and (ID, j) ∈ UL it puts j in RI. It then defines SI = N\RI.

2. It computes ϑ2n−1−j for all j ∈ SI utilizing the ξι values included in PP and multilinear map
as follows, where we define ϑ$ = gα

($)
n−1 for positive integer $. Observe that any j ∈ SI ⊆ N

can be expressed as a bit string of length n with HW(j) = m. Hence, j can be written as
j =

∑
ι∈J 2ι where J ⊆ {0, . . . , n− 1} of size m. Now 2n − 1 =

∑n−1
ι=0 2ι. Thus, 2n − 1− j =∑

ι∈J 2ι where J = {0, . . . , n− 1}\J = {ι1, . . . , ιn−m}. It computes ϑ2n−1−j as

ϑ2n−1−j = e(ξι1 , . . . , ξιn−m , gm−1) = e(gα(2ι1)
1 , . . . , gα

(2ιn−m)
1 , gm−1) = gα

(2n−1−j)
n−1 . (3)

3. It picks random s ∈ Zp and computes

CM = ΩsM = gα
(2n−1)θs

κ M, C = gsm,

C ′i = Asi = gaism for i ∈ Sx = {i|i ∈ {1, . . . , `} ∧ xi = 1},

C ′′ =
(
Y
∏
j∈SI

ϑ2n−1−j
)s =

(
gγn−1

∏
j∈SI

gα
(2n−1−j)

n−1
)s
.

General Circuit Realizing Compact RABE from Multilinear Maps 15

4. It outputs the ciphertext CTx,RL = (x,RL, CM , C, {C ′i}i∈Sx , C ′′).

Remark 1. We would like to mention here that the number of ciphertext components could be
made constant (precisely only 4) rather than scaling with the size of Sx, as in RABE-I using a
` + n + d + m − 2-leveled multilinear map. However, since in current approximate multilinear
map candidates the multilinearity is expensive. Therefore, we opt for a construction that requires
lower multilinearity level.

RABE.Decrypt(PP,UL,CTx,RL,SKf,ID): A user takes as input the public parameters PP, the
current user list UL, a ciphertext CTx,RL = (x,RL, CM , C, {C ′i}i∈Sx , C ′′) encrypted for descriptor
input string x = x1 . . . x` ∈ {0, 1}` along with a revoked user identity list RL, and its decryption
key SKf,ID =

(
f, ID,K, {Kw}w∈{1,...,`+q}

)
corresponding to its decryption policy circuit f =

(`, q, d,A,B,GateType) as well as its user identity ID, where u ∈ N is the index assigned to ID
(say). It outputs ⊥, if [f(x) = 0] ∨ [ID ∈ RL]; otherwise, (i.e., if [f(x) = 1] ∧ [ID /∈ RL])
proceeds as follows:

1. First, as a “header” computation, it computes

Ê = e(K, C) = e
(
g
α(u)θγ−r`+q
n+d−1 , gsm

)
= g

(α(u)θγ−r`+q)s
κ .

2. Next, it performs the bottom-up evaluation of the circuit. For every wire w with corre-
sponding depth(w) = t, if fw(x) = 0, nothing is computed for that wire, otherwise (if
fw(x) = 1), it attempts to compute Ew = grwsn+t+m−1 as described below. The user proceeds
iteratively starting with computing E1 and moves forward in order to finally compute E`+q.
Note that computing these values in order ensures that the computation on a wire w with
depth(w) = t−1 that evaluates to 1 will be defined before the computation on a wire w with
depth(w) = t. The computation procedure depends on whether the wire is an Input wire, OR
gate, or AND gate.

• Input wire: If w ∈ {1, . . . , `} then it corresponds to the w-the input and t = depth(w) = 1.
Suppose that xw = fw(x) = 1. The user extracts Kw,1,Kw,2 from Kw included in its decryp-
tion key SKf,ID and computes

Ew = e(Kw,1, C)e(Kw,2, C
′
w) = e(grwn gawzwn , gsm)e(g−zwn , gawsm) = grwsn+m = grwsn+1+m−1.

• OR gate: Consider a wire w ∈ Gates with GateType(w) = OR and t = depth(w). Assume
that fw(x) = 1. Then the user checks whether fA(w)(x) = 1, i.e., the first input of gate w
evaluated to 1, and if so, then the user computes

Ew = e(EA(w),Kw,1)e(Kw,3, C)

= e
(
g
rA(w)s
n+t+m−2, g

µw
1
)
e
(
g
rw−µwrA(w)
n+t−1 , gsm

)
= grwsn+t+m−1

by extracting Kw,1,Kw,3 from Kw contained in SKf,ID. Notice that EA(w) is already computed
at this stage in the bottom-up circuit evaluation as depth(A(w)) = t− 1.
Alternatively, if fA(w)(x) = 0, then it must hold that fB(w)(x) = 1 as fw(x) = 1. In this case,
it computes

Ew = e(EB(w),Kw,2)e(Kw,4, C) = grwsn+t+m−1

extracting Kw,2,Kw,4 from Kw in SKf,ID.

• AND gate: Consider a wire w ∈ Gates with GateType(w) = AND and t = depth(w).

16 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Suppose that fw(x) = 1. Then fA(w)(x) = fB(w)(x) = 1. The user extracts Kw,1,Kw,2,Kw,3
from Kw included in SKf,ID and computes

Ew = e(EA(w),Kw,1)e(EB(w),Kw,2)e(Kw,3, C)

= e
(
g
rA(w)s
n+t+m−2, g

µw
1
)
e
(
g
rB(w)s
n+t+m−2, g

νw
1
)
e
(
g
rw−µwrA(w)−νwrB(w)
n+t−1 , gsm

)
= grwsn+t+m−1.

Note that both EA(w) and EB(w) are already computed at this stage in the course of the
bottom-up evaluation of the circuit as depth(A(w)) = depth(B(w)) = t− 1.
At the end, the user computes E`+q = g

r`+qs
κ , as f(x) = f`+q(x) = 1.

3. It determines the revoked user key index set RI ⊆ N corresponding to RL using UL and
obtains SI = N\RI. Note that since ID /∈ RL, u ∈ SI.

4. It computes ϑ′u = gα
(u)

m and ϑ2n−1−j+u = gα
(2n−1−j+u)

n−1 for all j ∈ SI\{u} using the ξι values
included in PP and multilinear map as follows:
(a) (Computing ϑ′u) Note that u can be expressed as a bit string of length n with HW(u) = m

as u ∈ SI ⊆ N . Let u =
∑
ι∈U 2ι where U = {ι′1, . . . , ι′m} ⊆ {0, . . . , n − 1}. It computes

ϑ′u as

ϑ′u = e(ξι′1 , . . . , ξι′m) = e(gα(2ι
′
1)

1 , . . . , gα
(2ι
′
m)

1) = gα
(u)

m . (4)

(b) (Computing ϑ2n−1−j+u for j ∈ SI\{u}) Let 2n−1−j =
∑
ι∈J 2ι where J = {ι1, . . . , ιn−m}

⊆ {0, . . . , n−1} as earlier. Now U and J are disjoined only if J ∪U = {0, . . . , n−1}, i.e.,
2n − 1 − j + u =

∑
ι∈J 2ι +

∑
ι∈U 2ι =

∑n−1
ι=0 2ι = 2n − 1, i.e., j = u. Since j 6= u, there

must exist at least one ι̂ ∈ {0, . . . , n− 1} such that ι̂ ∈ J ∩U . Without loss of generality,
let ι̂ = ιn−m = ι′m. Then 2n − 1 − j + u =

∑
ι∈J\{ιn−m} 2ι +

∑
ι∈U\{ι′m} 2ι + 2 · 2ι̂ =∑

ι∈J\{̂ι} 2ι +
∑
ι∈U\{̂ι} 2ι + 2ι̂+1 where [J\{ι̂}]∩ [U\{ι̂}] may not be empty. It computes

ϑ2n−1−j+u as

ϑ2n−1−j+u = e(ξι1 , . . . , ξιn−m−1 , ξι′1 , . . . , ξι′m−1
, ξ̂ι+1)

= e(gα(2ι1)
1 , . . . , gα

(2ιn−m−1)
1 , gα

(2ι
′
1)

1 , . . . , gα
(2
ι′m−1)

1 , gα
(2̂ι+1)

1

= gα
(2n−1−j+u)

(n−m−1)+(m−1)+1 = gα
(2n−1−j+u)

n−1 . (5)

Note that ξ̂ι+1 is extractable from PP since ι̂ ∈ {0, . . . , n− 1}.
5. Finally, utilizing the fact that u ∈ SI, the user retrieves the message by the following com-

putation:

CM ÊE`+qe
(∏
j∈SI\{u}

ϑ2n−1−j+u, Z, C
)
e
(
ϑ′u, Z, C

′′)−1

= gα
(2n−1)θs

κ M · g(α(u)θγ−r`+q)s
κ · gr`+qsκ ·

∏
j∈SI\{u}

gα
(2n−1−j+u)θs

κ ·

[
gα

(u)θγs
κ ·

∏
j∈SI

gα
(2n−1−j+u)θs

κ

]−1

= gα
(2n−1)θs

κ M · g(α(u)θγ−r`+q)s
κ · gr`+qsκ ·

∏
j∈SI\{u}

gα
(2n−1−j+u)θs

κ ·

[
gα

(u)θγs
κ · gα(2n−1)θs

κ ·
∏

j∈SI\{u}
gα

(2n−1−j+u)θs
κ

]−1

= M.

Note that the correctness holds with high probability when the construction is implemented
using current non-ideal multilinear map candidates [GGH13a], [CLT13], [CLT15].

General Circuit Realizing Compact RABE from Multilinear Maps 17

4.2 Security Analysis

Theorem 2. RABE-II is secure in the selective revocation list model against CPA as per the
security model of Section 2.2 if the (n, d,m)-cMDHE assumption holds for the underlying mul-
tilinear group generator GMLM described in Section 2.3, such that d denotes the allowed depth
of the decryption circuits, and n,m are two integers for which Nmax ≤

(n
m

)
, where Nmax is

the maximum number of users supported by the system. More precisely, for any probabilistic
polynomial-time adversary A against RABE-II there exists a probabilistic algorithm B, whose
running time is essentially the same as that of A, such that for any security parameter λ,

AdvRABE,SRL-CPA
A (λ) ≤ Adv(n,d,m)-cMDHE

B (λ).

Proof. Suppose that there exists a probabilistic polynomial-time adversaryA that attacks RABE-
II scheme described above as per the selective revocation list model under CPA with a non-
negligible advantage. We construct a probabilistic algorithm B that attempts to solve an instance
of the (n, d,m)-cMDHE problem using A as a sub-routine. B is given a challenge instance

%̃
b

= (PPMLM, ξ0, . . . , ξn, τ1, . . . , τd, Υ,<b̃)

where ξι = gα
(2ι)

1 for ι = 0, . . . , n, τh = gψh1 for h = 1, . . . , d, Υ = gςm

such that α, ς, ψh are random elements of Zp, and <
b̃

is gα
(2n−1)ς

∏d

h=1 ψh
n+d+m−1 , or some random ele-

ment of Gn+d+m−1 according as b̃ is 0 or 1. B plays the role of the challenger in the CPA security
game as per the selective revocation list model of Section 2.2 and interacts with A as follows:

Init: A declares the challenge input string x∗ = x∗1 . . . x
∗
` ∈ {0, 1}` along with the challenge

revocation list RL∗ to B. Let N stands for the set of all integers j ∈ {1, . . . , 2n − 2} with
HW(j) = m representing the set of user key indices. B first initializes the user list UL = ∅. Next
for each ID ∈ RL∗ it selects an index j ∈ N such that (·, j) /∈ UL and adds (ID, j) to UL. Let
RI∗ ⊆ N be the revoked set of user key indices corresponding to RL∗ and SI∗ = N\RI∗.

Setup: B chooses random y1, . . . , y`, ϕ ∈ Zp and sets

Ai = gyim, if x∗i = 1, Ai = gyime(τ1, gm−1) = gyi+ψ1
m , if x∗i = 0, for i = 1, . . . , `,

Y = gϕn−1
(∏
j∈SI∗

ϑ2n−1−j
)−1 = gγn−1, Z = e(τ1, . . . , τd) = g

∏d

h=1 ψh
d = g

Γ (1,d)
d = gθd,

Ω = e(ξ0, . . . , ξn−1, τ1, . . . , τd, gm−1) = gα
(2n−1)θ

n+d+m−1,

where we define ϑ$ = gα
($)

n−1 and Γ (v1, v2) =
∏v2
h=v1

ψh for positive integers $, v1, v2. Note that B
can compute all the ϑ2n−1−j values required for setting Y by utilizing the appropriate ξι values
included in the challenge instance and the multilinear map as shown in equation (3). Note the
above setting corresponds to (possibly implicitly) setting

ai = yi, if x∗i = 1, ai = yi + ψ1, if x∗i = 0, for i = 1, . . . , `,
γ = ϕ−

∑
j∈SI∗

α(2n−1−j), θ = Γ (1, d).

B hands the public parameters PP = (PPMLM, {Ai}i=1,...,`, {ξι}ι=0,...,n, Y, Z,Ω) to A.

Phase 1 and Phase 2: Both the key query phases are executed in the same manner by
B. So, we describe them once here. A adaptively queries a decryption key for a circuit f =
(`, q, d,A,B,GateType) and user identity ID to B subject to the restriction that [f(x∗) = 0] ∨ [ID ∈

18 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

RL∗]. B answers the query as follows:

Case (I) (ID ∈ RL∗): B retrieves the index u ∈ N already assigned to ID in the initializa-
tion phase from UL. B forms the decryption key component Kw corresponding to all the wires
w ∈ {1, . . . , `+q} of the circuit f exactly as in the real scheme. Next B sets the header component
K as

K = e(ϑ′u, Z, gn−m−1)ϕ
[∏
j∈SI∗

e(ϑ2n−1−j+u, Z)
]−1

g
−r`+q
n+d−1,

where ϑ′u = gα
(u)

m and r`+q ∈ Zp is the randomness associated with the wire `+q already selected
by B at the time of computing the decryption key component K`+q. The above simulation of
K = g

α(u)θγ−r`+q
n+d−1 is valid since

α(u)θγ − r`+q = α(u)Γ (1, d)[ϕ−
∑
j∈SI∗

α(2n−1−j)]− r`+q

= α(u)Γ (1, d)ϕ− Γ (1, d)
∑
j∈SI∗

α(2n−1−j+u) − r`+q.

The computability of K by B can be understood by observing that B can compute ϑ′u using the
appropriate ξι values from the challenge instance and the multilinear map as in equation (4).
Moreover, since ID ∈ RL∗, u /∈ SI∗. Hence, none of the j’s in the last sum of the preceding equa-
tion matches u, enabling B to compute ϑ2n−1−j+u = gα

(2n−1−j+u)
n−1 by utilizing suitable ξι values

from the challenge instance and the multilinear map in the same way as shown in equation (5).

Case (II) (ID /∈ RL∗): In this case B assigns an index u ∈ N such that (·, u) /∈ UL to ID
and adds (ID, u) to UL. Now observe that due to the restriction on A’s decryption key queries
we must have f(x∗) = 0 in this case. As in the proof of Theorem 1, we will think of the simula-
tion as having some invariant property on the depth of the wire we are looking at. Consider a
wire w with depth(w) = t. B views rw, the randomness associated with the wire w, as follows:

– If fw(x∗) = 0, then B will implicitly view rw as the term −α(2n−1)Γ (1, t) plus some additional
known randomization term.

– On the other hand, if fw(x∗) = 1 then B will view rw as 0 plus some additional known
randomization term.

We keep this property intact for the bottom-up key simulation of the circuit. This will make B to
view r`+q as −α(2n−1)Γ (1, d) plus some additional known randomization term since f`+q(x∗) =
f(x∗) = 0. Then B can simulate the “header” component K by cancelation as will be explained
shortly.

The bottom-up simulation of the key component for each wire w by B varies depending on
whether w is an input wire, OR gate, or AND gate as follows:
• Input wire: Consider w ∈ {1, . . . , `}, i.e., an input wire.

– If x∗w = 1 then B picks random rw, zw ∈ Zp and sets the key component

Kw = (Kw,1 = grwn e(Aw, gn−m)zw = grwn gywzwn = grwn gawzwn ,Kw,2 = g−zwn)

as is done honestly.
– Otherwise, if x∗w = 0 then B randomly picks random ηw, υw ∈ Zp, implicitly lets rw =
−α(2n−1)Γ (1, 1) + ηw, zw = α(2n−1) + υw, and sets the key component Kw = (Kw,1,Kw,2) by
defining

Kw,1 = gηwn e(ξ0, . . . , ξn−1)ywe(Aw, gn−m)υw = gηw+α(2n−1)yw+(yw+ψ1)υw
n = grwn gawzwn ,

Kw,2 = e(ξ0, . . . , ξn−1)−1g−υwn = g−zwn .

General Circuit Realizing Compact RABE from Multilinear Maps 19

• OR gate: Consider a wire w ∈ Gates with GateType(w) = OR and t = depth(w). As our circuit
is layered, depth(A(w)) = depth(B(w)) = t− 1.

– If fw(x∗) = 1 then B chooses random µw, νw, rw ∈ Zp as in the real scheme, and forms the
key component as

Kw =
(
Kw,1 = gµw1 ,Kw,2 = gνw1 ,Kw,3 = g

rw−µwrA(w)
n+t−1 ,Kw,4 = g

rw−νwrB(w)
n+t−1

)
.

Lets now examine the simulation of Kw,3 and Kw,4 in Kw by B above more closely. Since,
fw(x∗) = 1, the A(w) and B(w) gates might evaluate to 1 or 0 upon input x∗ with the
only exception that both of them cannot be 0 simultaneously. Consider the case of Kw,3.
Note that if fA(w)(x∗) = 1, then rA(w) is a random element of Zp already selected by B
at this stage due to the bottom-up key simulation. Thus in this case B can simulate Kw,3
exactly like in the real scheme. Now let fA(w)(x∗) = 0. Hence, rA(w) has been implicitly set
as rA(w) = −α(2n−1)Γ (1, t− 1) + ηA(w) by B in the course of the bottom-up key simulation,
where ηA(w) ∈ Zp is randomly chosen by B. Thus, in this case B can generate Kw,3 as

Kw,3 = e(ξ0, . . . , ξn−1, τ1, . . . , τt−1)µwgrw−µwηA(w)
n+t−1 = g

rw−µwrA(w)
n+t−1 .

A similar argument holds for Kw,4.
– On the other hand, if fw(x∗) = 0 then B selects random σw, ζw, ηw ∈ Zp, implicitly sets
µw = ψt + σw, νw = ψt + ζw, and rw = −α(2n−1)Γ (1, t) + ηw, and creates the decryption key
component Kw = (Kw,1,Kw,2,Kw,3,Kw,4) by setting

Kw,1 = τtg
σw
1 = gµw1 ,Kw,2 = τtg

ζw
1 = gνw1 ,

Kw,3 = e(τt, gn+t−2)−ηA(w)e(ξ0, . . . , ξn−1, τ1, . . . , τt−1)σwgηw−σwηA(w)
n+t−1

= g
ηw−ψtηA(w)−σw(−α(2n−1)Γ (1,t−1)+ηA(w))
n+t−1 = g

rw−µwrA(w)
n+t−1 ,

Kw,4 = e(τt, gn+t−2)−ηB(w)e(ξ0, . . . , ξn−1, τ1, . . . , τt−1)ζwgηw−ζwηB(w)
n+t−1

= g
ηw−ψtηB(w)−ζw(−α(2n−1)Γ (1,t−1)+ηB(w))
n+t−1 = g

rw−νwrB(w)
n+t−1 .

Observe that since fw(x∗) = 0, fA(w)(x∗) = fB(w)(x∗) = 0, and our circuit is layered. Thus,
B’s bottom-up simulation has implicitly set rA(w) = −α(2n−1)Γ (1, t − 1) + ηA(w), where
ηA(w) ∈ Zp is randomly selected by B. Hence,

rw − µwrA(w) =
(
− α(2n−1)Γ (1, t) + ηw

)
− (ψt + σw)

(
− α(2n−1)Γ (1, t− 1) + ηA(w)

)
= ηw − ψtηA(w) − σw

(
− α(2n−1)Γ (1, t− 1) + ηA(w)

)
, (6)

establishing that the distribution of simulated Kw,3 by B is identical to that in the actual
construction. The case of Kw,4 is analogous.

• AND gate: Consider wire w ∈ Gates with GateType(w) = AND and t = depth(w). Then
depth(A(w)) = depth(B(w)) = t− 1 due to the fact that our circuit is layered.

– Let fw(x∗) = 1. Then fA(w)(x∗) = fB(w)(x∗) = 1. B selects random µw, νw, rw ∈ Zp and
forms the key component

Kw =
(
Kw,1 = gµw1 ,Kw,2 = gνw1 ,Kw,3 = g

rw−µwrA(w)−νwrB(w)
n+t−1

)
exactly as in the real scheme. Notice that since fA(w)(x∗) = fB(w)(x∗) = 1, rA(w) and rB(w)
are random elements of Zp which are already chosen by B during the bottom-up simulation.

20 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

– Alternatively, if fw(x∗) = 0. Then fA(w)(x∗) = 0 or fB(w)(x∗) = 0. If fA(w)(x∗) = 0 then B
selects σw, ζw, ηw ∈ Zp, implicitly defines µw = ψt + σw, νw = ζw, and rw = −α2n−1Γ (1, t) +
ηw, and determines the decryption key component Kw = (Kw,1,Kw,2,Kw,3) by setting

Kw,1 = τtg
σw
1 = gµw1 ,Kw,2 = gζw1 = gνw1 ,

Kw,3 = e(τt, gn+t−2)−ηA(w)e(ξ0, . . . , ξn−1, τ1, . . . , τt−1)σwgηw−σwηA(w)
n+t−1

(
g
rB(w)
t

)−ζw
= g

ηw−ψtηA(w)−σw(−α(2n−1)Γ (1,t−1)+ηA(w))
n+t−1 g

−ζwrB(w)
t

= g
rw−µwrA(w)−νwrB(w)
n+t−1 .

The simulated Kw,3 by B above is identically distributed as that in the original construction.
This follows from the fact that, the A(w) being evaluated to 0, rA(w) has already been
implicitly set as rA(w) = −α2n−1Γ (1, t− 1) + ηA(w) by B in the course of the bottom-up key
simulation, where ηA(w) ∈ Zp is randomly picked by B.. Therefore, as in equation (6), we
have

rw − µwrA(w) = ηw − ψtηA(w) − σw
(
− α(2n−1)Γ (1, t− 1) + ηA(w)

)
.

Note that grB(w)
n+t−1 is always computable for B using the available information regardless of

whether the B(w) evaluates to 1 or 0 upon input x∗. If fB(w)(x∗) = 1, then rB(w) is a
random element of Zp chosen by B itself during the bottom-up simulation process. Hence,
the computation of grB(w)

n+t−1 is straightforward in this case. Otherwise, if fB(w)(x∗) = 0, then
B has already set rB(w) as rB(w) = −α2n−1Γ (1, t− 1) + ηB(w) by B at this stage by selecting
random ηB(w) ∈ Zp. Therefore, in this case B can compute grB(w)

n+t−1 as

g
rB(w)
n+t−1 = e(ξ0, . . . , ξn−1, τ1, . . . , τt−1)−1g

ηB(w)
n+t−1.

The case where fB(w)(x∗) = 0 and fA(w)(x∗) = 1can be argued analogously, with the roles of
µw and νw reversed.

Since f(x∗) = f`+q(x∗) = 0, r`+q = −α(2n−1)Γ (1, d)+η`+q, where η`+q ∈ Zp is randomly selected
byB. Also, since ID /∈ RL∗, u ∈ SI∗. These two facts allow B to compute the “header” component
of the key as

K = e(ϑ′u, Z, gn−m−1)ϕ
[∏
j∈SI∗\{u}

e(ϑ2n−1−j+u, Z)
]−1

g
−η`+q
n+d−1

= g
αuΓ (1,d)ϕ−Γ (1,d)

∑
j∈SI∗\{u} α

2n−1−j+u−η`+q
n+d−1

= g
αuΓ (1,d)ϕ−Γ (1,d)

∑
j∈SI∗\{u} α

2n−1−j+u−α2n−1Γ (1,d)−[−α2n−1Γ (1,d)+η`+q]
n+d−1

= g
αuΓ (1,d)

[
ϕ−
∑

j∈SI∗ α
2n−1−j

]
−r`+q

n+d−1 = g
αuθγ−r`+q
n+d−1 .

B gives A the decryption key SKf,ID =
(
f, ID,K, {Kw}w∈{1,...,`+q}

)
along with the updated user

list UL.

Challenge: A submits two challenge messages M∗0 ,M∗1 ∈ Gn+d+m−1 to B. B flips a random
coin b ∈ {0, 1}, sets the challenge ciphertext CT∗ = (x∗,RL∗, C∗M , C∗, {C

′∗
i |x∗i = 1}, C ′′∗) by

defining

C∗M = <
b̃
M∗b , C

∗ = Υ = gςm,

C
′∗
i = Υ yi = gyiςm = gaiςm for i ∈ {1, . . . , `} with x∗i = 1,

C
′′∗ = e(Υ, gn−m−1)ϕ = gϕςn−1 = (Y

∏
j∈SI∗

ϑ2n−1−j)ς ,

General Circuit Realizing Compact RABE from Multilinear Maps 21

and gives it to A.

Guess: B eventually receives back the guess b′ ∈ {0, 1} from A. If b = b′, B outputs b̃′ = 1;
otherwise, it outputs b̃′ = 0.

Note that if b̃ = 0, then

C∗M = <
b̃
M∗b = g

α(2n−1)ς
∏d

h=1 ψh
n+d+m−1 M∗b = g

α(2n−1)Γ (1,d)ς
n+d+m−1 M∗b = gα

(2n−1)θς
κ M∗b .

Thus, we can see that the challenge ciphertext CT∗ is properly generated by B in this case by
implicitly letting s, the randomness used to prepare the ciphertext, as ς. On the other hand, if
b̃ = 1, then <

b̃
is a random element of Gn+d+m−1, so that, the challenge ciphertext is completely

random. Hence the result. ut

5 Efficiency

Both our RABE schemes permit general Boolean circuits of arbitrary polynomial size and un-
bounded fan-out with bounded depth and input length. This is the most expressive form of
decryption policies accomplished for ABE till date [GGH+13b], [BGG+14]. We utilize the power
of the multilinear map framework. All previous RABE constructions in the standard model
[BGK08], [AI09b], [AI09a], [LLLS10], [QD11], could support at most polynomial size monotone
Boolean formulae because of the inherent limitation [GGH+13b] of the traditional bilinear map
setting underlying those schemes.

Another drawback of the previous standard model RABE schemes supporting direct revo-
cation mode [AI09b], [AI09a], [QD11] is that they essentially utilize the tree-based revocation
mechanism of Naor et al. [NNL01]. As a result, the number of group elements comprising the
revocation controlling segments of the ciphertexts and decryption keys are O(r̂ log Nmax

r̂
) and

O(logNmax) respectively, where Nmax and r̂ denote respectively the maximum number of users
supported by the system and the number of revoked users. Moreover, the number of group ele-
ments in the ABE realizing portion of the ciphertexts scales with the size of the attribute set or
the complexity of the decryption policy associated to it. Our first RABE construction, RABE-I,
which is designed by carefully integrating the revocation strategy introduced in [BGW05] with
an improved variant of [GGH+13b], features only 3 group elements in the ciphertexts. Fur-
thermore, the number of decryption key components is ` + 4q + 1 in the worst case, ` and q
being respectively the input length and number of gates in the policy circuits. This is the same
in all currently available multilinear map-based vanilla ABE constructions for general circuits
[GGH+13b], [BGG+14]. This the added revocation functionality is attained without any extra
overhead on the decryption keys.

When implemented using the current multilinear map candidates [GGH13a], [CLT13], [CLT15]
which have encoding bit length Õ(κλ2), where λ is the underlying security parameter and κ is
the maximum allowed multilinearity level, the bit size of ciphertexts and decryption keys in
RABE-I are respectively Õ((` + d)λ2) and (` + q)Õ((` + d)λ2), where d stands for the allowed
depth of the policy circuits, as we have used κ = ` + d + 1. Thus, it can be readily seen that,
even when implemented using present non-ideal candidates of multilinear map, the ciphertext
and key sizes in RABE-I remain completely independent of Nmax or r̂.

One problem in RABE-I is that the number of PP elements is linear to Nmax and, hence,
the construction can accommodate only a small number of users. In our second RABE scheme,
RABE-II, we attempt to reduce it by applying a more advanced revocation technique [BWZ14] so
that we can support potentially large number of users. For RABE-II we consider κ = n+d+m−1
such that Nmax ≤

(n
m

)
and the number of PP components becomes linear to n. As discussed in

[BWZ14], a judicious choice of n and m would require n ≈ logNmax. Therefore, the number of PP
components reduces approximately to logNmax in RABE-II. This is comparable to the best PP

22 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

size attained by previous RABE constructions with direct revocation mode secure in the standard
model [AI09b], [AI09a], [QD11]. Also, in RABE-II we need to provide only one component in PP
in place of two in case of RABE-I corresponding to each input of the decryption policy circuits.
However, observe that in this scheme also we could maintain the property that the number of
ciphertext and decryption key components meant for revocation do not grow with Nmax. To
the best of our knowledge, no previous RABE scheme with direct revocation could achieve such
parameters.

Regarding computational complexity, note that the (worst case) number of multilinear oper-
ations involved in the setup, key generation, encryption, and decryption algorithms are respec-
tively 2`+2Nmax +2, 2`+4q+2, 4, and `+3q+4 for RABE-I while `+2n+5 , 4`+4q+3, `+3,
and 2`+ 3q + 3 for RABE-II. Thus, we can see that RABE-II involves slightly more computation
in the key generation, encryption and decryption procedures compared to RABE-I.

Remark 2. Note that a recent work [PLL13] has applied the same revocation technique as ours
[BGW05], [BWZ14] in the context of identity-based encryption (IBE). We emphasize that al-
though IBE and ABE are related concepts, the richer functionality offered by the latter, especially
when the access structures are highly expressive such as general polynomial-size circuits, poses
significantly more challenges in enforcing revocation and necessitates more elegant techniques
which we have developed in this work.

6 Conclusion

In this work, employing multilinear map [GGH13a], [CLT13], [CLT15], we have adopted a new
technique [BGW05], [BWZ14] for enforcing direct user revocation in the context of ABE. Fol-
lowing that method, we have developed two selectively secure RABE schemes, both of which
support decryption policies representable as general polynomial-size circuits as well as features
very short ciphertexts, especially constant number of revocation controlling components, with-
out imposing any extra overhead in the decryption keys for the added revocation functionality.
In our first construction, the size of the public parameters is linear to the maximum number of
users supported by the system, while we have shrunk it to logarithmic in our second construc-
tion. To the best of our knowledge, our work is the first in the literature which attained these
features.

There are a number of interesting research directions in RABE, e.g., designing an adaptively
secure RABE scheme with polynomial security reduction while achieving the efficiency level of
our constructions, or to build a revocable storage ABE (RSABE) scheme [SSW12], [LCL+13]
with those properties such as our work.

References
[AI09a] Nuttapong Attrapadung and Hideki Imai. Attribute-based encryption supporting direct/indirect

revocation modes. In Cryptography and Coding, pages 278–300. Springer, 2009.
[AI09b] Nuttapong Attrapadung and Hideki Imai. Conjunctive broadcast and attribute-based encryption.

In Pairing-Based Cryptography–Pairing 2009, pages 248–265. Springer, 2009.
[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev, Vinod

Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic encryption, arithmetic
circuit abe and compact garbled circuits. In Advances in Cryptology–EUROCRYPT 2014, pages
533–556. Springer, 2014.

[BGK08] Alexandra Boldyreva, Vipul Goyal, and Virendra Kumar. Identity-based encryption with efficient
revocation. In Proceedings of the 15th ACM conference on Computer and communications security,
pages 417–426. ACM, 2008.

[BGW05] Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broadcast encryption with short
ciphertexts and private keys. In Advances in Cryptology–CRYPTO 2005, pages 258–275. Springer,
2005.

General Circuit Realizing Compact RABE from Multilinear Maps 23

[BWZ14] Dan Boneh, Brent Waters, and Mark Zhandry. Low overhead broadcast encryption from multilinear
maps. In Advances in Cryptology–CRYPTO 2014, pages 206–223. Springer, 2014.

[CLT13] Jean-Sébastien Coron, Tancrede Lepoint, and Mehdi Tibouchi. Practical multilinear maps over
the integers. In Advances in Cryptology–CRYPTO 2013, pages 476–493. Springer, 2013.

[CLT15] Jean-Sebastien Coron, Tancrede Lepoint, and Mehdi Tibouchi. New multilinear maps over the
integers, 2015.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices. In
Eurocrypt, volume 7881, pages 1–17. Springer, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Amit Sahai, and Brent Waters. Attribute-based encryp-
tion for circuits from multilinear maps. In Advances in Cryptology–CRYPTO 2013, pages 479–499.
Springer, 2013.

[LCL+13] Kwangsu Lee, Seung Geol Choi, Dong Hoon Lee, Jong Hwan Park, and Moti Yung. Self-updatable
encryption: Time constrained access control with hidden attributes and better efficiency. In Ad-
vances in Cryptology-ASIACRYPT 2013, pages 235–254. Springer, 2013.

[LLLS10] Xiaohui Liang, Rongxing Lu, Xiaodong Lin, and Xuemin Sherman Shen. Ciphertext policy at-
tribute based encryption with efficient revocation. Technical report, Technical Report, University
of Waterloo, 2010.

[NNL01] Dalit Naor, Moni Naor, and Jeff Lotspiech. Revocation and tracing schemes for stateless receivers.
In Advances in CryptologyŮCRYPTO 2001, pages 41–62. Springer, 2001.

[PLL13] Seunghwan Park, Kwangsu Lee, and Dong Hoon Lee. New constructions of revocable identity-based
encryption from multilinear maps. IACR Cryptology ePrint Archive, 2013:880, 2013.

[QD11] Jun-lei Qian and Xiao-lei Dong. Fully secure revocable attribute-based encryption. Journal of
Shanghai Jiaotong University (Science), 16:490–496, 2011.

[SSW12] Amit Sahai, Hakan Seyalioglu, and Brent Waters. Dynamic credentials and ciphertext delega-
tion for attribute-based encryption. In Advances in Cryptology–CRYPTO 2012, pages 199–217.
Springer, 2012.

[SZLH15] Yanfeng Shi, Qingji Zheng, Jiqiang Liu, and Zhen Han. Directly revocable key-policy attribute-
based encryption with verifiable ciphertext delegation. Information Sciences, 295:221–231, 2015.

[YWRL10] Shucheng Yu, Cong Wang, Kui Ren, and Wenjing Lou. Attribute based data sharing with at-
tribute revocation. In Proceedings of the 5th ACM Symposium on Information, Computer and
Communications Security, pages 261–270. ACM, 2010.

	General Circuit Realizing Compact Revocable Attribute-Based Encryption from Multilinear Maps
	Introduction
	Preliminaries
	Circuit Notation
	The Notion of RABE for General Circuits
	Multilinear Maps and Complexity Assumptions

	RABE-I
	The Construction
	Security Analysis

	RABE-II
	The Construction
	Security Analysis

	Efficiency
	Conclusion

