
Applying Cryptographic Acceleration
Techniques to Error Correction

Rémi Géraud2,4, Diana-Ştefania Maimuţ2, David Naccache1,2,
Rodrigo Portella do Canto1, Emil Simion3

1 Sorbonne Universités – Université Paris II
12 Place du Panthéon, F-75231, Paris, France

rodrigo.portella-do-canto@etudiants.u-paris2.fr
2 École normale supérieure, Département d’informatique

45, rue d’Ulm, F-75230, Paris CEDEX 05, France
given name.family name@ens.fr
3 University Politehnica of Bucharest

313 Splaiul Independenţei, Bucharest, Romania
esimion@fmi.unibuc.ro

4 Ingenico Group
28-32 Boulevard de Grenelle, 75015 Paris, France

remi.geraud@ingenico.com

Abstract. Modular reduction is the basic building block of many public-
key cryptosystems. BCH codes require repeated polynomial reductions
modulo the same constant polynomial. This is conceptually very similar
to the implementation of public-key cryptography where repeated mod-
ular reduction in Zn or Zp are required for some fixed n or p. It is hence
natural to try and transfer the modular reduction expertise developed
by cryptographers during the past decades to obtain new BCH speed-
up strategies. Error correction codes (ECCs) are deployed in digital com-
munication systems to enforce transmission accuracy. BCH codes are a
particularly popular ECC family. This paper generalizes Barrett’s mod-
ular reduction to polynomials to speed-up BCH ECCs. A BCH(15, 7, 2)
encoder was implemented in Verilog and synthesized. Results show sub-
stantial improvements when compared to traditional polynomial reduc-
tion implementations. We present two BCH code implementations (regu-
lar and pipelined) using Barrett polynomial reduction. These implemen-
tations, are respectively 4.3 and 6.7 faster than an improved BCH LFSR
design. The regular Barrett design consumes around 53% less power than
the BCH LFSR design, while the faster pipelined version consumes 2.3
times more power than the BCH LFSR design.

1 Introduction

Modular reduction (e.g. [3, 4, 8, 10]) is the basic building block of many
public-key cryptosystems. We refer the reader to [3] for a detailed com-
parison of various modular reduction strategies.

BCH codes are widely used for error correction in digital systems, mem-
ory devices and computer networks. For example, the shortened BCH
(48,36,5) was accepted by the U.S. Telecommunications Industry Associ-
ation as a standard for the cellular Time Division Multiple Access proto-
col (TDMA) [11]. Another example is BCH(511, 493) which was adopted
by International Telecommunication Union as a standard for video con-
ferencing and video phone codecs (Rec. H.26) [5]. BCH codes require
repeated polynomial reductions modulo the same constant polynomial.
This is conceptually very similar to the implementation of public-key
cryptography where repeated modular reduction in Zn or Zp are re-
quired for some fixed n or p [1].

It is hence natural to try and transfer the modular reduction expertise
developed by cryptographers during the past decades to obtain new
BCH speed-up strategies. This work focuses on the ”polynomialization”
of Barrett’s modular reduction algorithm [1]. Barrett’s method creates
the operation a mod b from bit shifts, multiplications and additions in Z.
This allows to build modular reduction at very marginal code or silicon
costs by leveraging existing hardware or software multipliers.

Reduction modulo fixed multivariate polynomials is also very useful in
other fields such as robotics and computer algebra (e.g. for computing
Gröbner bases).

Structure of the paper: Section 2 recalls Barrett’s algorithm. Section 3
presents our main theoretical results, i.e. a polynomial variant of [1]. Sec-
tion 4 recalls the basics of BCH error correcting codes (ECC). Section 4.2
describes the integration of the Barrett polynomial variant in a BCH cir-
cuit and provides benchmark results.

2 Barrett’s Reduction Algorithm

Notations. ‖x‖will denote the bit-length of x throughout this paper.

y � z will denote binary shift-to-the-right of y by z bits i.e.:

y � z =
⌊ y

2z

⌋
.

Barrett’s algorithm (Algorithm 1) approximates the result c = d mod n
by a quasi-reduced integer c+εn, where 0 ≤ ε ≤ 2. LetN = ‖n‖ , D = ‖d‖

2

and fix a maximal bit-length reduction capacity L such that N ≤ D ≤
L. The algorithm will work if D ≤ L. In most implementations, D =
L = 2N . The algorithm uses the pre-computed constant κ = b2L/nc that
depends only on n and L. The reader is referred to [1] for a proof and an
analysis of Algorithm 1.

Algorithm 1: Barrett’s Algorithm

Input: n < 2N , d < 2D, κ =
⌊

2L

n

⌋
where N ≤ D ≤ L

Output: c = d mod n

1 c1 ← d� (N − 1)

2 c2 ← c1κ

3 c3 ← c2 � (L−N + 1)

4 c4 ← d− nc3
5 while c4 ≥ n do
6 c4 ← c4 − n
7 end
8 return c4

Example 1. Reduce 8619 mod 93 = 63.

n = 93 ⇒ N = 7

κ =
⌊
232

n

⌋
=10110000001011000000101100

d = 8619 =10000110101011
c1 =10000110101011 = 10000110
c2 =101110000110111000011011100001000
c3 =1011100 00110111000011011100001000 =1011100
nc3 =10000101101100
c4 = 63

Work Factor: ‖c1‖ = D − N + 1 ' D − N and ‖κ‖ = L − N hence their
product requires w = (D − N)(L − N) elementary operations. ‖c3‖ =
(D −N) + (L−N)− (L−N + 1) = D −N − 1 ' D −N . The product
nc3 will therefore claim w′ = (D − N)N elementary operations. All in
all, work amounts to w+w′ = (D−N)(L−N)+(D−N)N = (D−N)L.

2.0.1 Dynamic Constant Scaling The constant κ can be adjusted on
the fly thanks to Lemma 1.

3

Lemma 1. If U ≤ L, then κ̄ = κ� U =

⌊
2L−U

n

⌋
.

Proof. ∃ α < 2U and β < n (integers) verifying:

κ̄ =
κ

2U
− α

2U
and κ =

2L

n
− β

n
.

Therefore,

min
αβ

(
2L−U

n
− β + αn

2Un

)
≤ κ̄ =

2L−U

n
−β + αn

2Un
≤ max

α,β

(
2L−U

n
− β + αn

2Un

)
and finally,

2L−U

n
− 1 <

2L−U

n
− 1 +

1

2Un
≤ κ̄ ≤ 2L−U

n
.

ut

Work factor: We know that κ̄ = κ� L−D. Let c5 = D−N+1. Replacing
step 4 of Algorithm 1 with

c6 ← d− n(κ̄c1 � c5),

the multiplication of c1 by κ̄ (κ adjusted to D−N bits, shifting by L−D
bits to the right), will be done in O((D −N)2).

Hence, the new work factor decreases to (D −N)2 +N(D −N) = (D −
N)D.

Example 2. Reconsidering example 1, i.e. computing 8619 mod 93 using
the above technique, we obtain:

D = dlog2 8619e = 14

κ̄ =10110000 001011000000101100
c1 =10000110 101011 =10000110
κ̄c1 =101110000100000
κ̄c1 � c5 =1011100 00100000
n(κ̄c1 � c5) =10000101101100
c6 = 63

4

3 Barrett’s Algorithm for Polynomials

3.1 Orders

Definition 1 (Monomial Order). Let P, Q and R be three monomials in ν
variables. � is a monomial order if the following conditions are fulfilled:

– P � 1

– P �Q⇒ ∀R, PR � QR

Example 3. The lexicographic order on exponent vectors defined by

ν∏
i=1

xai �
ν∏
i=1

xbi ⇔ ∃i, aj = bj for i < j and ai > bi

is a monomial order. We denote the lexicographic order by �.

3.2 Terminology

In the following, capital letters will next denote polynomials and ν ∈ N.

Let P =
α∑
i=0

pi

ν∏
j=1

x
yj,i
j ∈ Q[x] = Q[x1, x2, ..., xν].

The leading term ofP according to �, will be denoted by lt(P) = p0

ν∏
j=1

x
yj,0
j .

The leading coefficient of P according to � will be denoted by lc(P) =
p0 ∈ Q.

The quotient lm(P) =
lt(P)

lc(P)
=

ν∏
j=1

x
yj,0
j is the leading monomial of P

according to �.

The above notations generalize the notion of degree to exponent vectors:

deg(P) = deg(lm(P)) = y0 = 〈y0,0, . . . , yν,0〉.

Example 4. For � and P (x, y) = 2x21x
2
2 + 11x1 + 15, we have:

lt(P) = 2x21x
2
2, lm(P) = x21x

2
2, deg(P) = 〈2, 2〉 and lc(P) = 2.

5

Definition 2 (Reduction Step). Let P, Q ∈ Q[x]. We denote by Q −→
P
Q1

the reduction step of Q (with respect to P and according to �) defined as the
result given by the following operations:

1. Find a term t of Q such that monomial(t)=lm(P)m

2. If such a t exists, return Q1 = Q− Pm

lc(P)
. Else return Q1 = Q.

Example 5. Let Q(x1, x2) = 3x21x
2
2 and P (x1, x2) = 2x21x2 − 1.

The reduction step of Q (with respect to P) is Q −→
P
Q1 =

3x2
2

.

Lemma 2. Let P, Q ∈ Q[x] and {Qi} such that Q −→
P
Q1 −→

P
Q2 −→

P
. . .

1. ∃i ∈ N such that j ≥ i⇒ Qj = Qi

2. Qi is unique

We denote Q ∗−→
P
Qi = Q mod P and

⌊
Q

P

⌋
=
Q−Q mod P

P
∈ Q[x] and call

Qi the ”residue of Q (with respect to P and according to �)”.

Example 6. Euclidean division is a reduction in which i = 1.

3.3 Barrett’s Algorithm for Multivariate Polynomials

We will now adapt Barrett’s algorithm to Q[x].

Barrett’s algorithm and Lemma 1 can be generalised to Q[x], by shifting
polynomials instead of shifting integers.

Definition 3 (Polynomial Right Shift). Let P =
∑α

i=0 pi
∏ν
j=1 x

yj,i
j ∈

Q[x] and a = 〈a1, a2, ..., aν〉 ∈ Nν . We denote

P � a =
∑
ϕ(a)

pi

ν∏
j=1

x
yj,i−ai
j ∈ Q[x], where ϕ(a) = {i, ∀j, yi,j ≥ ai}.

Example 7.

If P (x) = 17x7 + 26x6 + 37x4 + 48x3 + 11, then P � 〈5〉 = 17x2 + 26x.

6

Theorem 1 (Barrett’s Algorithm for Polynomials). Let:

– P =

α∑
i=0

pi

ν∏
j=1

x
yj,0
j ∈ Q[x] and Q =

β∑
i=0

qi

ν∏
j=1

x
wj,i
j ∈ Q[x] s.t. lm(Q) �

lm(P)

– L ≥ max (wi,j) ∈ N, h(L) =

ν∏
j=1

xLj and K =

⌊
h(L)

P

⌋
– y0 = 〈y1,0, y2,0, ..., yν,0〉 ∈ Nν

Given the above notations, (K(Q� y0))� (〈Lν〉 − y0) =

⌊
Q

P

⌋
.

Proof. LetG = h(L) mod P and B = (K(Q� y0)) =
h(L)−G

P

⌊
Q

lm(P)

⌋
.

⇓

B =

∑
ϕ(y0)

qi

ν∏
j=1

x
L+wj,i−yj,0
j −G

∑
ϕ(y0)

qi

ν∏
j=1

x
wj,i−yj,0
j

P

Applying the definition of ”�”, we obtain

B � (〈L〉ν−y0) = deg≥0

Qϕ(y0) −G
∑
ϕ(y0)

qi

ν∏
j=1

xwj,i−L

P
, where 0 = 〈0〉ν .

Thus,

B � (〈Lν〉 − y0) =

⌊
Qϕ(y0)

P

⌋
− deg≥0

G

P

∑
ϕ(y0)

qi

ν∏
j=1

xwj,i−L =

⌊
Qϕ(y0)

P

⌋
.

We know that

P �G and L ≥ max (wi,j), therefore deg≥0
G

P

∑
ϕ(y0)

qi

ν∏
j=1

xwj,i−L = 0.

Let Q̄ be the irreducible polynomial with respect to P , obtained by re-
moving from Q the terms that exceed lm(P).⌊

Qϕ(y)

P

⌋
=
Qϕ(y) − (Qϕ(y) mod P)

P
=

(Q− Q̄)((Q− Q̄) mod P)

P
.

7

Hence,

B � (〈L〉ν − y0) =
(Q− Q̄)((Q− Q̄) mod P)

P

⇓

B � (〈L〉ν − y0) =

⌊
Q

P

⌋
− Q̄− Q̄ mod P

P
=

⌊
Q

P

⌋
.

ut

Algorithm 2: Polynomial Barrett Algorithm
Input: P,Q ∈ Q[x] s.t. P �Q

h(L) = xL,y0 = degP and K = h(L) mod P, where degQ ≤ 〈L, . . . , L〉
Output: R = Q mod P

1 B ← (K(Q� y0))� (L− y0)

2 R← Q−BP
3 return R

Remark. Let Q =
α∑
i=0

qi,j

ν∏
j=1

x
wj,i
j , K =

β∑
i=0

ki,j

ν∏
j=1

x
tj,i
j , y = 〈y1, ..., yν〉

and z = 〈z1, ..., zν〉.

Let us have a closer look at the expression B = (K(Q� y))� z.

Given the final shifting by z, the multiplication of K by Q � y can be
optimised by being only partially accomplished. Indeed, during mul-
tiplication, we only have to form monomials whose exponent vectors
b = wi + ti′ − y − z = 〈b1, ..., bν〉 are such that bj ≥ 0 for 1 ≤ j ≤ ν.

We implicitly apply the above in the following example.

Example 8. Let

� = �

P = x21x
2
2 + x21 + 2x1x

2
2 + 2x1x2 + x1 + 1

Q = x31x
3
2 − 2x31 + x22x

2
2 + 3.

8

We let L = 6 and we observe that ν = 2. We pre-compute K:

K = x41x
4
2 − x41x22 + x41 − 2x31x

4
2 − 2x31x

3
2 + 3x31x

2
2 + 4x31x2 − 4x31+

4x21x
4
2 + 8x21x

3
2 − 5x21x

2
2 − 20x21x2 + 3x21 − 8x1x

4
2 − 24x1x

3
2+

68x1x2 + 36x1 + 16x42 + 64x32 + 36x22 − 184x2 − 239.

We first shiftQ by y0 = 〈2, 2〉, which is the vector of exponents for lm(P).

Q� y0 = (x31x
3
2 − 2x31 + x22x

2
2 + 3)� 〈2, 2〉 = (x1x2 + 1)

Then, we compute K(x1x2 +1) = x51x
5
2−2x41x

5
2−x4y4 +{terms ≺ x41x42}.

This result shifted by 〈L〉ν−y0 = 〈6, 6〉−〈2, 2〉 = 〈4, 4〉 to the right gives:

A = x51x
5
2 − 2x41x

5
2 − x4y4 + {terms � x41x42} � 〈4, 4〉 = x1x2 − 2x2 − 1.

It is easy to verify that:
Q− PA =

= (x31x
3
2−2x31+x21x

2
2+3)−(x21x

2
2+x21+2x1x

2
2+2x1x2+x1+1)(x1x2−2x2−1)

⇓

Q−PA = 4x1x
3
2+6x1x

2
2−x31x2+x21x2+3x1x2+2x2−2x31+x21+x1+4 ≺ P.

Complexity: We refer the reader to Appendix A for a detailed computa-
tion of the complexity of Algorithm 2.

3.4 Dynamic Constant Scaling in Q[x]

Lemma 3. If 0 ≤ u ≤ L, then K̄ = K � 〈u〉ν =
⌊
h(L−u)

P

⌋
.

Proof. K =

⌊
h(L)

P

⌋
⇒ K =

h(L)− h(L) mod P

P
.

Let G = h(L) mod P ⇒ K =

ν∏
j=1

xj
L −G

P
.

9

Since

〈u〉ν ∈ Nν ⇒ K � 〈u〉ν = deg≥0

ν∏
j=1

xj
L−u −Gϕ(〈u〉ν)

P

⇓

K � 〈u〉ν = deg≥0

ν∏
j=1

xj
L−u

P
− deg≥0

Gϕ(〈u〉ν)

P
.

We know that P �G, thus P �Gϕ(〈u〉ν), thus deg≥0
Gϕ(〈u〉ν)

P
= 0.

Finally,

K � 〈u〉ν =

⌊∏ν
j=1 xj

L−u

P

⌋
=

⌊
h(L− u)

P

⌋
.

ut

Example 9. Let

� = �

P = x21x
2
2 + x21 + 2x1x

2
2 + 2x1x2 + x1 + 1

Q = x31x
3
2 − 2x31 + x22x

2
2 + 3.

We let u = 4 and we observe that ν = 2. We pre-compute K̄:

K̄ = x21x
2
2 − x21 − 2x1x

2
2 − 2x1x2 + 3x1 + 4x22 + 8x2 − 5.

We first shiftQ by y0 = 〈2, 2〉, which is the vector of exponents for lm(P).

Q� y0 = (x31x
3
2 − 2x31 + x22x

2
2 + 3)� 〈2, 2〉 = (x1x2 + 1)

Then, we compute K̄(x1x2 +1) = x31x
3
2−2x21x

3
2−x21x22 +{terms ≺ x21x22}.

This result shifted by 〈u〉ν−y0 = 〈4, 4〉−〈2, 2〉 = 〈2, 2〉 to the right gives:

A = x31x
3
2 − 2x21x

3
2 − x21x22 + {terms � x21x22} � 〈2, 2〉 = x1x2 − 2x2 − 1.

10

It is easy to verify that:
Q− PA =

= (x31x
3
2−2x31+x21x

2
2+3)−(x21x

2
2+x21+2x1x

2
2+2x1x2+x1+1)(x1x2−2x2−1)

⇓

Q−PA = 4x1x
3
2+6x1x

2
2−x31x2+x21x2+3x1x2+2x2−2x31+x21+x1+4 ≺ P.

4 Application to BCH Codes

4.1 General Remarks

BCH codes are cyclic codes that form a large class of multiple random
error-correcting codes. Originally discovered as binary codes of length
2m − 1, BCH codes were subsequently extended to non-binary settings.
Binary BCH codes are a generalization of Hamming codes, discovered
by Hocquenghem, Bose and Chaudhuri [2, 4] featuring a better error
correction capability. Gorestein and Zierler [6] generalised BCH codes
to pm symbols, for p prime. Two important BCH code sub-classes exist.
Typical representatives of these sub-classes are Hamming codes (binary
BCH) and Reed Solomon codes (non-binary BCH).

Terminology: We further refer to the vectors of an error correction code
as codewords. The codewords’ size is called the length of the code. The
distance between two codewords is the number of coordinates at which
they differ. The minimum distance of a code is the minimum distance
between two codewords.

Recall that a primitive element of a finite field is a generator of the mul-
tiplicative group of the field.

4.1.1 BCH Preliminaries

Definition 4. Letm ≥ 3. For a length n = 2m−1, a distance d and a primitive
element α ∈ F∗2m , we define the binary BCH code:

BCH(n, d) = {(c0, c1, ..., cn−1) ∈ Fn2 | c(x) =

n−1∑
i=0

cix
i satisfies

c(α) = c(α2) = ... = c(αd−1)}

11

Let m ≥ 3 and 0 < t < 2m−1 be two integers. There exists a binary BCH
code (called a t−error correcting BCH code) with parameters n = 2m− 1
(the block length), n − k ≤ mt (the number of parity-check digits) and
d ≥ 2t+ 1 (the minimum distance).

Definition 5. Let α be a primitive element in F2m . The generator polyno-
mial g(x) ∈ F2[x] of the t−error-correcting BCH code of length 2m−1 is the
lowest-degree polynomial in F2[x] having roots α, α2, ..., α2t.

Definition 6. Let φi(x) be the minimal polynomial of αi. Then,

g(x) = lcm{φ1(x), φ2(x), ..., φ2t(x)}.

The degree of g(x), which is the number of parity-check digits n − k, is
at most mt.

Let i ∈ N and denote i = 2rj for odd j and r ≥ 1. Then αi = (αj)2
r

is
a conjugate of αj which implies that αi and αj have the same minimal
polynomial, and therefore φi(x) = φj(x). Consequently, the generator
polynomial g(x) of the t-error correcting BCH code can be written as
follow:

g(x) = lcm{φ1(x), φ3(x), φ3(x), ..., φ2t−1(x)}.

Definition 7 (Codeword). An n−tuple c = (c0, c1, ..., cn−1) ∈ F2n is a
codeword if the polynomial c(x) =

∑
cix

i has α, α2, ..., α2t as its roots.

Definition 8 (Dual Code). Given a linear code C ⊂ Fnq of length n, the dual
code of C (denoted by C⊥) is defined to be the set of those vectors in Fnq which
are orthogonal5 to every codeword of C, i.e.:

C⊥ = {v ∈ Fnq |v · c = 0, ∀c ∈ C}.

As αi is a root of c(x) for 1 ≤ i ≤ 2t, then c(αi) =
∑
ciα

ij . This equality
can be written as a matrix product and results in the next property:

Property 1. If c = (c0, c1, ..., cn−1) is a codeword, then the parity-check
matrix H of this code satisfies c ·HT = 0, where:

5 The scalar product of the two vectors is equal to 0.

12

H =


1 α α2 . . . αn−1

1 α2 (α2)2 . . . (α2)n−1

1 α3 (α3)2 . . . (α3)n−1

...
...

...
...

1 α2t (α2t)2 . . . (α2t)n−1

 .

If c ·HT = 0, then c(αi) = 0.

Remark 1. A parity check matrix of a linear block code is a generator
matrix of the dual code. Therefore, c must be a codeword of the t−error
correcting BCH code. If each entry of H is replaced by its corresponding
m−tuple over F2 arranged in column form, we obtain a binary parity-
check matrix for the code.

Definition 9 (Systematic Encoding). In systematic encoding, information
and check bits are concatenated to form the message transmitted over the noisy
channel.

The speed-up described in this paper applies to systematic BCH coding
only.

Consider an (n, k) BCH code. Let m(x) be the information polynomial to
be coded and m′xn−k = m(x).

We can write m′(x) as m(x)g(x) + b(x).

The message m(x) is coded as c(x) = m′(x)− b(x)6.

BCH Decoding Syndrome decoding is a decoding process for linear
codes using the parity-check matrix.

Definition 10 (Syndrome). Let c be the emitted word and r the received one.
We call the quantity S(r) = r ·HT the syndrome of r .

If r · HT = 0 then no errors occurred, with overwhelming probability.
If r · HT 6= 0, at least one error occurred and r = c + e, where e is an
error vector. Note that S(r) = S(e). The syndrome circuit consists of 2t
components in F2m . To correct t errors, the syndrome has to be a 2t-tuple
of the form S = (S1, S2, · · · , S2t).

6 where b(x) is the remainder of the division of c(x) by g(x)

13

Syndrome In the polynomial setting, Si is obtained by evaluating r at
the roots of g(x).

Indeed, letting r(x) = c(x) + e(x), we have

Si = r(αj) = c(αj) + e(αj) = e(αj) =
ν−1∑
k=0

ekα
ik, for i ≤ 1 ≤ 2t.

Suppose that r has ν errors denoted eji . Then

Si =

ν∑
j=1

eji(α
i)j` =

ν∑
j=1

eji(α
j`)i.

Error Location Let X` = αj` . Then, for binary BCH codes, we have Si =∑ν
j=1X

i
`. The X`s are called error locators and the error locator polynomial

is defined as:

Λ(x) =

ν∏
`=1

(1−X`) = 1 + Λ1x+ ...+ Λνx
ν .

Note that the roots of Λ(x) point out errors’ places and the number of
errors ν is unknown.

There are several ways to compute Λ(x), e.g. Peterson’s algorithm [7] or
Berlekamp-Massey algorithm [8]. Chien’s search method [9] is applied
to determine the roots of Λ(x).

Peterson’s Algorithm Peterson’s Algorithm 3 solves a set of linear equa-
tions to find the value of the coefficients σ1, σ2, . . . σt.

Λ(x) =

ν∏
`=1

(1 + αjl) = 1 + σ1x+ σ2x
2 + · · ·+ σtx

t

At the beginning of Algorithm 3, the number of errors is undefined.
Hence the maximum number of errors to resolve the linear equations
generated by the matrix S is assumed. Let this number be i = ν = t.

14

Algorithm 3: Peterson’s Algorithm
1 Initialization ν ← t
2 Compute the determinant of S

det (S)← det


S1 S2 · · · St
S2 S3 · · · St+1

...
...

. . .
...

St St+1 · · · S2t−1


3 Find the correct value of ν

det(S) 6= 0 −→ go to step 4

det(S) = 0 −→



if ν = 0 then
The error locator polynomial is empty
stop

else
ν ←− ν − 1, and then repeat step 2

end if

4 Invert S and compute Λ(x)


σν
σν−1

...
σ1

 = S−1 ×


−Sν+1

−Sν+2

...
−S2ν



Chien’s Error Search Chien search finds the roots of Λ(x) by brute force
[4, 9]. The algorithm evaluates Λ(αi) for i = 1, 2, . . . , 2m − 1. Whenever
the result is zero, the algorithm assumes that an error occurred, thus the
position of that error is located. A way to reduce the complexity of Chien
search circuits stems from Equation 1 for Λ(αi+1).

Λ(αi) = 1 + σ1 α
i + σ2 (αi)2 + · · ·+ σt (αi)t

= 1 + σ1 α
i + σ2 α

2i + · · ·+ σt α
it

Λ(αi+1) = 1 + σ1 α
i+1 + σ2 (αi+1)2 + · · ·+ σt (αi+1)t

= 1 + α (σ1 α
i) + α2 (σ2 α

2i) + · · ·+ αt (σt α
it) (1)

4.2 Implementation and Results

To evaluate the efficiency of Barrett’s modular division in hardware, the
BCH(15, 7, 2) was chosen as a case study code. Five BCH encoder ver-
sions were designed and synthesized. Results are presented in detail in
the coming sections.

15

4.2.1 Standard Architecture The BCH-standard architecture consists
of applying the modular division using shifts and XORs. Initially, to de-
termine the degree of the input polynomials, each bit7 of the dividend
and of the divisor are checked until the first bit one is found. Then, the
two polynomials are left-aligned (i.e., the two most significant ones are
aligned) and XORed. The resulting polynomial is right shifted and again
left-aligned with the dividend and XORed. This process is repeated until
the dividend and the resulting polynomial are right-aligned. The final re-
sulting polynomial represents the remainder of the division. Algorithm
4 provides the pseudocode for the standard architecture.

Algorithm 4: Standard modular division (BCH-standard)
Input: P,Q
Output: remainder = Q mod P

1 diff degree← deg(Q)− deg(P)

2 shift counter← diff degree+ 1

3 shift divisor← P � diff degree

4 remainder← Q

5 while shift counter 6= 0 do
6 if remainder[p degree+ shift counter− 1] = 1 then
7 shift counter← shift counter− 1

shift divisor← shift divisor� 1
8 end
9 end

10 return remainder

4.2.2 LFSR and Improved LFSR Architectures The BCH-LFSR de-
sign is composed of a control unit and a Linear-Feedback Shift Register
(LFSR) submodule. The LFSR submodule receives the input data serially
and shifts it to the internal registers, controlled by the enable signal. The
LFSR’s size (the number of parallel flip-flops) is defined by the BCH pa-
rameters n and k, i.e., size(LFSR) = n−k, and the LFSR registers are called
di, enumerated from 0 to n− k− 1. The feedback value is defined by the
XOR of the last LFSR register (dnk−1) and the input data. The feedback
connections are defined by the generator polynomial g(x). In the case of
BCH(15, 7, 2), g(x) = x8+x7+x6+x4+1, therefore the input of registers

7 Considered in big endian order.

16

d0, d4, d6 and d7 are XORed with the feedback value. As shown in Fig. 1,
the multiplexer that selects the bits to compose the final codeword is
controlled by the counter. The LFSR is shifted k times with the feedback
connections enabled. After that, the LFSR state contains the result of the
modular division, therefore the bits can be serially shifted out from the
LFSR register.

d0 d1 d2 d3 d4 d5 d6 d7

10counter

codeword

serial input

feedback

counter > k

Fig. 1. Standard LFSR architecture block diagram. (Design BCH-LFSR)

To calculate the correct codeword, the LFSR must shift the input data
during k clock cycles. After that, the output is serially composed by n−k
extra shifts. This means that the LFSR implementation’s total latency is
n clock cycles. Nevertheless, it is possible to save n − k − 1 clock cycles
by outputting the LFSR in parallel from the sub-module to the control
unit after k iterations, while during the k first cycles the input data is
shifted to the output register, as we perform systematic BCH encoding.
This decreases the total latency to k + 1 clock cycles. This method was
applied to the BCH-LFSR-improved design depicted in Fig. 2.

4.2.3 Barrett Architecture (regular and pipelined) The LFSR submod-
ule can be replaced by the Barrett submodule to evaluate its perfor-
mance. Two Barrett implementations were designed: the first computes
all the Barrett steps in one clock cycle, while the second approach, a
pipelined block, works with the idea that Barrett operations can be bro-
ken down into up to k + 1 pipeline stages, to match the LFSR’s latency.
The fact that Barrett operations can be easily pipelined drastically in-
creases the final throughput, while both LFSR implementations do not
allow for pipelining.

17

d0 d1 d2 d3 d4 d5 d6 d7

7-bit
shift
register

In

feedback

15-bit codeword

7

15

Fig. 2. Improved LFSR architecture block diagram. In denotes the module’s serial input.
(Design BCH-LFSR-improved)

In the Barrett submodule, the constants y0, L, and K are pre-computed
and are defined as parameters of the block. Since the Barrett parameter P
is defined as the generator polynomial, P does not need to be defined as
an input, which saves registers. As previously stated, Barrett operations
were cut down to k iterations (in our example, k = 7). The first register
in the pipeline stores the result of Q � y0. The multiplication by K is
the most costly operation, taking 5 clock cycles to complete. Each cycle
operates on 3 bits, shifting and XORing at each one bit of K, according
to the rules of multiplication. The last operation simply computes the
intermediate result from the multiplication left-shifted by L− y0.

4.2.4 Performance The gate equivalent (GE) metric is the ratio between
the total cell area of a design and the size of the smallest NAND−2
cell of the digital library. This metric allows comparing circuit areas
while abstracting away technology node sizes. FreePDK45 (an open
source 45nm Process Design Kit [12]) was used as a digital library to
map the design into logic cells. Synthesis results were generated by Ca-
dence Encounter RTL Compiler RC13.12 (v13.10-s021 1). BCH-Barrett
presented an area comparable to the smallest design (BCH-LFSR). Al-
though BCH-Barrett does not reach the maximum clock frequency, Ta-
ble 1 shows that it actually reaches the best throughput among the non-
pipelined designs, around 2.08Gbps. The BCH-Barrett-pipelined
achieves the best throughput, but it reresents the biggest area and the
more power consuming core. This is mainly due to the parallelizable na-
ture of Barrett’s operations, allowing the design to be easily pipelined
and therefore further speed-up. The extra register barriers introduced in

18

BCH-Barrett-pipelined forces the design to present bigger area and
a higher switching activity, which increases power consumption.

Design
Gate

Instances
Gate

Equivalent
Max Frequency

(MHz)
Throughput

(Mbps)
Power
(µW)

BCH-Standard 310 447 741 690 978

BCH-LFSR 155 223 1043 972 920

BCH-LFSR-improved 160 236 1043 2080 952

BCH-Barrett 194 260 655 9150 512

BCH-Barrett-pipelined 426 591 995 13900 2208

Table 1. Synthesis results of the four BCH designs.

References

1. P. Barrett. Implementing the Rivest Shamir and Adleman Public Key Encryption
Algorithm on a Standard Digital Signal Processor. In Proceedings on Advances in
Cryptology - CRYPTO’86, pages 311–323. Springer-Verlag, 1987.

2. R. C. Bose and D. K. Ray-Chaudhuri. On a Class of Error Correcting Binary Group
Codes. Information and Control, 3(1):68–79, 1960.

3. A. Bosselaers, R. Govaerts, and Vandewalle J. Comparison of Three Modular Reduc-
tion Functions. In Advances in Cryptology - EUROCRYPT93, volume 773 of Lecture
Notes in Computer Science, pages 175–186. Springer, 1994.

4. R. Chien. Cyclic Decoding Procedures for Bose-Chaudhuri-Hocquenghem Codes.
IEEE Trans. Inf. Theor., 10(4):357–363, 2006.

5. G. Côté, B. Erol, M. Gallant, and F. Kossentini. H.263+: Video Coding at Low Bit
Rates. IEEE Transactions on Circuits and Systems for Video Technology, 8:849–866, 1998.

6. D. Gorenstein and N. Zierler. A Class of Cyclic Linear Error-Correcting Codes in pm

Symbols. J. Soc. Ind. Appl. Math., 9:207–214, 1961.
7. G.-M. Greuel and G. Pfister. A Singular Introduction to Commutative Algebra. Springer,

2nd edition, 2007.
8. A. Hocquenghem. Codes correcteurs d’erreurs. Chiffres, 2:147–158, 1959.
9. F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes. North-

holland Publishing Company, 2nd edition, 1978.
10. D. Naccache and H. M’silti. A New Modulo Computation Algorithm. Recherche

Operationnelle - Operations Research (RAIRO-OR, 24(3):307–313, 1990.
11. R. Steele. Mobile Radio Communications. IEEE Press, 1994.
12. J. E. Stine, I. D. Castellanos, M. Wood, J. Henson, F. Love, W. Rhett Davis, P. D. Fran-

zon, M. Bucher, S. Basavarajaiah, J. Oh, and R. Jenkal. FreePDK: An Open-Source
Variation-Aware Design Kit. In IEEE International Conference on Microelectronic Sys-
tems Education, MSE ’07, pages 173–174, 2007.

13. R. Tolimieri, M. An, and C. Lu. Mathematics of Multidimensional Fourier Transform
Algorithms. Springer, 1993.

19

A Polynomial Barrett Complexity

We decompose the algorithm’s analysis into steps and determine at each
step the cost and the size of the result. Size is measured in the number
of terms. In all the following we assume that polynomial multiplication
is performed using traditional cross product. Faster (e.g. ν-dimensional
FFT [13]) polynomial multiplication strategies may grandly improve the
following complexities for asymptotically increasing L and ν.

Given our focus on on-line operations we do not count the effort re-
quired to compute K (that we assume given). We also do not account
for the partial multiplication trick for the sake of clarity and conciseness.

Let ω ∈ Zν , in this appendix we denote by ||ω|| the quantity

||ω|| =
ν∏
j=1

ωj ∈ Z.

1. Q� y0.

1.1. Cost: lm(Q) is at most 〈L, ..., L〉 hence Q has at most Lν monomi-
als. Shifting discards all monomials having exponent vectors ω
for which ∃j such that ωj < yj,0. The number of such discarded
monomials is O(||y0||), hence the overall complexity of this step
is:

cost1 = O((Lν − ||y0||)ν) = O((Lν −
ν∏
j=1

yj,0)ν).

1.2. Size: The number of monomials remaining after the shift is

size1 = O(Lν − ||y0||) = O(Lν −
ν∏
j=1

yj,0).

2. K(Q� y0).

Because K is the result of the division of h(L) =
ν∏
j=1

xLj by P , the

leading term ofK has an exponent vector equal to L−y0. This means

that K’s second biggest term can be xL−y1,01

ν∏
j=2

xLj . Hence, the size of

K is
sizeK = O((L− y1,0)Lν−1).

20

2.1. Cost: The cost of computing K(Q� y0) is

cost2 = O(ν × size1 × sizeK).

2.2. Size: The size of K(Q� y0) is determined by lm(K(Q� y0)) =
lm(K)×lm(Q � y0) which has the exponent vector u = (L −
y0) + 〈L− y1,0, L, ..., L〉.

size2 = O(||u||) = O(2(L− y1,0)
ν∏
j=2

(2L− yj,0))

= O((L− y1,0)
ν∏
j=2

(2L− yj,0)).

3. B = (K(Q� y0))� (L− y0)

3.1. Cost: The number of discarded monomials is O(||L−y0||), hence
the cost of this step is

cost3 = O((2(L− y1,0)
ν∏
j=2

(2L− yj,0)−
ν∏
j=1

(L− yj,0))ν).

3.2. Size: The leading monomial of B has the exponent vector u −
L− y0 which is equal to 〈L− y1,0, L, ..., L〉. We thus have sizeB =
sizeK .

4. BP

The cost of this step is

cost4 = O(ν × sizeB × sizeP) = O(ν × sizeB × ||y0||).

5. Final subtraction Q−BP

The cost of polynomial subtraction is negligible with respect to cost4.

6. Overall complexity

The algorithm’s overall complexity is hence

max(cost1, cost2, cost3, cost4) = cost2.

21

A Polynomial Barrett: Scheme Code

p1(x) =
∑7
i=0(10 + i)xi and p2(x) = x3 + x2 + 110

(define p1 ’((7 17) (6 16) (5 15) (4 14) (3 13) (2 12) (1 11) (0
10)))

(define p2 ’((3 1) (2 1) (0 110)))

;shifting a polynomial to the right

(define shift (lambda (l q)

(if (or (null? l) (< (caar l) q)) ’() (cons (cons (- (caar l) q)
(cdar l))

(shift (cdr l) q)))))

;adding polynomials

(define add (lambda (p q)

(degre (if (>= (caar p) (caar q)) (cons p (list q)) (add q

p)))))

;multiplying a term by a polynomial, without monomials ≺ xlim

(define txp (lambda (terme p lim)

(if (or (null? p) (> lim (+ (car terme) (caar p)))) ’() (cons
(cons (+ (car terme)

(caar p)) (list (* (cadr terme) (cadar p)))) (txp terme (cdr p)

lim)))))

;multiplying a polynomial by a polynomial, without monomials ≺ xlim

(define mul (lambda (p1 p2 lim)

(if p1 (cons (txp (car p1) p2 lim) (mul (cdr p1) p2 lim))

’())))

;management of the exponents

(define sort (lambda (p n)

(if p (+ ((lambda(x) (if x (cadr x) 0)) (assoc n (car p))) (sort
(cdr p) n)) 0)))

(define order (lambda (p n)

(if(> 0 n) ’() (let ((factor (sort p n))) (if (not (zero?
factor))

22

(cons (cons n (list factor)) (order p (-n 1))) (order p (-n
1)))))))

(define degre (lambda(p) (order p ((lambda(x)(if x x -1)) (caaar

p)))))

;Euclidean division

(define divide (lambda (q p r)

(if (and p (<= (caar p) (caar q))) (let ((tampon (cons (- (caar
q)(caar p))

(list (/ (cadar q) (cadar p)))))) (divide (add (map (lambda(x)
(cons (car x)

(list (-cadr x)))))(txp tampon p -1)) q) p (cons tampon r)))
(reverse r)))

(define division (lambda (q p) (divide q p ’())))

;Barrett(k, L, last P and Y representing K, L, P and y)

(define k)

(define y)

(define L 8)

(define last)

(define barrett (lambda (q p)

(if (eq ? last p) (letrec ((g (caar q)) (h (- (+ g 1) y)))
(shift (degre (mul

(shift k (-L g 1)) (shift q y) h)) h)) (begin (set! k (division
(list (cons L ’(1))) p)) (set! y (caar (set! last p))) (barrett
q p)))))

23

