
Which Ring Based Somewhat Homomorphic
Encryption Scheme is Best?

Ana Costache and Nigel P. Smart

Dept. Computer Science,
University of Bristol,

Bristol, UK.
anamaria.costache@bristol.ac.uk,nigel@cs.bris.ac.uk

Abstract. The purpose of this paper is to compare side-by-side the NTRU and
BGV schemes in their non-scale invariant (messages in the lower bits), and their
scale invariant (message in the upper bits) forms. The scale invariant versions
are often called the YASHE and FV schemes. As an additional optimization, we
also investigate the ffect of modulus reduction on the scale-invariant schemes. We
compare the schemes using the “average case” noise analysis presented by Gentry
et al. In addition we unify notation and techniques so as to show commonalities
between the schemes. We find that the BGV scheme appears to be more efficient
for large plaintext moduli, whilst YASHE seems more efficient for small plaintext
moduli (although the benefit is not as great as one would have expected).

1 Introduction

Some of the more spectacular advances in implementation improvements for Somewhat
Homomorphic Encryption (SHE) schemes have come in the context of the ring based
schemes such as BGV [3]. The main improvements here have come through the use
of SIMD techniques (first introduced in the context of Gentry’s original scheme [7]
by Smart and Vercauteren [17], but then extended to the Ring-LWE based schemes
by Gentry et al [3]). SIMD techniques in the ring setting allow for a small overall
asymptotic overhead in using SHE schemes [8] by exploiting the Galois group to move
data between slots. The Galois group can also be used to perform cheap exponentiation
via the Frobenius endomorphism [9]. Other improvements in the ring based setting
have come from the use of modulus switching to a larger modulus, so as to perform key
switching [9], the use of scale invariant versions [6, 1], and the use of NTRU to enable
key homomorphic schemes [14].

The scale invariant schemes, originally introduced in [2], are particularly interest-
ing, they place the message space in the “upper bits” of the decryption equation, as
opposed to the lower bits. This enables a more effective noise control mechanism to be
employed which does not on the face of it require modulus switching to keep the noise
within bounds. However, the downside is that they require a more complex rounding
operation to be performed in the multiplication procedure.

However each paper which analyses the schemes uses a different methodology for
deriving parameters, and examining the noise growth. In addition not all papers uti-
lize all optimizations and improvements available. For example papers on the NTRU

scheme [5, 14], and its scale invariant version YASHE [1], rarely, if at all, make men-
tion of the use of SIMD techniques. Papers working on scale invariant systems [6, 1]
usually focus on plaintext moduli of two, and discount larger moduli. But many appli-
cations, e.g. usage in the SPDZ [4] MPC system, require the use of large moduli.

We have therefore conducted a systematic study of the main ring-based SHE schemes
with a view to producing a fair comparison over a range of possible application spaces,
from low characteristic plaintext spaces through to large characteristic ones, from low
depth circuits through to high depth ones. The schemes we have studied are BGV, whose
details can be found in [3, 8, 9], and its scale-invariant version [6] (called FV in what
follows), the basic NTRU scheme [5, 14], and its scale-invariant version YASHE [1]. A
previous study [12] only compared FV and YASHE, restricted to small plaintext spaces
(in particular characteristic two), and did not consider the various variants in relation
to key switching and modulus switching which we consider. Our results are broadly in
line with [12] (where we have a direct comparison) for YASHE, but our estimates for
FV appear slightly better.

On the face of it one expects that YASHE should be the most efficient, since it
is scale invariant (which often leads to smaller parameters) and a ciphertext consists
of only a single ring element, as opposed to two for the BGV style schemes. Yet this
initial impression hides a number of details, wherein one can find a number of devils.
It turns out that which is the most efficient scheme depends on the context (message
characteristic and depth of admissible circuits).

To compare all four schemes fairly we apply the same API to all schemes, and the
same optimizations. In particular we also investigate applying modulus switching to the
scale invariant schemes (where its use is often discounted as not being needed). The use
of modulus switching can be beneficial as it means ciphertexts become smaller as the
function evaluation proceeds, resulting in increased performance. We also examine two
forms of key switching (one based on the traditional decomposition technique and one
based on raising the modulus to a larger value). For the decomposition technique we
also examine the most efficient modulus to take in the modular decomposition, which
turns out not to the two often seen in many treatments.

To compare the schemes we use the average distributional analysis first introduced
in [9], which measures the noise in terms of the expected size in the canonical embed-
ding norm. The use of the canonical embedding norm also deviates from some other
treatments. For general rings the canonical embedding norm provides a more accurate
measure of noise growth, over norms in the polynomial embedding, when analysed over
a number of homomorphic operations. The noise growth of all of our schemes is anal-
ysed in the same way, and this is the first time (to our knowledge) that all schemes have
been analysed on an equal footing.

The first question when performing such a comparison is how to compare security
of differing schemes. On one hand one could take the standpoint of an exact security
analysis and derive parameter sizes from the security theorems. However, even this
is tricky when comparing schemes as the theorems may reduce security of different
schemes to different hard problems. So instead we side-step this issue and select pa-
rameters according to an analysis of the best known attack on each scheme; which is
luckily the same in all four cases. Thus we select parameters according to the Lindner-

Peikert analysis [13]. To also afford a fair comparison we use similar distributions for
the various parameters for each scheme; e.g. small Hamming weight for the secret key
distributions etc.

The next question is how to measure what is “better”. In the context of a given spe-
cific scheme we consider one set of parameters to be better than another, for a given
plaintext modulus, level bound and security parameter, if the number of bits to repre-
sent a ring element is minimized. After all this corresponds directly to the computational
overhead when implementing the scheme. When comparing schemes one has to be a
little more careful, as ciphertexts in the BGV family consist of two ring elements and in
the NTRU family they consist of one element, but still ciphertext size is a good crude
measure of overall performance. In addition, the operations needed for the scale invari-
ant schemes are not directly compatible with the efficient double-CRT representation
of ring elements introduced in [9], thus even if ciphertext sizes for the scale invariant
schemes are smaller than for the non-scale invariant schemes, the actual computation
times might be much larger.

As one can appreciate much of the analysis is an intricate following through of
various inequalities. The full derivations can be found in the full version of this paper.
We find that the BGV scheme appears to be more efficient for large plaintext moduli,
whilst YASHE seems more efficient for small plaintext moduli (although the benefit is
not as great as one would have expected).

2 Preliminaries

In this section we outline the basic mathematical background which forms the basis of
our four ring-based SHE schemes. Much of what follows can be found in [8, 9], we
recap on it here for convenience of the reader. We utilize rings defined by cyclotomic
polynomials, A = Z[X]/Φm(X). We let Aq denote the set of elements of this ring re-
duced modulo various (possibly composite) moduli q. The ring A is the ring of integers
of the mth cyclotomic number field K = Q(ζm). We let [a]q for an element a ∈ A de-
note the reduction of a modulo q, with the set of representatives of coefficients lying in
(−q/2, . . . , q/2], hence [a]q ∈ Aq . Assignment of variables will be denoted by a ← b,
with equality being denoted by = or ≡.

Plaintext Slots: We will always use p for the plaintext modulus, and thus plaintexts
will be elements of Ap, and the polynomial Φm(X) factors modulo p into ` irreducible
factors, Φm(X) = F1(X) · F2(X) · · ·F`(X) (mod p), all of degree d = φ(m)/`.
Just as in [3, 8, 17, 9] each factor corresponds to a “plaintext slot”. That is, we view a
polynomial a ∈ Ap as representing an `-vector (a mod Fi)

`
i=1. We assume that p does

not divide m so as to enable the slots to exist. In a number of applications p is likely to
split completely in A, i.e. p ≡ 1 (mod m). This is especially true in applications not
requiring bootstrapping, and hence only requiring evaluation of low depth arithmetic
circuits.

Canonical Embedding Norm: Following the work in [15], we use as the “size” of a
polynomial a ∈ A the l∞ norm of its canonical embedding. Recall that the canonical

embedding of a ∈ A into Cφ(m) is the φ(m)-vector of complex numbers σ(a) =
(a(ζim))i where ζm is a complex primitive m-th root of unity and the indexes i range
over all of (Z/mZ)∗. We call the norm of σ(a) the canonical embedding norm of a,
and denote it by

∥∥a∥∥can∞ =
∥∥σ(a)∥∥∞. We will make use of the following properties of∥∥ · ∥∥can∞ :

– For all a, b ∈ A we have
∥∥a · b∥∥can∞ ≤ ∥∥a∥∥can∞ · ∥∥b∥∥can∞ .

– For all a ∈ A we have
∥∥a∥∥can∞ ≤ ∥∥a∥∥1.

– There is a ring constant cm (depending only on m) such that
∥∥a∥∥∞ ≤ cm ·

∥∥a∥∥can∞
for all a ∈ A.

where
∥∥a∥∥∞ and

∥∥a∥∥
1

refer to the relevant norms on the coefficient vectors of a in the
power basis. The ring constant cm is defined by cm =

∥∥CRT−1m ∥∥∞ where CRTm is the
CRT matrix for m, i.e. the Vandermonde matrix over the complex primitive m-th roots
of unity. Asymptotically the value cm can grow super-polynomially with m, but for the
“small” values of m one would use in practice values of cm can be evaluated directly.
See [4] for a discussion of cm.

Sampling From Aq: At various points we will need to sample from Aq with different
distributions, as described below. We denote choosing the element a ∈ A according
to distribution D by a ← D. The distributions below are described as over φ(m)-
vectors, but we always consider them as distributions over the ring A, by identifying a
polynomial a ∈ A with its coefficient vector.

The uniform distribution Uq: This is just the uniform distribution over (Z/qZ)φ(m),
which we identify with (Z ∩ (−q/2, q/2])φ(m)).

The “rounded Gaussian” DGq(σ2): Let N (0, σ2) denote the normal (Gaussian) distri-
bution on real numbers with zero-mean and variance σ2, we use drawing fromN (0, σ2)
and rounding to the nearest integer as an approximation to the discrete Gaussian dis-
tribution. The distribution DGqt(σ2) draws a real φ-vector according to N (0, σ2)φ(m),
rounds it to the nearest integer vector, and outputs that integer vector reduced modulo q
(into the interval (−q/2, q/2]).

Sampling small polynomials, ZO(p) andHWT (h): These distributions produce vec-
tors in {0,±1}φ(m).

– For a real parameter ρ ∈ [0, 1],ZO(p) draws each entry in the vector from {0,±1},
with probability ρ/2 for each of −1 and +1, and probability of being zero 1− ρ.

– For an integer parameter h ≤ φ(m), the distribution HWT (h) chooses a vector
uniformly at random from {0,±1}φ(m), subject to the condition that it has exactly
h nonzero entries.

Canonical embedding norm of random polynomials: In the coming sections we will
need to bound the canonical embedding norm of polynomials that are produced by the

distributions above, as well as products of such polynomials. Following the work in [9]
we use a heuristic approach, which we now recap on.

Let a ∈ A be a polynomial that was chosen by one of the distributions above,
hence all the (nonzero) coefficients in a are independently identically distributed. For
a complex primitive m-th root of unity ζm, the evaluation a(ζm) is the inner product
between the coefficient vector of a and the fixed vector zm = (1, ζm, ζ

2
m, . . .), which

has Euclidean norm exactly
√
φ(m). Hence the random variable a(ζm) has variance

V = σ2φ(m), where σ2 is the variance of each coefficient of a. Specifically, when
a ← Uq then each coefficient has variance (q − 1)2/12 ≈ q2/12, so we get variance
VU = q2 · φ(m)/12. When a← DGq(σ2) we get variance VG ≈ σ2 · φ(m), and when
a← ZO(ρ) we get variance VZ = ρ · φ(m). When choosing a← HWT (h) we get a
variance of VH = h (but not φ(m), since a has only h nonzero coefficients).

Moreover, the random variable a(ζm) is a sum of many independent identically dis-
tributed random variables, hence by the law of large numbers it is distributed similarly
to a complex Gaussian random variable of the specified variance.1 We therefore use
6
√
V (i.e. six standard deviations) as a high-probability bound on the size of a(ζm).

Since the evaluation of a at all the roots of unity obeys the same bound, we use six
standard deviations as our bound on the canonical embedding norm of a. (We chose
six standard deviations since erfc(6) ≈ 2−55, which is good enough for us even when
using the union bound and multiplying it by φ(m) ≈ 216.)

In this paper we model all canonical embedding norms as if from a random distribu-
tion. In [9] the messages were always given a norm of

∥∥m∥∥can∞ ≤ p·φ(m)/2, i.e. a worst
case bound. We shall assume that messages, and similar quantities, behave as if selected
uniformly at random and hence estimate

∥∥m∥∥can∞ ≤ 6 ·p ·
√
φ(m)/12 = p ·

√
3 · φ(m).

This makes our bounds better, and does not materially affect the decryption ability due
to the larger effect of other terms. However, this simplification makes the formulae
somewhat easier to parse.

In many cases we need to bound the canonical embedding norm of a product of two
or more such “random polynomials”. In this case our task is to bound the magnitude
of the product of two random variables, both are distributed close to Gaussians, with
variances σ2

a, σ
2
b , respectively. For this case we use 16 · σa · σb as our bound, since

erfc(4) ≈ 2−25, so the probability that both variables exceed their standard deviation
by more than a factor of four is roughly 2−50. For a product of three variables we use
40 · σa · σb · σc, since erfc(3.4) ≈ 2−19, and 3.43 ≈ 40.

3 Ring Based SHE Schemes

We refer to our four schemes as BGV, FV, NTRU and YASHE. The various schemes
have been used/defined in various papers: for example one can find BGV in [3, 8,
9], FV in [6], NTRU in [5, 14] and YASHE in [1]. In all four schemes we shall use
a chain of moduli for our homomorphic evaluation2 by choosing L “small primes”

1 The mean of a(ζm) is zero, since the coefficients of a are chosen from a zero-mean distribu-
tion.

2 This is not strictly needed for the Scale invariant version if modulus switching is not per-
formed.

p0, p1, . . . , pL−1 and the tth modulus in our chain is defined as qt =
∏t
j=0 pj . A chain

of L primes allows us to perform L − 1 multiplications. The primes pi’s are chosen
so that for all i, Z/piZ contains a primitive m-th root of unity, i.e. pi ≡ 1 (mod m).
Hence we can use the double-CRT representation, see [9], for all Aqt .

For the BGV and NTRU schemes we additionally assume that pi ≡ 1 (mod p).
This is to enable the Scaling operation to work without having to additionally scale by
pi (mod p), which would result in slightly more noise growth. A disadvantage of this
is that the moduli pi will need to be slightly larger than would otherwise be the case.
The two scale invariant schemes (FV and YASHE) will make use of a scaling factor ∆q

defined by ∆q =
⌊
q
p

⌋
= q

p − εq , where 0 ≤ εq < 1.

3.1 Key Generation

We utilize the following methods for key generation, they sample the secret key in all
cases, from a sparse distribution, this follows the choices made in [9]. This leads to more
efficient homomorphic operations (since noise growth depends on the size of the secret
key in many situations). However, such choices might lead to security weaknesses,
which would need to be considered in any commercial deployment.

KeyGenBGV(): Sample sk ← HWT (h), a ← UqL−1
, and e ← DGqL−1

(σ2). Then set
the secret key as sk and the public key as pk← (a, b) where b← [a · sk+ p · e]qL−1

.

KeyGenFV(): Sample sk ← HWT (h), a ← UqL−1
, and e ← DGqL−1

(σ2). Then set
the secret key as sk and the public key as pk← (a, b) where b← [a · sk+ e]qL−1

.

KeyGenNTRU(): Sample f, g ← HWT (h). Then set the secret key as sk ← p · f + 1
and the public key as pk ← [p · g/sk]qL−1

. Note, if p · f + 1 is not invertible in AqL−1

we repeat the sampling again until it is.

KeyGenYASHE(): Sample f, g ← HWT (h). Then set the secret key as sk ← p · f + 1
and the public key as pk← [p · g/sk]qL−1

. Again, if p · f + 1 is not invertible in AqL−1

we repeat the sampling until it is.

3.2 Encryption and Decryption

The encryption algorithms for all four schemes are given in Fig. 1. As for key generation
we select slightly simpler distributions than the theory would imply so as to ensure noise
growth is not as bad as it would otherwise be. The output of each algorithm is a tuple c
consisting of the ciphertext data, the current level, plus a bound on the current “noise”
B∗clean. This bound is on the canonical embedding norm of a particular critical quantity
which comes up in the decryption process; a different critical quantity depending on
which scheme we are using. If the critical quantity has canonical embedding norm less
than a specific value then decryption will work, otherwise decryption will likely fail.
Thus having each ciphertext carry around an upper bound on the norm of this quantity
allows us to analyse noise growth dynamically.

EncBGVpk (m):
– v ← ZO(0.5).
– e0, e1 ← DGqL−1

(σ2).
– c0 ← [b · v + p · e0 +m]qL−1 ,
– c1 ← [a · v + p · e1]qL−1 ,
– Output c← (c0, c1, L− 1, BBGV

clean).

EncNTRUpk (m):
– e0, e1 ← DGqL−1

(σ2).
– c← [e1 · pk+ p · e0 +m]qL−1 ,
– Output c← (c, L− 1, BNTRU

clean).

EncFVpk (m):
– v ← ZO(0.5).
– e0, e1 ← DGqL−1

(σ2).
– c0 ← [b ·v+e0+∆qL−1 ·m]qL−1 ,
– c1 ← [a · v + e1]qL−1 ,
– Output c← (c0, c1, L− 1, BFV

clean).

EncYASHE
pk (m):

– e0, e1 ← DGqL−1
(σ2).

– c← [e1 ·pk+e0+∆qL−1 ·m]qL−1 ,
– Output c← (c, L− 1, BYASHE

clean).

Fig. 1: Encryption Algorithms for BGV, FV, NTRU and YASHE

To understand the critical quantity we have to first look at the decryption procedure
in each case. Then we can apply our heuristic noise analysis to obtain an upper bound
on the canonical embedding norm of the critical quantity for a fresh ciphertext, and so
obtain B∗clean; a process which is done in the full version of this paper.

DecBGVpk (c): Decryption of a ciphertext (c0, c1, t, ν) at level t is performed by setting
m′ ← [c0 − sk · c1]qt , and outputting m′ mod p. If we define the critical quantity to
be c0 − sk · c1 (mod qt), then this procedure will work when ν is an upper bound on
the canonical embedding norm of this quantity and cm · ν < qt/2. If ν satisfies this
inequality then the value of c0 − sk · c1 (mod qt) will be produced exactly with no
wrap-around, and will hence be equal to m+p · v, if c0 = sk · c1+p · v+m (mod qt).
Thus we must pick the smallest prime q0 = p0 large enough to ensure that this always
holds.

DecFVpk (c): Decryption of a ciphertext (c0, c1, t, ν) at level t is performed by setting

m′ ←
⌈ p
qt
· [c0 − sk · c1]qt

⌋
,

and outputting m′ mod p. Consider the value of [c0 − sk · c1]qt computed during de-
cryption, suppose this is equal to (over the integers before reduction mod qt) m ·∆qt +
w + r · qt. Then another way of looking at decryption is that we perform rounding on
the value

p ·∆qt ·m
qt

+
p · w
qt

+
p · r · qt
qt

=
p · (qtp − εqt) ·m

qt
+
p · w
qt

+ p · r

= m+ p · w − εqt ·m
qt

+ p · r

and then take the result modulo p. Thus the critical quantity in this case is the value
of w − εqt ·m. So that the rounding is correct we require that ν is an upper bound on

∥∥w− εqt ·m∥∥can∞ . The decryption procedure will then work when cm ·ν < ∆qt/2, since
in this case we have∥∥∥p · w − εqt ·m

qt

∥∥∥
∞
≤ cm · p

qt
·
∥∥w − εqt ·m∥∥can∞ ≤ ∆qt · p

2 · qt
<

1

2
.

Thus again we must pick the smallest prime q0 = p0 large enough, to ensure that
cm · ν < ∆qt/2.

DecNTRUpk (c): Decryption of a ciphertext (c, t, ν) at level t is performed by settingm′ ←
[c · sk]qt , and outputting m′ mod p. Much as with BGV the critical quantity is [c · sk]qt .
If ν is an upper bound on the canonical embedding norm of c · sk, and we have c =
a · pk+ p · e+m modulo qt, for some values of a and e, then over the integers we have

[c · sk]qt = m+ p · (a · g + e+ f ·m) + p2 · e · f,

which will decrypt to m. Thus for decryption to work we require that cm · ν < qt/2.

DecYASHE
pk (c): Decryption of a ciphertext (c, t, ν) at level t is performed by setting

m′ ←
⌈ p
qt
· [c · sk]qt

⌋
,

and outputtingm′ mod p. Following the same reasoning as for the FV scheme, suppose
c · sk is equal to (again over the integers before reduction mod qt) m ·∆qt +w+ r · qt.
Then for decryption to work we require ν to be an upper bound on

∥∥w − εqt ·m∥∥can∞
and cm · ν < qt/2.

3.3 Scale

These operations scale a ciphertext, reducing the corresponding level and more impor-
tantly scaling the noise. The syntax is Scale∗(c, tout) where c is at level tin and the
output ciphertext is at level tout with tout ≤ tin. The noise is scaled by a factor of
approximately qtin/qtout

, however an additive term of B∗scale is added. For each of our
variants see the full version of this paper for a justification of the proposed method and
an estimate on B∗scale.

For use in one of the SwitchKey∗ variants we also use a Scale which takes a cipher-
text with respect to modulus Q and produces a ciphertext with respect to modulus q,
where q|Q. The syntax for this is Scale∗(c, Q); the idea here is that Q is a “temporary”
modulus unrelated to the actual level t of the ciphertext, and we aim to reduce Q down
to qt. The former scale function can be defined in terms of the latter via

Scale∗(c, tout):

– Write c = (c, t, ν).
– c′ ← Scale∗((c, tout, ν), qt).
– Output c′.

ScaleBGV(c, Q):
– Write c = ((c0, c1), t, ν).
– Fix δi such that δi ≡ −ci (mod P)

and δi ≡ 0 (mod p).
– Write c′i ← (ci + δi)/P .
– ν′ ← ν/P +BBGV

scale .
– Output ((c′0, c′1), t, ν′).

ScaleNTRU(c, Q):
– Write c = (c, t, ν).
– Fix δ such that δ ≡ −c (mod P) and
δ ≡ 0 (mod p).

– Write c′ ← (c+ δ)/P .
– ν′ ← ν/P +BNTRU

scale .
– Output (c′, t, ν′).

ScaleFV(c, Q):
– Write c = ((c0, c1), t, ν).
– Fix δi such that δi ≡ −ci (mod P).
– Write c′i ← (ci + δi)/P .
– ν′ ← ν/P +BFV

scale.
– Output ((c′0, c′1), t, ν′).

ScaleYASHE(c, Q):
– Write c = (c, t, ν).
– Fix δ such that δ ≡ −c (mod P).
– Write c′ ← (c+ δ)/P .
– ν′ ← ν/P +BYASHE

Scale .
– Output (c′, t, ν′).

Fig. 2: Scale Algorithms for BGV, FV, NTRU and YASHE. In all methods Q = qt · P ,
and for the BGV and NTRU schemes we assume that P ≡ 1 (mod p).

The Scale∗ function was originally presented in [3] as a form of noise control for
the non-scale invariant schemes. However, the use of such a function within the scale
invariant schemes can also provide more efficient schemes, as alluded to in [6]. This is
due to the modulus one is working with which decreases as homomorphic operations
are applied. It is also needed for our second key switching variant. We thus present a
Scale∗ function for all our four schemes in Fig. 2.

3.4 Reduce Level

For all schemes we can define a ReduceLevel∗ operation which reduces a ciphertext
level from level t′ to level t where t′ ≥ t. For the non-scale invariant schemes when
we reduce a level we only perform a scaling (which could be an expensive operation)
if the noise is above some global bound B. This is because for small noise we can
easily reduce the level by just dropping terms off the modulus, since the modulus is
a product of primes. For the scale invariant schemes we actually need to perform a
Scale operation since we need to modify the ∆qt term. See the full version of this paper
for details. In our parameter estimation evaluation we examine the case, for FV and
YASHE, of applying modulus switching to reduce levels and not applying it. In the
case of not applying it all ciphertexts remain at level L−1, and ReduceLevel∗ becomes
a NOP.

3.5 Switch Key

The switch key operation is needed to relinearize after a multiplication, or after the
application of a Galois automorphism (see [8] for more details on the latter). For all
schemes we present two switch key operations:

– One based on decomposition modulo a general modulus T . See [11] for this method
explained in the case of the BGV scheme. Unlike prior work we do not take T = 2,
as we treat T as a parameter to be optimized to achieve the most efficient scheme.
Although to ease parameter search we restrict to T being a power of two.

– Our second method is based on the raising the modulus idea from [9], where it
was applied to the BGV scheme. Here we adopt a more complex switching opera-
tion, and a potentially larger parameter set, but we gain by reducing the size of the
switching “matrices”.

For each variant we require algorithms SwitchKeyGen and SwitchKey; the first gener-
ates the public switching “matrix”, whilst the second performs the actual switch key. In
the BGV and FV schemes we perform a general key switch of the underlying decryp-
tion equation of the form d0 − sk · d1 + sk′ · d2 −→ c0 − sk · c1. For the NTRU and
YASHE schemes the underlying key switch is of the form c · sk′ −→ c′ · sk. In Fig. 3
we present the key switching methods for the BGV algorithm. See the full version of
this paper for the methods for the other schemes, plus derivations of upper bounds on
the constants BKs,∗ ∗ (∗).

SwitchKeyGenBGV1 (sk′, sk, T):

– For i = 0 to
⌈
logT (qL−1)

⌉
− 1 do

? ai ← UqL−1 .
? ei ← DGqL−1

(σ2).
? bi ← [ai · sk+ p · ei + T i · sk′]qL−1 .

– ksd← (T, {ai, bi}
dlogT qL−1e−1

i=0).
– Output ksd.

SwitchKeyBGV1 (ksd, (d, t, ν)):
– Write d2 in base T as d2 =∑dlogT qte−1

i=0 d2,i · T i.
– c0 ← d0+

∑dlogT qte−1
i=0 d2,i·bi (mod qt).

– c1 ← d1+
∑dlogT qte−1

i=0 d2,i·ai (mod qt).
– ν′ ← ν +BBGV

Ks,1 (t).
– Output ((c0, c1), t, ν′).

SwitchKeyGenBGV2 (sk′, sk):
– a← UqL−1 .
– e← DGqL−1

(σ2).
– b← [a · sk+ p · e+ P · sk′]qL−1·P .
– ksd←← (a, b).
– Output ksd.

SwitchKeyBGV2 (ksd, (d, t, ν)):
– c0 ← [P · d0 + b · d2]qt·P .
– c1 ← [P · d1 + a · d2]qt·P .
– ν′ ← P · ν +BBGV

Ks,2 (t).
– Output ScaleBGV(((c0, c1), t, ν

′), qt ·
P).

Fig. 3: The two variants of Key Switching for BGV.

In the context of BGV the first method requires us to store logT (qL−1) “encryp-
tions” of sk′, each of which is an element in R2

qL−1
. The second method requires us to

store a single “encryption” of P · sk′, but this time as an element in R2
P ·qL−1

. The for-
mer will require more space than the latter as soon as log2 P < logT (qL−1). In terms
of noise the output noise of the first method is modified by an additive constant of

BBGV
Ks,1 (t) =

8√
3
· p ·

⌈
logT qt

⌉
· σ · φ(m) · T.

whilst the output noise of the second method is modified by the additive constant

BBGV
Ks,2 (t)

P
+B∗scale =

8 · p · qt · σ · φ(m)√
3 · P

+B∗scale.

As the level decreases this becomes closer and closer to B∗scale, as the P in the de-
nominator will wipe out the numerator term. Thus the noise will grow of the order of
O(
√
φ(m)) using the second method and as O(φ(m)) using the first method. A sim-

ilar outcomes arises when comparing the two methods with respect to the other three
schemes.

3.6 Addition and Multiplication

We can now turn to presenting the homomorphic addition and multiplication opera-
tions. For reasons of space we give the addition and multiplication methods in the full
version of this paper. In all methods the input ciphertexts ci have level ti, and recall our
parameters are such that we can evaluate circuits with multiplicative depth L− 1.

3.7 Security and Parameters

In this section we outline how we select parameters in the case where ReduceLevel∗

is not a NOP (a no-operation). An analysis, for the FV and YASHE schemes, where
ReduceLevel∗ is a NOP we defer the analysis to the full version of this paper. We let B
denote an upper bound on ν at the output of any ReduceLevel∗ operation. Following [9]
we set B = 2 ·B∗scale. We assume that operations are performed as follows. We encrypt,
perform up to ζ additions, then do a multiplication, then do ζ additions, then do a
multiplication and so on, where we assume decryption occurs after a multiplication.

Security: We assume, as a heuristic assumption, that if we set the parameters of the
ring and modulus as per the BGV scheme then the other schemes will also be secure.
We follow the analysis in [9], which itself follows on from the analysis by Lindner
and Peikert [13]3. We therefore have one of two possible lower bounds for φ(m), for
security parameter k

φ(m) ≥

log(qL−1/σ)·(k+110)

7.2 If the first variant of SwitchKey is used,

log(P ·qL−1/σ)·(k+110)
7.2 If the second variant of SwitchKey is used.

(1)

Note the logs here are natural logarithms.

Bottom Modulus: To ensure decryption correctness at level zero we require that

4 · cm ·B∗scale = 2 · cm ·B <

p0 For BGV and NTRU

⌊
p0
p

⌋
For FV and YASHE.

(2)

3 One could take into account a more elaborate analysis here, for example looking at BKW style
attacks e.g. [10]. But for simplicity we follow the same analysis as in [9].

Top Modulus: At the top level we take as input a ciphertext with noise B∗clean, perform
ζ additions to produce a ciphertext with noise B1 = ζ · B∗clean. We then perform a
multiplication to produce something with noise

B2 =

F ∗(B1, B1) +B∗Ks,1(L− 1) If the first variant of SwitchKey is used,

F ∗(B1, B1) +
B∗

Ks,2(L−1)
P +B∗scale If the second variant of SwitchKey is used.

We then scale down a level to obtain something at the next level down. Thus we obtain
something with noise bounded by B3 = B2

pL−1
+ B∗scale. We require, for our invariant,

B3 ≤ B = 2 ·B∗scale. Thus we require,

pL−1 ≥
B2

B∗scale
. (3)

Middle Moduli: A similar argument applies for the middle moduli, but now we start
off with a ciphertext with bound B = 2 ·B∗scale as opposed to B∗clean. Thus we form

B′(t) =

F ∗(ζ ·B, ζ ·B) +B∗Ks,1(t) First variant of SwitchKey,

F ∗(ζ ·B, ζ ·B) +
B∗

Ks,2(t)

P +B∗scale Second variant of SwitchKey.

after which a Scale operation is performed. Hence, the modulus pt for t 6= 0, L − 1
needs to be selected so that

pt ≥
B′(t)

B∗scale
. (4)

Note, in practice we can do a bit better in the second variant of SwitchKey by merging
the final two final scalings into one.

Putting It All Together: We are looking for parameters which satisfy equations (1),
(2), (3) and (4), and which also minimize the size of data being processed, which is

φ(m) ·

(
L−1∑
t=0

pt

)
.

To do this we iterate through all possible values of log2 qL−1 and log2 T (resp. log2 P).
We then determine φ(m), as the smallest value which satisfies equation (1). Here, we
might need to take a larger value than the right hand side of equation (1) due to appli-
cation requirements on p or the amount of packing required.

We then determine the size of pL−1 from equation (3), via

pL−1 ≈
⌈ B2

B∗scale

⌉
.

We can now iterate downwards for t = L− 2, . . . , 1 by determining the size of log2 qt,
via

log2 qt = log2 qt+1 − log2 pt+1.

If we obtain log2 qt < 0 then we abort, and pass to the next pair of (log2 qL−1, T) (resp.
(log2 qL−1, log2 P)) values. The value of pt being determined by equation (4), via

pt ≈
⌈B′(t)
B∗scale

⌉
.

Finally we check whether a prime p0 the size of log2 q0, will satisify equation (2), if so
we accept this set of values as a valid set of parameters, otherwise we pass to the next
pair of (log2 qL−1, T) (resp. (log2 qL−1, log2 P)) values.

0 2 4 6 8 10 12 14
4.5

5

5.5

6

6.5

7

log2(p)

lo
g
2
(|
c|
)

kB
yt

es

BGV, KS=1 BGV, KS=2 FV, KS=1 FV, KS=2
NTRU, KS=1 NTRU, KS=2 YASHE, KS=1 YASHE, KS=2

0 50 100 150 200 250

6

8

10

12

14

16

log2(p)

lo
g
2
(|
c|
)

kB
yt

es

Fig. 4: Size of required ciphertext for various sizes of plaintext modulus when L = 5.
The graph on the left zooms into the portion of the right graph for small values of log2 p.

4 Results

In the full version of this paper one can find a full set of parameters for each scheme,
and variant of key switching, for various values of the plaintext modulus p and the num-
ber of levels L. In this section we summarize the overall conclusion. As a measure of
efficiency we examine the size of a ciphertext in kBytes; this is a very crude measure
but it will capture both the size of any data needed to be transmitted as well as the com-
putational cost of dealing with a single ciphertext element within a calculation. In the
full version of this paper we also examine the size of the associated key switching ma-
trices, which is significantly smaller for the case of our second key switching method.
In a given application this additional cost of holding key switching data may impact on
the overall choices, but for this section we ignore this fact.

0 2 4 6 8 10 12 14
10

11

12

13

log2(p)

lo
g
2
(|
c|
)

kB
yt

es

BGV, KS=1 BGV, KS=2 FV, KS=1 FV, KS=2
NTRU, KS=1 NTRU, KS=2 YASHE, KS=1 YASHE, KS=2

0 50 100 150 200 250
10

12

14

16

18

20

log2(p)

lo
g
2
(|
c|
)

kB
yt

es

Fig. 5: Size of required ciphertext for various sizes of plaintext modulus when L = 30.
The graph on the left zooms into the portion of the right graph for small values of log2 p.

For all schemes we used a Hamming weight of h = 64 to generate the secret key
data, we used a security level of k = 80 bits of security, a standard deviation of σ = 3.2
for the rounded Gaussians, a tolerance factor of ζ = 8 and a ring constant of cm = 1.3.
These are all consistent with the prior estimates for parameters given in [9]. The use of
a small ring constant can be justified by either selecting φ(m) to be a power of two, or
selecting m to be prime, as explained in [4]. As a general conclusion we find that for
FV and YASHE the use of modulus switching to lower levels results in slightly bigger
parameters to start for large values ofL; approximately a factor of two forL = 20 or 30.
But as a homomorphic calculation progresses this benefit will drop away, leaving, for
most calculations, the variant in which modulus switching is applied the most efficient.
Thus in what follows we assume that modulus switching is applied in all schemes.

Firstly examine the graphs in Figures 4 and 5. We see that for a fixed number of
levels and very small plaintext moduli the most efficient scheme seems to be YASHE.
However, quite rapidly, as the plaintext modulus increases the BGV scheme quickly
outperforms all other schemes. In particular for the important case of the SPDZ MPC
system [4] which requires an SHE scheme supporting circuits of multiplicative depth
one, i.e. L = 2, for a large plaintext modulus p, the BGV scheme is seen to be the most
efficient.

Examining Fig. 6 we see that if we fix the prime and just increase the number of
levels then the choice of which is the better scheme is be very consistent. Thus one is
led to conclude that the main choice of which scheme to adopt depends on the plaintext
modulus, where one selects YASHE for very small plaintext moduli and BGV for larger
plaintext moduli.

Acknowledgements

This work has been supported in part by an ERC Advanced Grant ERC-2010-AdG-
267188-CRIPTO and by the European Union’s H2020 Programme under grant agree-

5 10 15 20 25 30
2

4

6

8

10

12

L

lo
g
2
(|
c|
)

kB
yt

es

BGV, KS=1 BGV, KS=2 FV, KS=1 FV, KS=2
NTRU, KS=1 NTRU, KS=2 YASHE, KS=1 YASHE, KS=2

5 10 15 20 25 30
4

6

8

10

12

14

16

L

lo
g
2
(|
c|
)

kB
yt

es

Fig. 6: Size of required ciphertext for various values of L when p = 2 and p ≈ 232.

ment number ICT-644209. The authors would like to thank Steven Galbraith for com-
ments on an earlier version of this manuscript.

References

1. J. W. Bos, K. E. Lauter, J. Loftus, and M. Naehrig. Improved security for a ring-based fully
homomorphic encryption scheme. In M. Stam, editor, Cryptography and Coding - 14th IMA
International Conference, IMACC 2013, Oxford, UK, December 17-19, 2013. Proceedings,
volume 8308 of Lecture Notes in Computer Science, pages 45–64. Springer, 2013.

2. Z. Brakerski. Fully homomorphic encryption without modulus switching from classical
gapsvp. In Safavi-Naini and Canetti [16], pages 868–886.

3. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. Fully homomorphic encryption without
bootstrapping. In Innovations in Theoretical Computer Science (ITCS’12), 2012. Available
at http://eprint.iacr.org/2011/277.

4. I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation from somewhat
homomorphic encryption. In Safavi-Naini and Canetti [16], pages 643–662.

5. Y. Doröz, Y. Hu, and B. Sunar. Homomorphic AES evaluation using the modified LTV
scheme. Des. Codes and Cryptography, XXXX:XXXX–XXXX, 2015.

6. J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryption. IACR Cryp-
tology ePrint Archive, 2012:144, 2012.

7. C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009.
crypto.stanford.edu/craig.

8. C. Gentry, S. Halevi, and N. Smart. Fully homomorphic encryption with polylog over-
head. In EUROCRYPT, volume 7237 of Lecture Notes in Computer Science, pages 465–482.
Springer, 2012. Full version at http://eprint.iacr.org/2011/566.

9. C. Gentry, S. Halevi, and N. P. Smart. Homomorphic evaluation of the AES circuit. In
Safavi-Naini and Canetti [16], pages 850–867.

10. P. Kirchner and P. Fouque. An improved BKW algorithm for LWE with applications to
cryptography and lattices. In R. Gennaro and M. Robshaw, editors, Advances in Cryptology
- CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August
16-20, 2015, Proceedings, Part I, volume 9215 of Lecture Notes in Computer Science, pages
43–62. Springer, 2015.

11. K. Lauter, M. Naehrig, and V. Vaikuntanathan. Can homomorphic encryption be practical?
In CCSW, pages 113–124. ACM, 2011.

12. T. Lepoint and M. Naehrig. A comparison of the homomorphic encryption schemes
FV and YASHE. In D. Pointcheval and D. Vergnaud, editors, Progress in Cryptology -
AFRICACRYPT 2014 - 7th International Conference on Cryptology in Africa, Marrakesh,
Morocco, May 28-30, 2014. Proceedings, volume 8469 of Lecture Notes in Computer Sci-
ence, pages 318–335. Springer, 2014.

13. R. Lindner and C. Peikert. Better key sizes (and attacks) for lwe-based encryption. In CT-
RSA, volume 6558 of Lecture Notes in Computer Science, pages 319–339. Springer, 2011.

14. A. Lòpez-Alt, E. Tromer, and V. Vaikuntanathan. On-the-fly multiparty computation on the
cloud via multikey fully homomorphic encryption. In STOC. ACM, 2012.

15. V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with errors over
rings. In EUROCRYPT, volume 6110 of Lecture Notes in Computer Science, pages 1–23,
2010.

16. R. Safavi-Naini and R. Canetti, editors. Advances in Cryptology - CRYPTO 2012 - 32nd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings,
volume 7417 of Lecture Notes in Computer Science. Springer, 2012.

17. N. P. Smart and F. Vercauteren. Fully homomorphic SIMD operations. Des. Codes Cryptog-
raphy, 71(1):57–81, 2014.

