
Rogue Decryption Failures:
Reconciling AE Robustness Notions

Guy Barwell, Daniel Page, and Martijn Stam

Department of Computer Science, University of Bristol,
Bristol, BS8 1UB, United Kingdom.

{guy.barwell, daniel.page, martijn.stam}@bristol.ac.uk

Abstract. An authenticated encryption scheme is deemed secure (AE)
if ciphertexts both look like random bitstrings and are unforgeable. AE is
a much stronger notion than the traditional IND–CCA. One shortcom-
ing of AE as commonly understood is its idealized, all-or-nothing de-
cryption: if decryption fails, it will always provide the same single error
message and nothing more. Reality often turns out differently: encode-
then-encipher schemes often output decrypted ciphertext before verifica-
tion has taken place whereas pad-then-MAC-then-encrypt schemes are
prone to distinguishable verification failures due to the subtle interac-
tion between padding and the MAC-then-encrypt concept. Three recent
papers provided what appeared independent and radically different def-
initions to model this type of decryption leakage.
We reconcile these three works by providing a reference model of secu-
rity for authenticated encryption in the face of decryption leakage from
invalid queries. Having tracked the development of AE security games,
we provide a single expressive framework allowing us to compare and
contrast the previous notions. We find that at their core, the notions are
essentially equivalent, with their key differences stemming from defini-
tional choices independent of the desire to capture real world behaviour.

Keywords: provable security, authenticated encryption, multiple er-
rors, unverified plaintext, robustness

1 Introduction

Nowadays, authenticated encryption (AE) is understood to mean that cipher-
texts both look like random bitstrings (IND$–CPA) and are unforgeable (INT–
CTXT). Moreover, the customary syntax of AE considers encryption determin-
istic and stateless, instead accepting a nonce (number-used-once) and associated
data to ensure that repeated encryption of the same message does not lead to
repeated ciphertexts. Preferably security degrades gracefully if nonces are re-
peated. AE thus defined is more flexible and considerably stronger than the
traditional notion of IND–CCA symmetric encryption.

The CAESAR competition [5] served as a catalyst to strengthen the secu-
rity models used in AE even further. One particular shortcoming is the tradi-
tional reliance on an idealised, all-or-nothing decryption: if decryption fails, it

will only ever provide a single error message. For various reasons, this is not a
realistic assumption. Especially MAC-then-encrypt schemes (or rather, decrypt-
then-verify) are prone to real-world security flaws, on the one hand due to dis-
tinguishable verification failures and on the other due to the need to output (or
at least, store) decrypted ciphertext before verification has taken place.

Three recent works improve the “robustness” of AE schemes by consider-
ing how well their security guarantees hold up under incorrect usage or when
implemented non-ideally. Boldyreva et al. [7] investigated the effect of multiple
decryption errors for both probabilistic and stateful encryption (BDPS). Later,
Andreeva et al. [2] moved to a nonce-based setting, introducing a framework
to capture the release of unverified plaintexts (RUP). Concurrently, Hoang et
al. [12] coined an alternative notion, robust authenticated encryption (RAE),
which they claim is radically different from RUP.

On the surface, these papers take very different approaches, with quite dif-
ferent goals in mind. BDPS concentrates on decryption errors, and does not
consider nonce-based encryption. RUP extends AE by syntactically adding ex-
plicit, fixed-size tags and considering separate verification and decryption algo-
rithms. It models the leakage of candidate plaintexts, with an eye on the online
or nonce-abuse settings. In contrast, RAE considers schemes with variable, user-
specified stretch as authentication mechanism, and decryption is given a much
richer syntax, extending semantics for ciphertexts not generated by the encryp-
tion algorithm. This raises the natural questions how these models relate to each
other and how well each captures real-world decryption leakage.

Our contribution. Inspired by the above works, we provide a framework taking
in the best of all worlds, where our key goal is to reconcile RUP and RAE with
BDPS, both notationally and conceptually. Our framework allows us to draw
parallels and highlight where the works agree or differ, while ensuring any goals
described can be easily interpreted and compared to the scenarios they model.

Our framework revolves around a broad reference game that models adver-
sarial access, and demonstrate that classic reductions still hold. This allows us
to define ”subtle Authenticated Encryption” (SAE) as the strongest security
goal relevant to (deterministic) decryption leakage. The term subtle highlights
that security in the real-world is very much dependent of the subtleties of how
decryption is implemented. As illustration, in the full version we describe a nat-
ural yet insecure implementation of AEZ [12], refuting its robustness. Finally, we
compare results from the three noted papers within our framework, using SAE
as a reference point. After clarifying some (misconceived) terminology, we find
that for schemes with fixed stretch the notions essentially collapse.

The fundamental difference between the models is philosophical: Is authenti-
cated encryption primarily a primitive like a blockcipher, whose security should
be measured with reference to the ideal object of the given syntax and where the
authentication level might be set to zero; or is it a means to authenticate and
encrypt where security should be measured against a—possibly unobtainable—
ideal?

2 Security Games for the Real World

2.1 Standard Syntax of Authenticated Encryption

Current understanding of authenticated encryption is the culmination of many
years of work (see the full version [4] for an overview). Modern AEAD schemes
take a number of standard inputs and produce a single output. The correspond-
ing spaces are named after the elements they represent: the key space K, the
message space M, the nonce space N, the associated data space A, and finally
the ciphertext space C. Each of these spaces is a subset of {0, 1}∗ and we make
no assertions over the sizes of these spaces.

An authenticated encryption (AE) scheme is a pair of deterministic algo-
rithms Π = (E,D) (encrypt and decrypt) satisfying

E : K× N× A×M→ C
D : K× N× A× C → M ∪ {⊥} .

We use subscripts for keys, superscripts for public information (nonce and asso-
ciated data) and put content data in parentheses.

To be correct, decryption must be a left inverse of encryption: if C = EN,Ak (M)

then DN,Ak (C) = M . Conversely, a scheme is tidy if decryption is a right inverse:

ifDN,Ak (C) = M 6=⊥ then EN,Ak (M) = C. Together then, correctness and tidiness
imply encryption and decryption are inverses. For schemes that are both correct
and tidy, Ek uniquely determines Dk, which implies that security can be regarded
as a property of Ek only [14].

The stretch measures the amount of ciphertext expansion (or redundancy).

We require that the stretch τ(M) = |EN,Ak (M)| − |M |, depends only on the
length of the message, and so τ(M) = τ(|M |) (for all k,N,A, and M). We call
such schemes τ -length-regular, extending the accepted term length–regular to
describe how the length is regulated. To minimise ciphertext expansion, most
modern schemes set τ to be constant. We restrict ourselves to length-regular
schemes: those whose stretch depends only on the length of the message, meaning
τ(M) = τ(|M |).

One might deviate from the syntax above. On the one hand, RUP uses an
equivalent formulation with explicit tag space in addition to the ciphertext space
(see Section 3.2). On the other hand, RAE uses an explicit input of the encryp-
tion indicating what size of tag is desired. In Section 3.3 we discuss the impli-
cation of user-defined tag-sized explicitly, and our rationale for omitting it from
our framework.

2.2 Syntax of Subtle Authenticated Encryption

Just as a plan seldom survives contact with the enemy, so it goes with authenti-
cated encryption: several provably secure schemes have fallen when implemented
in practice. Especially for the decryption of invalid ciphertext it is challenging to
ensure an adversary really only learns the invalidity of the ciphertext, and not

some additional information. Additional information that has been considered
in the past (and we will encounter again shortly) are multiple error symbols and
unverified plaintext. Both can be classified as leakage, leading to our new notion
of a subtle authenticated encryption scheme.

A subtle AE (SAE) scheme is a triple of deterministic algorithms Π =
(E,D,Λ), where Λ corresponds to leakage from the decryption function. We
restrict ourselves to leakage functions that are deterministic functions on their
inputs, and only provide leakage to invalid decryption queries. Thus the leakage
function looks like

Λ : K× N× A× C→ {>} ∪ L

where the leakage space L can be any non-empty set not containing >, and the
distinguished symbol > refers to a message that is valid. So, for any (N,A,C),

either DN,Ak (C) = ⊥ or ΛN,Ak (C) = >, but not both: a message is either valid
(and so decryption returns the plaintext but there is no leakage) or is invalid
(and so decrypts to ⊥ and leakage is available). The generality of L caters for any
type of leakage, including schemes with multiple errors [7], those which output
candidate plaintexts [2] or those which return arbitrary strings when presented
invalid ciphertexts [12].

Explicitly separating Λ from D emphasises that leakage is a property of
the decryption implementation, rather than of the decryption function. Conse-
quently, security (for correct and tidy schemes) becomes a property of both the
encryption function and the decryption implementation’s leakage. A scheme may
be proven secure for some leakage model Λ, but such a result is only meaningful
as long as Λ accurately reflects the actual leakage as observed in practice. Even
minor optimizations of the same decryption function can change the associated
implementation so much that the scheme goes from being provably secure under
some robust security definition to trivially insecure (we show how AEZ is affected
in the full version). From this perspective, security becomes a subtle rather than
robust affair, hence the name subtle authenticated encryption, a term inspired
by the SubtleCrypto interface of the WebCryptoApi [18].

Comparison with the traditional model. There is a canonical mapping from
any SAE scheme (E,D,Λ) to a more traditional one (E,D) simply by removing
access to the leakage oracle: correctness and tidiness of the subtle scheme clearly
imply correctness and tidiness of the traditional one. Note that many distinct
SAE schemes map to the same traditional form, implying that the canonical
mapping induces an equivalence relation on SAE schemes. One could turn a
traditional (E,D) scheme into a subtle form by inverting the above canonical

map, for which the obvious preimage is setting ΛN,A(C) = ⊥ if DN,Ak (C) = ⊥
and otherwise >, again preserving correctness and tidiness. This corresponds to
the SAE scheme whose implementation does not leak at all, so we expect our
security notion to match the traditional one in this case (and it does).

Contrast with leakage resilience. Our separation into D and Λ is possible
because decryption is deterministic, and its inputs (i.e. N,A,C) may be provided

to Λk. Within the leakage resilience community [11], leakage is generally charac-
terised as an auxiliary output from the original algorithm (often supported by an
auxiliary input to control the type of leakage); moreover one would expect both
encryption and decryption to leak. This integrated perspective reflects the real
world more closely (as leakage results from running some algorithm) and is more
expressive. For example, if the decryption routine were probabilistic, the leakage
may require access to the internal randomness, or if the scheme is stateful it may
require the correct state variables. Some of these issues could be overcome by
(for example) assuming the adversary always calls Dk directly before calling Λk,
and that Λk has access to the previous internal state (from which it can deduce
the operation of Dk if required), however ultimately which syntax works best
depends on the context.

In the context of capturing subtle implementation differences for modern
authenticated encryption (where decryption is stateless and deterministic) we
feel separating leakage and decryption is a useful abstraction. Though our work
could be recast into a form more closely aligned with the leakage resilience
literature, the notation would become more cumbersome, for instance when an
adversary can only observe the leakage.

2.3 Authentication and Encryption Security Games

In most modern AE definitions, an adversary is given access to a pair of oracles
claiming to implement encryption and decryption. They are either real, and act
as claimed, or ideal, returning the appropriate number of random bits for en-
cryptions and rejecting all decryption attempts. To win the game, the adversary
must decide which version it is interacting with. Certain queries would lead to
trivial wins, for example asking for the decryption of a message output by the
encryption oracle. These queries are forbidden (or their output suppressed).

This contrasts with the original definition of AE as IND–CPA plus INT–
CTXT, where in both constituent games an adversary only has access to a single,
real encryption oracle (and no decryption oracle); moreover, in the IND–CPA
only a single challenge ciphertext is present and for INT–CTXT only a single
ciphertext needs to be forged.

At first sight the two definitions may appear quite different, yet they are
known to be equivalent. Where does this difference stem from and should one
prefer one over the other?

We argue that both definitions can be cast as simplifications of a single
reference game. This reference game is itself a distinguishing game where an
adversary has access to two sets of oracles: one set of oracles will be used to
capture the goal of the adversary, whereas the other matches the powers of the
adversary. For instance, to capture AE an adversary has access to four oracles:
the two oracles from the modern definition (implementing either the real or ideal
scenario) and the two oracles from the traditional IND–CCA definition (namely
true encryption and decryption oracles).

Four oracles may seem overly complicated, but we posit that our approach
using a reference game has several advantages:

1. Generality: Hybrid arguments and composition results—the techniques im-
plicitly underlying the standard definition—do not always hold when enrich-
ing the security model to take into account real-world phenomena such as
key dependent messages or leakage (e.g. [10]). In these cases, one typically
undoes certain simplifications; relying on our reference game instead is more
transparent.

2. Granularity: Because adversarial goal and power are clearly separated, one
can immediately identify a natural lattice of security notions and argue about
possible equivalences depending on the context.

3. Intuition: The simplified games are less intuitive when considering real-life
scenarios. For instance, even if an adversary knows it has seen a number
of true plaintext–ciphertext pairs, for any set of fresh purported plaintext–
ciphertext pair it should be clueless as to its validity. This statement follows
directly from our reference game, yet for the simplified games one would
need a hybrid argument.

4. Tightness: In real world scenarios, obtaining challenge ciphertexts versus
known ciphertexts might carry different costs, which can be more easily
reflected in our reference game (as the queries go to different oracles). A
security analysis directly in our game is potentially more tight than one in a
simplified game (whose results subsequently need to be ported to the more
fine-grained real-world setting).

Security games. We refer to games in the form GOAL–POWER, clearly sepa-
rating the adversary’s objective from its resources. The complete lists of powers
and goals are presented in Table 1, and described below. Security of scheme Π
in game XXX against an adversary A is written as an advantage AdvXXX

Π [Π](A)
and captures the adversary’s ability to distinguish between two worlds. In both
worlds the adversary has oracle access that depends on the scheme Π (initiated
using some random and secret key k←$ K); the oracles corresponding to the
goal differ between the worlds, whereas the oracles corresponding to the power
will be identical. The notation ∆O1,O2

Oa,Ob , short-hand for the advantage in distin-
guishing between (O1,O2) and (Oa,Ob), is used to make the oracles explicit. A
scheme is XXX secure if AdvXXX

Π is sufficiently small for all reasonably resourced
adversaries.

Goals. The goal oracles Enc and Dec either implement the true scheme or an
idealised version. In each case they return E if their inputs are not elements of
the appropriate spaces. If b = 0, we are in the real world, where Enc and Dec
implement Ek and Dk respectively, and if b = 1 we are in the ideal world, where
they implement $ and ⊥.

The oracle ⊥ matches the syntax of Dk but returns ⊥ in response to any
queries. The oracle $ is a random function: for each nonce-associated data pair,
it samples an element $N,A uniformly at random from the set of all τ -length-
regular functions f : M → C. When queried, $(N,A,M) := $N,A(M). When

Oracles
Type Challenge Honest Leakage
Role Enc Dec Ek Dk Λk

Bit 1 2 3 4 5

Names

0 0 n/a 0 0 PAS 0 no leakage
1 0 IND 1 0 CPA 1 leakage (s)
0 1 CTI 0 1 CDA
1 1 AE 1 1 CCA

Table 1: A compact table of goals and powers. The challenge oracles Enc and Dec
specify the adversary’s goal: they either implement honest encryption and decryption
or their idealised versions, where Enc samples responses randomly and Dec returns ⊥
to all queries. The honest oracles Ek and Dk capture the adversary’s power. Each game
corresponds to a 5–bit bitstring b1b2b3b4b5, with for example CTI–CPA (equivalent to
INT–CTXT) being 01100, and IND–sCCA (i.e. IND-CCA with decryption leakage) as
10111.

the adversary is forbidden from repeating queries, this corresponds to uniformly
sampling |M |+ τ(|M |) random bits.

The goal is defined based on which oracles an adversary is given access to.
We code this access using 2-bit strings, where the first bit is set in the presence
of an Enc oracle, leaving the second bit for Dec. This leads to three possible
goals (it does not make sense to have no challenge oracle): indistinguishability
(IND, 10), authenticated encryption (AE, 11), and ciphertext integrity (CTI,
01).

Ideal versus attainable. Our ideal encryption oracle responds random bitstrings
for fresh calls. This corresponds to security as one would expect it to hold; it
can be considered as a computational analogue of Shannon’s notion of perfect
security where the uncertainty of a ciphertext given a message should be max-
imal. Similarly, the ideal decryption oracle is unforgiven, implying (traditional)
integrity of ciphertexts.

Consequently, for some classes of constructions the advantage cannot be
small. For instance, for online schemes it will be easy to distinguish by look-
ing at prefixed and for schemes without sufficient stretch, randomly choosing a
ciphertext can be used to forge.

One could bypass these impossibilities by adapting the ideal oracles accord-
ingly [1,13]). Hoang et al. [12] suggest to use attainable security as benchmark;
one can see the resulting security notions as (ever more complicated) extensions
of the pseudorandom permutation notion typical for blockcipher security. This
immediately reveals that to some extent, this choice is one of abstraction bound-
aries. When purely studying how to transform one primitive to another, it makes
sense to used the ideal primitive as benchmark (as that will be the best attain-
able). Yet, we prefer a security definition that is both robust and meaningful:
When non-experts use the primitive in larger designs, there should be as few
implementation and configuration pitfalls as possible plus a small adversarial
advantage should imply security as intuitively understood.

Powers. Traditionally, the adversary’s powers describe what access they are
given to honest encryption and decryption oracles, with which to learn about
the scheme. Again, we identify these with 2-bit strings, listed in Table 1. The
standard notions are a passive attack (PAS, 00) a chosen plaintext attack (CPA,
10), and a chosen ciphertext attack (CCA, 11). Access to only a decryption oracle
is known as (DEM) CCA in the KEM–DEM setting (e.g. [8, 9]), we will refer
to it as a chosen decryption attack (CDA, 01). Unless overall encryption access
is restricted as in the DEM scenario, the CDA scenario is of limited relevance
(see Section 2.5).

Leakage oracle. We add a third honest oracle implementing Λk, that models how
schemes behave when subject to imperfect decryption implementations. Again,
we use a bit to indicate whether a game provides an adversary access or not. If
not, the standard notions arise, but presence leads to a range of new notions,
which we will call their “subtle” variant. The name is chosen to emphasise that
security critically depends on implementation subtleties.

As an example, power 101 stands for “subtle Chosen Plaintext Attack”, or
sCPA in short (note the “s” prefix). The power 001 corresponds to an adversary
who cannot make decryption queries, yet it can observe leakage from them. This
seeming contradiction makes sense when recalling that Λk only gives out infor-
mation when queried with invalid ciphertexts. For instance, an adversary might
learn how long it takes for ciphertexts to be rejected, but not what plaintexts
correspond to valid ciphertexts. Given the implied validity checking capability
and following the literature, we will refer to this power as a chosen verification
attack (CVA) instead of a subtle passive attack.

2.4 Restrictions on the Adversary

With these lists in place, we consider what domain separations are required
to prevent trivial wins. That is, we ask in what cases must the adversary be
forbidden from taking the output of one oracle and using it as input to a second.
The domain separation required for inputs to Λk is the same as Dk, although we
do not place any restrictions on the output of Λk: any seemingly trivial wins that
occur from this are weaknesses of the scheme and demonstrate such a Λk cannot
be secure. In the reference game, the adversary may make any queries he wishes
that are not prohibited. In the effective game, he does not make superfluous
queries either.

Trivial wins. Any messages repeated between the two encryption oracles will
distinguish the Enc oracle. Similarly, attempting to decrypt the output of Enc
will allow the adversary to immediate determine whether Enc is random, since
he will receive the initial plaintext if not. Attempting to decrypt the output
of the honest encryption oracle Ek will also trivially identify whether Dec is
real or idealised. Since the scheme is assumed to be tidy, we have that for any
C ∈ C, Ek(Dk(C)) = C. So, any output from the honest decryption oracle

Dk cannot be passed to the challenge encryption oracle Enc, since this would
trivially distinguish the schemes.

Superfluous queries. A superfluous query is one to which the adversary need
not make. Sending the output of Ek to Dk is superfluous since by correctness the
answer is already known. Similarly, tidiness implies the opposite: output from
Dk need not be sent to Ek. As soon as Dec outputs something other than ⊥,
the adversary can distinguish it as the real case, and so might as well terminate,
meaning no outputs from Dec need ever be queried to the encryption oracles.
Finally, though not displayed in the diagram, assuming the game is deterministic
and stateless (such as in the nonce or IV–based settings) it is superfluous to
repeat queries or make any that return E, since neither yields useful information.

Nonces. If the adversary is nonce-respecting if he does not query (N,A,M ′) to
either Enc or Ek if he has already queried either of them with (N,A,M) for some
M . Note that we do not require the adversary be nonce-respecting, leaving this
choice to specific security notion: relations between games are independent of
strategies the adversary may or may not use, such as being nonce-respecting or
nonce-abusing. That said, this behaviour can be enforced by the security game
suppressing all such queries and returning E, making such queries superfluous.

2.5 Effective Games

Since there are 32 possible games and countless probabilistic adversaries, it would
be prudent to begin by removing those which are directly equivalent. We give
these in terms of the corresponding bitstring, where x,y and z signify bits that
may (but need not) be set. We write X =⇒ Y to signify that security in game
X implies security in game Y, meaning that for any adversary A against game
Y there is an adversary B against game X who uses similar resources and wins
with similar probability.

Proposition 1 lists three (classes of) implications, which allows us to reduce
the 32 games to only 4 interesting ones in Corollary 1. The proof for Proposition 1
can be found in the full version.

Proposition 1. We may assume the adversary is deterministic and makes no
superfluous or prohibited queries. Against such an adversary, several games are
trivially related:

1. Adding extra oracles never makes the adversary weaker.
2. x1y0z ⇐⇒ x1y1z: a decryption oracle does not help if a Dec challenge

oracle is present.
3. 1x0yz ⇐⇒ 1x1yz: an encryption oracle does not help if a Enc challenge

oracle is present.

However, no further (generic) reductions are possible.

Corollary 1. The effective games are just 1100x, 1000x, 1001x and 0110x
(where x signifies a bit that might or might not be set). These correspond to
AE–PAS, IND–PAS, IND–CDA, CTI–CPA and their subtle variants.

2.6 Error Simulatability

We now define ERR (for Error Simulatability) to be the goal of distinguishing
Λk from Λl, where l←$ K is drawn independently of k. As always, this can be
paired with any set of powers, leading to (for example) ERR–CCA:

AdvERR−CCA
Π := ∆Ek,Dk,ΛkEk,Dk,Λl .

Initially this may appear unnecessarily specific: why should a definition of
simulatability be given that restricts the simulator so tightly? As the following
lemma shows, if there exists any good simulator, then Λl is one. Choosing this
as our reference definition means security is completely described by (E,D,Λ),
rather than also requiring a description of the simulator. Obviously proof authors
are welcome to use any simulator they wish, but a reference definition should
be no more complex than absolutely necessary. After providing the lemma in
question, we give some initial observations. Both results are proven in the full
version

Lemma 1. If there exists a good simulator, Λl is one. That is, if there exists
some stateful simulator S such that ∆Ek,Dk,ΛkEk,Dk, S is small, then so is ERR–CCA.
The inverse also holds.

Lemma 2. We observe that AdvERR−PAS
Π = 0. Also, CTI–CPA + ERR–CCA

⇐⇒ CTI-sCPA + ERR–CPA

2.7 Subtle Authenticated Encryption (SAE)

We define Subtle Authenticated Encryption (SAE) as a more succinct name for
AE-sCCA, the strongest goal describable within this framework (i.e. 11111).
The name, inspired by WebCryptoAPI [18], highlights the importance of the
subtleties in implementations when applying such results. Thus, a secure SAE
scheme is a triple (E,D,Λ) along with appropriate spaces such that the AE-
sCCA advantage is sufficiently small. So, the adversary has access to challenge
encryption and decryption oracles, as well as honest encryption and decryption
oracles, and certain amounts of leakage from the decryption function, and can
make any query that does not leak to a trivial win. This characterisation clearly
describes the situation from the real-world perspective.

From the designers point of view, due to reductions described in Proposi-
tion 1 it suffices to demonstrate that the scheme is AE-sPAS (i.e. AE-CVA,
11001) against an adversary who does not make useless queries or those that
lead to trivial wins. Clearly there are various ways of doing this. Looking ahead
somewhat, we will provide description of SAE in terms of the RUP definitions,
as well as comparing it with RAE. The most intuitive method for proving a
scheme SAE secure is likely to be through the following decomposition.

Theorem 1. The SAE goal can be trivially decomposed:
SAE ⇐⇒ AE + ERR–CCA ⇐⇒ IND–CPA + CTI–CPA + ERR–CCA

Our notion IND–CPA CTI–CPA CTI–sCPA IND–sCCA IND–CVA

Simplified bitstring 10000 01100 01101 10011 10001

BDPS notion IND$-CPA INT–CTXT* INT–CTXT IND$–CCA IND$–CVA
Reference (in [7]) Def. 5 Def. 7 Def. 7 Def 5. Def. 5
Direct translation 10000 01110 01111 10011 10001

RUP notion IND–CPA INT–CTXT INT–RUP
Reference (in [2]) Def 1. Def. 4 Def. 8
Direct translation 10000 01100 01111

Table 2: Notions from BDPS and RUP that that directly translate into our framework.

3 Comparison of Recent AE Notions

Three recent papers introduced strengthened AE notions to capture distinguish-
able decryption failures [7], releasing unverified plaintext [2], and “robust” au-
thenticated encryption [12]. In every case the encryption oracle can be cast as

E : K× N× A×M→ C

but their authors make slightly different definitional choices depending on which
aspect of the implementation they had in mind when developing the notion.
The main differences are how decryption and its leakage are defined, when a
ciphertext is considered valid, and what security to aim for. In the remainder
of this section we will show how each of these three notions can be cast into
our framework. With the appropriate modifications, it turns out that each of
these three notions are essentially equivalent to our more general notion. As
an obvious corollary, the three existing notions turn out to be not quite that
radically different.

3.1 Distinguishable Decryption Failures (BDPS, [7])

Several provably secure IND-CCA secure schemes have succumbed to practical
attacks as a result of different decryption failures being distinguishable, both
in the public key and symmetric settings [6, 19]. Boldyreva et al. [7] initiated a
systematic study of the effects of symmetric schemes with multiple decryption
errors. They emphasised probabilistic and stateful schemes, omitting a more
modern nonce-based treatment. Below we describe the nonce-based analogues of
their syntax and security notions.

A nonce-based, multi-error AE scheme a la BDPS, is a pair (Ek,Dk),

E : K× N× A×M→ C
D : K× N× A× C → M ∪ L

satisfying the classical definition of correctness. The idea is that if decryption
fails, it may output any error symbol from L. (BDPS stipulate finite L, but this
restriction appears superfluous and we omit it.)

To cast a (nonce-based) BDPS scheme into our SAE syntax, we observe
the obvious (invertible) mapping from a scheme (Ek,Dk) by setting Ek = Ek,
Dk(C) = Dk(C) whenever Dk(C) ∈ M or otherwise ⊥, and Λk(C) = Dk(C)
whenever Dk(C) ∈ L or otherwise >.

Notions. BDPS define a number of notions, including both IND and IND$
concepts. Once adapted to a nonce-based setting, several of their notions directly
translate into our framework, as listed in Table 2. Additionally, BDPS define
error invariance [7, Def. 8], which (roughly) says that it should be hard for an
adversary with access to honest encryption and decryption oracles to achieve
any leakage other than a particular value. This notion, INV–ERR, implies an
adversary cannot learn anything from decryption leakage and can be thought of
as a special case of ERR–CCA since the simulator need just return this common
value. However, error invariance is strictly stronger than leakage simulatability.

The strongest goal defined by BDPS is IND$–CCA3 [7, Def. 19], which in-
corporates multiple errors to the classical authenticated encryption notion. It is
characterised by two oracles: an adversary has to distinguish between (Ek,Dk)
(real) and ($,⊥) (ideal), where the error ⊥ is a parameter of the notion. Thus
despite the desire to capture multiple errors, in the ideal case the adversary
is still only presented with a single error symbol. This curious artefact results
from using INV–ERR rather than ERR–CCA to characterise “acceptable” leak-
age. Unfortunately, it leads to a reference definition that does not model the
real-world problem satisfactorily, for instance it fails to capture the release of
unverified plaintext.

Implications and separations. BDPS provide several implications and sep-
arations between their notions. Although originally stated and proven for prob-
abilistic and stateful schemes, the results easily carry over to a nonce-based
setting. Using our naming convention, BDPS show that IND–CVA + CTI–
sCPA =⇒ IND–sCCA, yet IND–CVA + CTI–CPA 6=⇒ IND–sCCA. This
immediately implies a separation between CTI–sCPA and CTI–CPA. They also
prove that AE and INV–ERR jointly are equivalent to their IND$–CCA3 notion
(Thm. 20), which itself implies IND–CVA and CTI–sCPA.

Since INV-ERR implies ERR–CCA, this means IND$–CCA3 implies SAE.
Moreover, the separation between ERR–CCA and INV–ERR carries over when
comparing IND$–CCA3 and SAE. For completeness, we give the following the-
orem, which is a direct result of combination of Theorem 1 and Theorem 20 of
BDPS (after incorporating nonces) with the observation that INV–ERR is more
restrictive than ERR–CCA.

Theorem 2. The IND$–CCA3 notion of BDPS is stronger than SAE solely in
its requirement of simulatable errors. That is,

IND$–CCA3 ⇐⇒ AE + INV–ERR =⇒ AE + ERR–CCA ⇐⇒ SAE

3.2 Releasing Unverified Plaintext (RUP, [2])

Andreeva et al. [2] set out to model decryption more accurately for schemes
that calculate a candidate plaintext before confirming its validity. In practice,
such a candidate plaintext often becomes available (including to an adversary),
even if validation fails. Examples include all schemes that need to decrypt or
decipher before integrity can be checked (covering MAC–then–Encrypt, MAC–
and–Encrypt, and encode–then–encipher) as well as schemes sporting online
decryption (for instance single-pass CBC–then–MAC decryption). Andreeva et
al. provide a large number of new definitions, covering security under decryption-
leakage for both confidentiality and integrity.

Differences between frameworks. The RUP framework includes an explicit
tag T , however the tag and ciphertext terms are always used together. This allows
us to consider the ciphertext as (C, T) instead, which can be injectively mapped
into C, e.g. by C ′ := C||T if the stretch is fixed. Following their motivating
scenario, the RUP paper models decryption using a decryption oracle D and a
verification oracle V satisfying

D : K× N× A× C→ M = L

V : K× N× A× C→ {>,⊥} .

When called with a valid ciphertext, Dk returns the plaintext, and Vk returns
>. Conversely, when called with an invalid ciphertext, Dk will return some leak-
age information (nominally, the eponymous “unverified plaintext”) and Vk will
return ⊥.

By changing perspective, we can cast a RUP scheme into the SAE framework:
let Dk(C) = Dk(C) if Vk(C) = > (otherwise Dk(C) = ⊥) and Λk(C) = Dk(C)
whenever Vk(C) = ⊥ (and otherwise Λk(C) = >). Then, (E,D,Λ) is an SAE
scheme (where E = E), with leakage space L = M.

Notions. Andreeva et al. refer to the classic “encryption-only” notions of confi-
dentiality and integrity under their customary names IND–CPA and INT–CTXT
(our CTI–CPA). When decryption comes into play, a large number of new no-
tions is suggested, typically defined in terms of adversarial access to their Dk

and Vk oracles.
For integrity, dubbed INT–RUP for integrity under release of unverified plain-

text, the adversary is given full access to all three honest oracles (Ek,Dk, and
Vk), and challenged to make a forgery. INT–RUP directly translates into our
framework, where it corresponds to CTI-sCCA (itself equivalent to CTI–sCPA).
This makes Andreeva et al.’s INT–RUP equivalent to BDPS’s INT–CTXT no-
tion.

For the myriad of RUP’s confidentiality notions, an adversary is—for what-
ever reason—not provided with a verification oracle. This makes translation into
our syntax cumbersome as any direct method would implicitly provide access to
Vk functionality.

Implications and separations. Andreeva et al. provide a number of implica-
tions and separations involving their new notions. They show that PA2 and DI
are equivalent (Thms. 8,9), and imply PA1 (Thm. 1). Moreover, when combined
with IND–CPA, PA2 provides a meaningful increase in security (Thms. 2,3),
whereas PA1 does not (Thms. 4,5). Finally, they provide an alternative proof
that CTI–sCPA is strictly stronger than CTI–CPA (Thm. 10).

Comments and comparisons. The RUP model restricts any decryption leak-
age to the message space. This is unnecessarily restrictive: it does not directly
cover multiple decryption errors; moreover a scheme may conceivably leak some
internal variable (say a buffer) that is not in the message space.

The verification oracle for most of the RUP confidentiality notions is missing.
For instance, the RUP version of IND–CCA security only gives an adversary ac-
cess to the leakage, which raises the question whether RUP’s IND–CCA security
implies classical IND–CCA once the leakage is ignored. If the scheme is tidy, the
RUP decryption and encryption oracle together suffice to implement the verifi-
cation oracle. For a tuple (N,A,C), request M ← DN,A

k (C) and ”accept” if and

only if C = C ′ ← EN,Ak (M). Unfortunately, the domain separation in place for
RUP’s IND–CCA prohibits this sequence of queries. As a result, it is unclear
whether RUP’s IND–CCA implies standard IND–CCA or not, even though the
former is defined as part of a framework of stronger notions.

Authenticated Encryption definition. Andreeva et al. suggest that an au-
thenticated encryption should meet the combined goals of IND-CPA and PA for
confidentiality, and INT-RUP for integrity [2, §8]. Having to safisfy three sepa-
rate notions may appear needlessly complicated and lacks the elegance a single
notion can provide. We propose RUPAE as a natural and neater way of defining
Andreeva et al.’s final objective, where we use DI instead of the less direct PA:

AdvRUPAE
Π := ∆Ek,Dk,Vk

$,Dl , ⊥

This goal may originally have been envisaged by the authors, yet it was not
explicitly alluded to (let alone defined). Providing a single succinct security goal
is only worthwhile if it properly captures the the compound notions, which we
show in Thm. 3. The proof is intuitive, based around liberal use of the triangle
inequality, see the full version for details.

Theorem 3. The single term RUPAE notion is equivalent to the triple of goals
originally proposed. That is,

RUPAE ⇐⇒ CTI–sCPA + DI + IND–CPA ⇐⇒ INT–RUP + PA +
IND–CPA

To relate this to our other notions, we provide the following observation(proven
in the full version):

Lemma 3. CTI–sCPA + ERR–CPA ⇐⇒ CTI–sCPA + DI

Finally then, we have the reassuring result that security within the RUP
framework coincides with our more general definition. To prove it, one simply
chains Theorem 1, Lemmas 2 and 3, then Theorem 3 (in that order).

Corollary 2. RUPAE security is equivalent to SAE security.

3.3 Robust Authenticated Encryption (RAE, [12])

Robust authenticated encryption, as proposed by Hoang et al. [12, §3], has ro-
bustness against inadvertent leakage of unverified plaintext as one of it goals. A
notable difference between traditional notions of AE and RAE is that the latter
explicitly targets schemes where the intended level of integrity is specified by the
user for each message. To this end, both encryption and decryption algorithms
are provided with an additional input, called the stretch parameter τ , leading
to the syntax:

E : K× N× A× N×M→ C
D : K× N× A× N× C → M .

Thus encryption calls are of the form C = Ek(N,A, τ,M), taking in a nonce
N , some associated data A, the stretch parameter τ and a message M , and
output some ciphertext C. There is a requirement that τ is indeed the stretch,
namely that |C| = |M | + τ . Decryption calls take a similar format, and are
allowed to “leak” a string not of the correct length when queried with invalid
inputs. This length restriction on the leakage implies that valid ciphertexts can
easily be determined from their length: if M = Dk(N,A, τ, C) and |M | = |C|−τ ,
then it follows that Ek(N,A, τ,M) = C.

The security game. The RAE security game aims to describe the best possible
security for an object with the given syntax. Comparison to ideal objects is not
new: it is the standard notion for blockciphers (namely a strong pseudorandom
permutation) and has appeared previously as an alternative for deterministic
authenticated encryption (namely strong pseudorandom injections).

For given stretch τ , the ideal object is a random element of Inj(τ), the set of
all injective functions whose outputs are always τ bits longer than their input.
The inverse of an element π ∈ Inj(τ) is not well defined (for τ > 0) for strings
outside of the range π. Since decryption may leak on these incorrect ciphertexts,
returning ⊥ in that case is no longer an option. Hoang et al. solve this problem
by introducing a simulator Sπ which has very restricted “access” to the ideal
encryption π, as explained below.

Security is then defined relative to a simulator S and in terms of distinguish-
ing between two worlds, with

AdvRAE
Π,S := P

[
k←$ K : AEk,Dk → 1

]
− P

[
πN,A,τ ←$ Inj(τ) : Aπ,Sπ → 1

]
.

Here the injections πN,A,τ are tweaked by the nonce, associated data, and stretch
τ . Decryption queries in the ideal world are answered by Sπ which exhibits
the following behaviour. If a decryption query is valid, then it is of the form

(N,A, τ, C) where C ∈ Image(πN,A,τ) and the simulator Sπ returns the preimage
M . Otherwise, the ciphertext is invalid, or C /∈ Image(πN,A,τ). In this case, the
oracle calls a stateful simulator S, which must simulate the decryption oracle
and output a bitstring of any length other than |C| − τ , without access to the
injections π·,·,· (and the Sπ oracle will simply forward S’s output). A code-based
description of this can be found in the original paper, where it is referred to as
world RAEΠ,S [12, Fig. 2].

Fixing the stretch. The variable, user-defined stretch sets RAE apart from
the notions discussed in this paper so far. Although Hoang et al. insist that all
values of stretch should be allowed for a scheme to be RAE, including τ = 0,
they hasten to add that this does make forging trivial, making it impossible to
get a good (generic) upper bound on the CTI-CPA advantage. However, there
is no intrinsic reason not to let a scheme restrict which values of τ it supports.
Certainly their security definition still makes perfect sense if the stretch is no
longer user defined and depends only on the length of the input message.

To ease comparison with previous security notions, we will henceforth restrict
attention to fixed stretch schemes. This makes the mapping that takes an RAE
scheme to an SAE scheme rather intuitive, and analogous to that used in Sec-
tion 3.2. Explicitly, let (E,D) be an RAE scheme, and (inspired by RUP) let Vk

be the associated validity function, where VN,A,τ
k (C) = > ⇐⇒ |DN,A,τ

k (C)| −
|C| = τ . Then (E,D,Λ) is an SAE scheme, where EN,Ak (M) := EN,A,τk (M) and

DN,Ak (C) :=

{
DN,A
k (C)

⊥
, ΛN,Ak (C) :=

{
> if VN,A,τ

k (C) = >
DN,A
k (C) if VN,A,τ

k (C) 6= >

Clearly this security game is similar to those presented above.

Comments and comparisons. Following Rogaway’s definitional papers [15–
17], most recent symmetric results have been given in terms of indistinguisha-
bility from the ideal world ($,⊥): an ideal encryption oracle that outputs ran-
dom bits and an ideal decryption oracle that never accepts. Hoang et al. in-
stead opt for an ideal world that corresponds to the “best achievable”, a con-
trast they emphasize: “Before, AE–quality was always measured with respect to
an aspirational goal; now we’re suggesting to employ an achievable one.” [12,
§1:Discussion].

One feature, possibly by design, of RAE is that it accurately describes the
security attainable from a PRP through the encode-then-encipher paradigm.
Leakage is envisaged as being an invalid final buffer: one that has been deciphered
but did not decode. This leads to the slightly artificial restriction that leakage
cannot be a string of valid length.

Fixed–stretch RAE as an SAE goal. Having applied the transform (which
has no bearing on security), it is not surprising to find RAE and SAE security

essentially coincides, with the only complication a generic attacks term, reflect-
ing the difference between ideal and best possible security. After providing the
RAE[τ] analogue of Lemma 1, we provide an explicit relationship between the
games. (Neither proof is complicated, and both can be found in the full version.)

Lemma 4. For any simulator S, Adv
RAE[τ]
Π,Λ (A) ≤ 2 · AdvRAE[τ]

Π,S (A), where Λ is
to the simulator that first samples l←$ K, then for all queries evaluates Λl.

Theorem 4. RAE[τ] and SAE security are equivalent. Explicitly, for an adver-
sary A making at most q queries, and using a repeated nonces r times,∣∣∣AdvRAE[τ]

Π,Λ (A)− AdvSAE
Π (A)

∣∣∣ ≤ q
2τ−1 + r2+r

2τ+m+1 .

4 Conclusions

By defining SAE we provided a framework useful to compare prior notions all
addressing the same problems, but from slightly differing perspectives. BDPS
provides the most generalised syntax, although a (seemingly unnecessary) con-
dition that the error space be finite limits the applicability of their results. RUP
presents the material in a very practical way, with definitions and models that
clearly describe how decrypt-then-verify schemes behave, but in doing so yield a
scheme that does not readily generalise to handling alternative leakage sources.
RAE on the other hand defines a goal that, at first glance, appears to be the
strongest of them all, but upon further inspection is rather more nuanced. Over-
all, the three recent works have more in common than the original authors (esp.
of RUP and RAE) might have indicated.

Acknowledgements. We thank Dan Martin and Elisabeth Oswald for fruitful
discussions regarding leakage-resilience and the anonymous referees of the IMA
International Conference on Cryptography and Coding 2015 for their construc-
tive feedback.

This work was conducted whilst Guy Barwell was a PhD student at the
University of Bristol, supported by an EPSRC grant.

References

1. Abed, F., Forler, C., List, E., Lucks, S., Wenzel, J.: Don’t Panic! The Cryptogra-
phers’ Guide to Robust Authenticated (On-line) Encryption. Comments to CAE-
SAR mailing list (2015)

2. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: How
to securely release unverified plaintext in authenticated encryption. In: Sarkar, P.,
Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 105–125. Springer,
Heidelberg (Dec 2014)

3. Atluri, V. (ed.): ACM CCS 02. ACM Press (Nov 2002)
4. Barwell, G., Page, D., Stam, M.: Rogue decryption failures: Reconciling ae robust-

ness notions

5. Bernstein, D.J.: CAESAR competition call (2013),
http://competitions.cr.yp.to/caesar-call-3.html

6. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO’98. LNCS, vol.
1462, pp. 1–12. Springer, Heidelberg (Aug 1998)

7. Boldyreva, A., Degabriele, J.P., Paterson, K.G., Stam, M.: On symmetric encryp-
tion with distinguishable decryption failures. In: Moriai, S. (ed.) FSE 2013. LNCS,
vol. 8424, pp. 367–390. Springer, Heidelberg (Mar 2014)

8. Davies, G.T., Stam, M.: KDM security in the hybrid framework. In: Benaloh, J.
(ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 461–480. Springer, Heidelberg (Feb 2014)

9. Dent, A.W.: A designer’s guide to KEMs. In: Paterson, K.G. (ed.) 9th IMA Inter-
national Conference on Cryptography and Coding. LNCS, vol. 2898, pp. 133–151.
Springer, Heidelberg (Dec 2003)

10. Dodis, Y., Pietrzak, K.: Leakage-resilient pseudorandom functions and side-channel
attacks on Feistel networks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 21–40. Springer, Heidelberg (Aug 2010)

11. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: 49th FOCS. pp.
293–302. IEEE Computer Society Press (Oct 2008)

12. Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ and
the problem that it solves. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015,
Part I. LNCS, vol. 9056, pp. 15–44. Springer, Heidelberg (Apr 2015)

13. Hoang, V.T., Reyhanitabar, R., Rogaway, P., Vizár, D.: Online authenticated-
encryption and its nonce-reuse misuse-resistance. To appear in proceedings of
CRYPTO 2015 (2015), http://eprint.iacr.org/2015/189

14. Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering generic composition.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp.
257–274. Springer, Heidelberg (May 2014)

15. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri [3], pp.
98–107

16. Rogaway, P.: Nonce-based symmetric encryption. In: Roy, B.K., Meier, W. (eds.)
FSE 2004. LNCS, vol. 3017, pp. 348–359. Springer, Heidelberg (Feb 2004)

17. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (May / Jun 2006)

18. Sleevi, R., Watson, M.: Web cryptography api. W3C Candidate Recommendation
(2014), http://www.w3.org/TR/WebCryptoAPI/

19. Vaudenay, S.: Security flaws induced by CBC padding - applications to SSL,
IPSEC, WTLS ... In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 534–546. Springer, Heidelberg (Apr / May 2002)

