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Abstract

A sequence of recent works have constructed constant-size quasi-adaptive (QA) NIZK argu-

ments of membership in linear subspaces of Ĝm, where Ĝ is a group equipped with a bilinear map
e : Ĝ×Ȟ→ T. Although applicable to any bilinear group, these techniques are less useful in the
asymmetric case. For example, Jutla and Roy (Crypto 2014) show how to do QA aggregation of
Groth-Sahai proofs, but the types of equations which can be aggregated are more restricted in
the asymmetric setting. Furthermore, there are natural statements which cannot be expressed
as membership in linear subspaces, for example the satisfiability of quadratic equations.

In this paper we develop specific techniques for asymmetric groups. We introduce a new
computational assumption, under which we can recover all the aggregation results of Groth-
Sahai proofs known in the symmetric setting. We adapt the arguments of membership in linear
spaces of Ĝm to linear subspaces of Ĝm × Ȟn. In particular, we give a constant-size argument
that two sets of Groth-Sahai commitments, defined over different groups Ĝ, Ȟ, open to the same
scalars in Zq, a useful tool to prove satisfiability of quadratic equations in Zq. We then use one

of the arguments for subspaces in Ĝm × Ȟn and develop new techniques to give constant-size
QA-NIZK proofs that a commitment opens to a bit-string. To the best of our knowledge, these
are the first constant-size proofs for quadratic equations in Zq under standard and falsifiable
assumptions. As a result, we obtain improved threshold Groth-Sahai proofs for pairing product
equations, ring signatures, proofs of membership in a list, and various types of signature schemes.
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1 Introduction

Ideally, a NIZK proof system should be both expressive and efficient, meaning that it should allow
to prove statements which are general enough to be useful in practice using a small amount of
resources. Furthermore, it should be constructed under mild security assumptions. As it is usually
the case for most cryptographic primitives, there is a trade off between these three design goals.
For instance, there exist constant-size proofs for any language in NP (e.g. [15]) but based on very
strong and controversial assumptions, namely knowledge-of-exponent type of assumptions (which
are non-falsifiable, according to Naor’s classification [31]) or the random oracle model.

The Groth-Sahai proof system (GS proofs) [19] is an outstanding example of how these three goals
(expressivity, efficiency, and mild assumptions) can be combined successfully. It provides a proof
system for satisfiability of quadratic equations over bilinear groups. This language suffices to cap-
ture almost all of the statements which appear in practice when designing public-key cryptographic
schemes over bilinear groups. Although GS proofs are quite efficient, proving satisfiability of m
equations in n variables requires sending some commitments of size Θ(n) and some proofs of size
Θ(m) and they easily get expensive unless the statement is very simple. For this reason, several
recent works have focused on further improving proof efficiency (e.g. [10, 11, 32])

Among those, a recent line of work [22, 23, 25, 27] has succeeded in constructing constant-size
arguments for very specific statements, namely, for membership in subspaces of Ĝm, where Ĝ is
some group equipped with a bilinear map where the discrete logarithm is hard. The soundness of
the schemes is based on standard, falsifiable assumptions and the proof size is independent of both
m and the witness size. These improvements are in a quasi-adaptive model (QA-NIZK, [22]). This
means that the common reference string of these proof systems is specialized to the linear space
where one wants to prove membership.

Interestingly, Jutla and Roy [23] also showed that their techniques to construct constant-size NIZK
in linear spaces can be used to aggregate the GS proofs of m equations in n variables, that is, the
total proof size can be reduced to Θ(n). Aggregation is also quasi-adaptive, which means that the
common reference string depends on the set of equations one wants to aggregate. Further, it is
only possible if the equations meet some restrictions. The first one is that only linear equations
can be aggregated. The second one is that, in asymmetric bilinear groups, the equations must be
one-sided linear, i.e. linear equations which have variables in only one of the Zq modules Ĝ, Ȟ, or
Zq.1

Thus, it is worth to investigate if we can develop new techniques to aggregate other types of
equations, for example, quadratic equations in Zq and also recover all the aggregation results
of [23] (in particular, for two-sided linear equations) in asymmetric bilinear groups. The latter
(Type III bilinear groups, according to the classification of [14]) are the most attractive from the
perspective of a performance and security trade off, specially since the recent attacks on discrete
logarithms in finite fields by Joux [21] and subsequent improvements. Considerable research effort
(e.g. [2, 13]) has been put into translating pairing-based cryptosystems from a setting with more
structure in which design is simpler (e.g. composite-order or symmetric bilinear groups) to a more
efficient setting (e.g. prime order or asymmetric bilinear groups). In this line, we aim not only at
obtaining new results in the asymmetric setting but also to translate known results and develop

1Jutla and Roy show how to aggregate two-sided linear equations in symmetric bilinear groups. The asymmetric
case is not discussed, yet for one-sided linear equations it can be easily derived from their results. This is not the
case for two-sided ones, see Sect. 4.
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new tools specifically designed for it which might be of independent interest.

1.1 Our Results

In Sect. 3, we give constructions of constant-size QA-NIZK arguments of membership in linear
spaces of Ĝm× Ȟn. Denote the elements of Ĝ (respectively of Ȟ) with a hat (resp. with an inverted
hat), as x̂ ∈ Ĝ (respectively, as y̌ ∈ Ȟ). Given M̂ ∈ Ĝm×t and Ň ∈ Ȟn×t, we construct QA-NIZK
arguments of membership in the language

LM̂,Ň := {(x̂, y̌) ∈ Ĝm × Ȟn : ∃w ∈ Ztq, x̂ = M̂w, y̌ := Ňw},

which is the subspace of Ĝm × Ȟn spanned by

(
M̂

Ň

)
. This construction is based on the recent

constructions of [25]. When m = n, we construct QA-NIZK arguments of membership in

LM̂,Ň,+ := {(x̂, y̌) ∈ Ĝm × Ȟm : ∃w ∈ Ztq, x + y = (M + N)w},

which is the linear subspace of Ĝm × Ȟm of vectors (x̂, y̌) such that the sum of their discrete
logarithms is in the image of M + N (the sum of discrete logarithms of M̂ and Ň).

From the argument for LM̂,Ň, we easily derive another constant-size QA-NIZK argument in the
space

Lcom,Û,V̌,ν :=
{

(ĉ, ď) ∈ Ĝm × Ȟn : ∃(w, r, s), ĉ = Û

(
w

r

)
, ď = V̌

(
w

s

)}
,

where Û ∈ Ĝm×m̃, V̌ ∈ Ȟn×ñ and w ∈ Zνq . Membership in this space captures the fact that

two commitments (or sets of commitments) in Ĝ, Ȟ open to the same vector w ∈ Zνq . This is
significant for the efficiency of quadratic GS proofs in asymmetric groups since, because of the
way the proofs are constructed, one can only prove satisfiability of equations of degree one in
each variable. Therefore, to prove a quadratic statement one needs to add auxiliary variables with
commitments in the other group. For instance, to prove that ĉ opens to b ∈ {0, 1}, one proves
that some commitment ď opens to b such that {b(b − 1) = 0, b − b = 0}. Our result allows us to
aggregate the n proofs of the second statement.

To construct these arguments we introduce a new assumption, the Split Kernel Matrix Diffie-
Hellman Assumption (SKerMDH). This assumption is derived from the recently introduced Kernel
Matrix Diffie-Hellman Assumption (KerMDH, [30]), which says that it is hard to find a vector in
the co-kernel of Â ∈ Ĝ`×k when A is such that it is hard to decide membership in Im(Â) (i.e.
when A is an instance of a Matrix DH Assumption [11]). Our SKerMDH Assumption says that one
cannot find a solution to the KerMDH problem which is “split” between the groups Ĝ and Ȟ. We
think this assumption can be useful in other protocols in asymmetric bilinear groups. A particular
case of Kernel MDH Assumption is the Simultaneous Double Pairing Assumption (SDP, [3]), which
is a well established assumption in symmetric bilinear maps, and its “split” variant is the SSDP
Assumption (see Sect. 2.1).

In Sect. 4 we use the SKerMDH Assumption to lift the known aggregation results in symmetric
groups to asymmetric ones. More specifically, we show how to extend the results of [23] to aggregate
proofs of two-sided linear equations in asymmetric groups. While the original aggregation results of

5



[23] were based on decisional assumptions, our proof shows that they are implied by computational
assumptions.

Next, in Sect. 5, we address the problem of aggregating the proof of quadratic equations in Zq.
For concreteness, we study the problem of proving that a commitment in Ĝ opens to a bit-string
of length n. Such a construction was unknown even in symmetric bilinear groups (yet, it can be
easily generalized to this setting, see Appendix C). More specifically, we prove membership in

LÛ,bits := {ĉ ∈ Ĝn+m : ĉ := Û1b + Û2w, (b,w) ∈ {0, 1}n × Zmq },

where (Û1, Û2) ∈ Ĝ(n+m)×n × Ĝ(n+m)×m are matrices which define a perfectly binding and com-
putationally hiding commitment to b. Specifically, we give instantiations for m = 1 (when ĉ is a
single commitment to b), and m = n (when ĉ is the concatenation of n Groth-Sahai commitments
to a bit).

We stress that although our proof is constant-size, we need the commitment to be perfectly binding,
thus the size of the commitment is linear in n. The common reference string which we need for
this construction is quadratic in the size of the bit-string. Our proof is compatible with proving
linear statements about the bit-string, for instance, that

∑
i∈[n] bi = t by adding a linear number

(in n) of elements to the CRS (see Sect. 5.5.2). We observe that in the special case where t = 1
the common reference string can be linear in n. The costs of our constructions and the cost of GS
proofs are summarized in Table 1.

We stress that our results rely solely on falsifiable assumptions. More specifically, in the asymmetric
case we need some assumptions which are weaker than the Symmetric External DH Assumption
plus the SSDP Assumption. Interestingly, our construction in the symmetric setting relies on
assumptions which are all weaker than the 2-Lin Assumption (see Appendix C).

We think that our techniques for constructing QA-NIZK arguments for bit-strings might be of
independent interest. In the asymmetric case, we combine our QA-NIZK argument for LM̂,Ň,+ with

decisional assumptions in Ĝ and Ȟ. We do this with the purpose of using QA-NIZK arguments even
when M+N has full rank. In this case, strictly speaking “proving membership in the space” looses
all meaning, as every vector in Ĝm × Ȟm is in the space. However, using decisional assumptions,
we can argue that the generating matrix of the space is indistinguishable from a lower rank matrix
which spans a subspace in which it is meaningful to prove membership.

Finally, in Sect. 6 we discuss some applications of our results. In particular, our results provide
shorter signature size of several schemes, more efficient ring signatures, more efficient proofs of
membership in a list, and improved threshold GS proofs for pairing product equations.

2 Preliminaries

Let Gena be some probabilistic polynomial time algorithm which on input 1λ, where λ is the security
parameter, returns the description of an asymmetric bilinear group (q, Ĝ, Ȟ,T, e, ĝ, ȟ), where Ĝ, Ȟ
and T are groups of prime order q, the elements ĝ, ȟ are generators of Ĝ, Ȟ respectively, and
e : Ĝ× Ȟ→ T is an efficiently computable, non-degenerate bilinear map.

We denote by g and h the bit-size of the elements of Ĝ and Ȟ, respectively. Elements x̂ ∈ Ĝ (resp.
y̌ ∈ Ȟ, zT ∈ T) are written with a hat (resp, with inverted hat, sub-index T) and 0̂, 0̌ and 0T denote
the neutral elements. Given x̂ ∈ Ĝ, y̌ ∈ Ȟ, x̂y̌ refers to the pairing operation, i.e. x̂y̌ = e(x̂, y̌).
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Comms Proof CK CRS(ρ) #Pairings

GS [18] 2n(g + h) 4n(g + h) 4(g + h) 0 28n

GS + ΨDk,com
2n(g + h) (2n+ 2)(g + h) 4(g + h) (10n+ 4)(g + h) 20n+ 8

Πbit m = 1 (n+ 1)g 10(g + h) (n+ 1)g (6n2 + 11n+ 34)(g + h) n+ 55

Πbit m = n (i) 2ng 10(g + h) 4g
(12n2 + 14n+ 22)g+

(12n2 + 13n+ 24)h
2n+ 52

Πbit m = n (ii) 2ng 10(g + h) 4g
(6n2 + 16n+ 32)g+

(6n2 + 12n+ 32)h
4n+ 52

Πbit weight 1, m = 1 (n+ 1)g 10(g + h) (n+ 1)g
(18n+ 32)g+

(19n+ 34)h
n+ 55

Πbit weight 1, m = n 2ng 10(g + h) 4g
(20n+ 32)g+

(18n+ 32)h
4n+ 52

Table 1: Comparison for proofs of bi ∈ {0, 1}, for i ∈ [n], between GS proofs and our different
constructions. Our NIZK construction for bit-strings is denoted by Πbit and the construction for
proving that two sets of commitments open to the same value ΨDk,com. Row “Πbit m = 1” is for our
construction for a single commitment of size n+ 1 to a bit-string of size n. Rows “Πbit m = n (i)”
and “Πbit m = n (ii)” are for our construction for n concatenated GS commitments, using the two
different CRS distributions described in Sect. 5.5.1. Rows “Πbit weight 1, m = 1” and “Πbit weight
1, m = n” are for our constructions for bit-strings of weight 1 with m = 1 and m = n, respectively.
Column “Comms” contains the size of the commitments, “CK” the size of the commitment keys in
the CRS, and “CRS(ρ)” the size of the language dependent part of the CRS. The size of elements
in Ĝ and Ȟ is g and h, respectively. The table is computed for Dk = L2, the 2-Linear matrix
distribution.

Vectors and matrices are denoted in boldface and any product of vectors/matrices of elements in
Ĝ and Ȟ is defined in the natural way via the pairing operation. That is, given X̂ ∈ Ĝn×m and
Y̌ ∈ Ȟm×`, X̂Y̌ ∈ Tn×`. The product X̌Ŷ ∈ Tn×` is defined similarly by switching the arguments
of the pairing. Given a matrix T = (ti,j) ∈ Zm×nq , T̂ (resp. Ť) is the natural embedding of T in

Ĝ (resp. in Ȟ), that is, the matrix whose (i, j)th entry is ti,j ĝ (resp. ti,j ȟ). Conversely, given T̂

or Ť, we use T ∈ Zn×mq for the matrix of discrete logarithms of T̂ (resp. Ť). We denote by In×n
the identity matrix in Zn×nq and eni the ith element of the canonical basis of Znq (simply ei if n is
clear from the context). We make extensive use of the set [n+ k]× [n+ k] \ {(i, i) : i ∈ [n]} and for
brevity we denote it by In,k.

2.1 Computational Assumptions

Definition 2.1 Let `, k ∈ N with ` > k. We call D`,k a matrix distribution if it outputs (in
poly time, with overwhelming probability) matrices in Z`×kq . We define Dk := Dk+1,k and Dk the
distribution of the first k rows when A← Dk.

Definition 2.2 [Matrix Diffie-Hellman Assumption [11]] Let D`,k be a matrix distribution and

Γ := (q, Ĝ, Ȟ,T, e, ĝ, ȟ) ← Gena(1
λ). We say that the D`,k-Matrix Diffie-Hellman (D`,k-MDDHĜ)

7



Assumption holds relative to Gena if for all PPT adversaries D,

AdvD`,k,Gena(D) :=
∣∣∣Pr[D(Γ, Â, Âw) = 1]− Pr[D(Γ, Â, û) = 1]

∣∣∣ = negl(λ),

where the probability is taken over Γ← Gena(1
λ), A← D`,k,w← Zkq , û← Ĝ` and the coin tosses

of adversary D.

The D`,k-MDDHȞ problem is defined similarly. In this paper we will refer to the following matrix
distributions:

Lk : A =


a1 0 ... 0
0 a2 ... 0
.
.
.

.

.

.
.
.
.

.

.

.
0 0 ... ak
1 1 ... 1

 ,L`,k : A =
(

B

C

)
, U`,k : A =

( a1,1 ... a1,k

.

.

.
.
.
.

.

.

.
a`,1 ... a`,k

)
,

where ai, ai,j ← Zq, for each i, j ∈ [k], B← Lk, C← Z`−k,kq .

The Lk-MDDH Assumption is the k-linear family of Decisional Assumptions [20, 33]. The L1-
MDDHX , X ∈ {Ĝ, Ȟ}, is the Decisional Diffie-Hellman (DDH) Assumption in X, and the as-
sumption that it holds in both groups is the Symmetric External DH Assumption (SXDH). The
L`,k-MDDH Assumption is used in our construction to commit to multiple elements simultaneously.
It can be shown tightly equivalent to the Lk-MDDH Assumption. The U`,k Assumption is the Uni-
form Assumption and is weaker than the Lk-MDDH. Additionally, we will be using the following
family of computational assumptions:

Definition 2.3 [Kernel Diffie-Hellman Assumption [30]]Let Γ ← Gena(1
λ). The Kernel Diffie-

Hellman Assumption in Ȟ (D`,k-KerMDHȞ) says that every PPT Algorithm has negligible advantage

in the following game: given Ǎ, where A← D`,k, find x̂ ∈ Ĝ` \ {0̂}, such that x̂>Ǎ = 0T.

The Simultaneous Pairing Assumption in Ȟ (SPȞ) is the U1-KerMDHȞ Assumption and the Si-
multaneous Double Pairing Assumption (SDPȞ) is the L2,3- KerMDHȞ Assumption. The Kernel
Diffie-Hellman assumption is a generalization and abstraction of these two assumptions to other ma-
trix distributions. The D`,k-KerMDHȞ Assumption is weaker than the D`,k-MDDHȞ Assumption,
since a solution allows to decide membership in Im(Ǎ).

For our construction, we need to introduce a new family of computational assumptions.

Definition 2.4 [Split Kernel Diffie-Hellman Assumption] Let Γ← Gena(1
λ). The Split Kernel

Diffie-Hellman Assumption in Ĝ, Ȟ (D`,k-SKerMDH) says that every PPT Algorithm has negligible

advantage in the following game: given (Â, Ǎ), A ← D`,k, find a pair of vectors (r̂, š) ∈ Ĝ` × Ȟ`,

r 6= s, such that r̂>Ǎ = š>Â.

As a particular case we consider the Split Simultaneous Double Pairing Assumption in Ĝ, Ȟ (SSDP)
which is the L2-SKerMDH Assumption. Intuitively, the Kernel Diffie-Hellman Assumption says one
cannot find a non-zero vector in Ĝ` which is in the co-kernel of Ǎ, while the new assumption says
one cannot find a pair of vectors in Ĝ` × Ȟ` such that the difference of the vector of their discrete
logarithms is in the co-kernel of Ǎ. The name “split” comes from the idea that the output of a
successful adversary would break the Kernel Diffie-Hellman Assumption, but this instance is “split”
between the groups Ĝ and Ȟ. When k = 1, the D`,k-SKerMDH Assumption does not hold. The
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assumption is generically as least as hard as the standard,“non-split” assumption in symmetric
bilinear groups. This means, in particular, that in Type III bilinear groups, one can use the SSDP
Assumption with the same security guarantees as the SDP Assumption, which is a well established
assumption (used for instance in [29]).

Lemma 2.5 If D`,k-KerMDH holds in generic symmetric bilinear groups, then D`,k-SKerMDH holds
in generic asymmetric bilinear groups.

Suppose there is a generic algorithm which breaks the D`,k-SKerMDH Assumption. Intuitively,

given two different encodings of A ← D`,k, (Â, Ǎ), this algorithm finds r̂ and š, r 6= s such that

r̂>Ǎ = š>Â. But since the algorithm is generic, it also works when Ĝ = Ȟ, and then r̂ − ŝ is a
solution to D`,k-KerMDH. For a formal proof, see Appendix F.

2.2 Groth-Sahai NIZK Proofs

The GS proof system allows to prove satisfiability of a set of quadratic equations in a bilinear
group. The admissible equation types must be in the following form:

my∑
j=1

f(αj , yj) +

mx∑
i=1

f(xi, βi) +

mx∑
i=1

my∑
j=1

f(xi, γi,jyj) = t, (1)

where A1, A2, AT are Zq-vector spaces equipped with some bilinear map f : A1 × A2 → AT ,

α ∈ Amy1 , β ∈ Amx2 , Γ = (γi,j) ∈ Zmx×myq , t ∈ AT . The modules and the map f can be defined in

different ways as: (a) in pairing-product equations (PPEs), A1 = Ĝ, A2 = Ȟ, AT = T, f(x̂, y̌) =
x̂y̌ ∈ T, in which case t = 0T, (b1) in multi-scalar multiplication equations in Ĝ (MMEs), A1 = Ĝ,
A2 = Zq, AT = Ĝ, f(x̂, y) = yx̂ ∈ Ĝ, (b2) MMEs in Ȟ (MMEs), A1 = Zq, A2 = Ȟ, AT = Ȟ,
f(x, y̌) = xy̌ ∈ Ȟ, and (c) in quadratic equations in Zq (QEs), A1 = A2 = AT = Zq, f(x, y) = xy ∈
Zq. An equation is linear if Γ = 0, it is two-sided linear if both α 6= 0 and β 6= 0, and one-sided
otherwise.

We briefly recall some facts about GS proofs in the SXDH instantiation used in the rest of the
paper. Let Γ ← Gena(1

λ), u2,v2 ← L1, u1 := e1 + µu2, v1 := e1 + εv2, µ, ε ← Zq. The common
reference string is crsGS := (Γ, û1, û2, v̌1, v̌2) and is known as the perfectly sound CRS. There is
also a perfectly witness-indistinguishable CRS, with the only difference being that u1 := µu2 and
v1 := εv2 and the simulation trapdoor is (µ, ε). These two CRS distributions are computationally
indistinguishable. Implicitly, crsGS defines the maps:

ι1 : Ĝ ∪ Zq → Ĝ2, ι1(x̂) := (x̂, 0̂)>, ι1(x) := xû1.

ι2 : Ȟ ∪ Zq → Ȟ2, ι2(y̌) := (y̌, 0̌)>, ι2(y) := yv̌1.

The maps ιX , X ∈ {1, 2} can be naturally extended to vectors of arbitrary length δ ∈ AmX and we
write ιX(δ) for (ιX(δ1)|| . . . ||ιX(δm)).

The perfectly sound CRS defines perfectly binding commitments for any variable in A1 or A2.
Specifically, the commitment to x ∈ A1 is ĉ := ι1(x) + r1(û1 − ê1) + r2û2 ∈ Ĝ2, and to y ∈ A2 is
ď := ι2(y) + s1(v̌1 − ě1) + s2v̌2, where r1, r2, s1, s2 ← Zq, except if A1 = Zq (resp. A2 = Zq) in
which case r1 = 0 (resp. s1 = 0).
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2.3 Quasi-Adaptive NIZK Arguments

We recall the definition of Quasi Adaptive NIZK (QA-NIZK) Arguments of Jutla et al. [22]. A
QA-NIZK proof system enables to prove membership in a language defined by a relation Rρ, which
in turn is completely determined by some parameter ρ sampled from a distribution DΓ. We say
that DΓ is witness samplable if there exist an efficient algorithm that samples (ρ, ω) such that ρ is
distributed according to DΓ, and membership of ρ in the parameter language Lpar can be efficiently
verified with ω. While the Common Reference String can be set based on ρ, the zero-knowledge
simulator is required to be a single probabilistic polynomial time algorithm that works for the whole
collection of relations RΓ.

A tuple of algorithms (K0,K1,P,V) is called a QA-NIZK proof system for witness-relations RΓ =
{Rρ}ρ∈sup(DΓ) with parameters sampled from a distribution DΓ over associated parameter language
Lpar, if there exists a probabilistic polynomial time simulator (S1,S2), such that for all non-uniform
PPT adversaries A1, A2, A3 we have:

Quasi-Adaptive Completeness:

Pr

[
Γ← K0(1λ); ρ← DΓ;ψ ← K1(Γ, ρ); (x,w)← A1(Γ, ψ);

π ← P(ψ, x,w) : V(ψ, x, π) = 1 if Rρ(x,w)

]
= 1.

Computational Quasi-Adaptive Soundness:

Pr

[
Γ← K0(1λ); ρ← DΓ;ψ ← K1(Γ, ρ);

(x, π)← A2(Γ, ψ) : V(ψ, x, π) = 1 and ¬(∃w : Rρ(x,w))

]
≈ 0.

Perfect Quasi-Adaptive Zero-Knowledge:

Pr[Γ← K0(1λ); ρ← DΓ;ψ ← K1(Γ, ρ) : A
P(ψ,·,·)
3 (Γ, ψ) = 1] =

Pr[Γ← K0(1λ); ρ← DΓ; (ψ, τ)← S1(Γ, ρ) : A
S(ψ,τ,·,·)
3 (Γ, ψ) = 1]

where

• P(ψ, ·, ·) emulates the actual prover. It takes input (x,w) and outputs a proof π if
(x,w) ∈ Rρ. Otherwise, it outputs ⊥.

• S(ψ, τ, ·, ·) is an oracle that takes input (x,w). It outputs a simulated proof S2(ψ, τ, x)
if (x,w) ∈ Rρ and ⊥ if (x,w) /∈ Rρ.

Note that ψ is the CRS in the above definitions. We assume that ψ contains an encoding of ρ,
which is thus available to V.

2.4 QA-NIZK Argument for Linear Spaces

In this section we recall the two constructions of QA-NIZK arguments of membership in linear
spaces given by Kiltz and Wee [25], for the language:

LM̂ := {x̂ ∈ Ĝn : ∃w ∈ Ztq, x̂ = M̂w}.
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K1(Γ, M̂, n) (S1(Γ, M̂, n))

A← D̃k,∆← Zk̃×nq

Ǎ∆ := ∆>Ǎ, M̂∆ := ∆M̂

Return crs := (M̂∆, Ǎ∆, Ǎ)

(τsim := ∆)

P(crs, x̂,w) \\x̂ = M̂w

Return σ̂ := M̂∆w.

V(crs, x̂, σ̂)

Return (x̂>Ǎ∆ = σ̂>Ǎ)

S2(crs, x̂, τsim)

Return σ̂ := ∆x̂

Figure 1: The figure describes ΨDk when D̃k = Dk and k̃ = k + 1 and ΨDk when D̃k = Dk and

k̃ = k. Both are QA-NIZK arguments for LM̂. ΨDk is the construction of [25, Sect. 3.1], which
is a generalization of Libert et al ’s QA-NIZK [27] to any Dk-KerMDHȞ Assumption. ΨDk is the
construction of [25, Sect. 3.2.].

Algorithm K0(1λ) just outputs Γ := (q, Ĝ, Ȟ,T, e, ĝ, ȟ) ← Gena(1
λ), the rest of the algorithms are

described in Fig. 1.

Theorem 2.6 [Theorem 1 of [25]] If D̃k = Dk and k̃ = k + 1, Fig. 1 describes a QA-NIZK proof
system with perfect completeness, computational adaptive soundness based on the Dk-KerMDHȞ
Assumption, perfect zero-knowledge, and proof size k + 1.

Theorem 2.7 [Theorem 2 of [25]] If D̃k = Dk and k̃ = k, and DΓ is a witness samplable distribu-
tion, Fig. 1 describes a QA-NIZK proof system with perfect completeness, computational adaptive
soundness based on the Dk-KerMDHȞ Assumption, perfect zero-knowledge, and proof size k.

3 New QA-NIZK Arguments in Asymmetric Groups

In this section we construct three QA-NIZK arguments of membership in different subspaces of
Ĝm × Ȟn. Their soundness relies on the Split Kernel Assumption.

3.1 Argument of Membership in Subspace Concatenation

Figure 2 describes a QA-NIZK Argument of Membership in the language

LM̂,Ň := {(x̂, y̌) : ∃w ∈ Ztq, x̂ = M̂w, y̌ = Ňw} ⊆ Ĝm × Ȟn.

We refer to this as the Concatenation Language, because if we define P as the concatenation of

M̂, Ň, that is P :=
(

M̂
Ň

)
, then (x̂, y̌) ∈ LM̂,Ň iff

(
x̂
y̌

)
is in the span of P.

Soundness Intuition. If we ignore for a moment that Ĝ, Ȟ are different groups, ΨDk,spl (resp.
ΨDk,spl) is almost identical to ΨDk (resp. to ΨDk) for the language LP̂, and ∆ := (Λ||Ξ), where

Λ ∈ Zk̃×mq ,Ξ ∈ Zk̃×nq . Further, the information that an unbounded adversary can extract from the
CRS about ∆ is:

1.
{

P∆ = ΛM + ΞN,A∆ = ∆>A =

(
Λ>A

Ξ>A

)}
from crsΨDk ,
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K1(Γ, M̂, Ň,m, n) (S1(Γ, M̂, Ň,m, n))

A← D̃k
Λ← Zk̃×mq ,Ξ← Zk̃×nq ,Z← Zk̃×tq

ǍΛ := Λ>Ǎ

ÂΞ := Ξ>Â

M̂Λ := ΛM̂ + Ẑ

ŇΞ := ΞŇ− Ž

Return crs := (M̂Λ, ǍΛ, Ǎ, ŇΞ,

ÂΞ, Â).

(τsim := (Λ,Ξ).)

P(crs, x̂, y̌,w)

\\(x̂ = M̂w, y̌ = Ňw)

z← Zk̃q
ρ̂ := M̂Λw + ẑ

σ̌ := ŇΞw − ž

Return (ρ̂, σ̌).

V(crs, (x̂, y̌), (ρ̂, σ̌))

Return (x̂>ǍΛ − ρ̂>Ǎ

= σ̌>Â− y̌>ÂΞ).

S2(crs, (x̂, y̌), τsim)

z← Zk̃q
ρ̂ := Λx̂ + ẑ

σ̌ := Ξy̌ − ž

Return (ρ̂, σ̌).

Figure 2: Two QA-NIZK Arguments for LM̂,Ň. ΨDk,spl is defined for D̃k = Dk and k̃ = k+1, and is a

generalization of [25] Sect. 3.1 in two groups. The second construction ΨDk,spl corresponds to D̃k =

Dk and k̃ = k, and is a generalization of [25] Sect. 3.2 in two groups. Computational soundness is
based on the Dk-SKerMDH Assumption. The CRS size is (k̃k + k̃t +mk)g + (k̃k + k̃t + nk)h and
the proof size k̃(g + h). Verification requires 2k̃k + (m+ n)k pairing computations.

2.
{

MΛ = ΛM + Z,NΞ = ΞN− Z,

(
AΛ

AΞ

)
=

(
Λ>A

Ξ>A

)}
from crsΨDk,spl .

Given that the matrix Z is uniformly random, crsΨDk and crsΨDk,spl reveal the same information
about ∆ to an unbounded adversary. Therefore, as the proof of soundness is essentially based on
the fact that parts of ∆ are information theoretically hidden to the adversary, the original proof
of [25] can be easily adapted for the new arguments. The proofs can be found in Appendix A.

Theorem 3.1 If D̃k = Dk and k̃ = k + 1, Fig. 2 describes a QA-NIZK proof system with
perfect completeness, computational adaptive soundness based on the Dk-SKerMDH Assumption,
and perfect zero-knowledge.

Theorem 3.2 If D̃k = Dk and k̃ = k, and DΓ is a witness samplable distribution, Fig. 2 describes
a QA-NIZK proof system with perfect completeness, computational adaptive soundness based on
the Dk-SKerMDH Assumption, and perfect zero-knowledge.

3.2 Argument of Sum in Subspace

We can adapt the previous construction to the Sum in Subspace Language,

LM̂,Ň,+ := {(x̂, y̌) ∈ Ĝm × Ȟm : ∃w ∈ Ztq, x + y = (M + N)w}.

We define two proof systems ΨDk,+, ΨDk,+ as in Fig. 2, but now with Λ = Ξ. Intuitively,
soundness follows from the same argument because the information about Λ in the CRS is now
Λ>A,Λ(M + N).
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3.3 Argument of Equal Opening in Different Groups

Given the results for Subspace Concatenation of Sect. 3.1, it is direct to construct constant-size
NIZK Arguments of membership in:

Lcom,Û,V̌,ν :=
{

(ĉ, ď) ∈ Ĝm × Ȟn : ∃(w, r, s), ĉ = Û

(
w

r

)
, ď = V̌

(
w

s

)}
,

where Û ∈ Ĝm×m̃, V̌ ∈ Ȟn×ñ and w ∈ Zνq . The witness is (w, r, s) ∈ Zνq × Zm̃−νq × Zñ−νq . This

language is interesting because it can express the fact that (ĉ, ď) are commitments to the same
vector w ∈ Zνq in different groups.

The construction is an immediate consequence of the observation that Lcom,Û,V̌,ν can be rewritten

as some concatenation language LM̂,Ň. Denote by Û1 the first ν columns of Û and Û2 the remaining

ones, and V̌1 the first ν columns of V̌ and V̌2 the remaining ones. If we define:

M̂ := (Û1||Û2||0̂m×(ñ−ν)) Ň := (V̌1||0̌n×(m̃−ν)||V̌2).

then it is immediate to verify that Lcom,Û,V̌,ν = LM̂,Ň.

In the rest of the paper, we denote as ΨDk,com the proof system for Lcom,Û,V̌,ν which corresponds to

ΨDk,spl for LM̂,Ň, where M̂, Ň are the matrices defined above. Note that for commitment schemes

we can generally assume Û, V̌ to be drawn from some witness samplable distribution.

4 Aggregating Groth-Sahai Proofs in Asymmetric Groups

In this section we discuss two different ways to aggregate GS equations. The first is a direct
application of the proof of equal commitment opening and is only valid for two-sided linear equations
in Zq, the second is an extension of the results of Jutla and Roy for all other types of linear equations.

4.1 Aggregating Two-Sided Linear Equations in Zq

We note that proving that n pairs of GS commitments open (pairwise) to the same elements in
Zq is simply a special case of the proof of equal commmitment opening in Sect. 3.3. Indeed, the
concatenation of n GS commitments is just a commitment to a vector of scalars. In particular,
given crsGS = (Γ, û1, û2, v̌1, v̌2), it is easy to see that n commitments to xi ∈ Zq, which are of the
form: ĉi = xiû1 + riû2 for some ri ∈ Zq (recall that ι1(xi) = xiû1), can be written as

ĉ1

...

ĉn

 =


û1 . . . 0̂
...

. . .
...

0̂ . . . û1



x1

...

xn

+


û2 . . . 0̂
...

. . .
...

0̂ . . . û2



r1

...

rn

 ,

and similarly the concatenation of n commitments ďi, i ∈ [`] can be written as V̌1y + V̌2s, where
V̂i is the blockwise concatenation of n copies of v̌i.

In particular, proving that n GS commitments open to the same value can be also seen as the
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aggregation of the proof of n GS equations of the form x` − y` = 0. The aggregation of any other
set of two-sided linear equations in Zq easily reduces to this case using the homomorphic properties
of GS commitments. Indeed, given n equations of the form:

α>` y + x>β` = t`, ` ∈ [n],

and the commitments to a satisfying assignment (where the commitments to every coordinate of x
(resp. y) are in Ĝ (resp. Ȟ), it is easy to derive a commitment to x>β`− t` in Ĝ and a commitment
to α>` y in Ȟ for all ` ∈ [n]. Obviously, the equations are satisfied if for each `, these commitments
open to the same value.

We insist that two-sided linear equations in Zq are essential to prove quadratic statements in
asymmetric bilinear groups. In particular, this result can be used to reduce the proof size that n
commitments open to a bit-string from 6n(g + h) to (4n+ 2)(g + h).

4.2 QA Aggregation of Other Equation Types

Jutla and Roy [23] show how to aggregate GS proofs of two-sided linear equations in symmetric
bilinear groups. In the original construction of [23] soundness is based on a decisional assumption
(a weaker variant of the 2-Lin Assumption). Its natural generalization in asymmetric groups (where
soundness is based on the SXDH Assumption) only enables to aggregate the proofs of one-sided
linear equations.

In this section, we revisit their construction. We give an alternative, simpler, proof of soundness
under a computational assumption which avoids altogether the “Switching Lemma” of [23]. Further,
we extend it to two-sided equations in the asymmetric setting. For one-sided linear equations we
can prove soundness under any kernel assumption and for two-sided linear equations, under any
split kernel assumption.2

Let A1, A2, AT be Zq-vector spaces compatible with some Groth-Sahai equation as detailed in

Sect. 2.2. Let DΓ be a witness samplable distribution which outputs n pairs of vectors (~α`, ~β`) ∈
A
my
1 × Amx2 , ` ∈ [n], for some mx,my ∈ N. Given some fixed pairs (~α`, ~β`), we define, for each

t̃ ∈ AnT , the set of equations St̃ as:

St̃ =
{
E`(~x,~y) = t̃` : ` ∈ [n]

}
, E`(~x,~y) :=

∑
j∈[my ]

f(α`,j , yj) +
∑
i∈[mx]

f(xi, β`,i).

We note that, as in [23], we only achieve quasi-adaptive aggregation, that is, the common reference
string is specific to a particular set of equations. More specifically, it depends on the constants
α`,β` (but not on t̃`, which can be chosen by the prover) and it can be used to aggregate the proofs
of St̃, for any t̃.

Given the equation types for which we can construct NIZK GS proofs, there always exists (1)
t` ∈ A1, such that t̃` = f(t`, base2) or (2) t̃` ∈ A2, such that t̃` = f(base1, t`), where basei = 1
if Ai = Zq, base1 = ĝ if A1 = Ĝ and base2 = ȟ if A2 = Ȟ. This is because t̃` = 0T for PPEs,
and AT = Ai, for some i ∈ [2], for other types of equations. For simplicity, in the construction we
assume that (1) is the case, otherwise change ι2(a`,i), ι1(t`) for ι1(a`,i), ι2(t`) in the construction

2The results of [23] are based on what they call the “Switching Lemma”. As noted in [30], it is implicit in the
proof of this lemma that the same results can be obtained under computational assumptions.
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below.

K0(1λ): Return Γ := (q, Ĝ, Ȟ,T, e, ĝ, ȟ)← Gena(1
λ).

DΓ: DΓ is some distribution over n pairs of vectors (α`, β`) ∈ Amx1 ×Amy2 .

K1(Γ,St̃): Let A = (ai,j)← Dn,k. Define

crs :=

crsGS,

∑
`∈[n]

ι1(a`,iα`),
∑
`∈[n]

ι2(a`,iβ`),
{
ι2(a`,i) : ` ∈ [n]

}
: i ∈ [k]




P(Γ,St̃,x,y): Given a solution ~x = x, ~y = y to St̃, the prover proceeds as follows:

• Commit to all xj ∈ A1 as ĉj ← CommGS(xj), and to all yj ∈ A2 as ďj ← CommGS(yj).

• For each i ∈ [k], run the GS prover for the equation
∑

`∈[n] a`,iE`(~x,~y) =
∑

`∈[n] f(t`, a`,i)

to obtain the proof, which is a pair (Θ̂i, Π̌i).

Output ({ĉj : j ∈ [mx]}, {ďj : j ∈ [my]}, {(Π̌i, Θ̂i) : i ∈ [k]}).

V(crs,St̃, {ĉj}j∈[mx], {ďj}j∈[my ], {Θ̂i, Π̌i}i∈[k]): For each i ∈ [k], run the GS verifier for equation∑
`∈[n]

a`,iE`(~x,~y) =
∑
`∈[n]

f(t`, a`,i).

Theorem 4.1 The above protocol is a QA-NIZK proof system for two-sided linear equations.

Proof: Completeness. Observe that∑
`∈[n]

a`,iE`(~x,~y) =
∑
j∈[my ]

f(a`,iα`,j , yj) +
∑
j∈[mx]

f(xj , a`,iβ`,j). (2)

Completeness follows from the observation that to efficiently compute the proof, the GS Prover
[19] only needs, apart from a satisfying assignment to the equation, the randomness used in the
commitments plus a way to compute the inclusion map of all involved constants, in this case
ι1(a`,iα`,j), ι2(a`,iβ`,j) and the latter is part of the CRS.

Soundness. We change to a game Game1 where we know the discrete logarithm of the GS commit-
ment key, as well as the discrete logarithms of (α`,β`), ` ∈ [n]. This is possible because they are
both chosen from a witness samplable distribution.

We now prove that an adversary against the soundness in Game1 can be used to construct an
adversary B against the Dn,k-SKerMDH Assumption, where Dn,k is the matrix distribution used in
the CRS generation.

B receives a challenge (Â, Ǎ) ∈ Ĝn×k × Ȟn×k. Given all the discrete logarithms that B knows,
it can compute a properly distributed CRS even without knowledge of the discrete logarithm of
Â. The soundness adversary outputs commitments {ĉj}j∈[mx], {ďj}j∈[my ] together with proofs

{Θ̂i, Π̌i}i∈[k], which are accepted by the verifier.
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Let x (resp. x̂) be the vector of openings of {ĉj}j∈[mx] in A1 (resp. in the group Ĝ) and y

(resp. y̌) the vector of openings of {ďj}j∈[my ] in A2 (resp. in the group Ȟ). If A1 = Ĝ (resp.

A2 = Ȟ) then x = x̂ (resp. y = y̌). The vectors x̂ and y̌ are efficiently computable by B who
knows the discrete logarithm of the commitment keys. We claim that the pair (ρ̂, σ̌) ∈ Ĝn × Ȟn,
ρ̂ := (β>1 x̂− t̂1, . . . ,β>n x̂− t̂n), σ̌ := (α>1 y̌, . . . ,α>n y̌), solves the Dn,k-SKerMDH challenge.

First, observe that if the adversary is successful in breaking the soundness property, then ρ 6= σ.
Indeed, if this is the case there is some index ` ∈ [n] such that E`(x,y) 6= t̃`, which means that∑

j∈[my ] f(α`,j , yj) 6=
∑

j∈[mx] f(xj , β`,j) − f(t`, base2). If we take discrete logarithms in each side
of the equation, this inequality is exactly equivalent to ρ 6= σ.

Further, because GS proofs have perfect soundness, x and y satisfy the equation
∑

`∈[n] a`,iE`(~x,~y) =∑
`∈[n] f(t`, a`,i), for all i ∈ [k], Thus, for all i ∈ [k],∑

`∈[n]

ǎ`,i

(
β>` x̂− t̂`

)
=
∑
`∈[n]

â`,i

(
α>` y̌

)
, (3)

which implies that ρ̂Ǎ = σ̌Â.

Zero-Knowledge. The same simulator of GS proofs can be used. Specifically the simulated proof
corresponds to k simulated GS proofs.

4.2.1 One-Sided Equations.

In the case when α` = 0 and t̃` = f(t`, base2) for some t` ∈ A1, for all ` ∈ [n], proofs can be
aggregated under a standard Kernel Assumption (and thus, in asymmetric bilinear groups we can
choose k = 1). Indeed, in this case, in the soundness proof, the adversary B receives Ǎ ∈ Ȟn×k, an
instance of the Dn,k −KerMDHȞ problem. The adversary B outputs ρ̂ := (β>1 x̂− t̂1, . . . ,β>n x̂− t̂n)
as a solution to the challenge. To see why this works, note that, when α` = 0 for all ` ∈ [n],
equation (3) reads

∑
`∈[n] ǎ`,i

(
β>` x̂− t̂`

)
= 0T and thus ρ̂Ǎ = 0T. The case when β` = 0 and

t̃` = f(base1, t`) for some t` ∈ A2, for all ` ∈ [n], is analogous.

4.2.2 Public Parameters.

The size of the CRS of the construction above depends on the number of elements needed to
represent Â. In this sense, it is interesting to sample Â from some family of matrix assumptions
with good representation size. As we assume that n > k, it is interesting to instantiate this scheme
with the Circulant Matrix Distribution of [30], which has a representation size of n — independent
of k.

5 QA-NIZK Arguments for Bit-Strings

We construct a constant-size QA-NIZK for proving that a perfectly binding commitment opens to
a bit-string. That is, we prove membership in the language:

LÛ,bits := {ĉ ∈ Ĝn+m : ĉ := Û1b + Û2w, (b,w) ∈ {0, 1}n × Zmq },

16



where Û := (Û1, Û2) ∈ Ĝ(n+m)×n×Ĝ(n+m)×m defines perfectly binding and computationally hiding
commitment keys. The witness for membership is (b,w) and Û← DΓ, where DΓ is some witness
samplable distribution.

To prove that a commitment in Ĝ opens to a vector of bits b, the usual strategy is to compute
another commitment ď ∈ Ȟn̄ to a vector b̄ ∈ Znq and prove (1) bi(bi − 1) = 0, for all i ∈ [n],

and (2) bi − bi = 0, for all i ∈ [n]. For statement (2), since Û is witness samplable, we can use
our most efficient QA-NIZK from Sect. 3.3 for equal opening in different groups. Under the SSDP
Assumption, which is the SKerMDH Assumption of minimal size conjectured to hold in asymmetric
groups, the proof is of size 2(g + h). Thus, the challenge is to aggregate n equations of the form
bi(bi − 1) = 0. We note that this is a particular case of the problem of aggregating proofs of
quadratic equations, which was left open in [23].

We finally remark that the proof must include ď and thus it may be not of size independent of n.
However, it turns out that ď needs not be perfectly binding, in fact n̄ = 2 suffices.

5.1 Intuition

A prover wanting to show satisfiability of the equation x(y − 1) = 0 using GS proofs, will commit
to a solution x = b and y = b as ĉ = bû1 + rû2 and ď = bv̌1 + sv̌2, for r, s ← Zq, and then give a

pair (θ̂, π̌) ∈ Ĝ2 × Ȟ2 which satisfies the following verification equation3:

ĉ
(
ď− v̌1

)>
= û2π̌

> + θ̂v̌>2 . (4)

The reason why this works is that, if we express both sides of the equation in the basis of T2×2

given by {û1v̌
>
1 , û2v̌

>
1 , û1v̌

>
2 , û2v̌

>
2 }, the coefficient of û1v̌

>
1 is b(b−1) on the left side and 0 on the

right side (regardless of (θ̂, π̌)). Our observation is that the verification equation can be abstracted
as saying:

ĉ
(
ď− v̌1

)> ∈ Span(û2v̌
>
1 , û1v̌

>
2 , û2v̌

>
2 ) ⊂ T2×2. (5)

Now consider commitments to (b1, . . . , bn) and (b1, . . . , bn) constructed with some commitment
key {(ĝi, ȟi) : i ∈ [n + 1]} ⊂ Ĝn × Ȟn, for some n ∈ N, to be determined later, and defined
as ĉ :=

∑
i∈[n] biĝi + rĝn+1, ď :=

∑
i∈[n] biȟi + sȟn+1, r, s ← Zq. Suppose for a moment that

{ĝiȟ>j : i, j ∈ [n+ 1]} is a set of linearly independent vectors. Then,

ĉ

ď> −
∑
j∈[n]

ȟ>j

 ∈ Span{ĝiȟ>j : (i, j) ∈ In,1} (6)

if and only if bi(bi − 1) = 0 for all i ∈ [n], because bi(bi − 1) is the coordinate of ĝiȟ
>
i in the left

side of the equation.

Equation 6 suggests to use one of the constant-size QA-NIZK Arguments for linear spaces to get
a constant-size proof that bi(bi − 1) = 0 for all i ∈ [n]. Unfortunately, these arguments are only
defined for membership in subspaces in Ĝm or Ȟm but not in Tm. Our solution is to include
information in the CRS to “bring back” this statement from T to Ĝ, i.e. the matrices Ĉi,j := ĝih

>
j ,

for each (i, j) ∈ In,1. Then, to prove that bi(bi− 1) = 0 for all i ∈ [n], the prover computes Θ̂b(b−1)

3For readers familiar with the Groth-Sahai notation, equation (4) corresponds to c • (d− ι2(1)) = u2 •π + θ •v2.
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as a linear combination of C := {Ĉi,j : (i, j) ∈ In,1} (with coefficients which depend on b,b, r, s)
such that

ĉ

ď−
∑
j∈[n]

ȟj

> = Θ̂b(b−1)Ǐn×n, (7)

and gives a QA-NIZK proof of Θ̂b(b−1) ∈ Span(C).

This reasoning assumes that {ĝih>j } (or equivalently, {Ĉi,j}) are linearly independent, which can

only happen if n ≥ n+ 1. If that is the case, the proof cannot be constant because Θ̂b(b̄−1) ∈ Ĝn×n

and this matrix is part of the proof. Instead, we choose ĝ1, . . . , ĝn+1 ∈ Ĝ2 and ȟ1, . . . , ȟn+1 ∈ Ȟ2,
so that {Ĉi,j} ⊆ Ĝ2×2. Intuitively, this should still work because the prover receives these vectors
as part of the CRS and he does not know their discrete logarithms, so to him, they behave as
linearly independent vectors.

With this change, the statement Θ̂b(b−1) ∈ Span(C) seems no longer meaningful, as Span(C) is all

of Ĝ2×2 with overwhelming probability. But this is not the case, because by means of decisional
assumptions in Ĝ2 and in Ȟ2, we switch to a game where the matrices Ĉi,j span a non-trivial

space of Ĝ2×2. Specifically, to a game where Ĉi∗,i∗ /∈ Span(C) and i∗ ← [n] remains hidden to the
adversary. Once we are in such a game, perfect soundness is guaranteed for equation bi∗(b̄i∗−1) = 0
and a cheating adversary is caught with probability at least 1/n. We think this technique might
be of independent interest.

The last obstacle is that, using decisional assumptions on the set of vectors {ȟj}j∈[n+1] is incom-

patible with using the discrete logarithms of ȟj to compute the matrices Ĉi,j := ĝih
>
j given in

the CRS. To account for the fact that, in some games, we only know gi ∈ Zq and, in some others,

only hj ∈ Zq, we replace each matrix Ĉi,j by a pair (Ĉi,j , Ďi,j) which is uniformly distributed
conditioned on Ci,j + Di,j = gih

>
j . This randomization completely hides the group in which we

can compute gih
>
j . Finally, we use our QA-NIZK Argument for sum in a subspace (Sect. 3.2) to

prove membership in this space.

5.2 Instantiations

We discuss in detail two particular cases of languages LÛ,bits. First, in Sect. 5.3 we discuss the case
when

(a) ĉ is a vector in Ĝn+1, ûn+1 ← Ln+1,1 and Û1 :=

(
În×n

0̂1×n

)
∈ Ĝ(n+1)×n, Û2 := ûn+1 ∈ Ĝn+1,

Û = (Û1||Û2).

In this case, the vectors ĝi in the intuition are defined as ĝi = ∆ûi, where ∆← Z2×(n+1)
q , and the

commitment to b is computed as ĉ :=
∑

i∈[n] biûi + wûn+1. Then in Sect. 5.5.1 we discuss how to
generalize the construction for a) to

(b) ĉ is the concatenation of nGS commitments. That is, given the GS CRS crsGS = (Γ, û1, û2, v̌1, v̌2),
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we define,

Û1 :=


û1 . . . 0̂
...

. . .
...

0̂ . . . û1

 ∈ Ĝ2n×n, Û2 :=


û2 . . . 0̂
...

. . .
...

0̂ . . . û2

 ∈ Ĝ2n×n.

Although the proof size is constant, in both of our instantiations the commitment size is Θ(n).
Specifically, (n+ 1)g for case a) and 2ng for case b).

5.3 The Scheme

K0(1λ): Return Γ := (q, Ĝ, Ȟ,T, e, ĝ, ȟ)← Gena(1
λ).

DΓ: The distribution DΓ over Ĝ(n+1)×(n+1) is some witness samplable distribution which defines
the relation RΓ = {RÛ} ⊆ Ĝn+1× ({0, 1}n×Zq), where Û← DΓ, such that (ĉ, 〈b, w〉) ∈ RÛ

iff ĉ = Û
(
b
w

)
. The relation Rpar consists of pairs (Û,U) where Û← DΓ.

K1(Γ, Û): Let hn+1 ← Z2
q and for all i ∈ [n], hi := εihn+1, where εi ← Zq. Define Ȟ :=

(ȟ1|| . . . ||ȟn+1). Choose ∆ ← Z2×(n+1)
q , define Ĝ := ∆Û and ĝi := ∆ûi ∈ Ĝ2, for all

i ∈ [n + 1]. Let a ← L1 and define ǎ∆ := ∆>ǎ ∈ Ȟn+1. For any pair (i, j) ∈ In,1, let
Ti,j ← Z2×2

q and set:

Ĉi,j := ĝih
>
j − T̂i,j ∈ Ĝ2×2, Ďi,j := Ťi,j ∈ Ȟ2×2.

Note that Ĉi,j can be efficiently computed as hj ∈ Z2
q is the vector of discrete logarithms of

ȟj .

Let ΨDk,+ be the proof system for Sum in Subspace (Sect. 3.2) and ΨDk,com be an instance
of our proof system for Equal Opening (Sect. 3.3).

Let crsΨDk,+
← K1(Γ, {Ĉi,j , Ďi,j}(i,j)∈In,1) and 4 crsΨDk,com

← K1(Γ, Ĝ, Ȟ, n). The common

reference string is given by:

crsP :=
(
Û, Ĝ, Ȟ, {Ĉi,j , Ďi,j}(i,j)∈In,1 , crsΨDk,+ , crsΨDk,com

)
,

crsV :=
(
ǎ, ǎ∆, crsΨDk,+

, crsΨDk,com

)
.

P(crsP , ĉ, 〈b, wg〉): Pick wh ← Zq, R← Z2×2
q and then:

1. Define

ĉ∆ := Ĝ

(
b

wg

)
, ď := Ȟ

(
b

wh

)
.

4We identify matrices in Ĝ2×2 (resp. in Ȟ2×2) with vectors in Ĝ4 (resp. in Ȟ4).
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2. Compute (Θ̂b(b−1), Π̌b(b−1)) :=∑
i∈[n]

(
biwh(Ĉi,n+1, Ďi,n+1) + wg(bi − 1)(Ĉn+1,i, Ďn+1,i)

)
+
∑
i∈[n]

∑
j∈[n]
j 6=i

bi(bj − 1)(Ĉi,j , Ďi,j)

+wgwh(Ĉn+1,n+1, Ďn+1,n+1) + (R̂,−Ř). (8)

3. Compute a proof (ρ̂b(b−1), σ̌b(b−1)) that Θb(b−1) + Π̌b(b−1) belongs to the space spanned

by {Ci,j + Di,j}(i,j)∈In,1 , and a proof (ρ̂b−b, σ̌b−b) that (ĉ∆, ď) open to the same value,
using b, wg, and wh.

V(crsV , ĉ, 〈ĉ∆, ď, (Θ̂b(b−1), Π̌b(b−1)), {(ρ̂X , σ̌X)}X∈{b(b−1),b−b}〉):

1. Check if ĉ>ǎ∆ = ĉ>∆ǎ.

2. Check if

ĉ∆

ď−
∑
j∈[n]

ȟj

> = Θ̂b(b−1)Ǐ2×2 + Î2×2Π̌b(b−1). (9)

3. Verify that (ρ̂b(b−1), σ̌b(b−1)), (ρ̂b−b, σ̌b−b) are valid proofs for (Θ̂b(b−1), Π̌b(b−1)) and

(ĉ∆, ď) using crsΨDk,+
and crsΨDk,com

respectively.

If any of these checks fails, the verifier outputs 0, else it outputs 1.

S1(Γ, Û): The simulator receives as input a description of an asymmetric bilinear group Γ and a
matrix Û ∈ Ĝ(n+1)×(n+1) sampled according to distribution DΓ. It generates and outputs the
CRS in the same way as K1, but additionally it also outputs the simulation trapdoor

τ =
(
H,∆, τΨDk,+

, τΨDk,com

)
,

where τΨDk,+
and τΨDk,com

are, respectively, ΨDk,+’s and ΨDk,com’s simulation trapdoors.

S2(crsP , ĉ, τ): Compute ĉ∆ := ∆ĉ. Then pick random wh ← Zq, R ← Z2×2
q and define d :=

whhn+1. Then set:

Θ̂b(b−1) := ĉ∆

d−
∑
i∈[n]

hi

> + R̂, Π̌b(b−1) := −Ř.

Finally, simulate proofs (ρ̂X , σ̌X) for X ∈ {b(b− 1), b− b} using τΨDk,+
and τΨDk,com

.

5.4 Proof of Security

Completeness is proven in Appendix B.1. The following theorem guarantees Soundness.
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Theorem 5.1 Let AdvPS(A) be the advantage of an adversary A against the soundness of the
proof system described above. There exist PPT adversaries B1,B2,B3,P

∗
1,P
∗
2 such that

AdvPS(A) ≤ n
(

6/q + AdvU1,Ĝ(B1) + AdvU1,Ȟ(B2) + AdvSPȞ
(B3)

+ AdvΨDk,+
(P∗1) + AdvΨDk,com

(P∗2)
)
.

The proof follows from the indistinguishability of the following games:

Real This is the real soundness game. The output is 1 if the adversary breaks the soundness,
i.e. the adversary submits some ĉ = Û

(
b
wg

)
, for some b /∈ {0, 1}n and w ∈ Zq, and the

corresponding proof which is accepted by the verifier.

Game0 This game is identical to Real except that algorithm K1 does not receive Û as a input but it
samples (Û,U) ∈ Rpar itself according to DΓ.

Game1 This game is identical to Game0 except that the simulator picks a random i∗ ∈ [n], and uses
U to check if the output of the adversary A is such that bi∗ ∈ {0, 1}. It aborts if bi∗ ∈ {0, 1}.

Game2 This game is identical to Game1 except that now the vectors ĝi, i ∈ [n] and i 6= i∗, are uniform
vectors in the space spanned by ĝn+1.

Game3 This game is identical to Game2 except that now the vector ȟi∗ is a uniform vector in Ȟ2,
sampled independently of ȟn+1.

It is obvious that the first two games are indistinguishable. The rest of the argument goes as follows
(the remaining proofs are in Appendix B.2).

Lemma 5.2 Pr [Game1(A) = 1] ≥ 1

n
Pr [Game0(A) = 1] .

Lemma 5.3 There exists a U1-MDDHĜ adversary B such that |Pr [Game1(A) = 1]−Pr [Game2(A) = 1] |
≤ AdvU1,Ĝ(B) + 2/q.

Proof: The adversary B receives (ŝ, t̂) an instance of the U1-MDDHĜ problem. B defines all the

parameters honestly except that it embeds the U1-MDDHĜ challenge in the matrix Ĝ.

Let Ê := (ŝ||t̂). B picks i∗ ← [n], W0 ← Z2×(i∗−1)
q , W1 ← Z2×(n−i∗)

q , ĝi∗ ← Ĝ2, and defines

Ĝ := (ÊW0||ĝi∗ ||ÊW1||ŝ). In the real algorithm K1, the generator picks the matrix ∆ ∈ Z2×(n+1)
q .

Although B does not know ∆, it can compute ∆̂ as ∆̂ = ĜU−1, given that U is full rank and was
sampled by B, so it can compute the rest of the elements of the common reference string using the
discrete logarithms of Û, Ȟ and ǎ.

In case t̂ is uniform over Ĝ2, by the Schwartz-Zippel lemma det(Ê) = 0 with probability at most
2/q. Thus, with probability at least 1 − 2/q, the matrix Ê is full-rank and Ĝ is uniform over
Ĝ2×(n+1) as in Game1. On the other hand, in case t̂ = γŝ, all of ĝi, i 6= i∗, are in the space spanned
by ĝn+1 as in Game2.
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Lemma 5.4 There exists a U1-MDDHȞ adversary B such that |Pr [Game2(A) = 1]−Pr [Game3(A) = 1] |
≤ AdvU1,Ȟ(B).

Lemma 5.5 There exists a SPȞ adversary B and soundness adversaries P∗1,P
∗
2 for ΨDk,+ and

ΨDk,com such that

Pr [Game3(A) = 1] ≤ 4/q + AdvSPȞ
(B) + AdvΨDk,+

(P∗1) + AdvΨDk,com
(P∗2).

Proof: Pr[det((gi∗ ||gn+1)) = 0] = Pr[det((hi∗ ||hn+1)) = 0] ≤ 2/q, by the Schwartz-Zippel lemma.
Then, with probability at least 1 − 4/q, gi∗h

>
i∗ is linearly independent from {gih>j : (i, j) ∈ [n +

1]2 \ {(i∗, i∗)}} which implies that gi∗h
>
i∗ /∈ Span({Ci,j + Di,j : (i, j) ∈ In,1}}). Additionally

Game3(A) = 1 implies that bi∗ /∈ {0, 1} while the verifier accepts the proof produced by A, which
is (ĉ∆, ď, (Θ̂b(b−1), Π̌b(b−1)), {(ρ̂X , σ̌X)}X∈{b(b−1),b−b}). Since {ȟi∗ , ȟn+1} is a basis of Ȟ2, we can

define wh, bi∗ as the unique coefficients in Zq such that ď = bi∗ȟi∗ +whȟn+1. We distinguish three
cases:

1) If ĉ∆ 6= ∆ĉ, we can construct an adversary B against the SPȞ Assumption that outputs
ĉ∆ −∆ĉ ∈ ker(ǎ>).

2) If ĉ∆ = ∆ĉ but bi∗ 6= bi∗ . Given that (bigi∗ , b̄i∗hi∗) is linearly independent from {(gi∗ ,hi∗), (gn+1,hn+1)}
whenever bi∗ 6= b̄i∗ , an adversary P∗2 against ΨDk,com outputs the pair (ρ̂b−b, σ̌b−b) which is a

fake proof for (ĉ∆, ď).

3) If ĉ∆ = ∆ĉ and bi∗ = bi∗ , then bi∗(bi∗ − 1) 6= 0. If we express Θb(b−1) + Πb(b−1) as a linear

combination of gih
>
j , the coordinate of gi∗h

>
i∗ is bi∗(bi∗ − 1) 6= 0 and thus Θb(b−1) + Πb(b−1) /∈

Span({Ci,j + Di,j : (i, j) ∈ In,1}). The adversary P∗1 against ΨDk,+ outputs the pair (ρ̂b(b−1),

σ̌b(b−1)) which is a fake proof for (Θ̂b(b−1), Π̌b(b−1)).

This concludes the proof of soundness. Now we prove Zero-Knowledge.

Theorem 5.6 The proof system is perfect quasi-adaptive zero-knowledge.

Proof: First, note that the vector ď ∈ Ȟ2 output by the prover and the vector output by S2 follow
exactly the same distribution. This is because the rank of Ȟ is 1. In particular, although the
simulator S2 does not know the opening of ĉ, which is some b ∈ {0, 1}n, there exists wh ∈ Zq such

that ď = Ȟ
(

b
wh

)
. Since R is chosen uniformly at random in Z2×2

q , the proof (Θ̂b(b−1), Π̌b(b−1)) is

uniformly distributed conditioned on satisfying check 2) of algorithm V. Therefore, these elements
of the simulated proof have the same distribution as in a real proof. This fact combined with the
perfect zero-knowledge property of ΨDk,+ and ΨDk,com concludes the proof.
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5.5 Extensions

5.5.1 CRS Generation for Individual Commitments

A natural way to extend our construction to individual commitments (distribution (b) from Sect.
5.2) is the following. The only change is that the matrix ∆ is sampled uniformly from Z2×2n

q (the

distribution of Ȟ is not changed). Thus, the matrix Ĝ := ∆Û has 2n columns instead of n+ 1 and
ĉ∆ := Ĝ

(
b
wg

)
for some wg ∈ Znq . In the soundness proof, the only change is that in Game2, the

extra columns are also changed to span a one-dimensional space, i.e. in this game ĝi, i ∈ [2n− 1]
and i 6= i∗, are uniform vectors in the space spanned by ĝ2n. With this approach, the proof size is
still constant and the changes to the original construction are minimal but the CRS is considerably
larger. Further, we do not know how to make the CRS linear for bit-strings of weight 1.

Therefore, we propose an alternative way to extend our result to individual commitments. In this
new construction, the matrix Ĝ is independent from Û and for all i ∈ [n], ĝi = µiĝn+1, µi ← Zq
and ĝn+1 ← Z2

q .

The proof is defined in a slightly different way. Now one computes ĉ∆ := Ĝ
(

b
w′g

)
, w′g ← Zq, and

one proves that the three commitments, ĉ, ĉ∆, ď open to the same value. Intuitively, this replaces
in the original construction the proofs that ∆ĉ = ĉ∆ and that ∆ĉ and ď open to the same value.
More specifically, this is proven by showing that (

(
ĉ
ĉ∆

)
, ď) ∈ LM̂,Ň, where.

M̂ :=

(
Û1 Û2 0̂2n×1 0̂2n×1

Ĝ1 0̂2×n ĝn+1 0̂2×1

)
and Ň :=

(
Ȟ1 0̌2×n 0̌2×1 ȟn+1

)
.

The advantage of this alternative approach is that the matrix Ĝ has now n+ 1 columns as in the
original construction as opposed to 2n in the first extension to individual commitments.

The proof of soundness must be modified in the following way. In the proof of Lemma 5.3 one sets
ĝn+1 := ŝ and ĝi∗ := t̂, similarly as done in Lemma 5.4. This guarantees that, as in the original
construction, in the last game ĝi∗ (resp. ȟi∗) is linearly independent of the rest of columns of Ĝ
(resp. Ȟ). In the last game we need to show that ĉ∆ = bi∗ ĝi∗ + w̃gĝn+1 and ď = bi∗ȟi∗ + w̃hȟn+1,
for some w̃g, w̃h ∈ Zq and that bi∗ ∈ {0, 1}. Note that the fact that (

(
ĉ
ĉ∆

)
, ď) ∈ LM̂,Ň implies that

there is some γ ∈ Z2n+2
q such that

(
ĉ
ĉ∆

ď

)
=
(

M̂
Ň

)
γ, and the fact that ĉ is perfectly binding together

with the form of M̂, Ň implies that γ =
(

b
γ′

)
. In particular, ĉ∆ = Ĝ

(
b

γ2n+1

)
= bi∗ + w̃gĝn+1 and

ď = Ȟ
(

b
γ2n+2

)
= bi∗ȟi∗ + w̃hȟn+1 for some unique bi∗ . To conclude the proof of soundness we just

need to argue that bi∗ 6= {0, 1}, leads to a contradiction. This follows from the same argument as
the original proof.

For zero-knowledge, observe that ĉ∆ is just a uniform vector in Span(ĝn+1). The simulator just
picks a random ĉ∆ and simulates the proof that (

(
ĉ
ĉ∆

)
, ď) ∈ LM̂,Ň with the appropriate trapdoor.

The rest of the proof is identical to the simulated proof in the original construction.

5.5.2 Linear Equations Satisfied by Bit-Strings

Because of the homomorphic properties of the commitments, we can easily extend it to prove
that the bit-string b satisfies

∑
i∈[n] βibi = t, for some β ∈ Znq , t ∈ Zq. If the commitment ĉ is
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a concatenation of GS commitments to bi, this can be done in the usual way with GS proofs.
But if Û is drawn from distribution (a) (see Sect. 5.2) this can also be done as follows. Define

B :=
(
β1 ... βn 0
0 ... 0 1

)
∈ Z2×(n+1)

q and let ê`i denote the i th vector of the canonical basis of Ĝ`. We
claim the following:

Bĉ− tê2
1 ∈ Span (Bûn+1)⇔

∑
i∈[n]

βibi = t.

This is justified because Bui = Ben+1
i = (1, 0)>, and then Bĉ−tê2

1 = wBûn+1 +
∑

i∈[n] biBûi−tê2
1.

So to be able to prove that
∑

i∈[n] βibi = t, we just need to add to the CRS the necessary elements

to prove membership in LBûn+1
:= {x̂ ∈ Ĝ2 : ∃w ∈ Zq, x̂ = Bûn+1w} using one of the constructions

of Sect. 2.4.

5.5.3 Bit-Strings of Weight 1

In the special case when the bit-string has only one 1 (this case is useful in some applications, see
Sect. 6), the size of the CRS can be made linear in n, instead of quadratic. To prove this statement
we would combine our proof system for bit-strings of section 5.3 and a proof that

∑
i∈[n] bi = 1 as

described above when m = 1 or using GS-proofs when m = n. In the definition of (Θ̂b(b−1), Π̌b(b−1))

in Eq. 8, one sees that for all pairs (i, j) ∈ [n]× [n], the coefficient of (Ĉi,j , Ďi,j) is bi(bj − 1). If i∗

is the only index such that bi∗ = 1, then we have:∑
i∈[n]

∑
j∈[n]

bi(bj − 1)(Ĉi,j , Ďi,j) =
∑
j 6=i∗

(Ĉi∗,j , Ďi∗,j) =: (Ĉi∗,6=, Ďi∗,6=).

Therefore, one can replace in the CRS the pairs of matrices (Ĉi,j , Ďi,j) by (Ĉi, 6=, Ďi, 6=), i ∈ [n].
The resulting CRS is linear in n.

6 Applications

Many protocols use proofs that a commitment opens to a bit-string as a building block. Since
our commitments are still of size Θ(n), our results may not apply to some of these protocols (e.g.
range proofs). Yet, there are several applications where bits need to be used independently and
our results provide significant improvements. Table 2 summarizes them.

6.1 Signatures

Some application examples are the signature schemes of [4, 5, 8, 12]. For example, in the revocable
attribute-based signature scheme of Escala et. al [12], every signature includes a proof that a set
of GS commitments, whose size is the number of attributes, opens to a bit-string. Further, the
proof of membership in a list which is discussed below can also be used to reduce the size of Ring
Signature scheme of [9], which is the most efficient ring signature in the standard model. To sign a
message m, among other things, the signer picks a one-time signature key and certifies the one-time
verification key by signing it with a Boneh-Boyen signature under vkα. Then, the signer commits
to vkα and shows that vkα belongs to the list of Boneh-Boyen verification keys (vk1, . . . , vkn) of
the parties in the ring R.
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Proof System Author Proof Size

Threshold GS

Ràfols [32] (1) (mx + 3(n− t) + 2n̄)g

Ràfols [32] (2) 2(n− t+ 1)h + 2n(g + h)

This work 2(n+ 1)g + 10(g + h)

Dynamic List

(Ring Signature)

Chandran et al. [9] (16
√
n+ 4)(g + h)

Ràfols [32] (8
√
n+ 6)g + 12

√
nh

This work (4
√
n+ 14)g + (8

√
n+ 14)h

Static List
This work (first scheme) (4

√
n+ 16)g + (2

√
n+ 22)h

This work (second scheme) (6 3
√
n+ 36)g+(6 3

√
n+ 60)h

Table 2: Comparison of the application of our techniques and results from the literature. In rows
labeled as “Threshold GS” we give the size of the proof of satisfiability of t-out-of-n sets Si, where
mx is the sum of the number of variables in Ĝ in each set Si, and n̄ is the total number of two-sided
and quadratic equations in some

⋃
i∈[n] Si. For all rows, we must add to the proof size the cost of

a GS proof of each equation in one of the sets Si. In the other rows n is the size of the list.

6.2 Threshold GS Proofs for PPEs

There are two approaches to construct threshold GS proofs for PPEs, i.e. proofs of satisfiability
of t-out-of-n equations. One is due to [16] and consists of compiling the n equations into a single
equation which is satisfied only if t of the original equations are satisfied. For the case of PPEs,
this method adds new variables and proves that each of them opens to a bit. Our result reduces
the cost of this approach, but we omit any further discussion as it is quite inefficient because the
number of additional variables is Θ(mvar + n), where mvar is the total number of variables in the
original n equations.

The second approach is due to Ràfols [32]. The basic idea behind [32], which extends [17], follows
from the observation that for each GS equation type tp, the CRS space K is partitioned into a
perfectly sound CRS space Kbtp and a perfectly witness indistinguishable CRS space Khtp.

In particular, to prove satisfiability of t-out-of-n sets of equations from {Si : i ∈ [n]} of type tp,
it suffices to construct an algorithm Kcorr which on input crsGS and some set of indexes A ⊂ [n],
|A| = t, generates n GS common reference strings {crsi, i ∈ [n]} and simulation trapdoors τi,sim,
i ∈ Ac, in a such a way that5:

a) it can be publicly verified the set of perfectly sound keys, {crsi : crsi ∈ Kbtp} is of size at least
t,

b) there exists a simulator Scorr who outputs (crsi, τi,sim) for all i ∈ [n], and the distribution of
{crsi : i ∈ [n]} is the same as the one of the keys output by Kcorr when crsGS is the perfectly
witness-indistinguishable CRS.

The prover of t-out-of-n satisfiability can run Kcorr and, for all i ∈ [n], compute a real (resp.
simulated) proof for Si with respect to crsi when i ∈ A (resp. when i ∈ Ac).

5More technically, this is the notion of Simulatable Verifiable Correlated Key Generation in [32], which extends
the definition of Verifiable Correlated Key Generation of [17].
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Ràfols gives two constructions for PPEs, the first one can be found in [32], App. C and the other
follows from [32, Sect. 7]6. Our algorithm Kcorr for PPEs7 goes as follows:

• Define (b1, . . . , bn) as bi = 1 if i ∈ A and bi = 0 if i ∈ Ac. For all i ∈ [n], let ẑi := Comm(bi) =
biû1 + riû2, ri ∈ Zq, and define τsim,i = ri, for all i ∈ Ac. Define crsi := (Γ, ẑi, û2, v̌1, v̌2).

• Prove that {ĉi} opens to b ∈ {0, 1}n and that
∑

i∈[n] bi = t.

The simulator just defines b = 0. The reason why this works is that when bi = 1, (ẑi − û1) ∈
Span(û2), therefore crsi ∈ KbPPE and when bi = 0, (ẑi − û1) /∈ Span(û2) so crsi ∈ KhPPE .

6.3 More Efficient Proof of Membership in a List

Chandran et al. construct a ring signature of size Θ(
√
n) [9], which is the most efficient ring

signature in the standard model. Their construction uses as a subroutine a non-interactive proof
of membership in some list L = (l̂1, . . . , l̂n) which is of size Θ(

√
n). The trick of Chandran et al. to

achieve this asymptotic complexity is to view L as a matrix L̂ ∈ Ĝm×m, for m =
√
n, where the i, j

th element of L̂ is l̂i,j := l̂(i,j) and (i, j) := (i − 1)m + j. Given a commitment ĉ to some element

l̂α, where α = (iα, jα), their construction in asymmetric bilinear groups works as follows :

1. Compute GS commitments in Ȟ to b1 . . . , bm and b′1, . . . , b
′
m, where bi = 1 if i = iα and 0

otherwise, and b′j = 1 if j = jα, and 0 otherwise.

2. Compute a GS proof that bi ∈ {0, 1} and b′j ∈ {0, 1} for all i, j ∈ [m], and that
∑

i∈[m] bi = 1,

and
∑

j∈[m] b
′
j = 1.

3. Compute GS commitments to x̂1 := l̂(iα,1), . . . , x̂m := l̂(iα,m).

4. Compute a GS proof that x̂j =
∑

i∈[m] bi l̂(i,j), for all j ∈ [m], is satisfied.

5. Compute a GS proof that l̂α =
∑

j∈[m] b
′
j x̂j is satisfied.

With respect to the naive use of GS proofs, Step 2 was improved by Ràfols [32]. Using our proofs
for bit-strings of weight 1 from Sect. 5.5, we can further reduce the size of the proof in step 2, see
table.

We note that although in step 4 the equations are all two-sided linear equations, proofs can only
be aggregated if the list comes from a witness samplable distribution and the CRS is set to depend
on that specific list. This is not useful for the application to ring signatures, since the CRS should
be independent of the ring R (which defines the list). If aggregation is possible then the size of the
proof in step 4 is reduced from (2g + 4h)

√
n to 4g + 8h. A complete description of the proof can

be found in Appendix D, where we also show that when the CRS depends on the list and the list
is witness samplable, the proof can be further reduced to Θ( 3

√
n).

6The construction in [32, Sect. 7] is for other equation types but can be used to prove that t-out-of-n of crs1, . . . , crsn
are perfectly binding for PPEs.

7Properly speaking the construction is for PPEs which are left-simulatable in the terminology of [32].
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Proof: (Soundness.) B receives a challenge (Â, Ǎ), A← Dk, and then it chooses Λ← Z(k+1)×m
q ,Ξ←

Z(k+1)×n
q , samples (M̂, Ň)← DΓ and computes crs := (M̂Λ, ǍΛ, Ǎ, ŇΞ, ÂΞ, Â) in the natural way.

An adversary F against the soundness outputs a vector (x̂∗, y̌∗) /∈ LM̂,Ň and a valid proofs (ρ̂∗, σ̌∗).

At this point, B computes its own proof (ρ̂†, σ̌†) using Λ and Ξ. The adversary B will output as a
response to the Dk-SKerMDH challenge the pair (r̂, š) := (ρ̂∗− ρ̂†, σ̌†− σ̌∗). We now see that with
all but probability 1/q, this is a valid solution. Indeed, if (r̂, š) 6= 0, we are done, because since
both are valid proofs, subtraction of the verification equations yields

(ρ̂∗ − ρ̂†)>Ǎ = (σ̌† − σ̌∗)>Â.

By definition r 6= s if and only if ρ∗ + σ∗ 6= ρ† + σ†. But

ρ† + σ† = Λx∗ + Ξy∗ = ∆w, ∆ := (Λ||Ξ), w :=

(
x

y

)
(10)

Since Z is a uniform random value, the CRS reveals (information theoretically) only
{
∆
(
M
N

)
,∆>A

}
about ∆. But since a) (x̂, y̌) /∈ LM̂,Ň, w is not in the image of

(
M
N

)
and b) A has more rows than

columns, it follows by a standard argument that ∆w is undetermined from the adversary’s point
of view.

Theorem A.2 [Theorem 4 repeated] If D̃k = Dk and k̃ = k, and DΓ is a witness samplable
distribution, Fig. 2 describes a QA-NIZK proof system with perfect completeness, computational
adaptive soundness based on the Dk-SKerMDH Assumption, and perfect zero-knowledge.

Proof: (Soundness.) Define m̃ := m + n and P :=
(
M
N

)
. An adversary B against Dk-SKerMDH

Assumption receives a challenge (Â, Ǎ), A← Dk. It samples (M̂, Ň,M,N) ∈ Rpar and computes

P⊥ ∈ Zm̃×(m̃−r)
q , where r = rank(P), a basis of the kernel of P>. By definition, P> = (M>||N>)

and P>P⊥ = 0, thus we can write P⊥ =
(
E
F

)
, for some matrices such that M>E = −N>F.

Adversary B samples R ∈ Z(m̃−r−1)×(k+1)
q and defines

Â′ :=

(
Â

RÂ

)
∈ Ĝ(k+m̃−r)×k, Ǎ′ :=

(
Ǎ

RǍ

)
∈ Ȟ(k+m̃−r)×k.

Then B samples (Λ̃||Ξ̃) ← Zk×m̃q . Let A0 be the first k rows of A′ (or A) and A′1 the rest of the

rows, and TA′ = A′1A
−1
0 . Then B implicitly sets (Λ||Ξ) := (Λ̃||Ξ̃) + T>A′(E

>||F>), and computes:(
ǍΛ

ÂΞ

)
=

(
Λ>Ǎ0

Ξ>Â0

)
:=

(
(Λ̃> + ETA′)Ǎ0

(Ξ̃> + FTA′)Â0

)
=

(
(Λ̃>||E)Ǎ′

(Ξ̃>||F)Â′

)
(11)

So far the argument is very similar to [25] Sect. 3.2, now comes an important difference. Adversary
B also needs to compute ΛM̂ + Ẑ and ΞŇ− Ž. Although the adversary B does not know how to
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compute ΞN or ΛM, it can compute their sum in Zq as:

ΞN + ΛM =
(

(Λ̃||Ξ̃) + T>A′(E
>||F>)

)(M

N

)
= Λ̃M + Ξ̃N =: T.

Thus, B picks Z ← Zk×tq and outputs ŇΞ := Ť − Ž and M̂Ξ := Ẑ. Now, when F outputs a valid
proof for some (x̂, y̌) /∈ LM̂,Ň, it holds that:

x̂>ǍΛ − ρ̂>Ǎ0 = σ̌>Â0 − y̌>ÂΞ ⇐⇒

x̂>(Λ̃>||E)Ǎ′ − (ρ̂>||0̂1×(m̃−r))
>Ǎ′ = (σ̌>||0̌1×(m̃−r))Â

′ − y̌>(Ξ>||F)Â′ ⇐⇒

ĉ>Ǎ′ = ď>Â′,

where ĉ> := (x̂>Λ̃− ρ̂>||x̂>E) and ď> := (y̌>Ξ̃− σ̌>|| − y̌>F).

Obviously

c− d ∈ ker((A′)>)⇐⇒ (c− d)>A′ = 0⇐⇒ (c>1 + c>2 R)− (d>1 + d>2 R) ∈ ker(A>).

while, by assumption, (x̂, y̌) /∈ LM̂,Ň and thus x̂>E 6= −y̌>F, so c− d 6= 0. We conclude with an
information-theoretic argument: because R is only revealed to B through RA the probability that
(c>1 + c>2 R) 6= (d>1 + d>2 R) is 1− 1/q, so w.h.p, (ĉ>1 + ĉ>2 R), (ď>1 + ď>2 R) solves Dk-SKerMDH.

B Additional details for QA-NIZK for Bit-Strings

B.1 Completeness

It is obvious by definition that for any ĉ ∈ LÛ,bits the vector ĉ∆ generated by an honest prover
passes the verification test described in 1).

Note that, by definition of Ĉi,j and Ďi,j , Ĉi,j Ǐ2×2 + Î2×2Ďi,j = ĝiȟj . Since bi(bi − 1) = 0 for each
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i ∈ [n],

ĉ∆

ď−
∑
i∈[n]

ȟi

>

=
∑
i∈[n]

biwhĝiȟ>n+1 + wg(bi − 1)ĝn+1ȟ
>
i +

∑
j∈[n]

bi(bj − 1)ĝiȟ
>
j


+ wgwhĝn+1ȟ

>
n+1

=
∑
i∈[n]

biwhĝiȟ>n+1 + wg(bi − 1)ĝn+1ȟ
>
i +

∑
j∈[n]
j 6=i

bi(bj − 1)ĝiȟ
>
j


+ wgwhĝn+1ȟ

>
n+1 + R̂Ǐ2×2 − Î2×2Ř

= Θ̂b(b−1)Ǐ2×2 + Î2×2Π̌b(b−1).

Finally, the rest of the proof follows from completeness of ΨDk,com and ΨDk,+.

B.2 Soundness Proof

Lemma B.1 [Lemma 5.2 repeated] Pr [Game1(A) = 1] ≥ 1

n
Pr [Game0(A) = 1] .

Proof: The probability that Game1(A) = 1 is the probability that a) Game0(A) = 1 and b)
bi∗ /∈ {0, 1}. The view of adversary A is independent of i∗, while, if Game0(A) = 1, then there is
at least one index ` ∈ [n] such that such that b` /∈ {0, 1}. Thus, the probability that the event
described in b) occurs conditioned on Game0(A) = 1, is greater than or equal to 1/n and the lemma
follows.

Lemma B.2 [Lemma 5.4 repeated] There exists a U1-MDDHȞ adversary B such that |Pr [Game2(A) = 1]−
Pr [Game3(A) = 1] | ≤ AdvU1,Ȟ(B).

Proof: The adversary B receives an instance of the U1-MDDHȞ problem, which is a pair (š, ť),
where š is a uniform vector of Ȟ2 and ť is either a uniform vector in Ȟ2 or ť = γš, for random
γ ∈ Zq.

Adversary B defines ȟn+1 := š and the rest of the columns of Ȟ are honestly sampled with the sole
exception of ȟi∗ , which is set to ť.

Given that adversary B can only compute giȟ
>
j ∈ Ȟ2×2, it defines Ďi,j := giȟ

>
j − Ťi,j and Ĉi,j :=

T̂i,j , for Ti,j ← Z2×2
q and (i, j) ∈ In,1. Note that this does not change the distribution of (Ďi,j , Ĉi,j),

which is the uniform one conditioned on Ci,j + Di,j = gih
>
j .
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The rest of the parameters are computed using a← L1, the matrix ∆ ∈ Z2×(n+1)
q and the discrete

logarithms of Ĝ. It is immediate to see that adversary B perfectly simulates Game2 when ť = γš
and Game3 when ť is uniform.

B.3 Efficiency

If we take Dk = L2, the proof is of size of 2(g + h) for ĉ∆, d̂, 4(g + h) for (Θ̂b(b−1), Π̌b(b−1)), and

4(g + h) for ρ̂b(b−1), ρ̂b−b and σ̌b(b−1), σ̌b−b. The whole proof size is 10(g + h).

The CRS is of size 4(g + h) for each pair (Ĉi,j , Ďi,j), so it adds up to 4(g + h)((n + 1)2 − n). To

represent the matrix Û we need n + 1 elements of Ĝ, 2(n + 1) elements of Ĝ for Ĝ and 2(n + 1)
elements of Ȟ for Ȟ. The size of crsΨDk,+

is 2(g + h)((n + 1)2 − n) + 12(g + h) and the size of

crsΨDk,com
is 2(g+h)(n+ 2) + 8(g+h). To represent ǎ and ǎ∆ we need n+ 2 elements of Ȟ In total,

the CRS requires 6n2 + 11n+ 33 elements of Ĝ and 6n2 + 11n+ 34 elements of Ȟ.

The verifier computes n + 3 pairings in the first step of the verification algorithm, 12 pairings in
the second step, and 24 + 16 pairings in the third step. The whole verification algorithm requires
n+ 55 pairing computations.

C QA-NIZK Arguments for Bit-Strings in Symmetric Bilinear
Groups

C.1 Symmetric Bilinear Groups

Throughout this section, (q, Ĝ,T, e, ĝ) ← Gens(1
λ) is a description of a symmetric bilinear group,

where Ĝ,T are groups of prime order q, the element ĝ is a generator of Ĝ, and e : Ĝ× Ĝ→ T is an
efficiently computable, non-degenerate bilinear map.

We retake the definition and the examples of Matrix Diffie-Hellman Assumptions given in section
2, except that we drop the sub-indexes Ĝ, Ȟ as here Ĝ = Ȟ. As a computational assumption, we
will use the Kernel Assumption in symmetric bilinear groups.

Definition C.1 [Kernel Diffie-Hellman Assumption [30]] Let Γ← Gens(1
λ). The Kernel Diffie-

Hellman Assumption in Ĝ (D`,k-KerMDH) says that every PPT Algorithm has negligible advantage

in the following game: given Â, A← D`,k, find a vector r̂ ∈ Ȟ`, r 6= 0, such that r̂>Ǎ = 0T.

A well-known instance of it is the Simultaneous Double Pairing (SDP) Assumption, which is the
L3,2-KerMDH Assumption, using the notation defined in Sect. 2.1. Recall that:

L3,2 :

a1 0

0 a2

a3 a4

 a1, a2, a3, a4 ← Zq.
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C.2 Intuition

In the symmetric case, a GS Proof that a commitment opens to a bit consists of a proof that the
committed value b is such that b(b − 1) = 0. That is, compared to the asymmetric case, one does
not need to commit to another value b and prove that b(b− 1) = 0 and b− b = 0, which would be
less efficient in terms of proof size. It is natural to ask if we can do the same when we extend our
construction to the symmetric setting, that is, if we can use the same key to commit to both groups,
set ĉ = d̂ (now, Ĝ = Ȟ) and only give a proof that bi(bi− 1) = 0 for all i ∈ [n]. Unfortunately, this
approach completely fails, as we use in several places in a crucial way that ĝi and ĥi are sampled
independently. For instance, this is essential to be able to use decisional assumptions in the image
of Ĝ, or in the image of Ĥ.

Therefore, the construction in the symmetric case follows the same lines as in the asymmetric one.
However, the construction is still a bit simpler in the symmetric case as there is no need to “split”
gih
>
j as the matrices Ci,j ,Di,j . Recall that, following the intuition given in Sect. 5.1, this was

done to allow any simulator knowing one and only one of ĝi and ȟj discrete logarithms to create a
properly distributed CRS. In the symmetric case, this happens “for free”, as ĝih

>
j can be computed

also as giĥ
>
j . As a consequence, we do not need to use our proof system from Sect. 3.2 and we can

avoid the use of the Split Kernel Assumption.

In the construction below the matrix Û is such that its last two columns are sampled from Ln+2,2

and the matrix B is sampled from L3,2, but they can easily be replaced by other matrix assumptions.
However, with this choice, if Dk is also weaker than the 2-Lin Assumption, then security is based
on assumptions which are all weaker than the 2-Lin Assumption. The construction can also be
extended to the case where ĉ is the concatenation of several GS commitments. We omit any
further details, as the extension is very similar as in the asymmetric case.

C.3 QA-NIZK Arguments For Bit-Strings

K0(1λ): Return Γ := (q, Ĝ,T, e, ĝ)← Gens(1
λ).

DΓ: The distribution DΓ over Ĝ(n+2)×(n+2) is the one induced by the following sampling procedure.
To sample Û← DΓ, pick A← Ln+2,2, for some given Ln+2,2 matrix distribution and let the
last two columns of U be equal to A, i.e. (un+1||un+2) = A. Set ui := ei, where ei is the i
th vector of the canonical basis of Zn+2

q . Finally, set Û := (û1|| . . . ||ûn+2). The distribution

DΓ defines the relation RΓ = {RÛ} ⊆ Ĝn+2 × ({0, 1}n × Z2
q), where Û ← DΓ, such that

(ĉ, 〈b,w〉) ∈ RÛ iff ĉ = Û
(
b
w

)
. The relation Rpar consists of pairs (Û,U) where Û← DΓ.

K1(Γ, Û): Let ĥn+1, ĥn+2 ← Z3
q and for all i ∈ [n], ĥi := εi,1ĥn+1 + εi,2ĥi,2, where εi,1, εi,2 ← Zq.

Define Ĥ := (ĥ1|| . . . ||ĥn+2). Choose ∆ ← Z3×(n+2)
q , define Ĝ := ∆Û and define ĝi :=

∆ûi ∈ Ĝ3, for all i ∈ [n+ 2]. For any pair (i, j) ∈ In,2, define:

Ĉi,j := ĝih
>
j ∈ Ĝ3×3,

where hj is the vector of discrete logarithms of ĥj .

Let ΨDk be an instance of a QA-NIZK proof system for proving membership in linear sub-

spaces of Ĝ9 (in symmetric groups), and let crsΨDk
← K1(Γ, {Ĉi,j}(i,j)∈In,2 , 9). Let ΨDk,com
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be an instance of our QA-NIZK proof system from Sect. 3.3 adapted to the symmetric case
and pick crsΨDk,com

← K1(Γ, Ĝ, Ĥ, n).

Let B← L3,2 and define B∆ := ∆>B ∈ Ĝ(n+2)×2.

The common reference string is given by

crsP :=
(
Û, Ĝ, Ĥ, crsΨDk

, crsΨDk,com

)
, crsV :=

(
B̂∆, B̂, crsΨDk

, crsΨDk,com

)
.

P(crsP , ĉ, (b,wg)): Pick wh ← Z2
q and then:

1. Define

ĉ∆ := Ĝ

(
b

wg

)
, d̂ := Ĥ

(
b

wh

)
.

2. Compute

Π̂b(b−1) :=
∑
i∈[n]

∑
j∈[n],
j 6=i

bi(bj − 1)Ĉi,j +
∑
i∈[2]

∑
j∈[n]

wg,i(bj − 1)Ĉn+i,j +

∑
i∈[n]

∑
j∈[2]

biwh,jĈi,n+j +
∑
i∈[2]

∑
j∈[2]

wg,iwh,jĈn+i,n+j ,

3. Compute a proof σ̂b(b−1) that Π̂b(b−1) belongs to the space spanned by {Ĉi,j}(i,j)∈In,2 ,

and a proof σ̂b−b that (ĉ∆, d̂) open to the same value using b,wg, and wh.

V(crsV , ĉ, 〈ĉ∆, d̂, Π̂b(b−1), σ̂b(b−1), σ̂b−b〉): 1. Check if ĉ>B̂∆ = ĉ>∆B̂.

2. Check if ĉ∆(d̂−
∑

i∈[n] ĥi)
> = Π̂b(b−1)Î3×3.

3. Verify proofs σ̂b(b−1), σ̂b−b for Π̂b(b−1) and (ĉ∆, d̂).

If any of these checks fails, the verifier outputs 0, else it outputs 1.
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Completeness. It is obvious by definition that any tuple (ĉ, ĉ∆) generated as described passes
the verification test described in 1). On the other hand, given that bi(bi − 1) = 0 for each i ∈ [n]:

ĉ∆

d̂−
∑
i∈[n]

ĥi

>

=
∑
i∈[n]

∑
j∈[n]

bi(bj − 1)ĝiĥ
>
j +

∑
i∈[2]

∑
j∈[n]

wg,i(bj − 1)ĝn+iĥ
>
j +

∑
i∈[n]

∑
j∈[2]

biwh,j ĝiĥ
>
j +

∑
i∈[2]

∑
j∈[2]

wg,iwh,j ĝn+iĥ
>
n+j

=
∑
i∈[n]

∑
j∈[n],
j 6=i

bi(bj − 1)Ĉi,j Î3×3 +
∑
i∈[2]

∑
j∈[n]

wg,i(bj − 1)Ĉn+i,j Î3×3 +

∑
i∈[n]

∑
j∈[2]

biwh,jĈi,n+j Î3×3 +
∑
i∈[2]

∑
j∈[2]

wg,iwh,jĈn+i,n+j Î3×3.

Finally, the rest of the proof of completeness follows from completeness of ΨDk and ΨDk,com.

Soundness. We prove the following theorem.

Theorem C.2 Let AdvPS(A) be the advantage of an adversary A against the soundness of the
proof system described above. There exist PPT adversaries B1,B2,B3,P

∗
1,P
∗
2 such that

AdvPS(A) ≤ n
(

9/q + 2AdvU2(B1) + AdvSDP(B3) + AdvΨDk
(P∗1) + AdvΨDk,com

(P∗2)
)
.

The proof follows from the indistinguishability of the following games:

Real This is the real soundness game. The output is 1 if the adversary breaks the soundness,
i.e. the adversary submits some ĉ = Û

(
b
wg

)
, for some b /∈ {0, 1}n and w ∈ Z2

q , and the
corresponding proof which is accepted by the verifier.

Game0 This game is identical to game Real except that algorithm K1 does not receive Û as a input
but it samples (Û,U) ∈ Rpar itself according to DΓ.

Game1 This game is identical to Game0 except that the simulator picks a random i∗ ∈ [n], and uses
U to check if the output of the adversary A is such that bi∗ ∈ {0, 1}. It aborts if bi∗ ∈ {0, 1}.

Game2 This game is identical to Game1 except that now the vectors ĝi, i ∈ [n] and i 6= i∗, are uniform
vectors in the space spanned by ĝn+1, ĝn+2.

Game3 This game is identical to Game2 except that now the vector ĥi∗ is a uniform vector in Ĝ3,
sampled independently of ĥn+1, ĥn+2.

It is obvious that the first two games are indistinguishable. The rest of the argument goes as
follows.
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Lemma C.3 Pr [Game1(A)] ≥ 1

n
Pr [Game0(A) = 1] .

Proof: The probability that Game1(A) = 1 is the probability that a) Game0(A) = 1 and b)
bi∗ /∈ {0, 1}. The view of adversary A is independent of i∗, while, if Game0(A) = 1, then there is
at least one index ` such that b` /∈ {0, 1}. The probability that the event described in b) occurs
conditioned on Game0(A) = 1, is greater than or equal to 1/n and the lemma follows.

Lemma C.4 There exists a U2-MDDH adversary B such that |Pr [Game1(A) = 1]−Pr [Game2(A) = 1] |
≤ AdvU2(B) + 3/q.

Proof: The adversary B receives an instance of the U2-MDDH problem, i.e. (Â, t̂), where Â is a
uniform matrix in Ĝ3×2 and t̂ is either a uniform vector t̂ in Ĝ3 or t̂ = Âγ, for γ ← Z2

q . The
simulator B defines all the parameters honestly, except that the U2-MDDH challenge is embedded
in the matrix Ĝ.

Let D̂ := (Â||t̂). Adversary B picks i∗ ← [n], W0 ← Z3×(i∗−1)
q , W1 ← Z3×(n−i∗)

q , ĝi∗ ← Ĝ3, and
defines Ĝ := (D̂W0||ĝi∗ ||D̂W1||Â).

In the real algorithm K1, the generator picks the matrix ∆ ∈ Z3×(n+2)
q . Although B but does not

know ∆, it can compute ∆̂ = ĜU−1, given that U is full rank and B sampled (Û,U) itself. It is
easy to see that it can generate the rest of the elements of the common reference string using ∆̂,
the discrete logarithms of Û, Ĥ and B̂.

In case t̂ is uniform over Ĝ3, by the Schwartz-Zippel lemma det(D̂) = 0 with probability at most
3/q. Thus, with probability at least 1−3/q, D̂ is a full rank matrix and Ĝ is uniform over Ĝ3×(n+2)

as in Game1. On the other hand, in case t̂ = Âγ, {ĝn+1, ĝn+2} is a basis for Span(D̂) and each ĝi,
i ∈ [n], i 6= i∗, is in the space spanned by ĝn+1, ĝn+2 as in Game2.

Lemma C.5 There exists a U2-MDDH adversary B such that |Pr [Game2(A) = 1]−Pr [Game3(A) = 1] |
≤ AdvU2(B).

Proof: The adversary B receives an instance of the U2-MDDH problem, i.e. (Â, t̂), where Â is a
uniform matrix of Ĝ3×2 and t̂ is either a uniform vector t̂ in Ĝ3 or t̂ = Âγ, γ ← Z2

q . The simulator

B defines (ĥn+1||ĥn+2) := Â and the rest of the columns of Ĥ are honestly sampled with the sole
exception of ĥi∗ , which is set to t̂. The rest of the parameters are computed by using B ← L3,2,

the matrix ∆ ∈ Z3×(n+2)
q , and the matrix of discrete logarithms of Û.

It follows directly that adversary B perfectly simulates Game2 when t̂ = Âγ and Game3 when t̂ is
uniform the output of B.

Lemma C.6 There exists a SDP adversary B, and soundness adversaries P∗1,P
∗
2 for ΨDk and

ΨDk,com, respectively, such that Pr [Game3(A) = 1] ≤ 6/q+AdvSDP(B)+AdvΨDk
(P∗1)+AdvΨDk,com

(P∗2).
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Proof: Let E be the event that {gi∗ ,gn+1,gn+2} is a basis of Ĝ3 and {ĥi∗ , ĥn+1, ĥn+2} is a basis
of Ĝ3 (when parameters are generated as in Game3). Clearly, Pr [E] = 1− 6/q, and

Pr [Game3(A) = 1] = Pr [Game3(A) = 1|Ec] Pr [Ec] + Pr [Game3(A) = 1|E] Pr [E]

≤ 6/q + Pr [Game3(A) = 1|E] .

We next show that Pr [Game3(A) = 1|E] ≤ AdvSDP(B) + AdvΨDk
(P∗1) + AdvΨDk,com

(P∗2), which

concludes the proof.

Indeed, when E occurs, gi∗ĥ
>
i∗ is linearly independent from {giĥ>j : (i, j) ∈ [n + 2]2 \ {(i∗, i∗)}}.

Additionally Game3(A) = 1 implies that bi∗ /∈ {0, 1}, while the verifier accepts the proof produced
by A. Further, in this game, {ĥi∗ , ĥn+1, ĥn+2} is a basis of Ĝ3, so we can define wv ∈ Z2

q , bi∗ ∈ Zq
as the unique coefficients such that d̂ = bi∗ĥi∗ +wh,1ĥn+1 +wh,2ĥn+2. We distinguish three cases:

1) If ĉ∆ 6= ∆ĉ, we can construct an adversary B against the SDP Assumption. The SDP
challenge is the matrix B̂ included in the common reference string. The adversary computes
∆ĉ and outputs ĉ∆−∆ĉ. This solves the SDP problem since both ĉ∆ and ∆ĉ pass the check
1) of the verification algorithm, so (∆ĉ− ĉ∆)>B̂ = (0T 0T).

2) If ĉ∆ = ∆ĉ but bi∗ 6= bi∗ , this means that (ĉ∆, d̂) is not in the space associated to crsΨDk,com
.

This is because (bi∗ ĝi∗ , bi∗ĥi∗) is l.i. from {(ĝi∗ , ĥi∗), (ĝn+1, ĥn+1), (ĝn+2, ĥn+2)} whenever
bi∗ 6= bi∗ . Thus, we can construct an adversary P∗2 against the soundness of ΨDk,com which

outputs σ̂ as a fake proof for (ĉ∆, d̂).

3) If ĉ∆ = ∆ĉ, and bi∗ = bi∗ , then bi∗(bi∗ −1) 6= 0 (otherwise this would contradict the fact that
b∗i /∈ {0, 1}). But in this case we can construct an adversary P∗1 against the soundness of ΨDk
which outputs σ̂b(b−1) as a fake proof for Π̂b(b−1). Indeed, Πb(b−1) /∈ Span({Ci,j : (i, j) ∈ In,2})
given that the coordinate of Πb(b−1) in gi∗ĥ

>
i∗ is bi∗(bi∗ − 1) 6= 0.

This concludes the proof of soundness, we now prove zero-knowledge.

Zero-Knowledge.

• S1(Γ, Û): The simulator receives as input a description of a symmetric bilinear group Γ and
a matrix Û ∈ Ĝ(n+2)×(n+2) sampled according to distribution DΓ. It generates and outputs
the common reference in the same way as K1, but additionally it also outputs the simulation
trapdoor

τ =
(
H,∆, τΨDk

, τΨDk,com

)
.
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• S2(crsP , ĉ, τ): Compute ĉ∆ := ∆ĉ. Then pick random (wh,1, wh,2) and define

d := H



0
...

0

wh,1

wh,2


= wh,1ĥn+1 + wh,2ĥn+2.

Then set:

Π̂b(b−1) := ĉ∆

d−
∑
i∈[n]

ĥi

> .
Finally, compute proofs σ̂b(b−1) and σ̂b−b for Π̂b(b−1) and (ĉ∆, d̂) using τΨDk

and τΨDk,com
.

Lemma C.7 The proof system is perfect quasi-adaptive zero-knowledge.

Proof: First, note that the vector d̂ ∈ Ĝ3 output by the prover and the vector output by S2 follow
exactly the same distribution. This is because the rank of Ĥ is 2. In particular, although the

simulator S2 does not know b ∈ {0, 1}n, there exist wh,1, wh,2 ∈ Zq such that d̂ = H

 b

wh,1

wh,2

. On

the other hand, it is obvious by construction that Π̂b(b−1) is uniquely determined by ĉ, d̂ and the
rest of the argument follows from the perfect zero-knowledge property of ΨDk and ΨDk,com.

C.4 Efficiency

When Dk = L2, our proofs consist of 6 group elements for ĉ∆ and d̂, 9 group elements for Π̂b(b−1),

and 4 group elements for σ̂b(b−1) and σ̂b−b. The whole proof consist of 19 elements of Ĝ.

The CRS consists of 9 group elements for each Ĉi,j , which sums up to a total of 9((n + 2)2 − n).

To represent Û we need 2(n+ 1) group elements, 3(n+ 2) elements for matrix Ĝ, 3(n+ 2) elements
for Ĥ, 2((n + 2)2 − n) + 33 elements for crsΨDk

, 2n + 36 elements for crsΨDk,com
, and 4 + 2(n + 2)

elements for B̂, B̂∆. The whole CRS needs a total of 11n2 + 45n+ 135 elements of Ĝ.

The verifier computes 2n + 10 pairings in the first step of the verification algorithm, 18 pairings
in the second step, 38 pairings in the last step. The whole verification algorithm requires 2n + 66
pairing computations.
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D Complete Description of Applications

D.1 More Efficient Proof of Membership in a List of Vectors

For our proof of membership in a (witness samplable, static) list of size Θ( 3
√
n) which we describe

next, we use as a building block our improvement of the proof of membership in a list of Chandran
et al. extended to vectors, i.e. to the case where L = (̂l1, . . . , l̂n) is a list of vectors of length `.
In such a proof, we show that some commitment ĉ opens to a vector l̂α, where α = (iα, jα) (recall
that (i, j) =

√
n(i− 1) + j).

1. Compute GS commitments in Ȟ to b1 . . . , bm and b′1, . . . , b
′
m, where bi = 1 if i = iα and 0

otherwise, and b′j = 1 if j = jα, and 0 otherwise.

2. Compute a proof that bi ∈ {0, 1} and b′j ∈ {0, 1} for all i, j ∈ [m], using the proof system of
Sect. 5.3.

3. Compute GS proofs that
∑

i∈[m] bi = 1 and
∑

j∈[m] b
′
j = 1.

4. Compute GS commitments to each coordinate of x̂1 := l̂(iα,1), . . . , x̂m := l̂(iα,m).

5. Compute an aggregated GS proof that the equations x̂j =
∑

i∈[m] bîl(i,j), for all j ∈ [m], are
satisfied, as detailed in Sect. 4.

6. Compute a GS proof that l̂α =
∑

j∈[m] b
′
jx̂j is satisfied.

We emphasize that the CRS depends on the list L. This is necessary to aggregate the proofs as
in Step 4. More specifically, to aggregate the proof of the equations x̂j =

∑
i∈[m] bîl(i,j) , j ∈ [m]

(that is, a total of `k equations), we need to include in the CRS some information which depends
on the coordinates of l̂(i,j) as explained in Sect. 5.3.

Theorem D.1 If L is witness samplable, the above protocol is a perfectly complete, computation-
ally sound, and computationally zero-knowledge proof system for the language of commitments to
elements from the list L.

Proof: Completeness follows directly from the completeness of the building blocks. Soundness
follows directly from the perfect soundness of GS proofs together with the computational soundness
of aggregation of GS proofs. For computational zero-knowledge, if crsGS := (Γ, û1, û2, v̌1, v̌2) is the
GS common reference string in the soundness setting as defined in Sect. 2.2, switch to a game where
v̌1 = εv̌2. Under the DDH Assumption in Ȟ, the new CRS is computationally indistinguishable
from the original CRS. In a simulated proof, commit to bi = 0, b′j = 0 for all i, j ∈ [m]. In step
2, simply compute a real proof. In step 3, use the GS simulation algorithm (with trapdoor ε) to
simulate the proof. In Step 4, set x̂j = 0̂. Finally, in step 6, simulate a proof using ε. It is not hard
to see that such a proof can be simulated even without knowledge of an opening of ĉ.
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D.2 A Θ( 3
√
n) Proof of Membership in a Witness Samplable and Static List

We give a proof of membership in a list with improved asymptotic proof size when the list is drawn
from a witness samplable distribution and the CRS depends on the list.

The main idea is to combine the previous proof of membership in a list with a Split Kernel Assump-
tion. Specifically, the CRS includes a matrix Ǎ, A ← Dm,2, whose rows are denoted ǎ1, . . . , ǎm
and a list

L′ :=

∑
i∈[m]

ai l̂(i,1,1),
∑
i∈[m]

ai l̂(i,1,2), . . . ,
∑
i∈[m]

ai l̂(i,m,m)

 ∈ Ĝ2×m2
,

where m := 3
√
n, (i, j, k) = m2(i − 1) + m(j − 1) + k ∈ [n]. As before, the goal to prove is that a

commitment ĉ opens to some l̂α ∈ L = (l̂1, . . . , l̂n) and (iα, jα, kα) are such that α = (iα, jα, kα).

1. Commit to ŷ :=
∑

i∈[m] ai l̂(i,jα,kα) such that α = (iα, jα, kα).

2. Using the proof described in Sect. D.1, show that ŷ is an element of L′.

3. Compute commitments to ẑi := l̂(i,jα,kα), for each i ∈ [m].

4. Compute a GS proof for the equations ŷȟ =
∑

i∈[n] ǎiẑi.

5. Compute GS commitments in Ȟ to b1 . . . , bm ∈ {0, 1}, where bi = 1 if i = iα and 0 otherwise.

6. Using our proof system from Sect. 5.3 prove that bi ∈ {0, 1} for all i ∈ [m].

7. Compute GS proofs for the satisfiability of equations
∑

i∈[m] bi = 1 and l̂α =
∑

i∈[m] biẑi.

The first step is to commit to ŷ :=
∑

i∈[m] ai l̂(i,jα,kα) and use the previous proof system to prove

ŷ ∈ L′. The next step is to commit to ẑi := l̂(i,jα,kα) and prove that
∑

i∈[m] ǎiẑi = ȟŷ holds. Finally,

steps 5 and 6 prove that l̂α is an element of the list (ẑ1, . . . , ẑm). For the last statement, compute
GS commitments to bi, i ∈ [m], and prove that

∑
i∈[m] biẑi = l̂α,

∑
i∈[m] bi = 1 and bi ∈ {0, 1}.8

Theorem D.2 If L is witness samplable, the above protocol is a perfectly complete, computation-
ally sound, and computationally zero-knowledge proof system for the language of commitments to
elements from the list L.

Completeness follows directly from the completeness of the building blocks.

Proof: Completeness follows directly from the completeness of the building blocks. Soundness
can be argued as follows. If the list is witness samplable, the CRS can be generated given an
instance of the Dm,2 − SKerMDH Assumption, (Â, Ǎ). By the soundness of the extension of the

proof of Chandran et al. of Sect.D.1, it holds that ŷ =
∑

i∈[m] ai l̂(i,j,k) for some j, k ∈ [m]. Because

of the perfect soundness of GS proofs it must hold that
∑

i∈[m] ǎiẑi = ŷȟ =
∑

i∈[m] ǎi l̂(i,j,k). It

8Such statement can also be proven using again the proof of membership in a list, and the proof will be of size
Θ( 6
√
n). Note this is not exactly a proof of membership in a list, since only the commitments to the elements in

the list are public. However, it is not hard to construct a proof system for that statement using the same ideas as
Chandran et al.
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must also be the case that ẑ1 = l̂(1,j,k), . . . , ẑm = l̂(m,j,k), because otherwise the pair (ρ̂, 0̌), where

ρ̂ := (ẑ1 − l̂(1,j,k), . . . , ẑm − l̂(m,j,k)) is a solution to the Dm,2-SKerMDH challenge, as ρ̂Ǎ = 0̌Â.
Soundness of the last step implies that bi ∈ {0, 1}, for all i ∈ [m], and that

∑
i∈[m] bi = 1. Therefore,

there exists a unique i ∈ [m] such that bi = 1. Finally, l̂α =
∑

i∈[m] biẑi implies that ĉ opens to

l̂α = ẑi = l̂(i,j,k). Zero-knowledge follows from the same argument as in the proof of Theorem D.1.

E Structure Preserving Linearly Homomorphic Signatures

Linearly-homomorphic structure preserving signatures [1, 7] enable to sign group elements in G,
where G is a group and to publicly derive signatures of new elements which are a linear combination
of other signed messages. We take the definition from [26], except that we do not identify the
elements of G with vectors in Ĝn, for some group Ĝ. The reason is that G might be some space of
the form Ĝm × Ȟn.

Definition E.1 [SPLHS scheme] A linearly homomorphic structure-preserving signature scheme
over the group G consists of a tuple of efficient algorithms Φ=(SignGen, Sign, SignDerive, Verify)
for which the message space is M := G, with the following specifications.

SignGen(1λ, n) : is a randomized algorithm that takes as input a security parameter λ ∈ N and an
integer n and outputs a key pair (pk, sk). The public key pk specifies a Zq vector space G of
dimension n.

Sign(sk,m): is a possibly probabilistic algorithm that takes as input a private key sk and m ∈ G.
It outputs a signature σ ∈ G.

SignDerive(pk, {ωi,σi,mi}i∈[`]): is a (possibly probabilistic) signature derivation algorithm. It
takes as input a public key pk as well as ` pairs (ωi,σi), each of which consists of a
weight ωi ∈ Zq and a signature σi ∈ G. The output is a signature σ ∈ G on the vector
m =

∑
i∈[`] ωimi.

Verify(pk,m,σ): is a deterministic algorithm that takes in a public key pk, a signature σ, and a
vector m. It outputs 1 if σ is deemed valid and 0 otherwise.

Correctness is expressed by imposing that, for all security parameters λ ∈ N, all integers n ∈ poly(λ)
and all pairs (pk, sk)← SignGen(1λ, n), the following holds:

1. For all m ∈ G, if σ = Sign(sk,m), then we have Verify(pk,m,σ) = 1.

2. For any ` > 0 and any set of triples {(ωi,σi,mi)}i∈[`], if Verify(pk,mi,σi) = 1 for each i ∈ [`],
then Verify(pk,

∑
i∈[`] ωimi, SignDerive(pk, {(ωi,σi)})) = 1

In order to get a uniform definition for different types of forgery, we will say that a pair (m∗,σ∗)
is a forgery if P (m∗, Q) = 1, where P is a predicate on (m∗, Q) and Q is the set of reveal queries
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made by the adversary. We stress that the predicate P is not always efficiently computable. For
instance, for the scheme of Libert et al. ([26]), this predicate is 1 iff m∗ is in the linear span of
previous queries, and this is, in general, hard to decide in the group G (although it might be easy
for some set Q).

Definition E.2 A SPLHS scheme Φ = (SignGen, Sign,Verify,SignDerive) is secure against Type P
adversaries if no PPT adversary has non-negligible advantage in the game below:

1. The adversary A chooses an integer n ∈ N and sends it to the challenger who runs SignGen(1λ, n)
and obtains (pk, sk) before sending pk to A.

2. On polynomially-many occasions, A can interleave the following kinds of queries.

Signing queries: A chooses a vector m ∈ Gen. The challenger picks a handle h and com-
putes σ ← Sign(sk,m). It stores (h,m,σ) in a table T and returns h.

Derivation queries: A chooses a vector of handles ~h = (h1, . . . , h`) and a set of coefficients
{ωi}i∈[`]. The challenger retrieves the tuples {(hi,mi,σi)}i∈[`] from T and returns ⊥ if
one of these does not exist. Otherwise, it computes m =

∑
i∈[`] ωimi and runs σ ←

SignDerive(pk, {(ωi,σi)}i∈[`]). It also chooses a handle h, stores (h,m,σ) in T and
returns h to A.

Reveal queries: A chooses a handle h. If no tuple of the form (h,m,σ) exists in T , the
challenger returns ⊥. Otherwise, it returns σ to A and adds (m,σ) to the set Q.

3. A outputs a signature σ∗ and a vector m∗. The adversary A wins if P (m∗, Q) = 1.

As advantage is its probability of success taken over all coin tosses.

Libert et al. also used a set T of tags in order to add up many instances of their signature scheme
in only one. For simplicity, we omit this parameter.

E.1 One-Time LHSPS Signatures in Different Groups

The one-time linearly homomorphic signature of Libert, Peters and Yung [27] implies a QA-NIZK
Argument for linear spaces. Similarly, our constructions of QA-NIZK proofs for membership in
concatenated subspace and for sum in subspace (in the case where the space is not from a witness
samplable distribution) also have an equivalent one-time structure preserving signature scheme
with different security properties.

In particular, for subspace concatenation, “one-time” means that the adversary is unable to sign
vectors which are not in the span of previously signed vectors, namely, the adversary cannot output
a signature for a pair (x̂∗, y̌∗) ∈ Ĝm× Ȟn if ((x∗)>||(y∗)>) is linearly independent from the vectors
(x>i ||y>i ), i ∈ [qs], (the concatenation of two vectors), where (x̂i, y̌i) are the signing queries of the
adversary. The discussion for the scheme which results from our Sum-in-Subspace QA-NIZK proof,
results in a different notion of “one-time” — this is captured in the security definition by a different
predicate P —, see discussion below.

In either case, the size of the resulting signatures is (k+1)(g+h) under the SKerMDH Assumption,
but if security against random message attacks is sufficient (meaning that the signatures in the set
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Q which are seen by the adversary are sampled uniformly at random), the signature size can be
reduced to k(g + h) (essentially, in this case one can sample A from Dk). This is inspired by the
one-time constructions of structure-preserving signatures of [24] secure against random message
attacks. We omit any further discussion of this case, as it is a straightforward generalization of our
QA-NIZK proofs in the witness samplable setting using the ideas of [24].

Our construction is based on the SKerMDH Assumption introduced in section 2. Following the
syntactic definition of section E, our scheme assumes G = Ĝm× Ȟn and the length of the messages
is n+m.

• SignGen(1λ,m, n): Let (q, Ĝ, Ȟ,T, e, ĝ, ȟ) ← Gena(1
λ). Choose A ← Dk, Λ,Ξ ← Z(k+1)×m

q ,
AΛ := Λ>A, AΞ := Ξ>A The secret key is sk = (Λ,Ξ), while the public key is defined to be

pk = (Â, ÂΞ, Ǎ, ǍΛ) ∈ Ĝ(k+1)×k × Ĝm×k × Ȟ(k+1)×k × Ȟm×k.

• Sign(sk, (x̂, y̌)): To sign a vector (x̂, y̌) ∈ Ĝm × Ȟm, pick z ← Z(k+1)
q and output the pair

(ρ̂, σ̌) ∈ Ĝ(k+1) × Ȟ(k+1), defined as:

ρ̂ := Λx̂ + ẑ, σ̌ := Ξy̌ − ž.

• SignDerive(pk, {(ωi, ρ̂i, σ̌i)}`i=1): given the public key pk, and ` tuples (ωi, ρ̂i, σ̌i), output the

pair (
∑`

i=1 ωiρ̂i,
∑`

i=1 ωiσ̌i) ∈ Ĝ(k+1) × Ȟ(k+1).

• Verify(pk, (x̂, y̌), (ρ̂, σ̌)) is a deterministic algorithm, that takes as input a public key pk, a
signature (ρ̂, σ̌) and returns 1 if and only if (ρ̂, σ̌) satisfies

ρ̂>Ǎ + σ̌>Â = x̂>ǍΛ + y̌>ÂΞ.

Correctness. If a signature is correctly generated then

ρ̂>Ǎ− x̂>ǍΛ = ẑ>Ǎ σ̌>Â− y̌>ÂΞ = −ž>Â.

Therefore the verification algorithm outputs 1 on a correctly generated signature. The proof of
correctness of the signature derivation algorithm follows a similar argument.

Let Q = {(x̂i, y̌i)}i∈[qs] be some set of elements of Ĝm × Ȟn. We define the predicate P as

P ((x̂, y̌), Q) = 1 iff (x>||y>) ∈ Z2m
q is not in the space spanned by {(x>i ||y>i ) : i ∈ [qs]}.

Theorem E.3 The signature scheme is Type P unforgeable if the SKerMDH Assumption holds in
Ĝ, Ȟ.

The argument is almost identical to [26]. Proof: We show how to construct an algorithm B which

takes as input an instance (Â, Ǎ) of the SKerMDH Assumption and outputs a pair of vectors
(r̂, š) ∈ Ĝ3 × Ȟ3, r 6= s, such that r̂>Ǎ = š>Â given oracle access to a forger F against the
signature scheme (see Sect. E).

Algorithm B starts by honestly running the key generation algorithm using a randomly chosen
sk = (Λ,Ξ). Any signature query of F on a vector (x̂, y̌) is honestly answered by B, by running
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the signing algorithm. The game ends with F outputting a vector (x̂∗, y̌∗) with a valid signature
(ρ̂∗, σ̌∗). At this point, B computes its own signature (ρ̂†, σ̌†) using the secret key sk := (Λ,Ξ).
The adversary B will output as a response to the SKerMDH challenge the pair (ρ̂∗ − ρ̂†, σ̌† − σ̌∗).

We now see that, with overwhelming probability, this is a valid answer to the SKerMDH challenge.
Indeed, since both signatures satisfy the verification equation, we can subtract the verification
equation of each pair, obtaining:

(ρ̂∗ − ρ̂†)>Ǎ = (σ̌† − σ̌∗)>Â

Therefore, all we need to argue is that ρ∗ − ρ† 6= σ† − σ∗ with overwhelming probability. This is
equivalent to show that the probability that ρ∗ + σ∗ = ρ† + σ† is negligible. The key point of the
argument is that

ρ† + σ† = Λx∗ + Ξy∗ =
(
Λ Ξ

)(x∗

y∗

)
is information theoretically hidden to F.

The rest of the argument is identical to [26]. The argument goes as follows: since, by assumption,(
x∗

y∗

)
is independent of all previous queries, then there is some information about

(
Λ Ξ

)
which

is information theoretically hidden. Thus, ρ†+σ† is information theoretically hidden and from the
adversary’s point of view it is equally likely that it has any out of q potential values.

Signing the Sum of Two Linear Spaces. Whenm = n, we can adapt the previous construction
to a different forgery condition namely, we can prove security against a different type of adversary.
Namely, in [26] the scheme is secure against an adversary whose goal is to output a forgery for
a message which is linearly independent from all of its signing queries. In our case, we require
that the adversary cannot output a signature for a pair (x̂∗, y̌∗) ∈ Ĝm × Ȟm if x∗ + y∗ is linearly
independent from the vectors xi+yi, i ∈ [qs], where (x̂i, y̌i) are the signing queries of the adversary.

Our construction is like the previous one taking Ξ = Λ. Indeed, in this case the adversary only
learns Λx∗ + Ξy∗ = Λ(x∗ + y∗), and identically the same argument follows.

F The Split Kernel Assumption

In this section we discuss in more detail the new computational assumption introduced in Sect. 2.1.

We first note that it implies the Kernel MDH Assumption.

Lemma F.1 D`,k-SKerMDH⇒ D`,k-KerMDHȞ.

Proof: Suppose there exists an adversary B against the D`,k-KerMDHȞ assumption. We show how
to construct an adversary A against the D`,k-SKerMDH Assumption. Adversary A receives as a

challenge (Â, Ǎ) and forwards Ǎ to B, who outputs with non-negligible probability a vector r̂ such
that r̂>Ǎ = 0T. Then A simply outputs (r̂, 0̌) as a solution to the D`,k-SKerMDH challenge.
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We prove that the reciprocal is true in the generic bilinear model. A rough idea of the proof was
given already in Sect. 2.1, here we give the formal argument.

We use the natural generalization of Shoup’s generic group model [34] to the (a)symmetric bilinear
setting, as it was used for instance in [6]. In such a model an adversary can only access elements
of Ĝ, Ȟ or T via a query to a group oracle, which gives him a randomized encoding of the queried
element. The group oracle must be consistent with the group operations (allowing to query for the
encoding of constants in either group, for the encoding of the sum of previously queried elements
in the same group and for the encoding of the product of pairs in Ĝ × Ȟ. More details, can be
found for instance in [6].

Lemma F.2 IfD`,k-KerMDH holds in generic symmetric bilinear groups, thenD`,k-SKerMDH holds
in generic asymmetric bilinear groups.

Proof: Suppose there is an adversary A in the asymmetric generic bilinear group model against the
D`,k-SKerMDH assumption. We show how to construct an adversary B against the D`,k-KerMDHȞ
Assumption in the symmetric generic group model.

Adversary B has oracle access to the randomized encodings σ : Zq → {0, 1}n, and σT : Zq → {0, 1}n.
It receives as a challenge {σ(aij)}1≤i≤`,1≤j≤k.

Adversary B simulates the generic hardness game for A as follows. It defines encodings ξ1 : Zq →
{0, 1}n, ξ2 : Zq → {0, 1}n and ξT : Zq → {0, 1}n as ξ1 = σ, ξT = σT and ξ2 a random encoding
function. B keeps a list LA with the values that have been queried by A to the group oracle. The
list is initialized as LA = {{(Ai,j , ξ1(aij), 1), (Ai,j , ξ2(aij), 2)}1≤i≤`,1≤j≤k}, where ξ2(aij) ∈ {0, 1}n
are chosen uniformly at random conditioned on being pairwise distinct. Adversary B also keeps
a list LB with the queries it makes to its own group oracle. The list LB is initialized as LB =
{{(Ai,j , σ(aij), 1)}1≤i≤`,1≤j≤k}

Each element in the list LA is a tuple (Pi, si, xi), where Pi ∈ Zq[A11, . . . , A`k], xi ∈ {1, 2, T} and
si = ξxi(Pi(a11, . . . , a`k)). The polynomial Pi is one of the following: a) Pi = Aij , i.e. it is one
of the initial values in the query list LA or b) a constant polynomial or c) Pi = Pc + Pd for some
(Pc, sc, x), (Pd, sd, x) ∈ LA or d) Pi = PcPd for some (Pc, sc, 1), (Pd, sd, 2) ∈ LA, xi = T . For LB

the same holds except that xi ∈ {1, T} and except that d) is changed to: d) Pi = PcPd for some
(Pc, sc, 1), (Pd, sd, 1) ∈ LB and xi = T .

Without loss of generality we can identify the queries of A with pairs (Pi, xi) meeting the restrictions
described above. If (Pi, xi) was queried before, it replies with the same answer si.

Else, when B receives a (valid) query (Pi, xi), if xi ∈ {1, T} it simply forwards the query to its own
group oracle, who replies with si. Then (Pi, si, xi) is appended to LB and to LA. If xi = 2, then it
forwards the query to its own group oracle as (Pi, 1). When it receives the answer si, B appends
(Pi, si, 1) to LB and it looks for the set S of all tuples (Pj , sj , 1) ∈ LB, Pj 6= Pi, such that sj = si.
For every tuple in S, B checks if there is some s̃ such that (Pj , s̃, 2) is in LA (note that, because of
the way LA is constructed, if such s̃ exists it is the same for all Pj).

If such s̃ exists, it appends (Pi, s̃, 2) in LA and it replies with s̃. Else it chooses some s̃ uniformly
at random conditioned on being distinct from all other values s such that there exist some P such
that (P, s, 2) is in LA. Finally, it appends (Pi, s̃, 2) in LA.
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Finally, A will output as a solution to the challenge a pair sq, sr such that (Q, sq, 1), (R, sr, 2) ∈ LA.
Because of the way LA and LB were constructed, there exists some s′r such that (Q, sq, 1), (R, s′r, 1) ∈
LA. B queries its group oracle for (R −Q, 1) and obtains as a reply some string sR−Q. Finally, it
outputs sR−Q as a solution to its challenge. It easily follows that A and B have exactly the same
probability of success.

Finally, we note that the L2-SKerMDH Assumption is implied by a decisional assumption introduced
in [28]. The assumption says that, given (Â, Ǎ), where A ← L2, the vector (Âw, Ǎw), w ← Z2

q ,
is computationally indistinguishable from (û, ǔ), u← Z3

q . The proof is analogous to the proof that
D`,k-MDDH ⇒ D`,k-KerMDH. Suppose that (r̂, š) is a solution to the L2-SKerMDH Assumption,

then r̂>Ǎw− š>Âw = (r̂>Ǎ− š>Â)w = 0T, while r̂>ǔ− š>û = 0T only with negligible probability
whenever r 6= s.
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