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Abstract. The Internet Engineering Task Force (IETF) is currently developing the next version of the
Transport Layer Security (TLS) protocol, version 1.3. The transparency of this standardization process
allows comprehensive cryptographic analysis of the protocols prior to adoption, whereas previous TLS
versions have been scrutinized in the cryptographic literature only after standardization. Here we look
at two related, yet slightly different candidates which were in discussion for TLS 1.3 at the point of
writing of the main part of the paper in May 2015, called draft-ietf-tls-tls13-05 and draft-ietf-
tls-tls13-dh-based.
We give a cryptographic analysis of the primary ephemeral Diffie–Hellman-based handshake protocol,
which authenticates parties and establishes encryption keys, of both TLS 1.3 candidates. We show
that both candidate handshakes achieve the main goal of providing secure authenticated key exchange
according to an augmented multi-stage version of the Bellare–Rogaway model. Such a multi-stage
approach is convenient for analyzing the design of the candidates, as they establish multiple session
keys during the exchange.
An important step in our analysis is to consider compositional security guarantees. We show that, since
our multi-stage key exchange security notion is composable with arbitrary symmetric-key protocols, the
use of session keys in the record layer protocol is safe. Moreover, since we can view the abbreviated
TLS resumption procedure also as a symmetric-key protocol, our compositional analysis allows us to
directly conclude security of the combined handshake with session resumption.
We include a discussion on several design characteristics of the TLS 1.3 drafts based on the observations
in our analysis.
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1 Introduction
The Transport Layer Security (TLS) protocol is one of the most widely deployed cryptographic protocols
in practice, protecting numerous web and e-mail accesses every day. The TLS handshake protocol allows
a client and a server to authenticate each other and to establish a key, and the subsequent record layer
protocol provides confidentiality and integrity for communication of application data. Despite its large-scale
deployment, or perhaps because of it, we have witnessed frequent successful attacks against TLS. In the
past few years alone, there have been many practical attacks that have received significant attention, either
exploiting weaknesses in underlying cryptographic primitives (such as weaknesses in RC4 [ABP+13]), errors
in the design of the TLS protocol (BEAST [Duo11], the Lucky 13 attack [AP13], the triple handshake attack
[BDF+14], the POODLE attack [MDK14], the Logjam attack [ABD+15]), or flaws in implementations (the
Heartbleed attack [Cod14], state machine attacks (SMACK [BBDL+15])). Some of these attacks apply
only to earlier versions of the TLS protocol, but for legacy reasons many parties still support versions older
than the latest one, TLS 1.2.

1.1 Towards the New Standard TLS 1.3

Partly due to the above security problems with the existing versions of TLS, but also because of additional
desirable privacy features and functional properties such as low handshake latency, the Internet Engineer-
ing Task Force (IETF) is currently drafting a new TLS 1.3 standard. As of May 2015, there were two
(slightly different) candidates in discussion: one is draft-ietf-tls-tls13-05 [Res15a] (which we shorten
to draft-05), the other one is the forked draft-ietf-tls-tls13-dh-based [Res15c] (which we shorten
to draft-dh), incorporating a different key schedule based on ideas by Krawczyk and Wee.1 In this work,
we provide a comprehensive cryptographic evaluation of the primary Diffie–Hellman-based handshake of
both drafts.2 We believe that it is important that cryptographic evaluation take place before standardiza-
tion. This contrasts with the history of TLS and its predecessor the Secure Sockets Layer (SSL) protocol:
SSL 3 was standardized in 1996, TLS 1.0 in 1999, TLS 1.1 in 2006, and TLS 1.2 in 2008, but the first
comprehensive cryptographic proof of any complete TLS ciphersuite did not appear until 2012 [JKSS12].

The protocol design in both TLS 1.3 drafts includes several cryptographic changes that are substantially
different from TLS 1.2, including: (1) encrypting some handshake messages with an intermediate session
key, to provide confidentiality of handshake data such as the client certificate; (2) signing the entire
handshake transcript for authentication; (3) including hashes of handshake messages in a variety of key
calculations; (4) encrypting the final Finished messages in the handshake with a different key than is used
for encrypting application data; (5) deprecating a variety of cryptographic algorithms (including RSA key
transport, finite-field Diffie–Hellman key exchange, SHA-1, RC4, CBC mode, MAC-then-encode-then-
encrypt); (6) using modern authenticated encryption with associated data (AEAD) schemes for symmetric
encryption; and (7) providing handshakes with fewer message flows to reduce latency.

These changes are meant in part to address several of the aforementioned attacks. While some of
those attacks are implementation-specific and escape abstract cryptographic evaluation, assessing the
cryptographic security of the design of TLS 1.33 can provide assurance that the protocol design does
not display any unexpected cryptographic weaknesses. Our goal is a comprehensive assessment of the
security of the handshake protocol in draft-05 and draft-dh. We focus solely on the handshake protocol
as a key exchange protocol; these drafts provide a cleaner separation between the key exchange in the

1Since May 2015, several follow-up draft versions of TLS 1.3 have been published that build on draft-05 but incorporate
major changes including the draft-dh key schedule. We recently adapted our analysis [DFGS16] to cover the design of
draft-10 [Res15b].

2draft-05 foresees and draft-dh sketches a subordinate pre-shared key variant relying on previously shared keys. Later
drafts merge pre-shared key and session resumption.

3When we refer to “TLS 1.3”, we mean the common features of draft-05 and draft-dh.
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handshake protocol and the use of the resulting session key in the record layer protocol. This contrasts
with TLS 1.2 and earlier, where the session key was used both for record layer encryption and encryption
of the Finished messages in the handshake, making it impossible for TLS 1.2 to satisfy standard key
exchange indistinguishability notions and requiring either (a) a more complex security model that treats
the handshake and record layer together [JKSS12] or (b) a cunning approach to release the record layer
key early [BFK+14] (see also Section 1.4). The cleaner separation in the TLS 1.3 design allows us to take a
compositional approach to the security of TLS 1.3, treating the handshake separate from the record layer,
and also allowing us to include session resumption for abbreviated handshakes.

1.2 Modeling TLS 1.3 as a Multi-Stage Key Exchange Protocol

The message flow for both drafts is similar and shown in Figures 1 and 2 along with the respective key
schedule. It is convenient to view TLS 1.3 as a multi-stage key exchange protocol [FG14] in which both
parties, the client and the server, agree on multiple session keys, possibly using one key to derive the next
one. In the first stage, the first session key is derived via an anonymous Diffie–Hellman key exchange
(in the ClientKeyShare and ServerKeyShare messages) from which a handshake master secret HMS is
computed. This handshake master secret is used to compute a handshake traffic key tkhs which encrypts the
remaining messages of the handshake and should provide some form of outsider privacy for the exchanged
certificates.

In the second stage, the parties (depending on the desired authentication level) exchange signatures
over the (hash of the) transcript under a certified key in order to authenticate. They then derive the
application traffic key tkapp for securing the application messages, the resumption master secret RMS if
they resume sessions, and the exporter master secret EMS which can be used for deriving additional keying
material. Viewing each of the keys as one of the multi-stage session keys enables us to argue about their
security, even if the other keys are leaked. Both parties conclude the protocol by exchanging Finished
messages over the transcripts, generated using HMS or a separate key.

1.3 Our Results

Security of draft-05 and draft-dh full handshakes. First, we show (in Sections 5 and 6) that both
TLS 1.3 drafts are secure multi-stage key exchange protocols where different stages and simultaneous runs
of the protocols can be unauthenticated, unilaterally authenticated, or mutually authenticated. On a high
level, this means that the handshakes establish record layer keys, resumption keys, and exporter keys that
look random to an adversary. This holds even with sessions that run concurrently and if the adversary
controls the whole network, is able to corrupt the long-term secret keys of other parties, and allowed
to reveal keys established in other sessions, thus providing quite strong security guarantees for practice.
Moreover, the multi-stage model used allows us to show that even leakage of record layer or exporter keys
in the same handshake session do not compromise each other’s security.

This requires some additions to the multi-stage key exchange security model of Fischlin and Günther
[FG14] to allow for unauthenticated sessions and post-specified peers, as described in Section 4, as well
as to handle authentication based on pre-shared symmetric keys, as described in Section 8. Notably, our
security proof only relies on so-called standard cryptographic assumptions such as the Decisional Diffie–
Hellman (DDH) assumption, unforgeability of the deployed signature scheme, collision resistance of the
hash function, and pseudorandomness of the key derivation function. This is in sharp contrast to many
other key exchange protocols, where often the key derivation function is modeled as a random oracle. The
cryptographic analysis of signed-Diffie–Hellman ciphersuites in TLS 1.2 required an uncommon (yet not
implausible) pseudorandom-oracle Diffie–Hellman assumption [JKSS12, KPW13].
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Composition theorem for use of session keys. In order to show that the keys established in TLS 1.3’s
multi-stage key exchange handshake can be safely used in the record layer encryption, we extend the
composition frameworks of Brzuska et al. [BFWW11] and Fischlin and Günther [FG14] in Section 7 to
multi-stage key exchange protocols with mixed unauthenticated, unilateral, and mutual authentication.

A key point to secure composition of multi-stage key agreement protocols with arbitrary symmetric-key
protocols in [FG14] is (session-)key independence. This roughly means that one can reveal a session key
without endangering the security of future session keys. Both TLS 1.3 drafts satisfy this, enabling us to
argue about secure composition of the full handshake protocols with, say, a secure channel protocol.4

Recent work by Badertscher et al. [BMM+15] shows that the authenticated encryption (with associated
data) used in the record layer in both TLS 1.3 drafts is secure. See also Fischlin et al. [FGMP15] for
reassuring results about the design of the record layer protocol when viewed in terms of data streams.
Our compositional approach immediately implies that the application traffic keys output by both drafts’
handshakes can be safely used in the record layer.

Security of session resumption in TLS 1.3 drafts. TLS includes a mode for abbreviated handshakes,
in which parties who have previously established a session can save round trips and computation by using
the previous key as the basis for a new session; this is called session resumption. We can treat the
abbreviated handshake as a separate symmetric-key protocol (modeled in Section 8) with an independent,
modular security analysis (in Section 9), then use our compositional approach to show that the resumption
master secrets output by the full handshake can be safely composed with the abbreviated handshake.

Comments on the design of TLS 1.3. Our results allow us to give insight on some of the design choices
of TLS 1.3, such as the role of the Finished messages and of the new session hash. Those comments follow
in Section 3, immediately after we review the structure of the TLS 1.3 handshakes in the next section.

1.4 Related Work

A significant step forward to a comprehensive analysis of TLS 1.2 handshake protocol and its implemen-
tation came with the recent work of Bhargavan et al. [BFK+14], who analyze the TLS 1.2 handshake
protocol in the agile setting, covering the various ciphersuite options in TLS 1.2, and applying the results
to a miTLS implementation [FKS11, BFK+13]. Using epochs and shared states between executions they
also capture resumption and renegotiation in TLS 1.2. We are not aware of extensions of their result to
the TLS 1.3 candidates.

A key point in the cryptographic analysis of Bhargavan et al. [BFK+14] is to overcome the issue that
the session key is already used in the final part of the handshake protocol in TLS 1.2, by separating
these steps from the rest of the handshake. They achieve this by using a different notion than session
identifiers to safely determine partners, called (peer-)exchange variables. While the designers for TLS 1.3
have eliminated the Finished-message problem, avoiding the usage of the session key in the handshake
entirely, the approach of switching to alternative notions of safe partnering turns out to be useful for
our setting, too. We introduce the notion of contributive identifiers which can be roughly thought of as
“partial” session identifiers. In contrast to [BFK+14] our contributive identifiers resemble much closer the
common session identifiers (which we also keep in our model to define session partners), and we only use
contributive identifiers for non–mutually authenticated sessions and our compositional result.

4A technical nuisance in this regard is that, for the key independence property to hold, we cannot use the common approach
to define session partnering via the (here partly encrypted) communication transcript, but need to base session partnering on
the unencrypted key exchange data. This exacerbates for example the application of the hybrid method to go from multiple
tested session keys to a single test queries.
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A main difference to the epoch-based analysis in [BFK+14] is that we use a general composition result
to deal with resumption. That is, we view the resumption step in TLS 1.3 as a special symmetric-
key protocol which follows the handshake. The approach in [BFK+14] is to consider resumption as an
abbreviated handshake protocol variant, executed in a different epoch. Finally, let us remark that the
analysis in [BFK+14] extends to the implementation level, whereas our results are purely on the abstract
level.

Concurrently to our work, Kohlweiss et al. [KMO+14] transferred their constructive-cryptography
based analysis of TLS 1.2 to (a modified version of) the draft-05 version of TLS 1.3, where they assume
that the second-stage messages are actually sent unencrypted. They do not consider the draft-dh draft,
nor do they cover the resumption step. However, our approach of integrating resumption via composition
may also be viable for their model.

1.5 Limitations

Since TLS 1.3 is still a work in progress, our analysis is inevitably limited to the draft specifications
available at the time of writing, and the actual TLS 1.3 may eventually differ from the draft versions we
have analyzed. Nonetheless, this paper’s analysis can provide insight into the design of the existing drafts.
We believe it is imperative for the cryptographic community to be engaged in the design and analysis of
TLS 1.3 before, rather than after, it is standardized.

One of the aspired design goals of TLS 1.3 is to support the possibility for zero round-trip time (0-RTT)
for the handshake protocol, which would enable transmission of application from the client to the server
on the first message flow, saving latency. This unfortunately comes with inherent problems, namely, lack
of forward secrecy and the possibility of replay attacks. draft-05 provides no specification for 0-RTT
handshakes; draft-dh introduces an extra “semi-static” public key for this purpose, however at the time of
writing draft-dh does not provide sufficient protocol detail to allow a full cryptographic analysis of this.
We do not model leakage of the draft-dh semi-static key at this point as it plays no role (for secrecy) in
our security analysis, but defer carefully crafting reasonable conditions for its exposure until the 0-RTT
handshake is specified completely.

As noted above, our compositional approach allows for the separate analysis of the full handshake, the
record layer, and the session resumption handshake, and then composition shows that the various keys
output from the handshake can be safely used with the record layer encryption and session resumption.
This suggests the following approach to prove the full TLS protocol suite to be secure: show that session
resumption itself constitutes a secure key exchange protocol (with a pre-shared symmetric key which comes
from the handshake protocol here), compose it securely with the record layer protocol, and then “cascade”
this composed symmetric-key protocol with the compositional handshake protocol. Unfortunately, one
limitation of the current composition frameworks is that composition is only supported between a key
exchange protocol with forward secrecy and an arbitrary symmetric key protocol. This holds here for the
main handshake protocol and allows us to immediately argue secure composition with session resumption
or with the record layer. However, session resumption does not provide forward secrecy (with respect to
corruption of the resumption (pre-)master secrets), so we cannot automatically conclude safe use of the
session keys output by session resumption in the record layer. Extending the composition framework to
support multi-stage key exchange protocols without forward secrecy is left for future work.

2 The TLS 1.3 Handshake Protocol
For both draft-05 and draft-dh, the handshake protocol is divided into two phases: the negotiation phase,
where parties negotiate ciphersuites and key-exchange parameters, generate unauthenticated shared key
material, and establish handshake traffic keys; and the authentication phase, where parties authenticate
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Client Server

ClientHello: rc←$ {0, 1}128

ClientKeyShare: X ← gx

ServerHello: rs←$ {0, 1}128

ServerKeyShare: Y ← gy

H1 ← H(CH‖ . . . ‖SKS)
PMS← Y x PMS← Xy

HMS← PRF(PMS, label1‖H1)
tkhs ← PRF(HMS, label2‖rs‖rc) stage 1

{EncryptedExtensions∗}
{ServerCertificate∗}: pkS
{CertificateRequest∗}

H2 ← H(CH‖ . . . ‖CR∗)
{ServerCertificateVerify∗}:

SCV← Sign(skS , H2)
H3 ← H(CH‖ . . . ‖SCV∗)

{ServerFinished}:
SF← PRF(HMS, label3‖H3)

Verify(pkS , H2, SCV)
check SF = PRF(HMS, label3‖H3)
{ClientCertificate∗}: pkC

H4 ← H(CH‖ . . . ‖CCRT∗)
{ClientCertificateVerify∗}:
CCV← Sign(skC , H4)

H5 ← H(CH‖ . . . ‖CCV∗)
{ClientFinished}:
CF← PRF(HMS, label4‖H5)

Verify(pkC , H4, CCV)
check CF = PRF(HMS, label4‖H5)

MS← PRF(HMS, label5‖H5)
tkapp ← PRF(MS, label2‖rs‖rc) stage 2
RMS← PRF(HMS, label6‖H5) stage 3

record layer (application data), using AEAD with key tkapp

PMS

PRF

HMS

H1

PRF

MS

H5 PRF

RMS

H5

(resum
ption)

PRFtkhs

rs‖rc

PRFtkapp

rs‖rc

Figure 1: The handshake protocol in TLS 1.3 draft-05 (left) and its key schedule (right). XXX: Y denotes TLS message
XXX containing Y . {XXX} indicates a message XXX encrypted using AEAD encryption with handshake traffic key tkhs. XXX∗

indicates a message that is only sent in unilateral or mutual authentication modes. In the key schedule, dotted-line input to
PRF is the input value (omitting the label as additional input).

the handshake transcript according to the authentication properties negotiated earlier and output authen-
ticated application traffic keys, independent from the previous handshake traffic keys.

2.1 draft-05 Handshake

Figure 1 shows the message flow and relevant cryptographic computations as well as the key schedule for
the full handshake in draft-05.

The handshake messages are as follows:
• ClientHello (CH)/ServerHello (SH) contain the supported versions and ciphersuites for negotiation
purposes, as well as random nonces rc resp. rs. SH can contain a session identifier session_id field
for future session resumption. Both CH and SH can also include various extension fields.
• ClientKeyShare (CKS)/ServerKeyShare (SKS) contain the ephemeral Diffie–Hellman shares X = gx

resp. Y = gy for one or more groups selected by an extension in CH/SH.
Both parties can now compute the premaster secret PMS as the Diffie–Hellman shared secretgxy and then
use a pseudorandom function PRF to compute a handshake master secret HMS and handshake traffic key
tkhs; both are unauthenticated at this point.

All subsequent messages are encrypted using tkhs:
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Client Server

ClientHello
ClientKeyShare

ServerHello
ServerKeyShare

ES← Y x ES← Xy

HMS← HKDF.Extract(0,ES)
tkhs ← HKDF.Expand(HMS, label1‖H1) stage 1

{EncryptedExtensions∗}
{ServerCertificate∗}
{CertificateRequest∗}
{ServerParameters∗}:

SP← S = gs, Sign(skS , gs‖H2)
SS← Sx SS← Xs

AMS← HKDF.Extract(0,SS)
FS← HKDF.Expand(AMS, rs‖rc)

H3 ← H(CH‖ · · · ‖SP∗)
{ServerFinished}:

SF← HKDF.Expand(FS, label2‖H3)
Verify(pkS , S‖H2, SP)
check SF = HKDF.Expand(FS, label2‖H3)
{ClientCertificate∗}
{ClientCertificateVerify∗}

H5 ← H(CH‖ . . . ‖CCV∗)
{ClientFinished}:
CF← HKDF.Expand(FS, label3‖H5)

check CF = HKDF.Expand(FS, label3‖H5)
MS← HKDF.Extract(AMS,ES)

tkapp ← HKDF.Expand(MS, label1‖H5) stage 2
RMS← HKDF.Expand(MS, label4‖H5) stage 3
EMS← HKDF.Expand(MS, label5‖H5) stage 4

record layer (application data), using AEAD with key tkapp

ES SS

Ext

AMS

0Ext

HMS

0

Ext

MS

Exp

FS

rs‖rc

Exptkhs

H1

Exptkapp

H5

ExpEMS

H5

Exp RMS

H5

(resum
ption)

Figure 2: The handshake protocol in TLS 1.3 draft-dh (left) and its key schedule (right). Hash value and message com-
putations not stated explicitly are performed identically to TLS 1.3 draft-05 (Figure 1). For unauthenticated handshakes,
the ServerCertificate and ServerParameters messages are omitted and key derivation proceeds with SS set to ES. In the
key schedule, Ext and Exp are short for HKDF.Extract resp. HKDF.Expand. Dotted-line input to Ext is the (extractor) salt,
dotted-line input to Exp is the (context) information input; label inputs are omitted.

• EncryptedExtensions (EE) contains more extensions.
• ServerCertificate (SCRT)/ClientCertificate (CCRT) contain the public-key certificate of the

respective party.
• CertificateRequest (CR) indicates the server requests that the client authenticates using a certifi-

cate.
• ServerCertificateVerify (SCV)/ClientCertificateVerify (CCV) contain a digital signature over

the session hash (the hash of all handshakes messages sent and received at that point in the protocol
run).
• ClientFinished (CF)/ServerFinished (SF) contain the PRF evaluation on the session hash keyed
with HMS.

Both parties can now compute the master secret MS and the application traffic key tkapp as well as the
resumption master secret RMS for use in future session resumptions.
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Client Server

ClientHello: rc←$ {0, 1}128, session_id ∈ {0, 1}256

ServerHello: rs←$ {0, 1}128

H ← H(CH||SH)
HMS← PRF(RMS, label1‖H)
tkhs ← PRF(HMS, label2‖rs‖rc) stage 1

{ServerFinished}:
SF← PRF(HMS, label3‖H)

check SF = PRF(HMS, label3‖H)
{ClientFinished}:
CF← PRF(HMS, label4‖H)

check CF = PRF(HMS, label4‖H)
MS← PRF(HMS, label5‖H)
tkapp ← PRF(MS, label6‖rs‖rc) stage 2

record layer (application data), using AEAD with key tkapp

RMS

PRF

HMS

H

PRF

MS

H

PRFtkhs

rs‖rc

PRFtkapp

rs‖rc

Figure 3: Session resumption in TLS 1.3 draft-05 using the resumption master secret RMS as a pre-shared key (left) and its
key schedule (right). In the key schedule, dotted-line input to PRF is the input value (omitting the label as additional input).

2.2 draft-dh Handshake

Figure 2 shows the message flow and cryptographic computations as well as the key schedule for the full
handshake in draft-dh. The main difference to draft-05 is the ServerParameters message (replacing SCV)
containing the server’s additional semi-static Diffie–Hellman share, allowing the application traffic keys
to rely on both ephemeral and non-ephemeral secrets. Moreover, key derivation is done using the HKDF
extract-then-expand key derivation function [Kra10], rather than the TLS PRF.

We adopt here the standard notation for the two HKDF functions: HKDF.Extract(XTS, SKM) on
input an (non-secret and potentially fixed) extractor saltXTS and some source key material SKM outputs
a pseudorandom key PRK. HKDF.Expand(PRK,CTXinfo) on input a pseudorandom key PRK (from
the Extract step) and some (potentially empty) context information CTXinfo outputs key material KM .5

2.3 Session Resumption

Session resumption in draft-05 has similarly been changed from TLS 1.2 to separate handshake and
application traffic keys. As shown in Figure 3, ClientHello includes a preshared-secret identifier (referred
to in the drafts as the “session identifier session_id”) of some previously established session. The client
and server use that previous session’s resumption master secret, which has previously been authenticated,
so they do not exchange key shares or signatures, and fresh nonces rc, rs to derive the new keys.

The differences between draft-05 session resumption and draft-dh session resumption are limited to
secret and key computation as well as CF and SF computation (again, H = H(CH‖SH)):

1. AMS← HKDF.Extract(0,RMS)
2. tkhs ← HKDF.Expand(AMS, label1‖H)
3. FS← HKDF.Expand(AMS, label2‖rs‖rc)
4. SF← HKDF.Expand(FS, label3‖H)
5. CF← HKDF.Expand(FS, label4‖H)
6. MS← HKDF.Extract(0,AMS)
7. tkapp ← HKDF.Expand(MS, label5‖H)
8. EMS← HKDF.Expand(MS, label6‖H)
5For simplicity, we omit the original third parameter L in Expand determining its output length and always assume that

L = λ for our security parameter λ.
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3 Comments on the TLS 1.3 Design
Our analysis provides several insights into the TLS 1.3 drafts, for both the basic cryptographic choices, as
well as for the yet to be fully specified 0-RTT versions.

3.1 Basic Handshake Protocols

Soundness of key separation. Earlier versions of TLS used in the same session key to encrypt the
application data as well as the Finished messages at the end of the handshake. This made it impos-
sible to show that the TLS session key satisfied standard Bellare–Rogaway-style key indistinguishability
security [BR94], and necessitated non-standard assumptions in the security proof (e.g., the PRF-Oracle-
Diffie–Hellman (PDF-ODH) assumption [JKSS12, KPW13]). We confirm that the change in keys for
encryption of handshake messages allows both TLS 1.3 drafts to achieve standard key indistinguishability
security without non-standard assumptions.

Key independence. Both TLS 1.3 drafts achieve key independence in the multi-stage security setting,
which heavily strengthens their overall security. (Recall key independence is the property that one can
reveal a session key without endangering the security of later-stage keys.) Beyond making it amenable to
generic composition, key independence safeguards the usage of derived keys against inter-protocol effects
of security breakdowns.

draft-dh takes a slightly more composable approach to keying material exporting than draft-05. In
draft-dh, an exporter master secret EMS is derived from the master secret and then applications get
exported keying material as PRF(EMS, label). In draft-05, applications get exported keying material
directly as PRF(MS, label). Key independence in the draft-dh approach allows us to treat derivation of
exported keying material as a separate symmetric protocol, whereas in draft-05 each exported key must
be considered in the main analysis, so we argue the draft-dh approach of a separate exporter master secret
is preferable.

Signing the session hash. In both TLS 1.3 drafts, authenticating parties (the server, and sometimes
the client) sign (the hash of) all handshake messages up to when the signature is issued. This is different
from TLS 1.2 and earlier, where the server’s signature is only over the client and server random nonces
and the server’s ephemeral public key. The server signing the transcript makes our proof easier and allows
us to rely on standard cryptographic assumptions.

Encryption of handshake messages. Both TLS 1.3 drafts encrypt the second part of the handshake
using the initial handshake traffic key tkhs, aiming to provide some form of privacy (against passive
adversaries) for these messages, in particular for the server and client certificates. Our analysis shows that
the handshake traffic key does indeed have security against passive adversaries and hence increases the
handshake’s privacy. The secrecy of the final session keys however does not rely on the handshake being
encrypted and would remain secure even if was done in clear. Our analysis considers the encrypted case,
showing that this encryption does not negatively affect the security goals.

Finished messages. The Finished messages in both drafts are computed by applying the PRF (or
HKDF in draft-dh) to the (hash of the) handshake transcript. Interestingly, according to our proof
the Finished messages do not contribute to the session key secrecy in the full handshake or the session
resumption handshake in the sense that the key exchange would be secure without these messages. This is
mainly because the signatures already authenticate the transcripts. This contrasts with the case of RSA
key transport in the TLS 1.2 full handshake: the analyses of both Krawczyk et al. [KPW13] and Bhargavan
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et al. [BFK+14] note potential weaknesses or require stronger security assumptions if Finished messages
are omitted. From an engineering perspective, the Finished messages can still be interpreted as providing
some form of (explicit) session key confirmation, but is not cryptographically required to achieve key
indistinguishability. In session resumption, the Finished messages give the only explicit authentication.

Session hash in key derivation. Both TLS 1.3 drafts include a hash of all messages exchanged so far
in the derivation of all session keys and, in draft-05, also in deriving the master secrets. This session
hash was introduced in response to the triple handshake attack [BDF+14] on TLS 1.2 and earlier, with
the goal of ensuring that sessions with different session identifiers have different master secrets. In our
security analysis of both full handshakes, the online signatures computed over the handshake messages
already suffice to bind the exchanged messages to the authenticated parties and established keys, so
including the session hash in the key derivations does not contribute to the session keys’ secrecy. If keys
are meant to be used as a channel identifier or for channel binding (with the purpose of leveraging the
sesssion protection and authentication properties established by TLS in an application-layer protocol),
including the session hash is appropriate. While the standardized tls-unique [AWZ10] and proposed
tls-unique-prf [Jos15] TLS channel binding methods do not use keys directly for binding, the low
cost of including the session hash seems worth it in case an application developer decides to use keying
material directly for binding. Interestingly, in the draft-dh version, computing the master secret requires
a semi-static secret and ephemerally-generated secret, but does not include the session hash. In draft-dh
session resumption, there is no ephemeral shared secret and the master secret is computed as a series of
HKDF.Extract computations over a 0-string using the resumption secret as the key. All sessions sharing
the same resumption master secret then compute the same master secret. However, since key derivation
still uses the session hash as context, keys are unique assuming uniqueness of protocol messages (assured,
e.g., via unique nonces).

Upstream hashing for signatures. In signing the transcript for authentication, both draft-05 and
draft-dh have the signer input the hash of the current transcript to the signing algorithm; if the signature
algorithm is a hash-then-sign algorithm, it will then perform an additional hash. From a cryptographic
point of view, it would be preferable to insert the full (unhashed) transcript and let the signing algorithm
opaquely take care of processing this message. For engineering purposes, however, it may be amenable
to hash the transcript iteratively, only storing the intermediate values instead of entire transcript. Fur-
thermore, since the hashed transcript is likewise given to the key derivation function, storing the hash
value may be also advantageous in this regard. In our security proof, this upstream hashing leads to an
additional assumption about the collision resistance of the hash function (which would otherwise be taken
care of by the signature scheme).

3.2 0-RTT Handshake Mode

One of the main design goals for TLS 1.3 [Int] is to reduce handshake latency and in particular include
a zero round-trip time (0-RTT) mode for handshakes with a previously seen server. While the mainline
draft in version draft-05 [Res15a] does not contain a specification for a 0-RTT handshake mode (yet), the
forked draft-dh draft [Res15c] provisions for a 0-RTT (“early application”) traffic key in its handshake
key schedule. However, also the draft-dh version (at the time of writing) lacks a detailed specification
how 0-RTT data transfer will be implemented.

Most importantly, there is still an ongoing discussion on the IETF TLS working group mailing list6

about the handling (and potential prevention) of replay attacks, in which a man-in-the-middle attacker
6https://www.ietf.org/mail-archive/web/tls/current/msg15594.html and follow-up (March 2015)
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replays a client’s ClientHello and ClientKeyShare messages in order to make the server derive the same
(0-RTT) key twice. Replay attacks on 0-RTT keys (to which only the client contributes) can, in principle,
only be prevented by requiring the server to keep a register of all client key shares (e.g., the nonces) seen
and reject any connections reusing a key share.

This approach is most prominently employed in Google’s QUIC protocol [Ros13, LC13], using time and
server-specific nonce prefixes to render the nonce register manageable in storage. The current discussion
on 0-RTT replay protection in TLS 1.3 however tends to refraining from the requirement of a globally
and temporally consistent server state in order to make replays always detectable. This would then, in
turn, require to give up the anti-replay protection for 0-RTT data sent over TLS, an option for which the
consequences with respect to implementation and application interface are still being discussed.

Missing sufficient details on design and implementation of the envisioned 0-RTT key exchange mode
and data transfer in TLS 1.3, we have to omit an analysis of this protocol aspect in this work. Nevertheless,
we remark that allowing replay in deriving 0-RTT keys inherently conflicts with the classical notions of
session partnering established in key exchange models. Exploring the security provided for 0-RTT keys
when replay is explicitly possible in a key exchange protocol as well as analyzing the yet to be defined
approach in TLS 1.3 hence remains as a task for future work.

Another point of consideration for 0-RTT would be the possibility of small-subgroup-style attacks on
the semi-static Diffie–Hellman exponent s. By sending many different small-subgroup generators X to be
used by the server to compute a shared 0-RTT, an attacker could observe handshake messages derived from
Xs. After observing a large enough number of samples, the attacker could compute s mod |〈X〉| for many
different |〈X〉|, and then use the Chinese Remainder Theorem to hopefully recover s. For non–0-RTT
draft-dh handshakes, the semi-static exponent s plays no role in our security analysis. However, this is
expected to change for 0-RTT handshakes, where the semi-static secret will become relevant for security.

4 Multi-Stage Key Exchange Model
In this section we recap and extend the model for multi-stage key exchange by Fischlin and Günther [FG14]
based on the Bellare–Rogaway-style model of Brzuska et al. [BFWW11, Brz13].

4.1 Outline of the Model for Multi-Stage Key Exchange

Our model for multi-stage key exchange protocols follows the Bellare–Rogaway paradigm [BR94]. We
assume that an adversary controls the network which connects multiple sessions of honest parties, enabling
the adversary to modify, inject, or drop transmissions of these honest parties. This is captured via a
NewSession (for starting a new session of an honest party) and a Send query (delivering some message to
it). Since the goal is to ultimately provide secrecy of the various session keys, the adversary may pose
Test queries for some stage to either receive the corresponding session key of that stage, or to get an
independent random key instead. Since a session key may be used to derive the next one, we need to be
careful when such a Test query is admissible.

Our model allows the adversary to learn certain secret inputs to the protocol execution, as well as
outputs such as session keys; we do not allow the adversary to learn intermediate values from protocol
execution, as we do not aim to capture implementation flaws within the protocol. The Corrupt query
models leakage of long-term authentication keys. The Reveal query models leakage of session keys. For
both of these, we must prohibit compromise of secrets that make it trivial to break the security property:
we do so by defining partners via session identifiers. In the multi-stage setting, each stage involves its
own identifier. An important aspect for the Reveal query in the multi-stage setting concerns the security
of future session keys of later stages, given that a session key of some stage is revealed. (Session-)key
independence says that such leakage does not endanger future keys. Our model does not consider leakage

12



of draft-dh’s semi-static keys: since draft-dh does not actually include 0-RTT session keys, the leakage
of semi-static secrets does not affect the security of the handshake. However, in a future protocol using
semi-static secrets to derive 0-RTT session keys, security would depend on semi-static secrets and leakage
would have to be modeled appropriately.

For TLS 1.3 some adaptations of the multi-stage model of Fischlin and Günther [FG14] are necessary
or beneficial. In order to cover the various authenticity properties of the TLS 1.3 handshake, we extend
their model to encompass, besides mutually and unilaterally authenticated keys, also unauthenticated
keys. One can imagine TLS 1.3 as being composed of various protocol versions which share joint steps,
but are fundamentally different in terms of security. Namely, TLS 1.3 can be seen as a family of three
protocols, one without any authentication, one for unilateral authentication (of the server), and another
one for mutual authentication where both client and server authenticate. We capture this by allowing the
adversary in the security model to determine the type of authentication, and thus the corresponding sub
protocol, when initializing a session. We also capture keys and executions with increasing authenticity
properties, starting with an unauthenticated session key and then establishing a unilaterally or mutually
authenticated key. We also allow executions of different types to run concurrently, even within a single
party.

We additionally allow the communication partner of a session to be unknown at the start of the
protocol, i.e., we allow for “post-specified peers” as introduced by Canetti and Krawczyk [CK02]. In our
model, this is captured by letting the adversary initialize a session with a wildcard ‘∗’ as the intended
communication partner and corresponds to the regular case in TLS 1.3 that parties discover their peer’s
identity during protocol execution when they receive their peer’s certificate. Note that the common
approach to authenticate clients by password-based login over the already established TLS connection is
beyond the scope of this paper; from the perspective of our key exchange model, those are sessions where
the client does not authenticate.

Another change concerns stronger key secrecy properties for sessions communicating with unauthenti-
cated partners. For example, in TLS 1.3 a server can communicate with an unauthenticated client. Since
the adversary could easily impersonate the unauthenticated client and thereby legitimately compute the
shared session key, we cannot in general allow all server sessions with unauthenticated partners to be
tested. However, if there is an honest unauthenticated client, then the key between these honest parties
should still be secure, so we allow Test queries for sessions with unauthenticated partners if an honest
partner exists (as done in [FG14]).

This, though, turns out to be overly restrictive and less handy for our composition result. Intuitively,
one should also allow to Test such a server session even if the adversary does not deliver the server’s final
message to the honest client session. Since the client at this point has already completed his contribution
to the session key on the server side, this key should already be considered secure. We hence introduce the
notion of contributive identifiers, identifying sessions of honest parties which are currently not partnered
according to (full) session identifiers, but indicating that the key is entirely based on an honest peer’s
contribution. For soundness we assume that partnered sessions (having matching session identifiers) also
agree on the contributive identifier. Both session identifiers and contributive identifiers are set primarily as
administrative tokens by the key exchange protocol during the execution. In contrast to session identifiers,
a contributive identifier can be updated several times instead of being set only once, e.g., to eventually
match the session identifier. Guidance for how and when to set contributive identifiers can be obtained
by considering composition: we will show that secure usage of an established session key in a subsequent
symmetric protocol is possible whenever the parties honestly (or authentically) contributed to that key, i.e.,
agree on the contributive identifiers. Contributive identifiers may be seen as the identifier-based analogue
to prefix-matching definitions used in ACCE models [JKSS12], allowing the adversary to issue Test queries
to sessions that are non-trivial to break but normally force the adversary to lose the game.
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4.2 Preliminaries

We denote by U the set of identities used to model the participants in the system, each identified by
some U ∈ U and associated with a certified long-term public key pkU and secret key skU . Note that in
addition to the long-term keys parties may also hold (uncertified) temporary (“semi-static” in draft-dh)
key pairs for the 0-RTT protocol version, each identified by a key identifier kid. Sessions of a protocol are
uniquely identified (on the administrative level of the model) using a label label ∈ LABELS = U × U × N,
where (U, V, k) indicates the k-th local session of identity U (the session owner) with V as the intended
communication partner.

For each session, a tuple with the following information is maintained as an entry in the session list
ListS, where values in square brackets [ ] indicate the default/initial value. Some variables have values for
each stage i ∈ {1, . . . ,M}.7
• label ∈ LABELS: the (administrative) session label
• U ∈ U : the session owner
• V ∈ (U ∪ {∗}): the intended communication partner, where the distinct wildcard symbol ‘∗’ stands
for “unknown identity” and can be set to a specific identity in U once by the protocol
• role ∈ {initiator, responder}: the session owner’s role in this session
• auth ∈ AUTH ⊆ {unauth, unilateral,mutual}M: the aspired authentication type of each stage from the
set of supported properties AUTH, where M is the maximum stageand authi indicates the authenti-
cation level in stage i > 0
• kidU : the key identifier for the temporary public/secret key pair (tpk, tsk) used by the session owner
• kidV : the key identifier for the communication partner
• stexec ∈ (RUNNING ∪ ACCEPTED ∪ REJECTED): the state of execution [running0], where RUNNING =
{runningi | i ∈ N0}, ACCEPTED = {acceptedi | i ∈ N}, REJECTED = {rejectedi | i ∈ N}
• stage ∈ {0, . . . ,M}: the current stage [0], where stage is incremented to i when stexec reaches acceptedi
resp. rejectedi
• sid ∈ ({0, 1}∗ ∪ {⊥})M: sidi [⊥] indicates the session identifier in stage i > 0
• cid ∈ ({0, 1}∗ ∪ {⊥})M: cidi [⊥] indicates the contributive identifier in stage i > 0
• K ∈ ({0, 1}∗ ∪ {⊥})M: Ki [⊥] indicates the established session key in stage i > 0
• stkey ∈ {fresh, revealed}M: stkey,i [fresh] indicates the state of the session key in stage i > 0
• tested ∈ {true, false}M: test indicator testedi [false], where true means that Ki has been tested

By convention, if we add a partly specified tuple (label, U, V, role, auth, kidU , kidV ) to ListS, then the other
tuple entries are set to their default value. As labels are unique, we write as a shorthand, e.g., label.sid for
the element sid in the tuple with label label in ListS, and analogously for other entries.

4.3 Authentication Types

We distinguish between three different levels of authentication for the keys derived in a multi-stage key
exchange protocol: unauthenticated stages and keys (which provides no authentication for either commu-
nication partner); unilaterally authenticated stages and keys (which authenticates one party, in our case
the responder); and mutually authenticated stages and keys (which authenticates both communication
partners). We let the adversary choose the authentication type for each session it creates.

For stages with unilateral authentication, where only the responder authenticates, we consequently
only aim for secrecy of the initiator’s session key, or of the responder’s key, if the initiator’s contribution
to the key is honest and the adversary merely observes the interaction. In the non-authenticated case

7We fix a maximum stage M only for ease of notation. Note that M can be arbitrary large in order to cover protocols
where the number of stages is not bounded a-priori.
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we only ask for secrecy of those keys established through contributions of two honest parties. Since the
adversary can trivially impersonate unauthenticated parties we cannot hope for key secrecy beyond that.

Formally, we capture the authenticity properties provided in a protocol by a set AUTH ⊆ {unauth,
unilateral,mutual}M, representing each protocol variant’s authentication by a vector (auth1, . . . , authM) ∈
AUTH specifying for each stage i the protocol whether it is unauthenticated (authi = unauth), unilaterally
authenticated (authi = unilateral), or mutually authenticated (authi = mutual). We moreover treat all
authenticity variants of a protocol concurrently in our model (and hence speak about concurrent authenti-
cation properties): we allow concurrent executions of the different key exchange sub protocols, simultane-
ously covering all potential unauthenticated, unilaterally authenticated, or mutually authenticated runs.
Given that the authenticity of keys is a strictly non-decreasing property with progressing stage, we also
use the following simpler notation:
• no authentication: the keys of all stages are unauthenticated.
• stage-k unilateral authentication: the keys of stage i are unauthenticated for i < k and unilat-
erally authenticated for i ≥ k.
• stage-` mutual authentication: the keys of stage i are unauthenticated for i < ` and mutually
authenticated for i ≥ `.
• stage-k unilateral stage-` mutual authentication: the keys of stage i are unauthenticated for
i < k, unilaterally authenticated for k ≤ i < `, and mutually authenticated for i ≥ `.

For example, stage-2 unilateral authentication of a three-stage key exchange protocol (one variant in
TLS 1.3 draft-05) indicates that the first key is unauthenticated and the keys in stages 2 and 3 are
unilaterally (responder-only) authenticated, formally represented by auth = (unauth, unilateral, unilateral).
In our model, we can hence, for any specific session, tell whether a certain stage is unauthenticated,
unilaterally authenticated, or mutually authenticated (from that session’s point of view).

4.4 Adversary Model

We consider a probabilistic polynomial-time (PPT) adversaryA which controls the communication between
all parties, enabling interception, injection, and dropping of messages. As in [FG14] we distinguish different
levels of the following three (orthogonal) security aspects of a multi-stage key exchange scheme: forward
secrecy, authentication, and key dependence; the latter refers to whether the next session key relies on the
confidentiality of the previous session key. Similarly to the different authentication types we also speak of
stage-k forward secrecy if the protocol provides forward secrecy from the k-th stage onwards.

To capture admissible adversarial interactions it is convenient here to add a flag lost to the experiment
which is initialized to false. This flag will later specify if the adversary loses due to trivial attacks, such as
revealing the session key of a partner session to a tested session. In principle one could later check for such
losing conditions when the adversary stops, but since some properties are time-critical one would need to
re-capture the entire execution flow. Instead, we set the flag during the execution and oracle calls in some
cases, but also check a-posteriori for other conditions.

The adversary interacts with the protocol via the following queries:

• NewTempKey(U): Generate a new temporary key pair (tpk, tsk), create and return a (unique) new
identifier kid for it.
Note that we do not invalidate old key identifiers of the same identity U (as protocols would pre-
sumably do), but keep the model instead as general as possible at this point, especially since active
protocol runs may still rely on previous temporary keys.

• NewSession(U, V, role, auth, kidU , kidV ): Creates a new session for participant identity U with role role
and key identifier kidU having V with key identifier kidV as intended partner (potentially unspecified,
indicated by V = ∗) and aiming at authentication type auth.
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If there is no temporary key with identifier kidU for user U or with identifier kidV for user V , return
the error symbol ⊥. Otherwise, generate and return a (unique) new label label and add (label, U, V,
role, auth, kidU , kidV ) to ListS.

• Send(label,m): Sends a message m to the session with label label.
If there is no tuple (label, U, V, role, auth, kidU , kidV , stexec, stage, sid, cid,K, stkey, tested) in ListS, return
⊥. Otherwise, run the protocol on behalf of U on messagem and return the response and the updated
state of execution stexec. As a special case, if role = initiator and m = init, the protocol is initiated
(without any input message).
If, during the protocol execution, the state of execution changes to acceptedi for some i, the pro-
tocol execution is immediately suspended and acceptedi is returned as result to the adversary.
The adversary can later trigger the resumption of the protocol execution by issuing a special
Send(label, continue) query. For such a query, the protocol continues as specified, with the party
creating the next protocol message and handing it over to the adversary together with the resulting
state of execution stexec. We note that this is necessary to allow the adversary to test such a key,
before it may be used immediately in the response and thus cannot be tested anymore for triviality
reasons.
If the state of execution changes to stexec = acceptedi for some i and there is a tuple (label′, V, U, role′,
auth′, kidV , kidU , st′exec, stage′, sid′, cid′,K′, st′key, tested′) in ListS with sidi = sid′i and st′key,i = revealed,
then, for key-independence, stkey,i is set to revealed as well, whereas for key-dependent security, all
stkey,i′ for i′ ≥ i are set to revealed. The former corresponds to the case that session keys of partnered
sessions should be considered revealed as well, the latter implements that for key dependency all
subsequent keys are potentially available to the adversary, too.
If the state of execution changes to stexec = acceptedi for some i and there is a tuple (label′, V, U, role′,
auth′, kidV , kidU , st′exec, stage′, sid′, cid′,K′, st′key, tested′) in ListS with sidi = sid′i and tested′i = true,
then set label.Ki ← label′.K′i and label.testedi ← true. This ensures that, if the partnered session
has been tested before, this session’s key Ki is set consistently8 and subsequent Test queries for the
session here are answered accordingly.
If the state of execution changes to stexec = acceptedi for some i and the intended communication
partner V is corrupted, then set stkey,i ← revealed.

• Reveal(label, i): Reveals label.Ki, the session key of stage i in the session with label label.
If there is no tuple (label, U, V, role, auth, kidU , kidV , stexec, stage, sid, cid,K, stkey, tested) in ListS, or
i > stage, or testedi = true, then return ⊥. Otherwise, set stkey,i to revealed and provide the
adversary with Ki.
If there is a tuple (label′, V, U, role′, auth′, kidV , kidU , st′exec, stage′, sid′, cid′,K′, st′key, tested′) in ListS
with sidi = sid′i and stage′ ≥ i, then st′key,i is set to revealed as well. This means the i-th session keys
of all partnered sessions (if established) are considered revealed too.
As above, in the case of key-dependent security, since future keys depend on the revealed key, we
cannot ensure their security anymore (neither in this session in question, nor in partnered sessions).
Therefore, if i = stage, set stkey,j = revealed for all j > i, as they depend on the revealed key. For
the same reason, if a partnered session label′ with sidi = sid′i has stage′ = i, then set st′key,j = revealed
for all j > i. Note that if however stage′ > i, then keys K′j for j > i derived in the partnered session
are not considered to be revealed by this query since they have been accepted previously, i.e., prior
to Ki being revealed in this query.

• Corrupt(U): Provide skU to the adversary. No further queries are allowed to sessions owned by U .
8This implicitly assumes the following property of the later-defined Match security: Whenever two partnered sessions both

accept a key in some stage, these keys will be equal.

16



In the non-forward-secret case, for each session label owned by U and all i ∈ {1, . . . ,M}, set label.stkey,i
to revealed. In this case, all (previous and future) session keys are considered to be disclosed.
In the case of stage-j forward secrecy, label.stkey,i is set to revealed only if i < j or if i > stage. This
means that session keys before the j-th stage (where forward secrecy kicks in) as well as keys that
have not yet been established are potentially disclosed.
Independent of the forward secrecy aspect, in the case of key-dependent security, setting the relevant
key states to revealed for some stage i is done by internally invoking Reveal(label, i), ignoring the
response and also the restriction that a call with i > stage would immediately return ⊥. This
ensures that follow-up revocations of keys that depend on the revoked keys are carried out correctly.

• Test(label, i): Tests the session key of stage i in the session with label label. In the security game
this oracle is given a uniformly random test bit btest as state which is fixed throughout the game.
If there is no tuple (label, U, V, role, auth, kidU , kidV , stexec, stage, sid, cid,K, stkey, tested) in ListS or if
label.stexec 6= acceptedi, return ⊥. If there is a tuple (label′, V, U, role′, auth′, kidV , kidU , st′exec, stage′,
sid′, cid′,K′, st′key, tested′) in ListS with sidi = sid′i, but st′exec 6= acceptedi, set the ‘lost’ flag to lost ←
true. This ensures that keys can only be tested if they have just been accepted but not used yet,
including ensuring any partnered session that may have already established this key has not used it.
If label.authi = unauth or if label.authi = unilateral and label.role = responder, but there is no tuple
(label′, V, U, role′, auth′, kidV , kidU , st′exec, stage′, sid′, cid′,K′, st′key, tested′) (for label 6= label′) in ListS
with cidi = cid′i, then set lost ← true. This ensures that having an honest contributive partner is a
prerequisite for testing responder sessions in an unauthenticated or unilaterally authenticated stage
and for testing an initiator session in an unauthenticated stage.9
If label.testedi = true, return Ki, ensuring that repeated queries will be answered consistently.
Otherwise, set label.testedi to true. If the test bit btest is 0, sample label.Ki←$D at random from the
session key distribution D. This means that we substitute the session key by a random and indepen-
dent key which is also used for future deployments within the key exchange protocol. Moreover, if
there is a tuple (label′, V, U, role′, auth′, kidV , kidU , st′exec, stage′, sid′, cid′,K′, st′key, tested′) in ListS with
sidi = sid′i, also set label′.K′i ← label.Ki and label′.tested′i ← true to ensure consistency in the special
case that both label and label′ are in state acceptedi and, hence, either of them can be tested first.
Return label.Ki.

Secret compromise paradigm. We follow the paradigm of the Bellare–Rogaway model [BR94], fo-
cusing on the leakage of long-term secret inputs and session key outputs of the key exchange, but not
on internal values within the execution of a session. This contrasts to some extent with the model by
Canetti and Krawczyk [CK01] resp. LaMacchia et al. [LLM07] which include a “session state reveal” resp.
“ephemeral secret reveal” query that allows accessing internal variables of the session execution.

In the context of the TLS 1.3 drafts, this means we consider the leakage of:
• long-term / static secret keys (such as the signing key of the server or client): allowed since long-term
values have the potential to be compromised, and necessary to model forward secrecy; modeled by
the Corrupt query.
• session keys (such as tkhs, tkapp, RMS, and EMS): allowed since these are outputs of the session and
are used outside the key exchange for encryption, later resumption, or exporting of keying material;
modeled by the Reveal query.

We do not permit the leakage of:
• ephemeral secret keys (such as the randomness in the signature algorithm or the Diffie–Hellman
exponent): disallowed since TLS is not designed to be secure if these values are compromised.

9Note that ListS entries are only created for honest sessions, i.e., sessions generated by NewSession queries.
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• internal values / session state (such as ES, SS, master secrets): disallowed since TLS is not designed
to be secure if these values are compromised.
• semi-static secret keys (such as s in draft-dh): disallowed in the model in this paper because the
security of the full draft-dh handshake does not depend on the secrecy of s; however, an analysis of
the 0-RTT handshake should include a consideration of the leakage of semi-static secret keys.

4.5 Security of Multi-Stage Key Exchange Protocols

The security properties for multi-stage key exchange protocols are split in two games, following Fischlin
et al. [FG14] and Brzuska et al. [BFWW11, Brz13]. On the one hand, Match security ensures that the
session identifiers sid effectively match the partnered sessions. On the other hand, Multi-Stage security
ensures Bellare–Rogaway-like key secrecy.

4.5.1 Match Security

Our notion of Match security—extended beyond [FG14] to cover different levels of key authenticity and
soundness of the newly introduced contributive identifiers—ensures that the session identifiers sid effectively
match the partnered sessions which must share the same view on their interaction in the sense that

1. sessions with the same session identifier for some stage hold the same key at that stage,
2. sessions with the same session identifier for some stage agree on that stage’s authentication level,
3. sessions with the same session identifier for some stage share the same contributive identifier at that

stage,
4. sessions are partnered with the intended (authenticated) participant,
5. session identifiers do not match across different stages, and
6. at most two sessions have the same session identifier at any stage.
The Match security game GMatch

KE,A thus is defined as follows.

Definition 4.1 (Match security). Let KE be a key exchange protocol and A a PPT adversary interacting
with KE via the queries defined in Section 4.4 in the following game GMatch

KE,A :
Setup. The challenger generates long-term public/private-key pairs for each participant U ∈ U .
Query. The adversary A receives the generated public keys and has access to the queries NewSession,

Send, NewTempKey, Reveal, and Corrupt.
Stop. At some point, the adversary stops with no output.
We say that A wins the game, denoted by GMatch

KE,A = 1, if at least one of the following conditions hold:
1. There exist two distinct labels label, label′ such that label.sidi = label′.sidi 6= ⊥ for some stage i ∈
{1, . . . ,M}, label.stexec 6= rejectedi, and label′.stexec 6= rejectedi, but label.Ki 6= label′.Ki. (Different
session keys in some stage of partnered sessions.)

2. There exist two distinct labels label, label′ such that label.sidi = label′.sidi 6= ⊥ for some stage i ∈
{1, . . . ,M}, but label.authi 6= label′.authi. (Different authentication types in some stage of partnered
sessions.)

3. There exist two distinct labels label, label′ such that label.sidi = label′.sidi 6= ⊥ for some stage i ∈
{1, . . . ,M}, but label.cidi 6= label′.cidi or label.cidi = label′.cidi = ⊥. (Different or unset contributive
identifiers in some stage of partnered sessions.)

4. There exist two distinct labels label, label′ such that label.sidi = label′.sidi 6= ⊥ for some stage i ∈
{1, . . . ,M}, label.authi = label′.authi ∈ {unilateral,mutual}, label.role = initiator, and label′.role =
responder, but label.V 6= label′.U or (only if label.authi = mutual) label.U 6= label′.V . (Different
intended authenticated partner.)

5. There exist two (not necessarily distinct) labels label, label′ such that label.sidi = label′.sidj 6= ⊥ for
some stages i, j ∈ {1, . . . ,M} with i 6= j. (Different stages share the same session identifier.)
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6. There exist three distinct labels label, label′, label′′ such that label.sidi = label′.sidi = label′′.sidi 6= ⊥
for some stage i ∈ {1, . . . ,M}. (More than two sessions share the same session identifier.)

We say KE is Match-secure if for all PPT adversaries A the following advantage function is negligible in
the security parameter:

AdvMatch
KE,A := Pr

[
GMatch

KE,A = 1
]
.

4.5.2 Multi-Stage Security

The security game GMulti-Stage,D
KE,A defines Bellare–Rogaway-like key secrecy in the multi-stage setting as

follows.

Definition 4.2 (Multi-Stage security). Let KE be a key exchange protocol with key distribution D and
authenticity properties AUTH, and A a PPT adversary interacting with KE via the queries defined in
Section 4.4 within the following game GMulti-Stage,D

KE,A :
Setup. The challenger generates long-term public/private-key pairs for each participant U ∈ U , chooses

the test bit btest←$ {0, 1} at random, and sets lost← false.
Query. The adversary A receives the generated public keys and has access to the queries NewSession,

Send, NewTempKey, Reveal, Corrupt, and Test. Note that such queries may set lost to true.
Guess. At some point, A stops and outputs a guess b.
Finalize. The challenger sets the ‘lost’ flag to lost← true if there exist two (not necessarily distinct) labels

label, label′ and some stage i ∈ {1, . . . ,M} such that label.sidi = label′.sidi, label.stkey,i = revealed,
and label′.testedi = true. (Adversary has tested and revealed the key in a single session or in two
partnered sessions.)

We say that A wins the game, denoted by GMulti-Stage,D
KE,A = 1, if b = btest and lost = false. Note that the

winning conditions are independent of key dependency, forward secrecy, and authentication properties of
KE, as those are directly integrated in the affected (Reveal and Corrupt) queries and the finalization step of
the game; for example, Corrupt is defined differently for non-forward-secrecy versus stage-j forward secrecy.

We say KE is Multi-Stage-secure in a key-dependent resp. key-independent and non-forward-secret resp.
stage-j-forward-secret manner with concurrent authentication types AUTH if KE is Match-secure and for
all PPT adversaries A the following advantage function is negligible in the security parameter:

AdvMulti-Stage,D
KE,A := Pr

[
GMulti-Stage,D

KE,A = 1
]
− 1

2 .

5 Security of the draft-05 Handshake
We can now analyze the handshake as specified in TLS 1.3 draft-05 [Res15a].

First, we define the session identifiers for the two stages deriving the handshake traffic key tkhs and
the application traffic key tkapp to be the unencrypted messages sent and received excluding the finished
messages:

sid1 = (ClientHello, ClientKeyShare, ServerHello, ServerKeyShare) and
sid2 = (ClientHello, ClientKeyShare, ServerHello, ServerKeyShare, EncryptedExtensions∗,

ServerCertificate∗, CertificateRequest∗, ServerCertificateVerify∗,

ClientCertificate∗, ClientCertificateVerify∗).

Here, starred (∗) components are not present in all authentication modes. We moreover capture the
derivation of the resumption premaster secret RMS in a further stage 3 for which we define the session
identifier to be sid3 = (sid2, “RMS”).
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We stress that defining session identifiers over the unencrypted messages is necessary to obtain key-
independent Multi-Stage security. Otherwise, we would need to either resort to key dependence, or guar-
antee that an adversary is not able to re-encrypt a sent message into a different ciphertext even if it knows
the handshake traffic key tkhs used (due to a Reveal query)—a property generally not to be expected from
a (potentially randomized) encryption scheme.

Concerning the contributive identifiers, we let the client (resp. server) on sending (resp. receiving) the
ClientHello and ClientKeyShare messages set cid1 = (CH, CKS) and subsequently, on receiving (resp.
sending) the ServerHello and ServerKeyShare messages, extend it to cid1 = (CH, CKS, SH, SKS). The
other contributive identifiers are set to cid2 = sid2 and cid3 = sid3 by each party on sending its respective
Finished message.

As draft-05’s handshake does not involve semi-static keys (other than the parties’ long-term keys)
shared between multiple sessions, there are no temporary keys in the notation of our model. We can hence
ignore NewTempKey queries in the following analysis.

Theorem 5.1 (Match security of draft-05). The draft-05 full handshake is Match-secure: for any
efficient adversary A we have

AdvMatch
draft-05,A ≤ n2

s · 1/q · 2−|nonce|,

where ns is the maximum number of sessions, q is the group order, and |nonce| = 128 is the bit-length of
the nonces.

Match security follows from the way the session identifiers are chosen (to include all unencrypted
messages), in particular guaranteeing that partnered sessions derive the same key, authenticity, and con-
tributive identifiers. The given security bound takes into account the probability that two honest session
choose the same nonce and group element.

Proof. We need to show the six properties of Match security.
1. Sessions with the same session identifier for some stage hold the same session key.

For the first stage this follows as the session identifier contains the parties’ Diffie–Hellman contribu-
tions gx and gy, which uniquely identify the Diffie–Hellman key, as well as all data entering the key
derivation step. Hence, equal session identifiers imply that both parties compute the same handshake
master secret and the same session key on the first stage. For the second and third stage note that
the identifier sid2 (and hence also sid3) contains the full sid1, implying that the parties have also
computed the same handshake master secret. Since the key derivation for the stages 2 and 3 is only
based on this secret value and data from sid2, it follows that the session keys must be equal, too.

2. Sessions with the same session identifier for some stage agree on the authenticity of the stage.
Observe that, for the first stage, the only admissible authenticity by design of TLS 1.3 is auth1 =
unauth on which, hence, all sessions will agree. For the other stages, the exchanged messages (except
for the finished messages) contained in the session identifier sid2 (and hence also sid3) uniquely
determines the authenticity property for these stages. More precisely, according to the proto-
col specification, both sessions will agree on sid2 = (ClientHello, ClientKeyShare, ServerHello,
ServerKeyShare, EncryptedExtensions∗) (where EncryptedExtensions∗ is optional) if and only if
both have auth2 = unauth. If sid2 additionally contains ServerCertificate and ServerCertificateVerify,
they agree on auth2 = unilateral. If it moreover contains CertificateRequest, ClientCertificate,
and ClientCertificateVerify, the sessions agree on mutual authentication. Moreover, auth2 =
auth3 always holds hence same identifiers also imply agreement on authenticity.

3. Sessions with the same session identifier for some stage share the same contributive identifier.
This holds since the contributive identifier value is final once the session identifier is set.
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4. Sessions are partnered with the intended partner.
First of all observe that this case only applies to unilaterally or mutually authenticated stages,
hence the stages 2 and 3 only. In TLS 1.3, the client obtains the server’s identity within the
ServerCertificate message and vice versa the server obtains the client’s identity (in case of mu-
tual authentication) within the ClientCertificate message. Moreover, honest clients and servers
will not send a certificate attesting an identity different from their own. Hence, as both messages
are contained in the session identifiers of stages 2 and 3 (in the respective authentication mode),
agreement on sid2 implies agreement on the respective partner’s identity.

5. Session identifiers are distinct for different stages.
This holds trivially as session identifiers monotonically grow with each stage.

6. At most two sessions have the same session identifier at any stage.
Observe that the group element for the Diffie–Hellman key, as well as a random nonce, of both
the initiator and the responder enter the session identifiers. Therefore, in order to have a threefold
collision among session identifiers of honest parties, the third session would need to pick the same
group element and nonce as one of the other two sessions. The probability that there exists such a
collision can hence be bounded from above by n2

s · 1/q · 2−|nonce| where ns is the maximum number
of sessions, q is the group order, and |nonce| = 128 the nonces’ bit-length.

Theorem 5.2 (Multi-Stage security of draft-05). The draft-05 full handshake is Multi-Stage-secure in
a key-independent and stage-1-forward-secret manner with concurrent authentication properties AUTH =
{(unauth, unauth, unauth), (unauth, unilateral, unilateral), (unauth,mutual,mutual)} (i.e., no authentication,
stage-2 unilateral authentication, and stage-2 mutual authentication). Formally, for any efficient adver-
sary A against the Multi-Stage security there exist efficient algorithms B1, . . . , B8 such that

AdvMulti-Stage,D
draft-05,A ≤ 3ns·

(
AdvCOLL

H,B1 + nu · AdvEUF-CMA
Sig,B2

+ AdvCOLL
H,B3 + nu · AdvEUF-CMA

Sig,B4

+ ns ·
(
AdvDDH

G,B5 + AdvPRF-sec,G
PRF,B6

+ AdvPRF-sec
PRF,B7 + AdvPRF-sec

PRF,B8

))
,

where ns is the maximum number of sessions and nu is the maximum number of users.

If we charge the running time of the original security game to A, then the running times of algorithms
B1, . . . ,B8 are essentially identical to the one of A. This holds as these adversaries merely simulate A’s
original attack with some additional administrative steps.

Proof. First, we consider the case that the adversary makes a single Test query only. This reduces its
advantage, according to a hybrid argument constructing out of A with multiple Test queries to an adversary
B with a single Test query, by a factor at most 1/3ns as there are three stages in each of the ns sessions.10

The main problem we have to deal with is that the session identifiers sid2 for the second stages (and hence
also sid3) are not available in clear, but are partly encrypted. This impedes the consistent simulation for B
in terms of identical answers for partnered sessions. Note, however, that we can recover the identifier if we
have the first-stage session key, namely, the handshake traffic key. Session-key independence and further
arguments about avoiding losing conditions allow us to reveal this key without endangering security of the
second- and third-stage key. We provide the hybrid details in Appendix A.

From now on, we can speak about the session label tested at stage i. Furthermore the hybrid argument
also provides the number of the test session and therefore label, so we can assume that we know label in
advance.

10We can assume w.l.o.g. that A issues Test queries for a key only after that key was accepted.
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Our subsequent security analysis separately considers the three (disjoint) cases that
A. the adversary tests a client session without honest contributive partner in the first stage(i.e., label.role =

initiator for the test session label and there exists no label′ 6= label with label.cid1 = label′.cid1),
B. the adversary tests a server session without honest contributive partner in the first stage(i.e., label.role =

responder and there exists no label′ 6= label with label.cid1 = label′.cid1), and
C. the tested session has an honest contributive partner in stage 1(i.e., there exists label′ with label.cid1 =

label′.cid1).
This allows us to bound the advantage as

AdvMulti-Stage,D
draft-05,A ≤ 3ns·

(
Adv1-Multi-Stage,client without partner

draft-05,A

+ Adv1-Multi-Stage,server without partner
draft-05,A

+ Adv1-Multi-Stage,test with partner
draft-05,A

)
.

Case A. Test Client without Partner

We first consider the case that the tested session is a client (initiator) session without honest contributive
partner in the first stage. Since in the moment a client session can first be tested (i.e., on acceptance of the
first key) cid1 equals sid1, we know that label also has no session partner in stage 1 (i.e., there is no other
label′ with label.sid1 = label′.sid1). Having an honest partner in the second (or later) stage implies having
also one in the first stage (as all messages in sid1 are also contained in cid2 = sid2 and cid3 = sid3), hence the
tested session must actually be without honest partner in all stages. Observe that, by the model conditions
and sid1 being set on the client side at the point where K1 is accepted, the adversary cannot win in this case
if the tested key is unauthenticated, hence we can assume that the key is responder-authenticated (i.e.,
label.authi ∈ {unilateral,mutual}). This allows us to focus on Test queries in the stages 2 and 3 according
to the authentication properties AUTH provided.

We proceed in the following sequence of games. Starting from the original Multi-Stage game, we bound
the advantage difference of adversary A between any two games by complexity-theoretic assumptions until
we reach a game where the advantage of A is at most 0.

Game A.0. This initial game equals the Multi-Stage game with a single Test query where the adversary
is, by our assumption, restricted to test a client (initiator) session without honest contributive partner in
the first stage. Therefore,

AdvGA.0draft-05,A = Adv1-Multi-Stage,client without partner
draft-05,A .

Game A.1. In this game, we let the challenger abort the game if any two honest sessions compute the
same hash value for different inputs in any evaluation of the hash function H.
Let abortH denote the event that the challenger aborts in this case. We can bound the probability Pr[abortH]
by the advantage AdvCOLL

H,B1 of an adversary B1 against the collision resistance of the hash function H. To
this extent, B1 acts as the challenger in Game A.1, using its description of H to compute hash values, and
running adversary A as a subroutine. If the event abortH occurs, B1 outputs the two distinct input values
to H resulting in the same hash value as a collision.

Note that B1 perfectly emulates the attack of A according to GA.0 up to the point till a hash collision
occurs. As B1 wins if abortH is triggered, we have that Pr[abortH] ≤ AdvCOLL

H,B1 and thus

AdvGA.0draft-05,A ≤ AdvGA.1draft-05,A + AdvCOLL
H,B1 .
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Game A.2. In this game, we let the challenger abort if the tested client session receives, within the
ServerCertificateVerify message, a valid signature under the public key pkU of some user U ∈ U such
that the hash value has not been signed by any of the honest sessions.
Let abortSig denote the event that the challenger aborts in this case. We bound the probability Pr[abortSig]
of its occurrence by the advantage of an adversary B2 against the EUF-CMA security of the signature
scheme Sig, denoted AdvEUF-CMA

Sig,B2 . In the reduction, B2 first guesses a user U ∈ U which it associates with
the challenge public key pk∗ in the EUF-CMA game, then generates all long-term key pairs for the other
users U ′ ∈ U \ {U} and runs the Multi-Stage game GA.1 for A, including potentially an abort due to hash
collisions. For any signature to generate for user U in honest sessions for a hash value, B2 calls its signing
oracle about the hash value. When abortSig is triggered, B2 outputs the signature the tested client received
together with the hash value as a forgery.11

Since every honest session has a different session identifier than the tested client in the first stage (as
the latter has no partnered session in this stage), no honest party will seek to sign the transcript value,
expected by the tested client. Moreover, by the modification in Game A.1, there is no collision between any
two honest evaluations of the hash function, so in particular there is none for the hash value computed by
the tested client, implying that the hash value in question has not been signed by an honest party before.
If B2 correctly guessed the user under whose public key the obtained signature verifies, that signature
output by B2 is a valid forgery in the sense that its message was never queried to the EUF-CMA oracle
before. Hence, B2 wins if abortSig occurs and it has guessed the correct user amongst the set of (at most)
nu users and we have that Pr[abortSig] ≤ nu · AdvEUF-CMA

Sig,B2 and thus

AdvGA.1draft-05,A ≤ AdvGA.2draft-05,A + nu · AdvEUF-CMA
Sig,B2 .

Finally, if Game A.2 does not abort, we are assured that an honest session outputs the signature
obtained by the tested client session within the ServerCertificateVerify message. The signature is
computed over H(CH, CKS, SH, SKS, EE∗, SCRT, CR∗), i.e., in particular contains all messages in sid1. Hence,
the tested client and the (distinct) honest session outputting the signature agree on sid1, so also on cid1,
and are hence (contributively) partnered in the first stage.

The adversary A therefore cannot test a client (initiator) session without honest first-stage partner in
Game A.2, resulting in the test bit btest being unknown to A and hence

AdvGA.2draft-05,A ≤ 0.

Case B. Test Server without Partner

We next consider the case that a server (responder) session is tested without honest contributive partner in
stage 1. Again, this also implies that there is no honest partner in any of the other stages and, moreover,
that also no other session shares the contributive identifiers for stages 2 and 3 as they include the full
first-stage session identifier and thus also cid1. By definition, the adversary in this case cannot win if the
tested key is not mutually authenticated, hence we can assume it is, i.e., label.authi = mutual.

We proceed in the following sequence of games, similar to the first case, but now geared towards the
(authenticating) client’s signature over the protocol handshake.

Game B.0. This initial game equals the Multi-Stage game with a single Test query where the adversary
this time is restricted to test a responder session without honest contributive partner in the first stage.
Clearly again,

AdvGB.0draft-05,A ≤ Adv1-Multi-Stage,server without partner
draft-05,A .

11Note that, although the ServerCertificateVerify message containing the signature is sent encrypted, the honest tested
client is simulated by B2 and hence B2 can in particular decrypt this message.
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Game B.1. As in the first case, this game aborts if any two honest sessions compute the same hash value
for different inputs in any evaluation of H. Again, we can bound the probability Pr[abortH] that this event
occurs by the advantage of an adversary B3 against the hash function’s collision resistance, constructed as
in the first case, and obtain

AdvGB.0draft-05,A = AdvGB.1draft-05,A + AdvCOLL
H,B3 .

Game B.2. This game, similar to first case, behaves as the previous one but aborts if the tested server
session receives (this time within the ClientCertificateVerify message) a valid signature under some
public key pkU without an honest session outputting this signature. Analogously, we can bound the
probability of this event, Pr[abortSig], by the EUF-CMA security of the signature scheme. The reduction B4
again encodes its challenge public key as a random user’s key (and generates all other key pairs itself) and,
in case of the abortSig event occurs, outputs that very signature which the tested server session obtained
in the ClientCertificateVerify message as its forgery.
As the client’s signature contains all transcript messages up to ClientCertificate, it particularly fixes
the first-stage session identifier sid1, meaning that there cannot be a client session signing exactly the
transcript value the tested server session is expecting since, otherwise, this would imply (contributive)
partnering in stage 1. Furthermore, by Game B.1, no session will sign a value colliding under H with the
tested server’s transcript. Hence, if B4 correctly guesses the received signature’s public key, it outputs a
valid forgery and wins if abortSig is triggered and thus

AdvGB.1draft-05,A ≤ AdvGB.2draft-05,A + nu · AdvEUF-CMA
Sig,B4 .

Finally, Game B.2 ensures that an honest client session output the ClientCertificateVerify signa-
ture received by the tested server session which, in particular, makes these two sessions agree on sid1, thus
also on cid1, and hence contributively partnered in the first stage. The adversary A therefore cannot test
a server (initiator) session without honest contributive first-stage partner in Game B.2 anymore, which
allows us to conclude that

AdvGB.2draft-05,A ≤ 0.

Case C. Test with Partner

We finally analyze the case that the tested session (client or server) has an honest contributive partner in
the first stage, i.e., we know there exists another label′ such that label.cid1 = label′.cid1. Note that, in this
third case, the Test query can be issued in any stage.

Game C.0. Again, we start with an initial game equal to the Multi-Stage game with a single Test query,
but restricting the adversary to only test a session having an honest contributive partner in the first stage
in order to have

AdvGC.0draft-05,A = Adv1-Multi-Stage,test with partner
draft-05,A .

Game C.1. Our first modification is to guess a session label′ 6= label (among the at most ns sessions in
the game) and abort the game in case this session is not the honest contributive partner (in stage 1) of the
tested session, i.e., we abort if label.cid1 6= label′.cid1. Note that we can, without loss of generality, assume
that A always issues a Test query. This reduces the adversary’s advantage by a factor of at most 1/ns.

AdvGC.0draft-05,A ≤ ns · AdvGC.1draft-05,A.
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From now on, we can speak of the session label′ (contributively) partnered with the tested session label in
stage 1, and can assume that we know label′ in advance.

Game C.2. In Game C.2, we replace the premaster secret PMS derived in both the tested and, if
derived equally, its (contributively) partnered session (label resp. label′) by a randomly chosen group
element P̃MS = gz for z←$ Zq.12

If A is able to distinguish Game C.1 from Game C.2, we can turn its distinguishing capabilities into an
adversary B5 against the decisional Diffie–Hellman (DDH) assumption in the group G, where B5 receives
values gu, gv and h, either h = guv or h being random. In simulating the game for A, algorithm B5
uses the challenge group elements gu and gv as a replacement for the values gx and gy to be sent in the
ClientKeyShare and ServerKeyShare messages exchanged between the (predicted) test session and its
partnered session and uses the third DDH challenge value h as the premaster secret PMS in both sessions.
Finally, B5 outputs whatever A outputs.

Observe that, in case h = guv, this approach equals Game C.1 while, in case h is a random group
element gz for z←$ Zq, the simulation equals Game C.2. Hence B5 provides a perfect simulation for A,
both for h = guv and Game C.1, and for h being random in Game C.2. Most importantly, from A’s
perspective, gu and gv are chosen as in the real game since the (honest) tested session is contributively
partnered in stage 1 with another honest session (i.e., label.cid1 = label′.cid1) and thus the adversary,
by the way label.cid1 is set both when testing a client or a server, cannot have modified the transcript
between these two sessions (up to the derivation of the premaster secret in the tested session). Moreover,
both values are chosen independently of the values in all other sessions which the reduction can, hence,
still select on its own. In particular, the latter also means that it is irrelevant if the Diffie–Hellman key
appears in another execution but does not lead to PMS in that execution being replaced consistently; if
the adversary notices this inconsistency then it still enables B5 to distinguish the cases.

Therefore, we can bound the difference in the advantage of A between the two games as

AdvGC.1draft-05,A ≤ AdvGC.2draft-05,A + AdvDDH
G,B5 .

Game C.3. In this game, we replace the handshake master secret HMS value by a uniformly random
string H̃MS←$ {0, 1}λ in the tested and, if it is derived equally there, also in the contributively partnered
session.
We can turn any adversary A able to distinguish this change with non-negligible probability into an
adversary B6 against the security of the pseudorandom function PRF (defined for keys chosen at random
from G). We let B6 simulate Game C.2 as the challenger, except that it uses its PRF oracle for the
derivation of HMS both in the tested and its (contributively) partnered session. Observe that, in case the
oracle computes the PRF function, this equals Game C.2, whereas, if it computes a random function, this
equals Game C.3. The simulation is sound because the premaster secret P̃MS, by the change in Game C.2,
is a random element in G chosen independently of all other values in the game.

The advantage of B6 in the PRF security (PRF-sec) game therefore bounds the advantage difference
such that

AdvGC.2draft-05,A ≤ AdvGC.3draft-05,A + AdvPRF-sec,G
PRF,B6

.

Game C.4. Next, we substitute the pseudorandom function PRF in all evaluations in the tested and its
partnered session using the (replaced) handshake master secret H̃MS as key by a (lazy-sampled) random

12Note that if a server session is tested in stage 1, the (contributively partnered) client session has not yet derived PMS but
will derive the same value if the adversary faithfully relays the server’s response, in which case we use the same P̃MS value in
the then partnered session label′.
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function. This, among other values, in particular affects the derivation of the handshake traffic key tkhs,
the master secret MS, and the resumption premaster secret RMS which are hereby replaced with random
values t̃khs, M̃S, R̃MS←$ {0, 1}λ in the tested session and, potentially, its partner.
Similar to the step in Game C.3, we can bound the difference in A’s advantage introduced through this
step by the security of the pseudorandom function PRF, this time defined for keys being uniformly random
bit strings from {0, 1}λ. The reduction B7, analogously to the previous step, uses its PRF oracle for all
evaluations of PRF under the key H̃MS in the tested and its partnered session. Depending on the oracle’s
behavior it again perfectly simulates either Game C.3 or Game C.4, as H̃MS is a uniformly random and
independent bit string.

We can hence can infer that

AdvGC.3draft-05,A ≤ AdvGC.4draft-05,A + AdvPRF-sec
PRF,B7 .

Observe that, in Game C.4, all values derived via an evaluation of PRF under the handshake master secret
have now been replaced by independent uniformly distributed values, since each value is derived using a
unique label as input to PRF.

Game C.5. Finally, we replace the application traffic key tkapp, derived using the pseudorandom func-
tion PRF keyed with the (random) master secret M̃S, with a randomly chosen bit string t̃kapp←$ {0, 1}λ

in the tested session as well as in the partnered session (if the latter derives the same master secret M̃S in
Game C.4).
Analogous to the two previous steps, we can bound this step by the security of PRF (again defined for keys
being uniformly random bit strings). This (similar) reduction B8 is sound because M̃S, by the change in
Game C.4, is a uniformly random value. We can hence conclude that

AdvGC.4draft-05,A ≤ AdvGC.5draft-05,A + AdvPRF-sec
PRF,B8 .

In Game C.5, the session keys t̃khs and t̃kapp as well as the resumption premaster secret R̃MS are now
chosen independently and uniformly at random. As the response to its Test query is hence independent
of the test bit btest, the adversary A cannot distinguish whether it is given the real key or (another)
independently chosen random value and thus

AdvGC.5draft-05,A ≤ 0.

Combining the various bounds implied by the above sequences of game transitions yields the stated
security bound.

6 Security of the draft-dh Handshake
We now analyze the TLS 1.3 handshake variant as specified in the draft-ietf-tls-tls13-dh-based fork
by Rescorla [Res15c].

Again, we define the session identifiers for the traffic key stages to be the unencrypted messages sent and
received excluding the finished messages, where starred (∗) components are not present in all authentication
modes:

sid1 = (ClientHello, ClientKeyShare, ServerHello, ServerKeyShare) and
sid2 = (ClientHello, ClientKeyShare, ServerHello, ServerKeyShare, EncryptedExtensions∗,

ServerCertificate∗, CertificateRequest∗, ServerParameters∗,

ClientCertificate∗, ClientCertificateVerify∗).
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We capture the further derived resumption master secret RMS and exporter master secret EMS in stages 3
and 4 and define the session identifier to be sid3 = (sid2, “RMS”) and sid4 = (sid2, “EMS”) which are
uniquely determined by the second-stage identifier sid2. As in Section 5, defining session identifiers over
the unencrypted messages is again necessary to obtain key-independent Multi-Stage security.

The contributive identifiers are defined as for draft-05, i.e., cid1 first contains ClientHello and
ClientKeyShare (when they are sent resp. received) and is later augmented with ServerHello and
ServerKeyShare when those messages are sent resp. received, whereas cidi = sidi for stages i ∈ {2, 3, 4},
set by each party on sending its respective finished message.

The draft-dh version of the TLS 1.3 handshake involves semi-static keys gs on the server side, which
we represent as temporary keys in our model. In particular, the adversary is given power to generate
arbitray many such keys via the NewTempKey query and can specify which temporary key to use in each
session. We point out that temporary keys are not revealed in Corrupt queries, as we expect them to be
used only in a short time frame.

Theorem 6.1 (Match security of draft-dh). The draft-dh full handshake is Match-secure: for any
efficient adversary A we have

AdvMatch
draft-dh,A ≤ n2

s · 1/q · 2−|nonce|,

where ns is the maximum number of sessions, q is the group order, and |nonce| = 128 is the bit-length of
the nonces.

As all aspects of the draft-dh handshake relevant for Match security equal those of the draft-05
handshake (aside from ServerCertificateVerify being renamed to ServerParameters and the added
fourth session identifier which is distinct due to its “EMS” label), the proof of Theorem 5.1 applies here,
too.

Theorem 6.2 (Multi-Stage security of draft-dh). The draft-dh full handshake is Multi-Stage-secure in
a key-independent and stage-1-forward-secret manner with concurrent authentication properties AUTH =
{(unauth, unauth, unauth, unauth), (unauth, unilateral, unilateral, unilateral), (unauth,mutual,mutual,mutual)}
(i.e., no authentication, stage-2 unilateral authentication, and stage-2 mutual authentication). Formally,
for any efficient adversary A against the Multi-Stage security there exist efficient algorithms B1, . . . , B10
such that

AdvMulti-Stage,D
draft-dh,A ≤ 4ns·

(
AdvCOLL

H,B1 + nu · AdvEUF-CMA
Sig,B2

+ AdvCOLL
H,B3 + nu · AdvEUF-CMA

Sig,B4

+ ns ·
(
AdvCOLL

H,B5 + nu · AdvEUF-CMA
Sig,B6 + AdvDDH

G,B7

+ AdvPRF-sec,G
HKDF.Extract,B8

+ AdvPRF-sec
HKDF.Expand,B9 + AdvPRF-sec

HKDF.Expand,B10

))
,

where ns is the maximum number of sessions and nu is the maximum number of users.

Proof. First of all, as in the proof of Theorem 5.2 for draft-05, we consider the case that the adversary A
makes a single Test query only. This reduces its advantage, based on an analogous hybrid argument, by a
factor at most 1/4ns as there are four stages in each of the ns sessions. We from now on can speak about
the session label tested at stage i, which we know in advance.

As for the draft-05 proof, our security analysis is in the same three (disjoint) cases that
A. the adversary tests a client session without honest contributive partner in the first stage,
B. the adversary tests a server session without honest contributive partner in the first stage, and
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C. the tested session has an honest contributive partner in stage 1.
We again can split the adversary’s advantage along these three cases:

AdvMulti-Stage,D
draft-dh,A ≤ 4ns·

(
Adv1-Multi-Stage,client without partner

draft-dh,A

+ Adv1-Multi-Stage,server without partner
draft-dh,A

+ Adv1-Multi-Stage,test with partner
draft-dh,A

)
.

The proof cases A and B are virtually identical to the respective cases in the proof for draft-05
(cf. Theorem 5.2), aside from the server’s signature message being called ServerParameters instead of
ServerCertificateVerify. Again, the online signatures on the transcript ensure that no session accepts
an authenticated key without partner in the first stage. We can hence focus on the third case.

Case C. Test with Partner

We analyze the case that the tested session (client or server) has an honest contributive partner in the first
stage, i.e., we know there exists another label′ such that label.cid1 = label′.cid1. This allows Test queries to
be potentially issued in any of the four stages.

Game C.0. We start with an initial game equal to the Multi-Stage game with a single Test query, but
restricting the adversary to only test a session having an honest contributive partner in the first stage in
order to have

AdvGC.0draft-dh,A = Adv1-Multi-Stage,test with partner
draft-dh,A .

Game C.1. Our first modification is to guess a session label′ 6= label (among the at most ns sessions in
the game) and abort the game in case this session is not an honest contributive partner (in stage 1) of the
tested session, i.e., we abort if label.cid1 6= label′.cid1. Note that we can, without loss of generality, assume
that A always issues a Test query. This reduces the adversary’s advantage by a factor of at most 1/ns.

AdvGC.0draft-dh,A ≤ ns · AdvGC.1draft-dh,A.

From now on, we can speak of the session label′ (contributively) partnered with the tested session label in
stage 1 and know label′ in advance.

Game C.2. Next, we let the challenger abort the game if any two honest sessions compute the same
hash value for different inputs in any evaluation of the hash function H.
We can bound the probability of the game to be aborted by the advantage AdvCOLL

H,B5 of an adversary B5
against the collision resistance of the hash function H similar to the Game A.1 in the proof of Theorem 5.2,
where B5 outputs the two distinct input values to H resulting in the same hash value as a collision. It
hence holds that

AdvGC.1draft-dh,A = AdvGC.2draft-dh,A + AdvCOLL
H,B5 .

Game C.3. In this game, we let the challenger abort if the client session amongst the tested and its
(contributively) partnered session (i.e., the one having role = initiator) in a server-authenticated exchange
(label.auth2 ∈ {unilateral,mutual}) receives, within the ServerParameters message, a valid signature under
the public key pkU of some user U ∈ U such that the contained message has not been signed by any of the
honest sessions.
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Similarly to Game A.2 in the proof of Theorem 5.2, we can bound the probability that Game C.3 aborts
by the advantage of an adversary B6 against the EUF-CMA security of the signature scheme Sig (multiplied
by a factor nu for guessing the right user U) and obtain

AdvGC.2draft-dh,A ≤ AdvGC.3draft-dh,A + nu · AdvEUF−CMA
Sig,B6

.

Since according to Game C.2 there is no collision between any two honest evaluations of the hash
function, we can be sure that if the client session (among label and label′) obtains a valid ServerParameters
message, then this message originates from its partnered session (label′ resp. label). Hence, in particular,
both sessions in this case agree on the server-provided semi-static gs value if such a value is sent. Observe
that gs (captured in our model as a temporary public key tpk with tsk = s being the corresponding
temporary secret key) is always chosen honestly by the challenger; the adversary is only allowed to decide
which particular value is used within a session.

Game C.4. In Game C.4, we replace the ephemeral secret ES derived in both the tested and (potentially)
its contributively partnered session (label resp. label′) by a randomly chosen group element ẼS = gz for
z←$ Zq.13

If A is able to distinguish this change, we can turn its distinguishing capabilities into an adversary B7
against the decisional Diffie–Hellman (DDH) assumption in the group G, where B7 receives values gu, gv
and h, either h = guv or h being random. In simulating the game for A, algorithm B7 uses the challenge
group elements gu and gv as a replacement for the values gx and gy to be sent in the ClientKeyShare
and ServerKeyShare messages exchanged between the tested and its (predicted) partnered session and
uses the third DDH challenge value h as the ephemeral secret ES in both sessions. Observe that, in case
h = guv, this approach equals Game C.3 while, in case h is a random group element gz for z←$ Zq, the
simulation equals Game C.4. In case an ServerParameters message is sent (i.e., for unilateral or mutual
authentication), B7 on the client side computes the static secret as (gu)s, using the exponent s it has
chosen in the server session which we know both session agree on by Game C.3.

We observe that B7 provides a perfect simulation for A, both for h = guv and for h being random.
Most importantly, from A’s perspective, gu and gv are chosen as in the real game since the (honest) tested
session is contributively partnered (in stage 1) with another honest session (i.e., label.cid1 = label′.cid1) and
thus the adversary cannot have modified the transcript between these two sessions (up to the derivation
of the ephemeral secret in the tested session). Moreover, both values are chosen independently of the
ephemeral values and temporary keys in all other sessions which the reduction can, hence, still select on
its own. This in particular implies that an adversary, being able to notice the (coincidental) appearance
of the same Diffie–Hellman key in another execution, still allows B7 to distinguish the two cases by A’s
differing behavior.

We can hence bound the difference in the advantage of A between the two games as

AdvGC.3draft-dh,A ≤ AdvGC.4draft-dh,A + AdvDDH
G,B7 .

Game C.5. In this game, we replace the handshake master secret HMS and the master secret MS by
uniform and independent random strings H̃MS, M̃S←$ {0, 1}λ in the tested session and, if derived there,
in the partnered session. Only if AMS equals the 0 string used in the extraction of HMS, such that both
derivations use the same salt value, then we instead use the same random string M̃S = H̃MS for consistency
reasons.

13As in the draft-05 proof, the (contributively partnered) client session will not have derived ES yet if a server session is
tested in stage 1. If however the adversary relays the server’s response back without modification, the client derives the same
value in which case we also use ẼS in the then partnered session label′.
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We can turn any adversary A able to distinguish this change with non-negligible probability into an
adversary B8 against the security of the HKDF.Extract function which we model as a pseudorandom function
(defined for keys chosen at random from G). We let B8 simulate Game C.4 as the challenger, except that
it uses its PRF oracle for the derivation of HMS and MS both in the tested and its partnered session.
Observe that, in case the oracle computes the PRF function, this equals Game C.4, whereas, if it computes
a random function, this equals Game C.5 (where the consistency stipulation ensures that the simulation
complies with repeated answers of the random function oracle). The simulation is sound because the
ephemeral secret ẼS, by the change in Game C.4, is a random element in G chosen independently of all
other values in the game and different salt values are used for the derivation of HMS and MS (given the
case AMS = 0 is treated consistently as described above).

The advantage of B8 in the PRF security game therefore bounds the advantage difference such that
AdvGC.4draft-dh,A ≤ AdvGC.5draft-dh,A + AdvPRF-sec,G

HKDF.Extract,B8
.

Game C.6. Next, we replace the handshake traffic key tkhs derived in both the tested and its partnered
session by a uniformly random value t̃khs.
Similar to the step in Game C.5, we can bound the difference in A’s advantage introduced through this
step by the security of the HKDF.Expand function which we model as a pseudorandom function, this time
defined for keys being uniformly random bit strings from {0, 1}λ. The reduction B9, analogously to the
previous step, uses its PRF oracle for the evaluations of HKDF.Expand under the key H̃MS in the tested
and its partnered session. Depending on the oracles behavior it again perfectly simulates either Game C.5
or Game C.6, as H̃MS is a uniformly random and independent bit string.

We can hence can infer that
AdvGC.5draft-dh,A ≤ AdvGC.6draft-dh,A + AdvPRF-sec

HKDF.Expand,B9 .

Game C.7. Finally, we replace all HKDF.Expand evaluations using the (replaced) master secret M̃S as
key in the tested and its partnered session by a (lazy-sampled) random function. This change affects the
derivation of the handshake traffic key tkapp, the resumption master secret RMS, and the exporter master
secret EMS which are hereby replaced with independent random values t̃kapp, R̃MS, ẼMS←$ {0, 1}λ in the
tested session.
As in the previous two steps, we can bound the difference in A’s advantage introduced through this step by
the PRF security of HKDF.Expand, again defined for keys being uniformly random bit strings from {0, 1}λ.
To this extent, the reduction B10 as above uses its PRF oracle for all evaluations of HKDF.Expand under
the key M̃S in the tested and its partnered session. Depending on the oracles behavior, this perfectly
simulates either Game C.6 or Game C.7, as M̃S is a uniformly random and independent bit string and
different labels are used in the derivation of tkapp, RMS, and EMS.

We can hence can infer that
AdvGC.6draft-dh,A ≤ AdvGC.7draft-dh,A + AdvPRF-sec

HKDF.Expand,B10 .

In Game C.7, the session keys t̃khs and t̃kapp as well as the resumption and exporter master secrets R̃MS
and ẼMS are now chosen independently and uniformly at random. As the response to its Test query is
hence independent of the test bit btest, the adversary A cannot distinguish whether it is given the real key
or (another) independently chosen random value and thus

AdvGC.7draft-dh,A ≤ 0.

Combining the various bounds implied by the above sequence of game transitions yields the stated
security bound.
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full handshake

tkhs record protocol

tkapp record protocol

RMS resumption handshake

EMS∗ generic usage

Figure 4: Illustration of the composition result applications in our analysis of the TLS 1.3 drafts. Derived keys are connected
to the handshake by solid lines, their usage in protocols is indicated by an arrow. Dashed boxes indicate an application of
the composition result to the usage of a specific derived (final) key in a symmetric-key protocol.
∗Note that a separate exporter master secret EMS is derived only in the draft-dh draft.

Remark. In our analysis we do not rely on AMS to be included in the extraction step for deriving MS.
In fact, Game C.5 even allows for AMS = 0 such that MS and HMS are identical. The reason why this
does not harm the security is that the server’s signature already authenticates the temporary key, and
that all keys derived from MS resp. HMS use different input labels for the pseudorandom functions.

7 Composition
Key exchange protocols are in general of very limited use when considered on their own. Typically, such
protocols are deployed as a preliminary step followed by a symmetric-key protocol (e.g., the record layer
protocol in case of TLS 1.3) that makes uses of the established shared secret keys. As shown in previous
work by Brzuska et al. [BFWW11] for Bellare–Rogaway-secure key exchange protocols and by Fischlin
and Günther [FG14] for Multi-Stage-secure key exchange protocols, such composition can be proven to be
generically secure under certain conditions.

The latter (multi-stage) result however is not yet readily applicable to the setting of TLS 1.3, as
it requires the multi-stage key exchange protocol to provide—apart from key independence and forward
secrecy, which TLS 1.3 satisfies—mutual authentication and a public session matching. For authentication,
Fischlin and Günther state only informally how the composition theorem can be adapted to the unilateral
authentication case and furthermore do not treat unauthenticated key exchange (stages). Public session
matching moreover requires that, informally, an efficient algorithm eavesdropping on the communication
between the adversary and the key exchange security game is able to determine the partnered sessions in
the key exchange game. Since it is necessary to define session identifiers (and, hence, partnering) over the
unencrypted messages exchanged in the TLS 1.3 handshake to achieve key independence (see Sections 5
and 6), partnering of sessions is no longer publicly decidable from the (encrypted) key exchange messages.

We therefore need to strengthen the previous composition result for multi-stage key exchange pro-
tocols [FG14] to cover, first, key exchange sessions and stages which are only unilaterally authenticated
or completely unauthenticated, and, second, protocols that do not allow for a public session matching,
but for one where session partnering at a certain stage i is deducible given all stage-j keys for j < i.
Jumping ahead, knowledge of earlier stages’ keys can be taken for granted as such keys can be revealed
without impairing the chances of winning in a key-independent setting, which is in any case required for
composition. In particular, as both achieve key independence, the analyzed TLS 1.3 handshake drafts are
amenable to our composition result.
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7.1 Preliminaries

Before we present our composition result we recap, partially verbatim, the syntax of composed games
introduced by Brzuska et al. [BFWW11, Brz13] and extended by Fischlin and Günther [FG14] for the
purpose of formal reasoning about composition of (multi-stage) key exchange and symmetric-key protocols,
broadening its scope to encompass composition with arbitrarily authenticated multi-stage key exchange
stages. Furthermore, we recap their notion of session matching and strengthen it to capture the non–
public-partnering case.

Composed games for multi-stage key exchange. Let GKE be a game modeling security for a (multi-
stage) key exchange protocol KE, and GΠ a security game for some symmetric-key protocol Π. Fix some
index i of a stage for the moment and keys derived in this stage only; the composition with protocols run
on keys for other stages will follow from this via the possibility to Reveal such keys. We define GKEi;Π as
the security game for the composition KEi; Π of KE and Π where, whenever a session key Ki is accepted in
stage i of KE where each of the two sessions involved either are authenticated or contributed honestly to the
derived key14, this key Ki is registered as a new key in the symmetric-key protocol game GΠ, allowing the
adversary to run Π-sessions with this key (and all previously registered keys). Observe that compositional
security can obviously only be guaranteed when the adversary does not know the derived session key,
which we require the key exchange protocol to ensure whenever both sides of the key exchange are either
authenticated or honest in their contribution. In particular, if a session key is derived in a key exchange
involving an unauthenticated party whose key contribution was not simulated by the challenger, we must
expect that the adversary controls this party to an extent where it holds the derived session key—and
hence cannot require any security property of the symmetric-key protocol to hold for such a session key.

In GKEi;Π, the adversary’s task is to break the security of Π by winning in the subgame GΠ given access
to both the queries of GKE and GΠ, which the composed game essentially just relays to the appropriate
subgame. Exceptions to this are the key registration queries of GΠ (that are only executed by the composed
game to register stage-i keys within GΠ whenever such a key has been accepted), the Reveal query of GKE
(which the adversary is not allowed to query for stage-i keys in the composed game15, as session key
compromise for these keys is—if at all—captured in GΠ), and the Test query of GKE (being only of
administrative purpose for GKE). The adversary wins in the composed game, if it, via its queries, succeeds
in the subgame GΠ.

Multi-stage session matching. As established by Brzuska et al. [BFWW11], session matching is both a
necessary and sufficient condition for the composition of Bellare–Rogaway-secure key exchange and generic
symmetric-key protocols. They moreover observe that such a matching might not be (efficiently) com-
putable in certain cases, e.g., if the key exchange messages are encrypted using a (publicly) re-randomizable
cipher, but partnering is defined over the unencrypted messages.

The latter restriction becomes particularly relevant in the multi-stage setting, as key exchange protocols
may—and TLS 1.3 does—use keys of previous stages to encrypt later stages’ messages. In such cases,
session matching based on the public transcript may not be feasible anymore; this especially holds for the
case of TLS 1.3. We can however leverage that key independence is already a prerequisite for composition
in the multi-stage setting and hence, when targeting the keys of a certain stage, revealing the keys of

14More formally, we consider stage-i keys which are accepted in a session label that either talks to an authenticated
communication partner (i.e., label.authi = mutual or label.authi = unilateral and label.role = initiator) or has an honest
contributing partnered session (i.e., there exists a session label′ with label.cidi = label′.cidi).

15Note however that keys in stages different from i, not being used for Π, are still accessible via Reveal queries in GKEi;Π,
which makes our result also cover concurrent composition with one (or several) of such protocols using the (different) keys
from multiple, forward-secret stages.
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previous stages is of no harm in the key exchange game. Therefore, we can strengthen session matching
in the multi-stage setting to obtain also the session keys Kj for all stages j < i when determining the
partnering for stage i. We moreover extend session matching to comprise not only the session identifiers
but also the newly introduced contributive identifiers.

Formally, we define multi-stage session matching as follows.
Definition 7.1 (Multi-stage session matching algorithm). A multi-stage session matching algorithm M
for a key exchange protocol KE is an efficient algorithm for which the following holds for any adversary A
playing in the Multi-Stage security game GMulti-Stage,D

KE,A of KE. On input a stage i, the public parameters of
the game, an ordered list of all queries made by A and responses from GMulti-Stage,D

KE,A at any point of the
game execution, and, for all sessions, a list of all stage-j keys (for any j < i) accepted at this point, M
outputs two lists of pairs of all sessions in stage i, the first list containing exactly those pairs sharing the
same session identifier sidi (i.e., being partnered), and the second list exactly those pairs sharing the same
contributive identifier cidi at this point of the game execution.

If such an algorithm exists for a key exchange protocol KE, we say that KE allows for an efficient
multi-stage session matching.

7.2 Compositional Security

We can now provide our extended composition result for multi-stage key exchange: the composition KEi; Π
of a multi-stage key exchange protocol KE with an arbitrary symmetric-key protocol Π employing the stage-
i session keys of KE is secure if the key exchange is Multi-Stage-secure providing key independence, stage-j
forward secrecy (for j ≤ i), multi-stage session matching, and the stage-i keys are final. With final keys in
stage i (or: final stages i) we refer to those keys established after the last key exchange message has been
exchanged (in TLS 1.3 this comprises keys tkapp, RMS, and (in draft-dh) EMS).16 Note that keys derived
prior to the final message exchange might be used in generating some key exchange messages and are thus
not amenable to truly generic composition: such keys cannot provide security in, e.g., a symmetric-key
protocol Π whose security is defined as an adversary being unable to forge a TLS 1.3 key exchange message
(as an adversary can simply replay such a message from the key exchange in the composed game).17

Observe that we, in contrast to the previous composition result [FG14], do not require a particular
level of authentication, but instead show compositional security for any concurrent authentication proper-
ties AUTH of KE. We remark again that, as captured in the composed game for multi-stage key exchange,
security in the symmetric-key protocol Π can naturally be guaranteed only in those cases where the two
parties who derived the session key are either authenticated or honestly contributed to the derived key,
since otherwise we expect the adversary to know the key (e.g., by playing the role of an unauthenticated
client) and cannot hope for any security.
Theorem 7.2 (Multi-stage composition). Let KE be a key-independent stage-j-forward-secret Multi-Stage-
secure key exchange protocol with concurrent authentication properties AUTH and key distribution D that
allows for efficient multi-stage session matching. Let Π be a secure symmetric-key protocol w.r.t. some
game GΠ with a key generation algorithm that outputs keys with distribution D. Then the composition
KEi; Π for final stages i ≥ j is secure w.r.t. the composed security game GKEi;Π. Formally, for any efficient
adversary A against GKEi;Π there exist efficient algorithms B1,B2,B3 such that

AdvGKEi;Π
KEi;Π,A ≤ AdvMatch

KE,B1 + ns · AdvMulti-Stage,D
KE,B2

+ AdvGΠ
Π,B3

,

16The notion of final keys can be formalized in our model through the sequence of special Send(·, continue) queries (without
further message output) at the end of a session run. A similar query can be used to enable the adversary to trigger the final
key computation after the last protocol message has been sent (in TLS 1.3: after the client sent ClientFinished).

17In principle, our composition result can cover not only final, but any unused stage-i key. We refrain from capturing this
more complex notion of non-usage of keys here.
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where ns is the maximum number of sessions in the key exchange game.

Proof of Theorem 7.2. The proof basically is an adaptation of the one for multi-stage composition by
Fischlin and Günther [FG14], which in turn proceeds along the lines of the Bellare–Rogaway composition
result by Brzuska et al. [BFWW11].

As a technical prerequisite, we ensure that the key exchange protocol KE in the composed game GKEi;Π
always outputs the same key Ki for two partnered sessions in stage i. This basic property is given by Match
security (which is subsumed under requiring Multi-Stage security from KE) and hence we can easily turn
an adversary A that triggers different keys to be output in partnered sessions in the key exchange part of
GKEi;Π into an adversary B1 against Match security. Observe that B1 can simply relay all oracle queries A
makes for the KE subgame to its own oracles (note that A is not given access to a Test query in GKEi;Π).
Furthermore, B1 simulates the Π subgame on its own according to the GKEi;Π definition. Providing a
correct simulation for A, algorithm B1 always wins if A makes two partnered sessions output different keys
in stage i; hence, we can from this point on assume that partnered sessions agree on their derived keys.

On a high level, we now first replace the derived session keys, one at a time, by a randomly chosen
key from D and show that an adversary able to distinguish each of these replacements can be turned
into an efficient Multi-Stage adversary against KE. After all keys have been replaced by random ones, the
subgame GΠ is then independent of the key exchange protocol (as the now randomly chosen final stage-i
keys are not used within the key exchange) and hence, breaking the composed game immediately translates
to breaking the symmetric-key protocol game.

The first part of the proof is a hybrid argument. Let GλKEi;Π denote a game that behaves like GKEi;Π
(with partnered sessions agreeing on the derived key), except that for the first λ accepting sessions in
stage i where the key is registered in the symmetric-key protocol subgame (i.e., where the communication
partner is either authenticated or an honest partnered session exists), instead of the real session key Ki a
randomly chosen K′i←$D is registered in GΠ. Obviously, G0

KEi;Π = GKEi;Π while GnsKEi;Π denotes the game
where all keys used in the Π subgame are chosen at random from D. Applying Lemma 7.3 below, we have
that both games are indistinguishable due to the Multi-Stage security of KE and it holds that

Adv
G0

KEi;Π
KEi;Π,A ≤ Adv

GnsKEi;Π
KEi;Π,A + ns · AdvMulti-Stage,D

KE,B2
.

The main difference to the previous multi-stage composition [FG14] is that not only mutually authenticated
session keys derived in the key exchange are registered in the symmetric-key protocol, but any session key
for which both communication partners are either authenticated or honestly contributing. As we will see
in the proof of Lemma 7.3, these cases match exactly the conditions for Test queries to be permitted in
the Multi-Stage game which hence still allows us to replace all keys used in the symmetric-key protocol
with random ones in the hybrid.

As for the previous results, in GnsKEi;Π only randomly chosen keys, independent of KE, are used in the
symmetric-key protocol subgame GΠ which allows us to bound the advantage of A in GnsKEi;Π by the ad-
vantage of an adversary B3 directly breaking the protocol security game GΠ. We restate the corresponding
Lemma 7.4 below without proof, as it is identically given in [FG14].

Finally, the initial assumption that Π is secure w.r.t. GΠ then allows us to conclude that KE; Π is secure
w.r.t. GKEi;Π.

We first establish the hybrid argument, closely following the respective proof by Fischlin and Gün-
ther [FG14].

Lemma 7.3. Let KE be a key-independent stage-j-forward-secret Multi-Stage-secure key exchange protocol
with concurrent authentication properties AUTH and key distribution D that allows for an efficient multi-
stage session matching and where partnered sessions in stage i always agree on the derived session key. Let
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Π be a secure symmetric-key protocol w.r.t. some game GΠ with a key generation algorithm that outputs
keys with distribution D. Then for i ≥ j, all λ = 1, . . . , ns and any efficient adversary A there exists an
efficient algorithm B such that ∣∣∣∣∣Adv

Gλ−1
KEi;Π

KEi;Π,A − Adv
GλKEi;Π
KEi;Π,A

∣∣∣∣∣ ≤ AdvMulti-Stage,D
KE,B ,

where ns is the maximum number of sessions in the key exchange game.

We provide B with λ as auxiliary input for simplicity but note that letting B pick λ at random in [1, ns]
suffices to prove the hybrid argument.

Proof of Lemma 7.3. The task is to construct an algorithm B given λ and using the adversary A against
GKEi;Π such that, if A is able to distinguish (by a a non-negligible advantage difference) between Gλ−1

KEi;Π
and GλKEi;Π, then B has non-negligible advantage in GMulti-Stage,D

KE,B .
In order to simulateGKEi;Π forA, algorithm B basically forwards all KE-related queries to its Multi-Stage

game as described below while answering queries to the GΠ subgame on its own (using the established
stage-i keys from the key exchange). For administrative purposes, B keeps two mappings. The first one,
SDATA : LABELS → {initiator, responder} × {unauth, unilateral,mutual} × [D]i−1, stores the role, the i-th
stage’s authentication level, and the session keys for all stages j < i of each key exchange session. The
second one, SKEY : LABELS→ [D], stores the key value for each session whose stage-i key was registered
in GΠ. Morever, B keeps a counter c, initialized as c = 0, indicating the number of session keys replaced
by random values so far. Algorithm B handles queries by A to the key exchange subgame as follows:

• NewSession, NewTempKey, Reveal, and Corrupt queries are forwarded to GMulti-Stage,D
KE,B and the re-

sponses sent back to A. For any NewSession call, B puts the issued label together with the session’s
specified role and authentication level for stage i into the map SDATA.
Observe that this approach is sound and in particular does not infringe with a later test query on
a stage-i key (see below). On the one hand, the stage-j forward secrecy of KE (for j ≤ i) ensures
that session keys in stage i are forward-secret and hence unaffected by Corrupt queries. On the other
hand, KE being key-independent implies that Reveal(label, i′) queries allowed for stages i′ 6= i, which
are allowed in the composed game, never affect the security of session keys in stage i.

• Send(label,m) queries are forwarded to GMulti-Stage,D
KE,B as well and the responses sent back to A.

Additionally, if session label in GMulti-Stage,D
KE,B changes to an accepting state acceptedj for j < i due

to such a query, B issues a query Reveal(label, j) and stores the resulting session key Kj in the
map SDATA. Note that, again by key independence, this Reveal query does not affect the session’s
stage-i key.
The most important case is when session label changes to state acceptedi. Here, B first of all invokes
the efficient multi-stage session matching algorithm on the queries and responses A posed to the
subgame GKE and all established session keys for stages j < i (which B has stored in SDATA), in
order to obtain all sessions which are partnered and those which agree on the contributive identifier
in stage i.
In case label is partnered with some other session label′ and SKEY(label′) is set, B sets this key
value also as SKEY(label) and provides A with a handle for SKEY(label) in GΠ. Recall that by
assumption two accepting partnered sessions always establish identical session keys (a property we
ensure through Match security in the proof of Theorem 7.2).
Otherwise, B checks whether the conditions for registering the resulting key in the subgame GΠ
are satisfied, namely whether session label either has an authenticated communication partner (i.e.,
if label.authi = mutual or label.authi = unilateral and label.role = initiator, which B looks up in its
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map SDATA) or has an honest contributing partnered session (i.e., the session matching outputs
a session label′ with label.cidi = label′.cidi). If this is the case, B increments the counter c and
provides A with an identifier for SKEY(label) in GΠ, where SKEY(label) is computed depending on
the counter c:
– If c < λ, then sample SKEY(label)←$D at random.
– If c = λ, then issue a Test(label, i) query and store the resulting value in SKEY(label).
– If c > λ, then issue a Reveal(label, i) query and store the resulting value in SKEY(label).

Note that B first checking for partnered sessions in stage i ensures that it, if at all, only tests the first
session accepting a key (avoiding the according ‘lost’-flag penalty in the Test query) and never both
tests and reveals a key in two partnered sessions (satisfying the finalize condition of the Multi-Stage
definition). Moreover, as the compositional game as well as B only register session keys for which each of
the communication partners in the key exchange is either authenticated or contributed honestly, we never
test a session with an unauthenticated peer and no honest contributive partnered (satisfying the according
conditions in the Test query). Therefore, B will never cause the ‘lost’ flag to be set in its GMulti-Stage,D

KE,B
game.

When A terminates, B stops as well and outputs 1 if A has won in the composed game (i.e., in the GΠ
subgame that B simulates on its own) and 0 otherwise. That way, if the Test query made by B returns
the real session key, B perfectly simulates Gλ−1

KEi;Π for A, whereas, if a random key is returned, B perfectly
simulates GλKEi;Π. Since B never causes lost = 1 in its game we have that if btest = 0 in GMulti-Stage,D

KE,B , then

B thus outputs the wrong bit with probability Adv
GλKEi;Π
KEi;Π,A while, if btest = 1, B outputs the right bit with

probability Adv
Gλ−1

KEi;Π
KEi;Π,A. We can hence conclude that the advantage of B in winning the game GMulti-Stage,D

KE,B
is

AdvMulti-Stage,D
KE,B ≥

∣∣∣∣∣Adv
Gλ−1

KEi;Π
KEi;Π,A − Adv

GλKEi;Π
KEi;Π,A

∣∣∣∣∣ .
We complete the composition proof by restating the lemma from [FG14] that the adversary’s success

probability in the hybrid game GnsKEi;Π, where all session keys in the GΠ subgame are chosen at random
and independent of the key exchange (as the according stage i is final), can be bound by the security of
the symmetric-key protocol.

Lemma 7.4. Let KE be a multi-stage key exchange protocol with stage i being final. Let Π be a secure
symmetric-key protocol w.r.t. some game GΠ with a key generation algorithm that outputs keys with dis-
tribution D. Let ns be the maximum number of sessions in GKEi;Π. Then for any efficient adversary A
there exists an efficient algorithm C such that

Adv
GnsKEi;Π
KEi;Π,A ≤ AdvGΠ

Π,C .

8 Multi-Stage Preshared-Secret Key Exchange Model
In this section we modify the multi-stage key exchange (MSKE) framework from Section 4 to model multi-
stage preshared-secret key exchange (MS-PSKE) security for the purpose of analyzing TLS 1.3 session
resumption, obtaining a model for multi-stage key exchange protocols that use preshared keys as long-
term secrets. TLS 1.3 drafts draft-05 and draft-dh do not conclusively specify preshared key (PSK)
ciphersuites yet, but we expect this model to be readily applicable to those as well.

In MS-PSKE, each protocol participant is identified by some U ∈ U and holds a set of pairwise pre-
shared secrets pssU,V,k = pssV,U,k (U, V, k indicating the k-th preshared secret between parties U and V )
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from a fixed keyspace, associated with a unique (public) preshared-secret identifier psidU,V,k = psidV,U,k
and a flag CorruptedU,V,k. (For example, in TLS session resumption, the preshared-secret identifier is the
session_id value established by the server in a field in the ServerHello message in the original hand-
shake, which the client subsequently sends in its ClientHello message during the resumption handshake.)

Compared to our MSKE model, each entry in the session list ListS now contains an additional entry:
• k ∈ N : the index of the preshared secret used in the protocol run between the parties U and V .

8.1 Adversary Model

Like in the MSKE model of Section 4, we consider an adversary that controls the network communication,
allowing delivery, injection, modification and dropping of messages. We define a flag lost (initialized to
false) that will be set to true when the adversary makes queries that would trivially break the security
experiment. In the preshared secret case the common key with index k between U and V plays the role of
the long-term keys and can be used to derive sessions keys in multiple (concurrent) executions, capturing
many parallel session resumption steps in TLS. Corruption reveals these keys for (U, V, k) and renders all
derived keys as insecure in the non-forward setting we discuss here.

The adversary interacts with the protocol via the Send, Reveal, and Test queries defined in Section 4.4,
inheriting the key (in-)dependence treatment but only treating the non–forward-secret setting; our model
can easily be extended to the forward-secret setting. The NewSession and Corrupt queries are modified
slightly. The new query NewSecret allows the adversary to establish (new) preshared secrets between two
parties.

• NewSecret(U, V ): Creates a preshared secret sampled uniformly at random from the preshared secret
space and stores it as pssU,V,k = pssV,U,k where k is the next unused index for U and V . Also
creates a unique new preshared secret identifier psidU,V,k = psidV,U,k and returns psidU,V,k. Initializes
CorruptedU,V,k and CorruptedV,U,k as fresh.

• NewSession(U, V, k, role, auth): Creates a new session for party U with role role and authentica-
tion auth having V as intended partner and key index k (both V and k being potentially unspecified).
A party may learn and set unspecified values during execution.
The challenger generates a (unique) new label label and adds the entry (label, U, V, k, role, auth) to
ListS.

• Corrupt(U, V, k): If there exists a session label with parties (U, V ) or (V,U) and key identifier k and
some stage i such that label.testedi = true, then return ⊥. Otherwise, provide the adversary with
pssU,V,k and set CorruptedU,V,k and CorruptedV,U,k to revealed; in this case no further queries are
allowed to sessions using pssU,V,k = pssV,U,k.

8.2 Security of Preshared Key Exchange Protocols

We adapt the notions for matching and multi-stage key secrecy to the preshared secret setting, essentially
replacing long-term secret compromise with preshared secret compromise.

8.2.1 Match Security

As previously, Match security for preshared-secret key exchange protocols ensures that session identifiers
effectively match the partnered sessions which must share the same view on their interaction. Note that
the following conditions for Match security are identical to Match security conditions for MSKE models
with the exception of condition 4:

1. sessions with the same session identifier for some stage hold the same key at that stage,
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2. sessions with the same session identifier for some stage agree on that stage’s authentication level,
3. sessions with the same session identifier for some stage share the same contributive identifier at that

stage,
4. sessions are partnered with the intended (authenticated) participant, and for mutual authentication

share the same key index,
5. session identifiers do not match across different stages, and
6. at most two sessions have the same session identifier at any stage.
The security game GMatch

KE,A is as follows.

Definition 8.1 (Match security). Let KE be a key exchange protocol and A a PPT adversary interacting
with KE via the queries defined in Section 8.1 in the following game GMatch

KE,A :
Query. The adversary A has access to the queries NewSecret, NewSession, Send, Reveal, and Corrupt.
Stop. At some point, the adversary stops with no output.
We say that A wins the game, denoted by GMatch

KE,A = 1, if at least one of the following conditions hold:
1. There exist two distinct labels label, label′ such that label.sidi = label′.sidi 6= ⊥ for some stage i ∈
{1, . . . ,M}, label.stexec 6= rejectedi, label′.stexec 6= rejectedi, but label.Ki 6= label′.Ki. (Different session
keys in the same stage of partnered sessions.)

2. There exist two distinct labels label, label′ such that label.sidi = label′.sidi 6= ⊥ for some stage i ∈
{1, . . . ,M} but label.authi 6= label′.authi (Different authentication types in some stage of partnered
sessions.)

3. There exist two distinct labels label, label′ such that label.sidi = label′.sidi 6= ⊥ for some stage i ∈
{1, . . . ,M}, but label.cidi 6= label′.cidi or label.cidi = label′.cidi = ⊥. (Different or unset contributive
identifiers in some stage of partnered sessions.)

4. There exist two distinct labels label, label′ such that label.sidi = label′.sidi 6= ⊥ for some stage i ∈
{1, . . . ,M}, label.authi = label′.authi ∈ {unilateral,mutual}, label.role = initiator, and label′.role =
responder, but label.V 6= label′.U or (only if label.authi = mutual) label.U 6= label′.V or (only if
label.authi = mutual) label.k 6= label′.k.

5. There exist two (not necessarily distinct) labels label, label′ such that label.sidi = label′.sidj 6= ⊥ for
some stages i, j ∈ {1, . . . ,M} with i 6= j. (Different stages share the same session identifier.)

6. There exist three distinct labels label, label′, label′′ such that label.sidi = label′.sidi = label′′.sidi 6= ⊥
for some stage i ∈ {1, . . . ,M}. (More than two sessions share the same session identifier.)

We say KE is Match-secure if for all adversaries A the following advantage is negligible in the security
parameter:

AdvMatch
KE,A := Pr

[
GMatch

KE,A = 1
]
.

8.2.2 Multi-Stage Security

The Multi-Stage security game GMulti-Stage,D
KE,A similarly defines Bellare–Rogaway-like key secrecy in the multi-

stage setting with preshared keys as follows.

Definition 8.2 (Multi-Stage security). Let KE be a preshared key exchange protocol with (session) key
distribution D, and A a PPT adversary interacting with KE via the queries defined in Section 8.1 in the
following game GMulti-Stage,D

KE,A :
Setup. Choose the test bit btest←$ {0, 1} at random, and set lost← false.
Query. The adversary has access to the queries NewSecret, NewSession, Send, Reveal, Corrupt, and Test.

Note that some queries may set lost to true.
Guess. At some point, A stops and outputs a guess b.
Finalize. The challenger sets the ‘lost’ flag to lost← true if any of the following conditions hold:
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1. There exist two (not necessarily distinct) labels label, label′ and some stage i ∈ {1, . . . ,M} such
that label.sidi = label′.sidi, label.stkey,i = revealed, and label′.testedi = true. (Adversary has
tested and revealed the key in a single session or in two partnered sessions.)

2. The adversary A has issued a Test(label, i) query such that Corruptedlabel.U,label.V,label.k = revealed.
(Adversary has tested a session key and revealed the preshared secret used in the tested session.)

We say that A wins the game, denoted by GMulti-Stage,D
KE,A = 1, if b = btest and lost = false.

We say KE is Multi-Stage-secure in a key-dependent/key-independent manner with concurrent authen-
tication properties AUTH if KE is Match-secure and for all PPT adversaries A the following advantage is
negligible in the security parameter:

AdvMulti-Stage,D
KE,A := Pr

[
GMulti-Stage,D

KE,A = 1
]
− 1

2 .

9 Security of the draft-05 Session Resumption
We now turn towards session resumption and analyze the resumption handshake as specified in the draft-
ietf-tls-tls13-05 draft, denoted as d05-SR. The key schedule for resumption in draft-dh is not con-
clusively specified, so we omit a detailed analysis; since the main message flow is identical, we expect its
security analysis to closely follow that of draft-05.

We define the session and contributive identifiers for stage 1, which derives tkhs, and stage 2, which
derives tkapp, to be both include the exchanged ClientHello and ServerHello messages as well as a
distinguishing label:

sid1 = cid1 = (ClientHello, ServerHello, “stage1”) and
sid2 = cid2 = (ClientHello, ServerHello, “stage2”).

By using the preshared-secret in deriving the session keys, both stages achieve mutual (implicit) authen-
tication.

In TLS session resumption, ClientHello contains the field session_id, which serves as our preshared-
secret identifier psid. This value was previously chosen by the server (the TLS standard does not specify
how) and sent to the client in the ServerHello message in the original handshake. We assume that the
session_id values are globally unique in TLS, for example, chosen at random from a sufficiently large
space to make collisions unlikely, or of the form “server-name ‖ counter”. We also assume each party U
knows the mapping between preshared-secret identifiers psidU,V,k and the peer identifier V and key index
k for all its pre-shared secrets.

Theorem 9.1 (Match security of d05-SR). The TLS 1.3 draft-05 session resumption handshake d05-SR
is Match-secure: for any efficient adversary A we have

AdvMatch
d05-SR,A ≤ n2

s · 2−|nonce|,

where |nonce| = 128 is the bitlength of the nonces.

Proof. We need to show the six properties of Match security hold:
1. Sessions with the same session identifier for some stage hold the same session key.

Recall that HMS ← PRF(pssU,V,k, label1‖H(CH‖SH)) and MS ← PRF(HMS, label5‖H(CH‖SH)). More-
over, tkhs ← PRF(HMS, label2‖rs‖rc)) and tkapp ← PRF(MS, label6‖rs‖rc). Since session_id,
serving as the preshared-secret identifier psid, is a substring of the ClientHello message which is
included in both sid1 and sid2, and since there is a unique mapping from psid to pssU,V,k, if two parties
share the same session identifier then they both use the same PRF inputs and hence derive the same
session keys.

39



2. Sessions with the same session identifier for some stage agree on the authenticity of the stage.
This trivially holds as in TLS 1.3 draft-05 session resumption all stages are, by definition, mutually
authenticated.

3. Sessions with the same session identifier for some stage share the same contributive identifier.
This trivially holds since the contributive identifiers equal the session identifiers in each stage.

4. Sessions are partnered with the intended partner and share the same key index.
Honest sessions are assured of the peer’s identity and the key index via the used preshared-secret
identifier psid, which is included in the session identifier for all stages; since each party knows the
unique mapping between preshared-secret identifiers and key indices, a party can determine the
peer’s identity from the preshared-secret identifier and the mapping. Thus agreement on sid implies
agreement on the partner’s identity and the key index used.

5. Session identifiers are distinct for different stages.
This holds trivially as session identifiers have different labels at each stage.

6. At most two sessions have the same session identifier at any stage.
Both the client random and server random nonces are included in all session identifiers. To have a
collision between honest parties requires two honest sessions to use the same nonces. The probability
that there exists such a nonce collision is bounded by n2

s · 2−|nonce| where |nonce| is the length of the
nonces.

Theorem 9.2 (Multi-Stage security of d05-SR). The TLS 1.3 draft-05 session resumption handshake
d05-SR is Multi-Stage-secure in a key-independent manner with concurrent authentication types AUTH =
{(mutual,mutual)}: for any efficient adversary A against the Multi-Stage security there exist efficient
algorithms B1, . . . ,B4 such that

AdvMulti-Stage,D
d05-SR,A ≤ 2ns ·

(
AdvCOLL

H,B1 + ns ·
(
AdvPRF-sec

PRF,B2 + AdvPRF-sec
PRF,B3 + AdvPRF-sec

PRF,B4

))
,

where ns is the maximum number of sessions.

Proof. First, we consider the case where A makes a only single Test query, reducing the advantage of A
by a factor of 1/2ns (for the two stages in each of the ns sessions) by a hybrid argument.18 We can now
focus on the single session with label label tested in stage i.

Proceeding in a sequence of games, we start from the original Multi-Stage game and bound the advan-
tage difference of adversary A between any two games by complexity-theoretic assumptions until we reach
a game where the advantage of A is at most 0.

Game 0. This initial game equals the Multi-Stage game with a single Test query, so

AdvG0
d05-SR,A = Adv1-Multi-Stage

d05-SR,A .

Game 1. In this game, the challenger aborts the game if any two honest sessions compute the same hash
value for different inputs in any evaluation of the hash function H.
Much the same as in Game A.1 of the proof of Theorem 5.2, we can break the collision resistance of H in
case of this event by letting a reduction B1 output the two distinct input values to H. Hence:

AdvG0
d05-SR,A ≤ AdvG1

d05-SR,A + AdvCOLL
H,B1 .

18The hybrid argument follows the high-level idea of that in Theorem 5.2, but does not require its involved treatment of
partnering as the session (and contributive) identifiers for the session resumption handshake d05-SR are public.
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Game 2. As a next step, we guess the pre-shared secret pss that the tested session will use, and the
challenger aborts the game if that guess was wrong. This reduces the adversary’s advantage by a factor
of at most 1/ns, thus:

AdvG1
d05-SR,A ≤ ns · AdvG2

d05-SR,A.

Let pssU,V,k be the guessed pre-shared secret.

Game 3. We next replace the pseudorandom function PRF in all evaluations using the tested session’s
pre-shared secret pssU,V,k as key by a (lazy-sampled) random function. This in particular affects the
derivation of the handshake master secret HMS in the tested (and a potential partnered) session, which is
replaced by a random value H̃MS←$ {0, 1}λ.
We can bound the difference this step introduces in the advantage of A by the security of the pseudorandom
function PRF. The according reduction B2 simulates Game 1, but uses its PRF oracle for any evaluation
of PRF using pssU,V,k as the key. In case the oracle computes the PRF function, this simulation equals
Game 1; if it computes a random function, the simulation equals Game 3. For any successful adversary
(which hence cannot invoke Corrupt on pssU,V,k used in the tested session), this pre-shared key is an
unknown and uniformly random value from A’s perspective and, hence, the simulation is sound and we
establish

AdvG2
d05-SR,A ≤ AdvG3

d05-SR,A + AdvPRF-sec
PRF,B2 .

Observe that in Game 3, the handshake master secret in the tested session (as well as its partnered
session) is now a uniformly random value which is independent of all other values. This holds as the
non-colliding (by Game 1) hash value of the ClientHello and ServerHello messages contained in each
stage’s session identifier is used as input to PRF, hence (even from the same pre-shared key) only partnered
sessions derive the same handshake master secret.

Game 4. In this step we replace the evaluations of PRF using H̃MS as key in the tested and the potential
partnered session by a (lazy-sampled) random function, thereby exchanging in particular the handshake
traffic key tkhs and the master secret MS with random values t̃khs, M̃S←$ {0, 1}λ (independent due to
distinct input labels to PRF).
As in the previous game, we can bound the probability of A distinguishing this step by the security of PRF.
The reducing B3 now uses its PRF oracle to evaluate PRF keyed with H̃MS in the tested (and partnered)
session, perfectly simulating either Game 3 or Game 4 (depending on the oracle’s behavior) as H̃MS is an
uniformly random and independent value. Hence it holds that

AdvG3
d05-SR,A ≤ AdvG4

d05-SR,A + AdvPRF-sec
PRF,B3 .

Game 5. This last step exchanges the evaluations of PRF using M̃S as key (in the tested and part-
nered session) against a random function, leading to the application traffic key tkapp being replaced by a
random t̃kapp←$ {0, 1}λ. Along the lines of the two previous steps we can bound this step again by the
security of PRF since M̃S, by Game 4, is independent and uniformly random. Therefore,

AdvG4
d05-SR,A ≤ AdvG5

d05-SR,A + AdvPRF-sec
PRF,B4 .

Finally, the session keys t̃khs and t̃kapp in Game 5 are chosen independently and uniformly at random,
rendering the response to the Test query independent of the test bit btest. Thus

AdvG5
d05-SR,A ≤ 0.

Combining the given single bounds yields the overall security statements.
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10 Conclusion
Our analyses of draft-05 and draft-dh are encouraging: both TLS 1.3 candidate handshake designs can
be shown to be cryptographically sound, even when restricting to standard cryptographic assumptions
only. The analyses also reveal some points where the security aspects allows for flexibility and various
options without endangering security, as pointed out in Section 3.

From a theoretical viewpoint, our “cascading” approach to treat session resumption not as part of the
key exchange protocol, but as another symmetric-key protocol which is composed with the main handshake
protocol, is useful to tame the complexity of such analyses (here and in general). Working out the details
of this approach to get a full-fledged compositional analysis of the TLS 1.3 candidates is a worthwhile
direction. Still, our results already confirm the sound design of the handshake protocols, as we have shown
that the session keys can be safely used in the channel protocol and session resumption, and that session
resumption is itself a strongly secure key exchange protocol.
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A Proof of Theorem 5.2: Hybrid Argument
We provide here the details of the hybrid argument showing that if we restrict the adversary in Theorem 5.2
to a single Test query, this reduces its advantage by a factor at most 1/3ns (for the three stages in each of
the ns sessions).

The hybrid argument consists of a sequence of games Gλ for λ = 0, . . . , 3ns, where Gλ behaves like
GMulti-Stage,D

draft-05,A except that the first λ tested keys are the actual derived keys, and the remaining ones are
replaced by random ones (uniformly chosen from D). Here, however, we assume consistent replacements
in the sense that a Test query returns the previously returned key if a partnered session has already been
tested. In particular, if for a tested session there is a partner session among the first λ tested sessions,
then we return the actual derived key, even if the now tested session comes after the λ’s Test query.
Note that, by construction, identical session identifiers yield identical keys, such that we cannot generate
inconsistencies by having partners (with identical identifiers) but different keys. Also observe that G3ns
equals the unmodified game GMulti-Stage,D

draft-05,A with test bit btest = 0 even if the adversary makes less than
3ns Test queries, and that in G0 all keys are chosen uniformly at random (but consistent over partnered
sessions). This means that G0 is identical to GMulti-Stage,D

draft-05,A with test bit btest = 1.
For the hybrid argument we construct a reduction B as follows. Initially B chooses an index λ at

random between 1 and 3ns. It initializes a counter c to c = 0 (indicating the number of tested session keys
replaced by random values so far) as well as (initially empty) sets SKEY1, SKEY2, SKEYe2, SKEY3,SKEY3

3 ⊆
{0, 1}∗× [D] for identifiers and keys in the support [D] of D, to keep track of established session keys for a
consistent simulation.19 Basically, SKEY1 corresponds to session identifier–key pairs of the first stage which
B has already collected, similarly SKEY2 and SKEY3 are for the second and third stage, and SKEYe2 resp.
SKEYe3 for transcripts and second-stage (resp. third-stage) keys where B cannot decrypt the data in the
session identifier (yet), since the data entering the identifier are encrypted for transmission. We usually
write sid1 and sid2 = (sid1, sid+2) for the session identifiers for the first and second stage, respectively,
denoting the second part of the stage-two identifier as sid+2; we also write {sid+2} to denote the fact that
B only holds an encrypted version of the second part. Recall that sid3 = (sid2, “RMS”), hence we can

19As we will see, we can, by construction, always decide partnering in stage 3 (deriving the resumption master secret RMS)
whenever we can decide it in stage 2. We will nevertheless state the according computations explicitly here for completeness.
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also write it as sid3 = (sid1, sid+2, “RMS”). Both SKEY1, SKEY2, and SKEY3 will be (individually and
together) consistent during the entire simulation in the sense that they do not contain entries with identical
session identifiers but different keys. This is clearly true upon initialization and remains so whenever we
add elements to either set.

Algorithm B then runs A, relaying all queries and answers of A to its external oracles, with one
exception: if A makes one of its multiple Test queries (where we assume that all such queries are made for
accepted executions only), then B increments c and checks c against λ.
• If c < λ then B simply makes a Reveal query for the corresponding stage and returns the obtained

key K. Then B does the following updates to its lists SKEY1, SKEY2, SKEYe2, SKEY3, and SKEYe3.
If the inspected session is a stage-one session with identifier sid1 then B places the session identifier
and the returned key value into SKEY1. Then, for each element (sid′1, {sid′+2}) in SKEYe2 which carries
sid′1 = sid1 as part of the session identifier, use the session key for sid1 to recover the (decrypted)
identifier sid′2 for the entry and put the identifier sid′2 with its key into SKEY2. Proceed analogously
for each element (sid1′ , {sid′+2}, “RMS”) in SKEYe3 with sid′1 = sid1.
If the inspected session is a stage-two session then B can recover the stage-two identifier (sid1, {sid+2})
(with some stage-one identifier sid1 and some encrypted part). It checks if the stage-one identifier
part sid1 (in clear) is already in SKEY1. If so,20 then use the session key of the sid1 entry to recover
the full identifier sid2 = (sid1, sid+2) of the inspected session in clear, and put sid2 with the key
into SKEY2. If there is no sid1-entry in SKEY1 then put the partly encrypted session identifier
(sid1, {sid+2}) with the returned key into SKEYe2.
For third-stage queries, proceed as for stage 2 with the according identifier (sid1, {sid+2}, “RMS”).
Note that all three cases cannot introduce any inconsistencies in SKEY1, SKEY2, or SKEY3 as the
derived and revealed key is uniquely determined given sid1, sid2, resp. sid3.
• If c = λ then B proceeds as follows. Algorithm B first extracts the session identifier of the tested

session. This is trivial for a first-stage identifier sid1 as it consists of the communication data in clear.
For a second- or third-stage identifiers sid2 = (sid1, {sid+2}) resp. sid2 = (sid1, {sid+2}, “RMS”), which
also contains messages sent encrypted under the first-stage handshake traffic key, algorithm B will
make a Reveal query for the first stage of the test session to get the handshake traffic key. It puts the
corresponding session identifier sid1 and the revealed key into SKEY1 for future reference. Revealing
this first-stage session key is admissible due to key independence, despite the tested stage-two/stage-
three key; it cannot force B with its single Test query to lose. At the same time it allows B to decrypt
and recover the values for sid+2 in clear. Algorithm B also checks if one can now decrypt and move
any entries in SKEYe2 to SKEY2 resp. from SKEYe3 to SKEY3 (by checking for entries in SKEYe2 resp.
SKEYe3 which carry the same stage-one identifier sid1).
Given that B now holds the session identifier (in clear) it can check if there already exists an entry
in SKEY1, SKEY2, or SKEY3. If so, it returns the corresponding stored key. Else, B uses its single
external Test query to get a key K, adds this key with the recovered identifier to the corresponding
set SKEY1, SKEY2, or SKEY3, and returns the key to A. Note that here SKEY1, SKEY2, and SKEY3
are still consistent in any case as B, if at all, adds a new session identifier.
• If c > λ then B first recovers the session identifier of the requested test session. For a stage-one
identifier sid1 this is again easy by inspecting the communication so far. For a stage-two or stage-
three identifier sid2 = (sid1, {sid+2}) resp. sid3 = (sid1, {sid+2}, “RMS”) algorithm B first checks if
there already exists an entry in SKEY1 for the contained stage-one part sid1 of the identifier of the
inspected session and, if so, uses it to recover the full (unencrypted) sid+2 part of the identifier. If
there is no entry then B makes a Reveal query for the stage-one key to again recover the full identifier
sid2 resp. sid3 and places sid1 and the returned key into SKEY1. Note that such a Reveal query cannot

20Recall that any such entry would be unique.
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infringe with B’s single Test query, because either the Test query was for a stage-two or stage-three
session (and key independence enables us to reveal any stage-one key then), or the Test query was
for a stage-one identifier in which case it must already be included in SKEY1 and the Reveal query
is not made.
Given that B now knows the session identifier of the requested test session it checks if there is already
an entry in SKEY1, SKEY2, or SKEY3 for it. If so, it returns the same key as in the entry. Else it
picks a key K at random from D, returns it to A, and adds the obtained session identifier with the
key value K to the corresponding set SKEY1, SKEY2, or SKEY3. Note again that there cannot exist
such an entry in the lists if B adds some value, such that consistency remains intact.

Note that B provides a consistent simulation as any pair of Test queries for partnered sessions return
identical answers: For Test queries of A for partnered sessions, both with c < λ, this is clear as the Reveal
queries make B return consistent keys. If the second query is for c = λ then B either has the identifier
already in SKEY1, SKEY2, or SKEY3 and answers consistently, or the values for the first Test query are at
least in SKEYe2 or SKEYe3 and are now moved to SKEY2 resp. SKEY3 because B learns the key to sid1 and
first checks membership in SKEY1, SKEY2, or SKEY3 before possibly making the Test query. If the second
Test query is for c > λ then the same argument as in the previous case applies. The latter is also true if
the first Test query has been for c = λ or for c > λ, because then the session identifier will be in SKEY1,
SKEY2, or SKEY3 already.

Up to the finalization step B’s simulation is perfect (except for potentially the state of the lost flag,
see below). In particular, B loses according to the lost flag, either set during the processing of a Test
query or in the finalization step, only if A in the simulation (and thus in a genuine execution) would lose.
Conversely, as is, it can happen that B even avoids a loss which A would trigger with a Test query for a
revealed partner, but B omits this Test query since it provides the answer differently. This corresponds
to the finalize condition of Definition 4.2. Remarkably, this causes the following problem: if A decides to
create a difference between the two cases, genuine keys or random ones in Test queries, by deliberately
losing via, say, a Reveal query for a tested partner, this difference could vanish in B’s simulation. In order
to avoid this, we let B eventually run the internal finalization step and check if A loses (and if so, forcing
a loss in its simulation by making a Reveal query to the same key the Test query was issued on).

To check for the condition in the finalization step note that all Test requests of A insert some values in
the sets SKEY1, SKEY2, SKEYe2, SKEY3, or SKEYe3. Only for those entries in SKEYe2 and SKEYe3 algorithm
B cannot (yet) recover the session identifier; in particular there is no entry in SKEY1 for those values, else
they would have been moved to SKEY2 resp. SKEY3 already. Algorithm B can now “clean up” the sets
SKEYe2 and SKEYe3 and move all entries to SKEY2 resp. SKEY3, by making a-posteriori Reveal queries for
the first-stage keys for all sessions in SKEYe2 and SKEYe3 to get the session key which allows us to decrypt
the stage-two and stage-three identifier. These Reveal queries cannot force B to lose as the session identifier
of the single tested session must be different (otherwise there would be an entry in SKEY1). So we can
from now on assume that B knows all session identifiers of A’s requested test sessions in clear, and holds
candidates for all first-stage keys of the tested sessions.

It remains that B checks the condition of the finalization (i.e., that A has not made a Reveal query to
a partner of a tested session) as follows. Algorithm B recovers all the session identifiers of the revealed
sessions (excluding the Reveal queries which only B made). For a stage-one Reveal request this is trivial,
for a stage-two or stage-three request (with partial identifier sid1) algorithm B checks if sid1 appears among
the tested sessions. If not, then this Reveal query clearly does not infringe with the Test queries. If it does
appear, however, then we already have the first-stage key for sid1 and can recover the full session identifier
of the Reveal query and compare it to the set of tested sessions. If and only if B finds some match for some
Reveal query then it forces a loss in its game.

Next, we check the losing condition within the Test query triggered when A requests some test such that
another honest execution has already used this session key (in which case the adversary could potentially
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distinguish a random key). This check is easy to perform for B because, in handling the Test query, it
always establishes the according session identifier sidi of the tested session’s stage i. Hence, B can simply
check whether there exists a partnered session in stage i whose execution state is already beyond acceptedi
and force a loss in this case.

To check the condition within the Test query that A has not tested a session for which the partner is
unauthenticated but which does not have an honest contributive partner, B can, for the first stage, simply
inspect the the transcript as the elements of the contributive identifier cid1 for the first stage are sent
in clear. For stages 2 and 3 recall that cid2 = sid2 and cid3 = sid3 and hence B can again leverage the
established session identifier of the tested session’s stage to check if there exists an honest contributive
partner for these stages upon finalization. In each case, if no contributive partnered session exists, then B
provokes a loss.

With the final checks we have made sure that B loses due to some inadmissible query if and only if A
would in the real attack. In particular, it follows that for fixed λ = 0 the simulation of B has exactly the
same success probability as A in game G0, and analogously for λ = 3ns. A standard counting argument,
basically considering the conditional probabilities for fixed choices of λ, now shows that the advantage
of A is at most a factor 3ns of the advantage of B. More formally, noting that for some fixed λ and test
bit btest = 0 we actually run the game for btest = 1 and λ− 1, we obtain:

Pr
[
GMulti-Stage,D

KE,B = 1|btest = 1
]
− Pr

[
GMulti-Stage,D

KE,B = 1|btest = 0
]

= 1
3ns
·

3ns∑
λ0=1

(
Pr
[
GMulti-Stage,D

KE,B = 1|λ = λ0, btest = 1
]
− Pr

[
GMulti-Stage,D

KE,B = 1|λ = λ0, btest = 0
])

= 1
3ns
·

3ns∑
λ0=1

(
Pr
[
GMulti-Stage,D

KE,B = 1|λ = λ0, btest = 1
]
− Pr

[
GMulti-Stage,D

KE,B = 1|λ = λ0 − 1, btest = 1
])

= 1
3ns
·
(
Pr
[
GMulti-Stage,D

KE,B = 1|λ = 3ns, btest = 1
]
− Pr

[
GMulti-Stage,D

KE,B = 1|λ = 0, btest = 1
])

= 1
3ns
· (Pr [G3ns = 1]− Pr [G0 = 1]) .

Noticing that the first and last differences of probabilities in both cases, for B and for A, correspond to
2 · AdvMulti-Stage,D

KE,B and 2 · AdvMulti-Stage,D
KE,A , the claim follows.
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