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Abstract

All statistical analysis of symmetric key attacks use the central limit theorem to approximate the distri-
bution of a sum of random variables using the normal distribution. Expressions for data complexity using
such an approach are inherently approximate. In contrast, this paper takes a rigorous approach to analysing
attacks on block ciphers. In particular, no approximations are used. Expressions for upper bounds on the data
complexities of several basic and advanced attacks are obtained. The analysis is based on the hypothesis testing
framework. Probabilities of Type-I and Type-II errors are upper bounded using standard tail inequalities. In
the cases of single linear and differetial cryptanalysis, the Chernoff bound is used. For the cases of multiple
linear and multiple differential cryptanalysis, the theory of martingales is required. A Doob martingale sat-
isfying the Lipschitz condition is set up so that the Azuma-Hoeffding inequality can be applied. This allows
bounding the error probabilities and obtaining expressions for data complexities. We believe that our method
provides important results for the attacks considered here and more generally, the techniques that we develop
have much wider applicability.
Keywords: block cipher, linear cryptanalysis, differential cryptanalysis, log-likelihood test, or-
der statistics, normal distribution, hypothesis testing, Chernoff bound, Martingales, Lipschitz
condition, Azuma-Hoeffding inequality.

1 Introduction

Statistical methods are commonly used for analysing attacks on block ciphers and more generally symmetric key
ciphers. There are three basic parameters of interest.

1. The success probability PS , i.e., the probability that the correct key will be recovered by the attack.

2. The advantage a such that the number of false alarms is a fraction 2−a of the number of possible values of
the sub-key which is the target of the attack.

3. The data complexity N which is the number of plaintext-ciphertext pairs required to achieve at least a
pre-specified success probability and at least a pre-specified advantage.

The above parameters are of interest in a key recovery attack. For a distinguishing attack, the situation is a
little different and we consider this later in the paper.

A goal of any statistical analysis of an attack is to be able to express the data complexity N in terms of PS
and a. All the known methods for doing this, however, provide only approximate expressions for N . The reason
is that all known statistical methods for analysing attacks rely on the central limit theorem to approximate the
distribution of a sum of random variables by the standard normal distribution. From a theoretical point of view
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we find this to be unsatisfactory. It would be desirable to carry out the statistical analysis without using any
approximation. Further, a recent work [28] takes a detailed look at the error in normal approximations and
points out several shortcomings of such an approach.

The major motivation of this work is to derive rigourous upper bounds on the data complexity in terms of PS
and a. In particular, we do not use any approximation in the statistical analysis1. To show that this can indeed
be done, we consider five basic cryptanalytic scenarios. These are single linear cryptanalysis; single differential
cryptanalysis; multiple linear cryptanalysis; multiple differential cryptanalysis; and the task of distinguishing
between two probability distributions. In each case, we show that it is indeed possible to obtain rigourous upper
bounds on the data complexity.

We make detailed experimental comparisons of the upper bounds that we obtain to the previously best
known approximate values of data complexities. For the cases of single linear cryptanalysis, single differential
cryptanalysis and distinguisher, the ratio of the upper bound to the approximate expression is around 10 or
smaller. For multiple linear cryptanalysis, the ratio is about 50 or so, while for multiple differential cryptanalysis,
the ratio is between 500 to 2000. This indicates that the upper bounds that we obtain are good. From a practical
point of view, we think it is better to use the upper bound to measure the strength of a cipher, since it may turn
out that the approximate data complexities are underestimates.

The hypothesis testing based approach is used to analyse the attacks. This requires obtaining the probabilities
of Type-I and Type-II errors. In the approximate analysis, the normal approximations are used to conveniently
handle these probabilities. We use a different approach. Our main observation is that the Type-I and Type-II
error probabilities are essentially tail probabilities for a sum of some random variables. There are known rigorous
methods for handling such tail probabilities, though, to the best of our knowledge, these methods have not been
applied to the hypothesis testing setting.

For the cases of single linear and single differential cryptanalysis, it is required to bound the tail probabilities
of a sum of independent Bernoulli distributed random variables. The usual method for handling this is to use
the Chernoff bound. Using the Chernoff bound to upper bound the Type-I and Type-II error probabilities quite
nicely leads to an expression for the data complexity.

In the cases of multiple linear or multiple differential cryptanalysis, the test statistic is no longer a sum of
Bernoulli distributed random variables. As a result, the Chernoff bound does not apply. To tackle these cases, we
take recourse to the theory of martingales. We set up a Doob martingale which satisfies an appropriate Lipschitz
condition and hence the Azuma-Hoeffding inequality can be applied. This inequality allows us to bound the
required tail probabilities to obtain upper bounds on the Type-I and Type-II error probabilities. The case of
distinguisher is tackled similarly.

The importance of our work is twofold. On the one hand, we bring an amount of rigour to the statistical treat-
ment of basic block cipher cryptanalysis. More generally, the techniques that we apply have broad applicability
and it should be possible to tackle data complexities of other attacks using these techniques.

Previous and related works

Linear Cryptanalysis: This was first proposed by Matsui in [22] to cryptanalyze the block cipher DES.
Later Matsui [23] extended this idea by using two linear approximations. In an independent work, Kaliski and
Robshaw [18] extended Matsui’s attack involving single linear approximation to ` (≥ 1) linear approximations.
Their result, however, was restrictive as it is required for all ` linear approximations to have the same plaintext
and ciphertext bits though the key bits could be different.

In [7], the idea of multiple linear cryptanalysis was further refined. The authors considered ` linear approxi-
mations without any assumption on their structure. This, though, also had a restriction. The analysis was valid
only for ` stochastically independent linear approximations. Analysis under the independence assumption was
separately done in [17]. Murphy [26] argued that the independence assumption need not be valid.

1Note that the structural analysis of a block cipher itself usually involves approximations. Our work does not address this issue.
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In a later work, Baigneres et al [2] used the log-likelihood ratio (LLR) statistic to build an optimal distinguisher
between two distributions. This result did not require the independence assumption. The theme of obtaining
optimal distinguishers was also investigated in [17, 3].

Selçuk in [29] proposed an order statistics based ranking methodology for analysing single linear and differen-
tial cryptanalysis. The paper provided expressions for the data complexity of these attacks. The order statistics
based approach uses a well known theorem from statistics to approximate the distribution of an order statistics
using the normal distribution. Consequently, the data complexities obtained in [29] are approximate. The order
statistics based approach was built upon by Hermelin et al [16]. The authors combined the results obtained
in [2, 26, 27, 29] to develop a multilinear cryptanalytic method without the independence assumption.

Differential cryptanalysis: This cryptanalytic method was first proposed by Biham and Shamir in [5]. It
was used to successfully cryptanalyze reduced round variants (with up to 15 rounds) of DES using less than
256 operations. Later in [6], the authors further improved their attack by considering several differentials hav-
ing the same output difference. Over time, several variants of differential cryptanalysis have been proposed.
These include higher order differentials [20], truncated differentials [19], cube attack [14], boomerang attack [31],
impossible differential cryptanalysis [4] and improbable differential cryptanalysis [30].

The general approach to multiple differential cryptanalysis was considered in [9]. This work considered `
differentials having both unequal input and unequal output differences. Later [10] considered ` differentials
having same input difference but different output differences. The order statistics based framework was used
to derive an expression for the data complexity. A general study of data complexity and success probability of
statistical attacks was carried out in [11].

We note that a recent work [28] performs a concrete analysis of normal approximations used in symmetric
key cryptanalysis using the Berry-Esséen theorem. In particular, the work critiques the order statistics based
approach advocated by Selçuk [29] and points out several shortcomings. More generally, the entire approach of
using normal approximations (without consideration of the error) is questioned.

A related line of work is based on the key dependent behaviour of linear and differential characteristics [1,
8, 12, 13, 21] and also use normal approximations. The techniques introduced in this paper should also be
applicable to this setting and can form the basis for future work.

2 Background

In this section, we provide the background for the work. The section starts with a brief background on block
cipher cryptanalysis (to the extent necessary for understanding this paper) with emphasis on linear cryptanalysis.
Next we provide some details about the important log-likelihood ratio (LLR) test statistics. In the later part of
the section, we provide relevant details of tail probability inequlities, specifically the Chernoff-Hoeffding bounds
for Poisson trials and the Azuma-Hoeffding bounds for martingales.

2.1 Background for Block Cipher Cryptanalysis

The description of block cipher cryptanalysis given here is tailored towards linear cryptanalysis. Differential
cryptanalysis is separately considered later.

A block cipher is a function E : {0, 1}k × {0, 1}n → {0, 1}n such that for each K ∈ {0, 1}k, the function

EK(·) ∆
= E(K, ·) is a bijection from {0, 1}n to itself. Here K is the secret key. The n-bit input to the block cipher

is called the plaintext and the n-bit output of the block cipher is called the ciphertext.
Practical constructions of block ciphers have an iterated structure consisting of several rounds. Each round

consists of applying a round function parameterised by a round key. The round functions are bijections of {0, 1}n.
An expansion function, called the key scheduling algorithm, is applied to the secret key to obtain round keys.
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Let the round keys be k(0), k(1), . . ., and denote the round functions as R
(0)

k(0)
, R

(1)

k(1)
, . . .. Further, denote by K(i)

the concatenation of the first i round keys, i.e., K(i) = k(0)|| · · · ||k(i−1); and let E
(i)

K(i) denote the composition of
the first i round functions, i.e.,

E
(0)

K(0) = R
(0)

k(0)
;

E
(i)

K(i) = R
(i−1)

k(i−1) ◦ · · · ◦R
(0)

k(0)
= R

(i−1)

k(i−1) ◦ E
(i−1)

K(i−1) , i ≥ 1.

A block cipher may have many rounds and a reduced round cryptanalysis may target only a few of these rounds.
Suppose that an attack targets r + 1 rounds. For a plaintext P , let C be the output after r + 1 rounds and B

be the output after r rounds. So, B = E
(r)

K(r)(P ) and C = R
(r)

k(r)
(B).

Relations between plaintext and the input to the last round: The basic step in block cipher cryptanal-
ysis is to perform a detailed analysis of the structure of a block cipher. Such a study reveals one or more possible
relations between the following quantities: a plaintext P ; the input to the last round B; and possibly K(r). Such
relations can be in the form of a linear function or in the form of a differential as we explain later. Usually, such
a relation holds only with some probability. The probability is taken over the uniform random choice of P . If
there are more than one relations, then it is required to consider the joint distribution of the probabilities that
these relations hold. Obtaining relations and their possibly joint distribution is a non-trivial task which requires
a great deal of experience and ingenuity. These relations form the bedrock on which a statistical analysis of an
attack can be carried out.

Target sub-key: A single relation between P and B will usually involve only a subset of the bits of B. If
several (or multiple) relations between P and B are known, it is required to consider the subset of the bits of
B which cover all the relations. Obtaining these bits from C will require a partial decryption of the last round.
Such a partial decryption will involve a subset of the bits of secret key (or of the last round key). Obtaining the
correct values of these key bits is the goal of the attack and these bits will be called the target sub-key. The size
of the target sub-key in bits will be denoted by m. So, m key bits are sufficient to partially decrypt C to obtain
the bits of B which are involved in any of the relation between P and B. There are 2m possible choices of the
target sub-key bits out of which one is correct and all others are incorrect. The goal is to pick out the correct
key.

Setting of an attack: Suppose there are N plaintext-ciphertext pairs (Pi, Ci), i = 1, . . . , N which have been
generated using the correct key and are available. For each choice κ of the last round key bits, it is possible
to invert Cj to obtain the relevant bits of Bκ,j . The relevant bits are those which are required to evaluate the
relations discovered in the prior analysis of the block cipher. Note that Bκ,j depends on κ even though Cj may
not. If κ is the correct choice for the target sub-key, then Cj indeed depends on κ, otherwise Cj has no relation
to κ.

Given Pj and the relevant bits of Bκ,j it is possible to evaluate all the known relations. From the results of
these evaluations, a test statistic Tκ is defined. Since there are a total of 2m possible values of κ, there are also
2m random variables Tκ. These random variables are assumed to be independent and the distribution of these
random variables depend on whether κ is correct or incorrect. It is also assumed that the distributions of Tκ for
incorrect κ are identical. For an attack to be possible, it is required to obtain the two possible distributions of
Tκ – one when κ is the correct choice and the other when κ is an incorrect choice.

2.2 Linear Cryptanalysis

Assume that the analysis of the structure of the block cipher provides ` ≥ 1 linear approximations. These are

given by masks Γ
(i)
P ,Γ

(i)
B and Γ

(i)
K , for i = 1, . . . , `. The subscript P denotes plaintext mask; the subscript B
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denotes mask after r rounds; and the subscript K denotes the mask for K(r). So, Γ
(i)
P and Γ

(i)
B are in {0, 1}n and

Γ
(i)
K is in {0, 1}nr. If ` > 1, then the attack is called multiple linear cryptanalysis and if ` = 1, we will call the

attack single linear cryptanalysis, or simply, linear cryptanalysis. Define

Li = 〈Γ(i)
P , P 〉 ⊕ 〈Γ

(i)
B , B〉; for i = 1, . . . , `. (1)

Inner key bits: For a fixed but unknown key K(r), the quantity zi = 〈Γ(i)
K ,K

(r)〉 is a single unknown bit.

Denote by z = (z1, . . . , z`) the collection of the ` bits arising in this manner. The key masks Γ
(1)
K , . . . ,Γ

(`)
K are

known. So, z is determined only by the unknown key K(r). The bits represented by z are called the inner key
bits. The key K(r) is unknown but, fixed and so there is no randomness in K(r). Correspondingly, z is also
unknown but fixed and there is no randomness in z.

Consider a uniform random choice of P . The round functions are deterministic bijections and so the uniform
distribution on P induces a uniform distribution on B. Each Li is a random variable which can take the values
0 or 1. The randomness of Li arises solely from the randomness of P . Define the random variable X to be the
following:

X = (L1, . . . , L`). (2)

So, X is distributed over {0, 1}` and its distribution is determined by the distribution of the Li’s which in turn
is determined by the distribution of P .

A single linear approximation is of the form

Li = 〈Γ(i)
K ,K

(r)〉 = zi. (3)

Note that we are not assuming any randomness over the key K(r) and the bits zi’s have no randomness even
though they are unknown. So, the distribution of Li ⊕ zi is determined completely by the distribution of Li.

Joint distribution parameterised by inner key bits: A linear approximation of the type given by (3)
holds with some probability over the uniform random choice of P . The random variables L1, . . . , L` are not
necessarily independent. The joint distribution of these variables is given as follows: For z = (z1, . . . , z`), and
η = (η1, . . . , η`) ∈ {0, 1}`, define

pz(η) = Pr[L1 = η1 ⊕ z1, . . . , L` = η` ⊕ z`] =
1

2`
+ εη(z) (4)

where −1/2` ≤ εη(z) ≤ 1− 1/2`.

The vector p̃z
∆
= (pz(0), . . . , pz(2

` − 1)) is a probability distribution, where the integers {0, . . . , 2` − 1} are
identified with the set {0, 1}`. For each choice of z, we obtain a different distribution. These distributions
are, however, related to each other. Suppose z′ = z ⊕ β for some β ∈ {0, 1}`. Then it is easy to verify that
εη(z

′) = εη⊕β(z). It follows that

pz⊕β(η) = pz(η ⊕ β). (5)

Let p̃ be the probability distribution p̃
∆
= p̃0` and under the usual identification of {0, 1}` and the integers in

{0, . . . , 2` − 1}, write

p̃ = (p0, . . . , p2`−1) (6)

so that for η ∈ {0, 1}`, pη
∆
= p(η) = 1/2` + εη.
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Notation: There are N plaintext-ciphertext pairs (Pj , Cj) for j = 1, . . . , N . For a choice κ of the target sub-
key, the Cj ’s are partially decrypted to obtain the relevant bits of Bκ,j . For κ ∈ {0, . . . , 2m − 1}, j = 1, . . . , N
and i = 1, . . . , `, define

Lκ,j,i = 〈Γ(i)
P , Pj〉 ⊕ 〈Γ

(i)
B , Bκ,j〉; (7)

Xκ,j = (Lκ,j,1, . . . , Lκ,j,`). (8)

2.3 LLR Statistics

Let p̃ = (p0, . . . , pν−1) and q̃ = (q0, . . . , qν−1) be two probability distributions over a finite alphabet of size ν > 0.
The Kullback-Leibler divergence between p̃ and q̃ is defined as follows.

D (p̃||q̃) =
ν∑
η=1

pη ln (pη/qη) . (9)

The problem of distinguishing between the two distributions is the following. Let X1, . . . , XN be a sequence of
independent and identically distributed random variables taking values from the set {0, . . . , ν − 1}. It is known
that all the Xi’s follow one of the distributions p̃ or q̃, but, which one is not known.

The goal is to formulate a test of hypothesis to distinguish between these two distributions. This test takes the
form where the null hypothesis “H0: the distribution is p̃” versus the alternate hypothesis “H1: the distribution
is q̃”.

From the random variable Xj , we define two random variables pXj and qXj . If Xj follows the distribution
p̃, then the random variable pXj takes the value p(η) with probability p(η) and if Xj follows the distribution q̃,
then pXj takes the value p(η) with probability q(η). Similarly, for qXj . For j = 1, . . . , N , define

Yj = ln
(
pXj/qXj

)
. (10)

Let µ0 and σ2
0 be the mean and variance of Yj under hypothesis H0. Similarly, let µ1 and σ2

1 be the mean
and variance of Yj under hypothesis H1. Then the expressions for µ0, µ1, σ

2
0 and σ2

1 can be computed to be the
following.

µ0 =
∑ν−1

η=0 p(η) ln
(
p(η)
q(η)

)
= D(p̃ || q̃);

µ1 =
∑ν−1

η=0 q(η) ln
(
p(η)
q(η)

)
= −D(q̃ || p̃);

σ2
0 =

∑ν−1
η=0 p(η)

(
ln
(
p(η)
q(η)

))2
− µ2

0;

σ2
1 =

∑ν−1
η=0 q(η)

(
ln
(
q(η)
p(η)

))2
− µ2

1.


(11)

The LLR random variable is defined to be the following.

LLR =
N∑
j=1

Yj =
N∑
j=1

ln
(
pXj/qXj

)
=

ν−1∑
η=0

Qη ln(pη/qη). (12)

Here Qη = #{j : Xj = η}. The LLR based test statistics for distinguishing between p̃ and q̃ is taken to be the
following.

T =
LLR/N − µ1

σ1/
√
N

. (13)

The following two asymptotic assumptions are usually made.
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1. If the Xj ’s follow q̃, then for sufficiently large N , T approximately follows the standard normal distribution
Φ(0, 1).

2. On the other hand, if the Xj ’s follow p̃, then T is rewritten as follows.

T =
σ0

σ1
Z +

√
N(µ0 − µ1)

σ1

where Z =
LLR/N − µ0

σ0/
√
N

. For sufficiently large N , Z approximately follows the standard normal distribu-

tion Φ(0, 1).

Both the above assumptions involve an error term. The error can be bounded above using the Berry-Esséen
theorem. For concrete values of N , it is difficult to determine conditions under which the error can be assumed
to be less than a pre-specified bound. See [28] for details of this analysis. For the present, we proceed with the
normal approximations.

The form of the test is determined by the relative values of µ0 and µ1.

µ0 > µ1: Reject H0 if T ≤ t where t is in the range µ1 < t < µ0;
µ0 < µ1: Reject H0 if T ≥ t where t is in the range µ0 < t < µ1;

Let α and β be the probabilities of Type-I and Type-II errors respectively. Define

Pe =
α+ β

2
. (14)

The goal is to choose a value of t for which α = β holds. The analysis of α and β is done as follows. First
suppose µ0 > µ1.

α = Pr[Type-I error] = Pr[T ≤ t|H0 holds] = Φ

(
σ1t

σ0
−
√
N(µ0 − µ1)

σ0

)
;

β = Pr[Type-II error] = Pr[T > t|H1 holds] = 1− Φ(t) = Φ(−t).

In this case, t =
√
N(µ0 − µ1)/(σ0 + σ1) ensures that α = β.

Now suppose that µ0 < µ1. Proceeding as above shows that choosing t =
√
N(µ1 − µ0)/(σ0 + σ1) ensures

α = β. So, irrespective of the relative values of µ0 and µ, for

t =

√
N |µ0 − µ1|
σ0 + σ1

the expression for Pe is the following.

Pe = Φ(−t) = Φ

(
−
√
N |µ0 − µ1|
σ0 + σ1

)
= Φ

(
−
√
N |D(p̃||q̃) +D(q̃||p̃)|

σ0 + σ1

)
. (15)

In [2], a second order Taylor series expansion of ln term was used in the expression for the Kullback-Leibler
divergence. This resulted in the expression for Pe simplifying to Pe = Φ(−

√
NC(p̃, q̃)/2), where C(p̃, q̃) is defined

to be the capacity between the two probability distributions p̃ and q̃. The Taylor series expansion involves certain
conditions which restricts the applicability of the distinguisher. This has been pointed out in [28].

From the expression for Pe given by (15), it is possible to obtain an expression for the data complexity N
required to achieve a desired value of Pe.

N =

(
(σ0 + σ1)Φ−1(1− Pe)
D(p̃||q̃) +D(q̃||p̃)

)2

. (16)
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3 Tail Probabilities

3.1 Chernoff-Hoeffding bounds

We briefly recall some results on tail probabilities of sums of Poisson trials that will be used later. These results
can be found in standard texts such as [25, 24] and are usually referred to as the Chernoff-Hoeffding bounds.

Theorem 1. Let X1, X2, . . . , Xλ be a sequence of independent Poisson trials such that for 1 ≤ i ≤ λ, Pr [Xi = 1] =
pi. Then for X =

∑λ
i=1Xi and µ = E [X] =

∑λ
i=1 pi the following bounds hold:

For any δ > 0, Pr [X ≥ (1 + δ)µ] <

(
eδ

(1 + δ)(1+δ)

)µ
. (17)

For any 0 < δ < 1, Pr [X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)(1−δ)

)µ
. (18)

These bounds can be simplified to the following form.

For any 0 < δ ≤ 1, Pr [X ≥ (1 + δ)µ] ≤ e−µδ2/3. (19)

For any 0 < δ < 1, Pr [X ≤ (1− δ)µ] ≤ e−µδ2/2. (20)

Further, if pi = 1/2 for i = 1, . . . , λ, then the following stronger bounds hold.

For any δ > 0, Pr [X ≥ (1 + δ)µ] ≤ e−δ2µ. (21)

For any 0 < δ < 1, Pr [X ≤ (1− δ)µ] ≤ e−δ2µ. (22)

3.2 Martingales

The description of martingales that follows is for discrete random variables. Details can be found in standard
texts such as [15, 24]. We start with the definition of conditional expectation.

Definition 1 (Conditional Expectation). Let X and Y be two random variables such that E [X] <∞. Define

ψ (y)
∆
= E [X|Y = y] =

∑
x

xPr [X = x|Y = y] .

Thus, E [X|Y = y] is a function of y. The conditional expectation of X given Y is defined to be ψ (Y ) and is

written as ψ (Y )
∆
= E [X|Y ]. So, the conditional expectation of X given Y is a random variable ψ (Y ) which is

a function of the random variable Y .

The following are several standard properties of conditional expectation.

Proposition 1. 1. E [E [Y | X]] = E [X] .

2. If X has a finite expectation and if g is a function such that Xg(Y ) has a finite expectation, then E [Xg(Y ) | Y ] =
E [X | Y ] g(Y ).

3. E
[
(X − g(Y ))2

]
≥ E

[
(X − E [X | Y ])2

]
for any pair of random variables X and Y such that X2 and

g(Y )2 have finite expectations.

4. For any function g, such that g(X) has finite expectation, E [g(X) | Y = y] =
∑
x

g(x) Pr [X = x | Y = y] .
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5. | E [X | Y ] |≤ E [| X || Y ] .

6. E [E [X | Y,Z] | Y ] = E [X | Y ] .

7. E [E [g(X,Y ) | Z,W ] | Z] = E [g(X,Y ) | Z] .

Definition 2 (Martingale). A sequence of random variables Z1, Z2, Z3, . . . is a martingale with respect to another
sequence of random variables Y1, Y2, Y3, . . . if for all n ≥ 1 the following two conditions hold.

1. E [|Zn|] <∞.

2. E [Zn+1|Y1, Y2, . . . , Yn] = Zn.

If Zn = Yn for all n ≥ 1 then the sequence is a martingale with respect to itself.

The basic Azuma-Hoeffding inequality for martingales is the following.

Theorem 2. Let, Z0, Z1, Z2, . . . be a martingale with respect Y0, Y1, Y2, . . . and suppose that there exists a sequence
υ1, υ2, . . . of real numbers such that for all i ≥ 1, | Zi − Zi−1 |≤ υi. Then for any integer λ > 0 and real δ > 0

Pr [Zλ − Z0 ≥ δ] ≤ e−δ
2/(2

∑λ
i=1 υ

2
i ); (23)

Pr [Zλ − Z0 ≤ −δ] ≤ e−δ
2/(2

∑λ
i=1 υ

2
i ). (24)

A simple way to construct a martingale is the following. Let Y0, Y1, . . . Yλ be a sequence of random variables
and Y is a random variable with E [| Y |] <∞. Define Zi = E [Y | Y0, Y1, . . . , Yi] for i = 0, 1, . . . , n. Then using
properties of conditional expectation given in Proposition 1, it is easy to see that the following condition holds.

E [Zi+1 | Y0, Y1, . . . , Yi] = Zi.

So, {Zλ} is a martingale with respect to {Yλ}. A martingale of this type is called a Doob Martingale.
To apply the Azuma-Hoeffding inequality, it is required to ensure that the differences |Zi − Zi−1| are

bounded. A general technique for obtaining a Doob martingale with bounded differences is as follows. A
function f(y1, y2, . . . , yλ) is said to satisfy the υ-Lipschitz condition, if for any i and for any set of values
y1, y2, . . . , yλ and y′i,

| f(y1, y2, . . . , yi−1, yi, yi+1, . . . , yλ)− f(y1, y2, . . . , yi−1, y
′
i, yi+1, . . . , yλ) |≤ υ.

That is by changing the value of any single coordinate changes the value of the function by at most υ. Let
Y1, . . . , Yλ be a finite sequence of random variables and set

Z0 = E [f(Y1, Y2, . . . , Yλ)]

Zi = E [f(Y1, Y2, . . . , Yλ) | Y1, Y2, . . . , Yi] .

Then Z0, Z1, . . . , Zλ form a Doob martingale with respect to Y1, . . . , Yλ. Further, if the random variables Yi’s
are independent it can be shown that |Zi − Zi−1| ≤ υ. The martingale Z0, . . . , Zλ satisfies the conditions of
Theorem 2 and so the inequality stated in the theorem applies to this martingale.
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A special martingale: In our application, the function f will simply be the sum of its arguments. For later
convenience, we provide the details of this special case.

Let Y1, Y2, . . . , Yλ be a sequence independent and identically distributed random variables having finite mean
µ and suppose that υ is such that for any two elements y and y′ in the support of the Yi’s, maxy,y′ |y − y′| = υ.

Let Y = f(Y1, . . . , Yλ) =
∑λ

i=1 Yi. Define a sequence of random variables Z0, Z1, Z2, . . . , Zλ, where Z0 =
E [Y ] = λµ and for all i ∈ {1, 2, . . . , λ}, Zi = E [Y |Y1, Y2, . . . , Yi] . Then the sequence Z1, Z2, . . . , Zλ is a
Doob martingale with respect to Y1, Y2, . . . , Yλ. Further, using properties of conditional expectation given by
Proposition 1, it can be shown that

Zλ = E[Y | Y1, . . . , Yλ] = E [Y1 + · · ·+ Yλ | Y1, . . . , Yλ] = Y1 + · · ·+ Yλ. (25)

For 1 ≤ i ≤ λ,∣∣f(y1, . . . , yi−1, y, yi+1, . . . , yλ)− f(y1, . . . , yi−1, y
′, yi+1, . . . , yλ)

∣∣ ≤ max
y,y′
| y − y′ |= υ. (26)

This shows that the function f is υ-Lipschitz and so |Zi−Zi−1| ≤ υ. Then by Theorem 2, for any real δ > 0, we
obtain

Pr[Y1 + · · ·+ Yλ − E[Y1 + · · ·+ Yλ] ≥ δ] = Pr [Zλ − Z0 ≥ δ] ≤ e−δ
2/(2λυ2); (27)

Pr[Y1 + · · ·+ Yλ − E[Y1 + · · ·+ Yλ] ≤ −δ] = Pr [Zλ − Z0 ≤ −δ] ≤ e−δ
2/(2λυ2). (28)

4 Single Linear Approximation

In this section, we consider the case of a single linear approximation. Let P1, . . . , PN be N independent and
uniformly distributed plaintexts. For simplicity, in this section, we will write L instead of L1 and Lκ,j instead of
Lκ,j,1. Since there is a single linear approximation, the joint distribution p̃ reduces to simply a probability value
p = Pr[Lκ,j = 0] 6= 1/2 when κ is the correct choice. For an incorrect choice of κ, it is conventional to assume that
Pr[Lκ,j = 0] = 1/2. For the correct choice of κ, Lκ,j follows Bernoulli(p) for all j, where p = 1/2+ε = 1/2±|ε|. The
appropriate sign is determined by the correct value of the inner key bit z∗ and we can write p = 1/2 + (−1)z

∗ |ε|.
Under the wrong key hypothesis, for an incorrect choice of κ, Lκ,j follows Bernoulli(1/2) for all j.

Let c = 2(p−1/2) = 2(−1)z
∗ |ε| and define µ0 = p = (1 + c)/2 and µ1 = 1/2. Following the hypothesis testing

framework, we will be testing the null hypothesis “H0: κ is correct” versus the alternate hypothesis “H1: κ is
incorrect.” The test statistics is Tκ =| Xκ −Nµ1 | where Xκ =

∑N
j=1 Lκ,j . Under H0, E[Xκ] = Nµ0 and under

H1, E[Xκ] = Nµ1. The decision rule is to reject H0 if Tκ ≤ t. The actual value of t is to be determined later.
Given the above hypothesis testing setting, the Type-I and Type-II error probabilities can be determined.
Define

δ0 = (|µ0 − µ1| − t/N) /µ0. (29)

The decision threshold t will be chosen to satisfy 0 < t/N < |µ0 − µ1|. For t in this range, we have 0 < δ0 <
|µ0 − µ1|/µ0 < 1. So, it is possible to apply (19) and (20) of Theorem 1 with this δ0.

First suppose µ0 > µ1. Then δ0 = (µ0 − µ1 − t/N)/µ0 and so (1− δ0)µ0 = µ1 + t/N .

Pr[Type-I error] = Pr[Tκ ≤ t|H0 holds]

= Pr[−t ≤ Xκ −Nµ1 ≤ t|H0 holds]

≤ Pr[Xκ −Nµ1 ≤ t|H0 holds]

= Pr[Xκ ≤ t+Nµ1|H0 holds]

= Pr[Xκ ≤ (1− δ0)Nµ0|H0 holds]

≤ exp
(
−Nµ0δ

2
0/2
)
≤ exp

(
−Nµ0δ

2
0/3
)
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Recall that Xκ is the sum Lκ,1 + · · ·+Lκ,N and under H0, each Lκ,j follows Bernoulli(p). So, the last step of the
above calculation follows from (20) of Theorem 1.

Now suppose that µ1 > µ0. (Note that since p 6= 1/2, the case µ0 = µ1 does not occur.) Then δ0 =
(µ1 − µ0 − t/N)/µ0 and so (1 + δ0)µ0 = µ1 − t/N . In this case,

Pr[Type-I error] = Pr[Tκ ≤ t|H0 holds]

= Pr[−t ≤ Xκ −Nµ1 ≤ t|H0 holds]

≤ Pr[−t ≤ Xκ −Nµ1|H0 holds]

= Pr[Xκ ≥ −t+Nµ1|H0 holds]

= Pr[Xκ ≥ (1 + δ0)Nµ0|H0 holds]

≤ exp
(
−Nµ0δ

2
0/3
)

The last step follows from (19) of Theorem 1. Let

α = exp
(
−Nµ0δ

2
0/3
)

so that we obtain Pr[Type-I error] ≤ α irrespective of the values of µ0 and µ1. From the expressions for α and
δ0 and using the fact that 0 < t/N < |µ0 − µ1| we obtain

t = N × |µ0 − µ1| −
√

3Nµ0 ln(1/α). (30)

The probability of Type-II error is given by,

Pr[Type-II error] = Pr [Tκ > t |H1 holds ]

= Pr [|Xκ −Nµ1| > t |H1 holds ]

= Pr [Xκ > t+Nµ1 |H1 holds ] + Pr [Xκ < −t+Nµ1 |H1 holds ] .

Let

δ1 = t/(Nµ1) (31)

so that t/N + µ1 = (1 + δ1)µ1 and −t/N + µ1 = (1− δ1)µ1. The analysis of Type-I error shows that 0 < t/N <
|µ0 − µ1| from which it follows that 0 < δ1 < 1. Using (21) and (22) of Theorem 1, we obtain

Pr[Type-II Error] ≤ 2 exp
(
−Nµ1δ

2
1

)
.

Let
β = 2 exp

(
−Nµ1δ

2
1

)
= 2 exp

(
−t2/(Nµ1)

)
so that Pr[Type-II error] ≤ β. Solving for t in terms of β and using 0 < t/N < |µ0 − µ1| yields

t =

√
Nµ1 ln

(
2

β

)
. (32)

Eliminating t from (30) and (32), we obtain

N × |µ0 − µ1| −

√
3Nµ0 ln

(
1

α

)
=

√
Nµ1 ln

(
2

β

)

⇒ N |c|
2
−

√
3N

2
(1 + c) ln

(
1

α

)
=

√
N

2
ln

(
2

β

)
;

⇒ N =

2

(√
ln
(

2
β

)
+
√

3 (1 + c) ln
(

1
α

))2

c2
. (33)
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The two expressions for t given by (30) and (32) combined with the condition 0 < t/N < |µ0 − µ1| gives rise to
two lower bounds on N . It is easy to check that the expression for N given by (33) satisfies both these lower
bounds.

Recall that c = 2(−1)z
∗ |ε|. So, depending on the value of z∗, (33) provides two expressions for N , with the

expression for z∗ = 1 being (slightly) greater than the expression for z∗ = 0. Since the value of z∗ will not be
known in advance, an upper bound on the data complexity is obtained by choosing z∗ = 1 and is given by the
following expression.

N ≤
2

(√
ln
(

2
β

)
+
√

3 (1 + |c|) ln
(

1
α

))2

c2
. (34)

5 Distinguishers: A Martingale Based Approach

Consider the problem of distinguishing between the probability distributions p̃ and q̃ over the set {0, . . . , ν − 1}.
Let, as in Section 2.3, X1, . . . , XN be independent and identically distributed random variables following either
p̃ or q̃ but, which one is not known. As before, let Yj = ln(pXj/qXj ) for j = 1, . . . , N and LLR = Y1 + · · ·+ YN .

We wish to use LLR to design a test of hypothesis to distinguish between p̃ and q̃. The postulated hypotheses
are the null hypothesis “H0: the distribution is p̃” versus the alternate hypothesis “H1: the distribution is q̃”.
Under H0, Yj has mean µ0 and variance σ2

0; while under H1, Yj has mean µ1 and variance σ2
1. The expressions

for µ0, µ1, σ2
0, σ

2
1 are given by (11). In the present case, we will not have any use for the variances. The test

takes the following form.

µ0 > µ1: Reject H0 if LLR ≤ t where t is in the range µ1 < t < µ0;
µ0 < µ1: Reject H0 if LLR ≥ t where t is in the range µ0 < t < µ1.

Under H0, E[LLR] = Nµ0 while under H1, E[LLR] = Nµ1.
The difference to Section 2.3 is that we do not wish to use normal approximations. The analysis of the error

probabilities will still require bounds on probabilities and our goal is to obtain these bounds using the Azuma-
Hoeffding inequality. For this, it is necessary to define a martingale. The method of doing this is described next.
Define

υ = max
η,η′∈{0,...,ν−1}

| ln(pη/qη)− ln(pη′/qη′)| = max
η,η′∈{0,...,ν−1}

| ln(pηqη′/(pη′qη))|. (35)

Then for any y1, . . . , yi−1, yi, yi+1, . . . , yN , y
′
i taking values from the set {ln(p0/q0), . . . , ln(pν/qν}, we have

|(y1 + · · ·+ yi−1 + yi + yi+1 + · · ·+ yN )− (y1 + · · ·+ yi−1 + y′i + yi+1 + · · ·+ yN )| = |yi − y′i| < υ.

From this it follows that the function f(y1, . . . , yN ) = y1 + · · · + yN is υ-Lipschitz. We now build a Doob
martingale as described in Section 3. Define

Z0 = E[LLR] = E[f(Y1, . . . , YN )] = E[Y1 + · · ·+ YN ];

Zj = E[LLR|Y1, . . . , Yj ] for j = 1, . . . , N.

The sequence Z0, Z1, . . . , ZN forms a Doob martingale with respect to Y1, . . . , YN . Further, since Y1, . . . , YN are
independent and f is υ-Lipschitz, it follows that |Zi − Zi−1| ≤ υ. Thus, the Azuma-Hoeffding inequality holds
for the martingale Z0, . . . , ZN . Note that ZN = LLR and Z0 = E[LLR].

We now consider the probabilities of Type-I and Type-II errors. Since the form of the test is determined by
the relative values of µ0 and µ1, the analysis is also done separately.
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Case µ0 > µ1:

Pr[Type-I error] = Pr[LLR ≤ t|H0 holds]

= Pr[ZN ≤ t|H0 holds]

= Pr[ZN − Z0 ≤ t− Z0|H0 holds]

= Pr[ZN − Z0 ≤ −(Nµ0 − t)|H0 holds]

≤ exp

(
−(Nµ0 − t)2

2Nυ2

)
.

The last inequality follows from (28). Similarly, the probability of Type-II error is computed as follows.

Pr[Type-II error] = Pr[LLR > t|H1 holds]

= Pr[ZN > t|H1 holds]

= Pr[ZN − Z0 > t− Z0|H1 holds]

= Pr[ZN − Z0 > t−Nµ1|H1 holds]

≤ exp

(
−(t−Nµ1)2

2Nυ2

)
.

The last inequality follows from (27).

Case µ0 < µ1:

Pr[Type-I error] = Pr[LLR ≥ t|H0 holds]

= Pr[ZN ≥ t|H0 holds]

= Pr[ZN − Z0 ≥ t− Z0|H0 holds]

= Pr[ZN − Z0 ≥ t−Nµ0|H0 holds]

≤ exp

(
−(t−Nµ0)2

2Nυ2

)
.

The last inequality follows from (27). Similarly, the probability of Type-II error is computed as follows.

Pr[Type-II error] = Pr[LLR < t|H1 holds]

= Pr[ZN < t|H1 holds]

= Pr[ZN − Z0 < t− Z0|H1 holds]

= Pr[ZN − Z0 < −(Nµ1 − t)|H1 holds]

≤ exp

(
−(Nµ1 − t)2

2Nυ2

)
.

The last inequality follows from (28). Let

α = exp

(
−(Nµ0 − t)2

2Nυ2

)
;

β = exp

(
−(t−Nµ1)2

2Nυ2

)
.

These expressions are upper bounds on the probabilities of Type-I and Type-II errors respectively irrespective
of whether µ0 > µ1 or µ0 < µ1. Then

Pe =
1

2
(Pr[Type-I error] + Pr[Type-II error]) ≤ α+ β

2
.
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Setting t = N(µ0 + µ1)/2 ensures α = β and then we obtain the following upper bound on Pe.

Pe ≤ exp

(
−N(µ0 − µ1)2

2υ2

)
= exp

(
−N(D(p̃||q̃) +D(q̃||p̃))2

2υ2

)
. (36)

From the expression for Pe given by (36), the expression for data complexity N for a given value of Pe is obtained
to be the following.

N =
2υ2 ln(1/Pe)

(D(p̃||q̃) +D(q̃||p̃))2 . (37)

The expression for N given by (37) does not involve normal approximation. We later compare to the expression
for N given by (16) obtained using normal approximation.

6 Multiple Linear Cryptanalysis

We assume the setting and notation explained in Sections 2.1 and 2.2. There are ` ≥ 1 linear approximations, κ
denotes the choice of the target sub-key and z denotes the choice of the inner key bits. There are N plaintext-
ciphertext pairs (P1, C1), . . . , (PN , CN ). For a choice κ of the target sub-key; a choice z = (z1, . . . , z`) of the
inner key bit; j ∈ {1, . . . , N}; and 1 ≤ i ≤ `, define

Lκ,j,i = 〈Γ(i)
P , Pj〉 ⊕ 〈Γ

(i)
P , Bκ,j〉;

Xκ,j = (Lκ,j,1, Lκ,j,2, . . . , Lκ,j,`);

Yκ,z,j = ln
(
pz(Xκ,j)/2

−`
)

= ln
(

2`pz(Xκ,j)
)
.

Suppose z is the correct choice of the inner key bits. For a particular choice of κ, the random variables
Xκ,z,1, . . . , Xκ,z,N are independent and these variables follow either the distribution p̃z or the distribution
q̃ = (2−`, . . . , 2−`) according as κ is the correct choice or κ is an incorrect choice.

The hypothesis testing problem is to test the null hypothesis “H0: κ is correct” versus the alternate hypothesis
“H1: κ is incorrect.” Under H0, each Yκ,z,j has mean µ0 = D(p̃z||q̃) while under H1, each Yκ,z,j has mean
µ1 = −D(q̃||p̃z). It is not difficult to prove that µ0 and µ1 have the same value fo all z (see [28] for a proof)
and so we simply write µ0 = D(p̃||q̃) and µ1 = −D(q̃||p̃), where p̃ = (p0, . . . , p2`−1) as defined in (6). The test
statistics is defined to be

LLRκ,z = Yκ,z,1 + · · ·+ Yκ,z,N =
∑

η∈{0,1}`
Qκ,η ln(2`pz(η)) (38)

where Qκ,η = #{j : Xκ,j = η}. For a fixed κ, the values of Qκ,η for all η ∈ {0, 1}` can be computed in O(`N)
time. Given these Qκ,η’s, for any z, the value of LLRκ,z can be computed in O(2`) additional time; for a fixed
κ, given the values of Qκ,η’s, the values of LLRκ,z for all z ∈ {0, 1}` can be computed in O(22`) additional time.
Thus, the values of LLRκ,z for all κ ∈ {0, 1}m and for all z ∈ {0, 1}` can be computed in O(2m(`N + 22`)) time.

The actual form of the test is determined by the relative values of µ0 and µ1.

µ0 > µ1: Reject H0 if LLRκ,z ≤ t for all z ∈ {0, 1}`. Here t is in the range Nµ1 < t < Nµ0;
µ0 < µ1: Reject H0 if LLRκ,z ≥ t for all z ∈ {0, 1}`. Here t is in the range Nµ0 < t < Nµ1.

Algorithmically, the test is performed in the following manner. Consider µ0 > µ1, the case for µ0 < µ1 being
similar. Initialise a set L to be the empty set. For each κ and z, if LLRκ,z > t, then L ← L ∪ {κ}. At the end,
L contains the list of candidate keys.
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We now proceed to analyse the probabilities of Type-I and Type-II errors and derive expressions for the data
complexity. While doing this, we avoid using normal approximations. As in Section 5, we set up a martingale
and use the Azuma-Hoeffding inequality to bound the probabilities of the two types of errors.

Writing f(y1, . . . , yN ) = y1 + . . .+ yN , we have that f is υ-Lipschitz where

υ = max
η,η′∈{0,1}`

| ln(2`pη)− ln(2`p′η)| = max
η,η′∈{0,1}`

| ln(pη/p
′
η)|. (39)

Then LLRκ,z = f(Yκ,z,1, . . . , Yκ,z,N ). As in Section 5, define the following random variables.

Z0 = E[LLRκ,z] = E[f(Yκ,z,1, . . . , Yκ,z,N )] = E[Yκ,z,1 + · · ·+ Yκ,z,N ];

Zj = E[LLRκ,z|Yκ,z,1, . . . , Yκ,z,j ] for j = 1, . . . , N.

Then Z0, . . . , ZN form a Doob martingale with respect to Yκ,z,1, . . . , Yκ,z,N and further by the υ-Lipschitz con-
dition, |Zi − Zi−1| ≤ υ. So, the Azuma-Hoeffding inequality applies to this martingale. Note that under H0,
E[LLRκ,z] = Nµ0 and under H1, E[LLRκ,z] = Nµ1. Also, note that ZN = LLRκ,z.

We now turn to bounding the error probabilities and obtaining expression for the data complexity. This is
done separately for the two cases depending on the relative values of µ0 and µ1. Let z∗ be the correct choice of
the inner key bits.

Case µ0 > µ1:

Pr[Type-I error] = Pr[LLRκ,z ≤ t for all z|H0 holds]

≤ Pr[LLRκ,z∗ ≤ t|H0 holds]

= Pr[ZN ≤ t|H0 holds]

= Pr[ZN − Z0 ≤ t− Z0|H0 holds]

= Pr[ZN − Z0 ≤ −(Nµ0 − t)|H0 holds]

≤ exp

(
−(Nµ0 − t)2

2Nυ2

)
.

The last inequality follows from (28). Similarly, the probability of Type-II error is computed as follows.

Pr[Type-II error] = Pr[LLRκ,z > t for some z|H1 holds]

≤
∑

z∈{0,1}`
Pr[LLRκ,z > t|H1 holds]

≤ 2` (Pr[LLRκ,z > t|H1 holds])

≤ 2` (Pr[ZN > t|H1 holds])

≤ 2` (Pr[ZN − Z0 > t− Z0|H1 holds])

≤ 2` (Pr[ZN − Z0 > t−Nµ1|H1 holds])

≤ 2` exp

(
−(t−Nµ1)2

2Nυ2

)
.

The last inequality follows from (27). Define

α = exp

(
−(Nµ0 − t)2

2Nυ2

)
;

β = 2` exp

(
−(t−Nµ1)2

2Nυ2

)
.
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Then Pr[Type-I error] ≤ α and Pr[Type-II error] ≤ β. The expression for α gives two values for t. Using the
upper bound on t, i.e., t < Nµ0, the expression for t has to be

t = Nµ0 − υ

√
2N ln

(
1

α

)
. (40)

The lower bound on t, i.e., Nµ1 < t provides the following lower bound on N .

N >
2υ2 ln(1/α)

(µ0 − µ1)2 . (41)

Similarly, the expression for β leads to two values for t and again using the range for t, we obtain

t = Nµ1 + υ

√
2N ln

(
1

β

)
(42)

and

N >
2υ2 ln(2`/β)

(µ0 − µ1)2 . (43)

From equation (40) and (42), we get

N = 2υ2


√

ln
(

2`

β

)
+
√

ln
(

1
α

)
D(p̃ || q̃) +D(q̃ || p̃)


2

. (44)

The expression for N given by (44) satisfies the bounds in (41) and (43).

Case µ0 < µ1:

Pr[Type-I error] = Pr[LLRκ,z ≥ t for all z|H0 holds]

= Pr[LLRκ,z∗ ≥ t|H0 holds]

= Pr[ZN ≥ t|H0 holds]

= Pr[ZN − Z0 ≥ t− Z0|H0 holds]

= Pr[ZN − Z0 ≥ t−Nµ0|H0 holds]

≤ exp

(
−(t−Nµ0)2

2Nυ2

)
.

The last inequality follows from (28). Similarly, the probability of Type-II error is computed as follows.

Pr[Type-II error] = Pr[LLRκ,z < t for some z|H1 holds]

≤
∑

z∈{0,1}`
Pr[LLRκ,z < t|H1 holds]

≤ 2` (Pr[LLRκ,z < t|H1 holds])

≤ 2` (Pr[ZN < t|H1 holds])

≤ 2` (Pr[ZN − Z0 > t− Z0|H1 holds])

≤ 2` (Pr[ZN − Z0 > t−Nµ1|H1 holds])

≤ 2` exp

(
−(t−Nµ1)2

2Nυ2

)
.
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The last inequality follows from (28). Further analysis of this case in the manner similar to that done for µ1 < µ0

shows that the expression for N in this case is also given by (44).

7 Single Differential Cryptanalysis

Let the n-bit strings δ0, δ1, . . . , δr with δ0 6= 0, be the input differences to the rounds of an r + 1-round block
cipher. Let P be a plaintext and set P ′ = P ⊕ δ0. Let, B(0) = P,B(1), . . . , B(r) denote the inputs to round

number 0, . . . , r respectively, i.e., B(i+1) = R
(i)

k(i)
(B(i)) corresponding to the plaintext P . Further, let B(0)′ =

P ′, B(1)′, . . . , B(r)′ be the inputs to round numbers 0, . . . , r respectively corresponding to the plaintext P ′. Then
A = ∧ri=0(B(i) ⊕ B(i)′ = δi) denotes the event that the differential characteristic δ0 → δ1 → · · · → δr occurs.
Suppose that for the correct key K, Pr[A] = p. Notice that as in the case of linear cryptanalysis the randomness
also comes from the uniform random choice of P .

As in Section 2.2, we assume that guessing m bits of the key allows the partial decryption of C to obtain
B(r). These m bits will constitute the target sub-key and the goal will be to obtain the correct value of the
sub-key. Further, as done previously, we will denote a choice of the target sub-key by κ.

Let, D denote the event B(r) ⊕ B(r)′ = δr. Further, let Pr[D|A] = p′ and p0 = p + (1 − p)p′. Then for
the correct choice κ of the target sub-key Pr[D] = p0. Since δ0 is not the zero string, P 6= P ′. This further
implies that B(i) 6= B(i)′ for i = 1, . . . , r since each round function is a bijection. For incorrect choices of κ, it
is assumed that B(r) and B(r)′ correspond to uniform sampling without replacement of two n-bit strings from
{0, 1}n. Hence, for incorrect of κ, Pr[D] = 1/(2m − 1). Let pw = 1/(2m − 1). In general p0 > pw and we will be
proceeding with this assumption. The analysis for the case p0 < pw is similar.

Consider N plaintext pairs (P1, P
′
1), . . . , (PN , P

′
N ) with Pj ⊕ P ′j = δ0 and their corresponding ciphertexts

(C1, C
′
1), . . . , (CN , C

′
N ). For a choice κ of the target sub-key, the attacker obtains (B

(r)
κ,1, B

(r)′
κ,1 ), . . . , (B

(r)
κ,N , B

(r)′
κ,N )

by partially decrypting (C1, C
′
1), . . . , (CN , C

′
N ) respectively. So, for j = 1, . . . , N , it is possible to determine

whether the condition B
(r)
κ,j ⊕B

(r)′
κ,j = δr holds.

For a choice κ of the target sub-key, define the binary valued random variables Wκ,1, . . . ,Wκ,N as follows:

Wκ,j = 1 if B
(r)
κ,j ⊕B

(r)
κ,j = δr; and Wκ,j = 0 otherwise. If κ is the correct choice, then Pr[Wκ,j = 1] = p0 and if κ

is an incorrect choice, then Pr[Wκ,j = 1] = pw for all j.
Let µ0 = p0 and µ1 = pw. The hypothesis testing framework is applied to test the null hypothesis “H0: κ

is correct” versus the alternate hypothesis “H1: κ is incorrect.” The test statistics is Tκ = |Xκ − µ1|, where
Xκ = Wκ,1 + · · · + Wκ,N . Under H0, E[Xκ] = Nµ0 and under H1, E[Xκ] = Nµ1. The decision rule is to reject
the null hypothesis if Tκ ≤ t for a suitable threshold t.

This setting is almost the same as that for single linear cryptanalysis, the only differences being the facts
that µ1 = pw is not in general 1/2 and the inner key bit z is absent. As a result of µ1 not being equal to 1/2,
for analysing the Type-II error probability we cannot apply the bounds (21) and (22) of Theorem 1 and instead
have to use the bounds (19) and (20) to upper bound this probability.

The expressions for δ0, δ1, α and the expression for t in terms of α are obtained as in the case of single linear
cryptanalysis to be the following:

δ0 = (|µ0 − µ1| − t/N) /µ0;

δ1 = t/(Nµ1);

α = exp(−(Nµ0δ
2
0)/3);

t = N × |µ0 − µ1| −
√

3Nµ0 ln(1/α).

Due to the use of the bounds (19) and (20), the expression for β changes as does the expression for t in terms of
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β.

β = 2 exp
(
−Nµ1δ

2
1/3
)

;

t =
√

3Nµ1 ln(2/β).

Equating the two expressions for t provides the following expression for N .

N =
3
(√

µ0 ln(1/α) +
√
µ1 ln(2/β)

)2

(µ0 − µ1)2
=

3
(√

p0 ln(1/α) +
√
pw ln(2/β)

)2

(p0 − pw)2
(45)

To apply the bounds of Theorem 1, it is required that 0 < δ0, δ1 < 1. As in Section 4, having 0 < t/N < |µ0−µ1|
ensures that the conditions on δ0 and δ1 hold. The bound on t leads to two lower bounds on N and the expression
for N given by (45) satisfies these two lower bounds.

8 Multiple Differential Cryptanalysis

Here we consider a version of the multiple differential cryptanalysis, where the attacker uses ν r-round differentials
all having the same input difference. Suppose that the ν r-round differentials for a block cipher are given by n-bit

strings δ0 and δ
(1)
r , . . . , δ

(ν)
r ; where δ0 denotes the input difference and δ

(i)
r denotes the ith output difference. Each

of the δ
(i)
r ’s must be non-zero n-bit strings and so ν ≤ 2n − 1. As in the case of linear cryptanalysis, consider an

m-bit target sub-key for some m ≤ n. Guessing the value of this sub-key allows the inversion of the (r + 1)-th
round. For a uniform random plaintext P , and a choice κ of the target sub-key, define a random variable Xκ as
follows:

Xκ =

{
i if R

(r)
κ
−1 (EK(r)(P ))⊕R(r)

κ
−1 (EK(r)(P ⊕ δ0)) = δ

(i)
r−1

0; otherwise.
(46)

For 1 ≤ i ≤ ν, let pi and θ be such that

Pr[Xκ = i] =

{
pi if κ is the correct choice;
θ if κ is an incorrect choice.

(47)

Under the wrong key assumption, θ = 1/(2m − 1). Further, define

p0 = 1− (p1 + · · ·+ pν); (48)

θ0 = 1− νθ. (49)

Then both p̃ = (p0, p1, . . . , pν) and θ̃ = (θ0, θ, . . . , θ) are proper probability distributions. For the correct choice
of κ, p0 is the probability that none of the ν differentials hold. Similarly, for an incorrect choice of κ, θ0 is the
probability that none of the ν differentials hold. The random variable Xκ follows p̃ if κ is the correct choice and
Xκ follows θ̃ if κ is an incorrect choice.

Define another random variable Yκ = ln
(
pXκ
θXκ

)
. Let µ0 = E[Yκ] if Xκ follows p̃ (i.e., κ is the correct choice)

and let µ1 = E[Yκ] if Xκ follows θ̃ (i.e., κ is an incorrect choice). Then, µ0 = D(p̃ || θ̃) and µ1 = D(p̃ || θ̃).
Consider the N plaintext-ciphertext pairs (P1, C1), . . . , (PN , CN ). For a choice κ of the target sub-key and

j = 1, . . . , N , let Xκ,j be the random variable given by (2) corresponding to (Pj , Cj) and let Yκ = ln
(
pXκ,j
θXκ,j

)
.

The test statistics is defined to be the following.

LLRκ =

N∑
j=1

Yκ,j =
∑

η∈{0,...,ν}

Qκ,η ln(pη/θη)
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where Qκ,η = #{j : Yκ,j = η}.
The hypothesis testing framework tests the null hypothesis “H0: κ is correct” versus the alternate hypothesis

“H1: κ is incorrect.” The actual test takes the following form.

µ0 > µ1: Reject H0 if LLR ≤ t where t is in the range Nµ1 < t < Nµ0;
µ0 < µ1: Reject H0 if LLR ≥ t where t is in the range Nµ0 < t < Nµ1.

Under H0, E[LLR] = Nµ0 while under H1, E[LLR] = Nµ1.
For y1, . . . , yN taking values from the set {ln(p0/θ0), . . . , ln(pν/θν)}, define f(y1, . . . , yN ) = y1 + · · · + yN .

Then f is υ-Lipschitz where

υ = max
η,η′∈{0,...,ν}

| ln((pηθ
′
η)/(p

′
ηθη))|. (50)

Define

Z0 = E [LLRκ] ;

Zj = E [LLRκ | Yκ,1,Yκ,j, . . . ,Yκ,j] for j ≥ 1.

Note that Z0 = E [LLRκ] = Nµ0 under H0 and Z0 = E [LLRκ] = Nµ1 under H1. Further, ZN = LLRκ. Since f
is υ-Lipschitz, it follows that |Zj−Zj−1| ≤ υ for j = 1, . . . , N . The sequence Z0, . . . , ZN forms a Doob martingale
(with respect to Yκ,1, . . . , Yκ,N ) to which the Azuma-Hoeffding bound can be applied. The error analysis is carried
out separately in the two cases µ0 > µ1 and µ0 < µ1.

Case µ0 > µ1: In this case, Nµ1 < t < Nµ0. The probabilities of Type-1 and Type-2 errors are computed as
follows:

Pr[Type-1 Error] = Pr [LLRκ ≤ t|H0 holds]

= Pr [ZN − Z0 ≤ −(Nµ0 − t)|H0 holds]

≤ exp

(
−(Nµ0 − t)2

2Nυ2

)
;

Pr[Type-2 Error] = Pr [LLRκ > t|H1 holds]

= Pr [ZN − Z0 > t−Nµ1|H1 holds]

≤ exp

(
−(t−Nµ1)2

2Nυ2

)
.

Here the inequalities given by (27) and (28) have been used. Define

α = exp

(
−(Nµ0 − t)2

2Nυ2

)
;

β = exp

(
−(t−Nµ1)2

2Nυ2

)
.

The equation for α gives two values of t. The range for t eliminates one of the values. Similarly, the equation
for β gives two values of t where one of the values is eliminated using the range for t. The two allowed values of
t are the following.

t = Nµ0 − υ

√
2N ln

(
1

α

)
; (51)

t = Nµ1 + υ

√
2N ln

(
1

β

)
. (52)
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Eliminating t from equations (51) and (52), we get

N = 2υ2


√

ln
(

1
β

)
+
√

ln
(

1
α

)
D(p̃ || θ̃) +D(θ̃ || p̃)


2

. (53)

The expression for t given by (51) has to satisfy Nµ1 < t and the expression for t given by (52) has to satisfy
t < Nµ0. These give rise to two lower bounds on t both of which are satisfied by the expression for N given
by (53).

Case µ0 < µ1: The analysis of this case is similar and leads to an expression for N which is the same as that
given by (53).

9 Relating Advantage to Type-II Error Probability

The size of the target sub-key is m bits and there is one correct choice and the rest are incorrect choices. The
hypothesis test is carried out independently for each choice κ of the target sub-key. Every time a Type-II error
occurs, an incorrect choice gets labelled as a candidate key.

In the previous analyses, we have assumed β to be an upper bound on the probability of Type-II error. For
the present, let us assume that β is indeed the actual probability of Type-II error. In the next section, we will
consider the situation when β is an upper bound.

Since the probability of Type-II error is β, the expected number of incorrect keys which get labelled as a
candidate key is β(2m − 1). An attack is said to have an a-bit advantage if the size of the list of candidate keys
produced by the attack is 2m−a. Equating (2m − 1)β = 2m−a, we have that for an attack with a-bit expected
advantage

β =
2m

2m − 1
2−a. (54)

The right hand side can be approximated by 2−a for moderate values of m. It is possible to use (54) to substitute
2m/(2m − 1) × 2−a for β in all the expressions for data complexities that have been obtained previously. This
allows the data complexities to be expressed in terms of the expected advantage a.

While relating the expected advantage to β is sufficient for most purposes, it is possible to say more. One
can upper bound the probability that the size of the list of false alarms exceeds a certain threshold. This is done
as follows.

For each incorrect choice κ of the target sub-key, define Wκ to be a random variable which takes the value
1 if a Type-II error occurs for this choice of κ; and it takes the value 0 otherwise. Then the random variables
Wκ’s are independent Bernoulli distributed random variables having probability of success β. Let

W =
∑

κ incorrect

Wκ

and let µ = E[W ] = β(2m − 1). Using the Chernoff bound (17), we have that for any δ > 0,

Pr [W > (1 + δ)µ] <

(
eδ

(1 + δ)(1+δ)

)µ
.
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Define s such that s = (1 + δ)µ which combined with µ = β(2m − 1) gives

β =
s

(1 + δ) (2m − 1)
(55)

Using s = (1 + δ)µ, we have

Pr [W > s] <

 e
s−µ
µ(

s
µ

)( s
µ

)

µ

=
es−µµs

ss
= Pβ (say). (56)

It is now possible to say that the probability that the list of false alarms exceeds s is at most Pβ. Since µ is
fixed, fixing Pβ fixes s and then the relation s = (1 + δ)µ also fixes δ. Using (55), β can be expressed in terms
of s and δ. Substituting this expression for β in the data complexities obtained earlier provides expressions for
data complexities in terms s and Pβ (and the Type-I error probability).

10 Upper Bounds

In the previous sections, we have obtained expressions for data complexities. These expressions are in terms of
(upper bounds) on the probabilities of Type-I and Type-II errors.

Let α? and β? be the actual probabilities of Type-I and Type-II errors respectively and further, let α and β
be upper bounds on α? and β? respectively. The success probability is P ?S which by definition is 1− α∗. Letting
PS = 1−α, we have, P ?S ≥ PS . Setting PS to a pre-specified value ensures that the actual probability of success
P ?S is at least this value.

Following the discussion in Section 9, the probability of Type-II error can be related to the expected advantage
of an attack. Let a? be such that 2−a

? × 2m/(2m − 1) = β?. Also, define a = − lg β so that β = 2−a. Then

2−a = β ≥ β? = 2−a
? × 2m/(2m − 1) ≥ 2−a

?

which shows that a? ≥ a. So, fixing a to a pre-specified value ensures that the actual advantage is at least this
value.

Using Ps = 1−α and β = 2−a all the expressions for the data complexities obtained earlier can be written in
terms of PS and a. The main question about data complexity that a cryptanalyst is interested in is the following.
For a pre-specified value of PS and a, what is the minimum number of plaintext-ciphertext pairs which ensures
that P ?S ≥ PS and a? ≥ a? Let Nmin denote this minimum required data complexity.

The data complexity expressions that we have obtained earlier provides an expression for N in terms of PS
and a. In other words, this means N plaintext-ciphertext pairs are sufficient to obtain P ?S ≥ PS and a? ≥ a.
From the definition of Nmin, it follows that in each case

Nmin ≤ N. (57)

So, all the expressions for data complexities that we have obtained are upper bounds on the minimum data
complexities required to achieve at least a certain success probability and a certain expected advantage. In
particular, we note that our analysis does not involve any approximation (normal or otherwise) and hence these
are proper upper bounds. It is in this spirit that we call the obtained upper bounds to be rigorous upper bounds.

The issue of not using any approximations needs a further clarification. The statistical analysis is based
upon probabilities of linear and differential relations obtained through an intricate analysis of the structure of
the block cipher. Such an analysis may itself involve approximations. Such approximations are not avoided in
our approach. Our work only avoids making approximations as part of the statistical analysis itself.
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11 Comparison

Previous works have obtained expressions for data complexities of the various attacks considered in this paper.
The analyses have been based on using the central limit theorem to approximate the distribution of the sum of
some random variables using the normal distribution. In this work, we have not used any approximation in our
analysis. It is of interest to compare the rigourous upper bounds on data complexities that we have obtained
with the expressions for data complexities using normal approximations.

We start by making a theoretical comparison of the various expressions. To facilitate the comparison, we
introduce some notation to denote the expressions for the variances that arise in the different cases.

Let p̃$
∆
= (2−`, . . . , 2−`) be the uniform probability distribution over {0, 1}`. The variances in case of multiple

linear cryptanalysis will be denoted as follows.

(
σ

(L)
0

)2
=

2`−1∑
η=0

p(η)

(
ln

(
p(η)

2−`

))2

−D(p̃ || p̃$)2;

(
σ

(L)
1

)2
=

2`−1∑
η=0

2−`
(

ln

(
2−`

p(η)

))2

−D(p̃$ || p̃)2.

For multiple differential cryptanalysis we denote the variances as(
σ

(D)
0

)2
=

ν∑
η=0

p(η)

(
ln

(
p(η)

θ(η)

))2

−D(p̃ || θ̃)2;

(
σ

(D)
1

)2
=

ν∑
η=0

θ(η)

(
ln

(
θ(η)

p(η)

))2

−D(θ̃ || p̃)2.

Lastly, for the LLR distinguisher we denote the variances as(
σ

(Dist)
0

)2
=

ν−1∑
η=0

p(η)

(
ln

(
p(η)

q(η)

))2

−D(p̃ || q̃)2;

(
σ

(Dist)
1

)2
=

ν−1∑
η=0

q(η)

(
ln

(
q(η)

p(η)

))2

−D(q̃ || p̃)2.

The expressions are all similar and our use of different notation is only for the sake of convenience in comparison.
Table 1 compares the expressions for the approximate data complexities that exist in the literature to the

corresponding upper bounds on the data complexities obtained in this paper. For single linear and single
differential cryptanalysis, the approximate expressions for data complexities were originally obtained in [29]. The
approximate expression for the data complexity of multiple linear cryptanalysis was obtained in [16] while the
approximate expression for the data complexity of multiple differential crypanalysis was obtained in [10]. These
expressions were obtained using the order statistics based approach. In [28], the hypothesis testing framework
was used to analyse data complexities. The actual forms of the approximate expressions for the data complexities
listed in Table 1 are from [28]. For the case of distinguisher, the original analysis based on normal approximation
was done in [2]. This was recapitulated in Section 2.3 and the approximate expression for the data complexity
listed in Table 1 is given by (16).

The main observation from Table 1 is that in each case, the denominator of the approximate expression is the
same as that of the upper bound. So, the difference between the approximate expression and the upper bound
arises from the difference in the numerator. An analytical comparison of the numerators is infeasible. So, we
perform an experimental comparison.



11 COMPARISON 23

Attack Type Approximate Data Complexities Upper Bounds

Single LC
{Φ−1(1−2−a−1)+

√
1−c2Φ−1(PS)}2

c2

2
{√

(a+1) ln 2+
√

3(1+|c|) ln(1/(1−PS))
}2

c2

Single DC

{√
pw(1−pw)Φ−1(1−2−a)+

√
p0(1−p0)Φ−1(PS)

}2

(p0−pw)2

3
{√

pw(a+1) ln 2+
√
p0 ln(1/(1−PS))

}2

(p0−pw)2

Multiple LC

{
σ
(L)
1 Φ−1(1−2−`−a)+σ

(L)
0 Φ−1(PS)

}2

(D(p̃||p̃$)+D(p̃$||p̃))2
2υ2
{√

(a+`) ln 2+
√

ln(1/(1−PS))
}2

(D(p̃||q̃)+D(q̃||p̃))2

Multiple DC

{
σ
(D)
1 Φ−1(1−2−a)+σ

(D)
0 Φ−1(PS)

}2

(D(p̃||θ̃)+D(θ̃||p̃))2
2υ2
{√

a ln 2+
√

ln(1/(1−PS))
}2

(D(p̃||θ̃)+D(θ̃||p̃))
2

Distinguisher

{(
σ
(Dist)
0 +σ

(Dist)
1

)
Φ−1(1−Pe)

}2

(D(p̃||q̃)+D(q̃||p̃))2
2υ2 ln(1/Pe)

(D(p̃||q̃)+D(q̃||p̃))2

Table 1: Table giving the upper bound on the data complexities along with the existing data complexities. Here
LC denotes linear cryptanalysis and DC denotes differential cryptanalysis.

11.1 Experimental Comparison

The approximate expressions contain terms of the type Φ−1(x) and the corresponding term in the upper bound
is
√
A ln(1/(1− x)) for A = 1, 2, 3, 6. These terms do not depend on the probability distributions p̃ or q̃.

Comparing Φ−1 (x) with
√
A ln(1/(1− x)): For x varying from 1−2−2 to 1−2−100, Figure 1 shows the plots

of Φ−1(x),
√

ln(1/(1− x)) and
√
A ln(1/(1− x))/Φ−1(x). This shows that for the given range of x, the ratio√

ln(1/(1− x))/Φ−1(x) is between 1 and 2. For A = 2, 3 or 6, the ratio increases by
√
A. Figure 2 shows the

plots for the ratio
√
A ln(1/(1− x))/Φ−1 (x) for A = 1, 2, 3 and 6.

From these plots we can infer that the difference in the approximate data complexities and the upper bounds
arising due to the difference in Φ−1(x) and

√
A ln(1/(1− x)) is only by a small constant.

Comparisons of components depending on actual distributions. Some of the components in the nu-
merators of the expressions given in Table 1 depend on the actual distributions p̃ and q̃. Performing these
comparisons require simulating appropriate distributions. Below, we mention the actual simulations that were
done and the corresponding results.

Comparing 1 − c2 and 1+ | c |: Clearly, 1 − c2 < 1+ | c |. For our experiments, we took c in the range
(−2−40, 2−40) and in this range

√
1− c2 ≈ 1 ≈

√
1+ | c |.

Comparing σ
(L)
0 and σ

(L)
1 with

√
2υ: This arises in the case of multiple linear cryptanalysis. For simulating

the distributions, we took ` = 5 and randomly selected the probabilities of p̃ in such a way that for all η =

0, 1, . . . , 25− 1, εη ∈ (−2−40, 2−40). The values σ
(L)
0 , σ

(L)
1 and

√
2υ, were then compared by computing the ratios√

2υ/σ
(L)
0 ,
√

2υ/σ
(L)
1 and σ

(L)
0 /σ

(L)
1 . This experiment was repeated 10 times.

It was observed that the ratio σ
(L)
0 /σ

(L)
1 ≈ 1 and also the ratio

√
2υ/σ

(L)
0 ≈

√
2υ/σ

(L)
1 . Table 2 gives the

values of
√

2υ, σ
(L)
0 and

√
2υ/σ

(L)
0 .

Comparing σ
(D)
0 and σ

(D)
1 with

√
2υ: This arises in the case of multiple differential cryptanalysis. For the

simulation we took m = 10 and ν = 20 and again ensured that εη ∈ (−2−40, 2−40) for all η = 0, 1, . . . , 20. Random
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Figure 1: Plots of Φ−1(x),
√

ln(1/(1− x)) and
√

ln(1/(1− x))/Φ−1 (x).

√
2υ σ

(L)
0

√
2υ/σ

(L)
0

1.58×10−10 2.54×10−11 6.23

1.03×10−10 2.01×10−11 5.12

1.13×10−10 2.05×10−11 5.52

7.76×10−11 1.38×10−11 5.60

1.19×10−10 2.21×10−11 5.38

2.83×10−10 4.46×10−11 6.33

2.29×10−10 3.71×10−11 6.16

7.69×10−11 1.83×10−11 4.20

1.80×10−10 2.93×10−11 6.13

3.87×10−10 6.32×10−11 6.12

Table 2: Table showing the values of
√

2υ, σ
(L)
0 and

√
2υ/σ

(L)
0 .

distributions were generated using these parameters like multiple linear cryptanalysis, The ratios
√

2υ/σ
(D)
0 ,√

2υ/σ
(D)
1 and σ

(D)
0 /σ

(D)
1 were considered. The experiment was also repeated 10 times.

As before the result showed that the ratio
√

2υ/σ
(D)
0 ≈

√
2υ/σ

(D)
1 and σ

(D)
0 /σ

(D)
1 ≈ 1. Table 3 gives the

values of
√

2υ, σ
(D)
0 and

√
2υ/σ

(D)
0 .
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Figure 2: Plots of
√
A ln(1/(1− x))/Φ−1 (x) for A = 1, 2, 3 and 6.

√
2υ σ

(D)
0

√
2υ/σ

(D)
0

1.93×10−9 5.36×10−11 35.95

2.48×10−9 8.24×10−11 30.06

2.42×10−9 7.93×10−11 30.45

2.56×10−9 7.35×10−11 34.86

2.38×10−9 6.74×10−11 35.38

2.23×10−9 7.34×10−11 30.33

2.43×10−9 8.28×10−11 29.35

1.86×10−9 4.85×10−11 38.32

2.24×10−9 6.92×10−11 32.32

2.47×10−9 7.22×10−11 34.25

Table 3: Table showing the values of
√

2υ, σ
(D)
0 and

√
2υ/σ

(D)
0 .

Comparing (σ
(Dist)
0 + σ

(Dist)
1 ) with

√
2υ: This is relevant for the distinguisher. The distinguisher is defined

for arbitrary probability distributions p̃ and q̃. For the experimental comparison, we applied the distinguisher to
the context of multiple linear cryptanalysis. Here, as before, we chose ` = 5 and εη in the same range as that of

multiple linear cryptanalysis. Unlike the previous cases, here it is required to compute
√

2υ/(σ
(Dist)
0 + σ

(Dist)
1 ).

As before the experiment was repeated 10 times and the observations are listed in Table 4.
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√
2υ σ

(Dist)
0 + σ

(Dist)
1

√
2υ/(σ

(Dist)
0 + σ

(Dist)
1 )

1.78×10−10 5.60×10−11 3.17

2.19×10−10 6.97×10−11 3.14

7.85×10−11 4.07×10−11 1.93

8.24×10−11 3.55×10−11 2.32

1.43×10−10 4.95×10−11 2.90

7.93×10−11 3.51×10−11 2.26

1.89×10−10 6.11×10−11 3.09

2.25×10−10 7.36×10−11 3.06

7.83×10−11 3.46×10−11 2.26

1.32×10−10 4.54×10−11 2.90

Table 4: Table showing the values of
√

2υ, (σ
(Dist)
0 + σ

(Dist)
1 ) and

√
2υ/(σ

(Dist)
0 + σ

(Dist)
1 ).

Overall comparison of approximate data complexities with the upper bounds. The size of the target
sub-key was taken to be m = 10. For single linear cryptanalysis, we chose c randomly in the range (−2−40, 2−40).
For single differential cryptanalysis, it was assumed that p0 = pw + c, where pw = 1/(2m − 1) and c was chosen
randomly from (−2−40, 2−40). In the cases of multiple linear cryptanalysis and the LLR distinguisher we took
` = 5 and for multiple differential cryptanalysis we took ν = 20. In all three cases, the εη’s were randomly chosen
from (−2−40, 2−40).

As is normally the case, the success probability PS was fixed to a constant. We have used three different
success probabilities, namely, PS = 1 − 2−5, 1 − 2−7 and 1 − 2−10. The advantage was varied from a = 2 to
100 for all cases other than the LLR distinguisher. For each value of a, the ratio of the upper bound on the
data complexity to the approximate data complexity was computed and the minimum and maximum of these
values were recorded. The rows of Table 1 reports these minimums and maximums. For the case of the LLR
distinguisher, it is required that α = β and hence for our example, a = 5. Since this is a single value of a, we
ran the experiment for this value of a 100 times and recorded the minimum and the maximum. The last row of
Table 1 reports these values.

Type of Attack
PS = 1− 2−5 PS = 1− 2−7 PS = 1− 2−10

Maximum Minimum Maximum Minimum Maximum Minimum

Single LC 6.02 1.70 5.21 1.73 4.63 1.76

Single DC 5.09 1.89 4.17 1.84 3.50 1.80

Multiple DC 1703.14 448.57 1345.41 472.68 1474.51 452.98

Multiple LC 43.74 25.42 29.46 17.46 27.20 16.50

LLR Distinguisher 10.13 4.43 8.35 2.87 7.33 2.84

Table 5: Table giving the maximum and minimum values of the ratios of the upper bound to the approximate
data complexity for each row of Table 1.

From Table 5 it can be observed that other than the case of multiple differential cryptanalysis, the upper bound
is not significantly larger than the approximate data complexity. Even for multiple differential cryptanalysis, the
upper bound is not too much greater than the approximate value. Further, to a large extent, the higher value of
the upper bound is explained by the differences in the values of υ and the variances as reported in Tables 2, 3
and 4.
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While the approximate data complexities and the upper bounds are close, our conclusion is that it is perhaps
better to use the upper bounds as the data complexities of the corresponding attacks. While this will push up
the data requirement to some extent, it is based on rigorous analysis and is certain to hold in all cases.

Comparing the two expressions for the upper bounds of single linear and differential cryptanalysis:
Note that in our analysis we get two upper bounds on data complexity of single linear cryptanalysis – one obtained
directly using the Chernoff bound and another by putting ` = 1 in the expression for data complexity of multiple
linear cryptanalysis. Putting ` = 1 in equation (44), we get

υ2 =

{
max

{∣∣∣∣ln(1 + c

1− c

)∣∣∣∣ , ∣∣∣∣ln(1− c
1 + c

)∣∣∣∣}}2

=

(
ln

(
1 + c

1− c

))2

;

µ0 =
1

2

[
ln(1− c2) + ln

(
1 + c

1− c

)]
;

µ1 =
1

2
ln(1− c2); and

N =
8{
√

(a+ 1) ln 2 +
√

ln(1/(1− PS))}2

c2
.

This needs to be compared with the expression obtained using the Chernoff bound, and i.e.

N =
2{
√

(a+ 1) ln 2 +
√

3(1+ | c |) ln(1/(1− PS))}2

c2
.

Let us call
√

(a+ 1) ln 2 as x,
√

ln(1/(1− PS)) as y, the ratio x/y as z, the data complexity obtained using
Chernoff bound as NC and the data complexity obtained using Azuma-Hoeffding inequality as NAH . Then,

NAH −NC =
2y2

c2
{4(z + 1)2 − (z +

√
3)2}

=
2y2

c2
{3z2 + 1 + 2z(4−

√
3)}

> 0; [Since, x and y are greater than zero].

Thus, we have NAH > NC , which means that the data complexity obtained directly using the Chernoff bound
gives a better upper bound in case of single linear cryptanalysis.

Similarly, one obtains two upper bounds on the data complexity of single differential cryptanalysis. Putting
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ν = 1 in (53), we get

p̃ = (1− p0, p0); θ̃ = (1− pw, pw);

υ =

∣∣∣∣ln(p0(1− pw)

pw(1− p0)

)∣∣∣∣ ;
D(p̃ || θ̃) = (1− p0) ln

(
1− p0

1− pw

)
+ p0 ln

(
p0

pw

)
;

= ln

(
1− p0

1− pw

)
+ p0 ln

(
p0(1− pw)

pw(1− p0)

)
;

D(θ̃ || p̃) = ln

(
1− pw
1− p0

)
− pw ln

(
p0(1− pw)

pw(1− p0)

)
;

(D(p̃ || θ̃) +D(θ̃ || p̃))2 = (p0 − pw)2

(
ln

(
p0(1− pw)

pw(1− p0)

))2

= (p0 − pw)2υ2; and

NAH =
2{
√
a ln 2 +

√
ln(1/(1− PS))}2

(p0 − pw)2
.

For single differential cryptanalysis, an analytical comparison is complicated. Hence, we opted for an experimental
comparison of the two data complexities. For the experiment, we again took three values of PS = 1−2−5, 1−2−7

and 1− 2−10 and for each value of PS , a was varied from 1 to 100. Also, as before, we took the size of the target
sub-key m to be 10. and p0 = pw + c, where pw = 1/(2m − 1) and c is randomly chosen from (−2−40, 2−40).

The ratio NAH/NC was computed. It was seen that in all simulations, NAH/NC is greater than 1. This
indicates that the Chernoff bound based data complexity gives a better upper bound in case of single differential
cryptanalysis.

12 Conclusion

The paper obtains rigorous upper bounds on the data complexities of linear and differential cryptanalysis. No
use is made of the central limit theorem to approximate the distribution of a sum of random variables using the
normal distribution. Experiments show that the obtained upper bounds are not too far away from previously
obtained approximate data complexities. Due to the rigorous nature of our analysis, we believe that this approach
may be adopted in the future to analyse other techniques for cryptanalysis.
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