
Finding State Collisions in the Authenticated
Encryption Stream Cipher ACORN

Md Iftekhar Salam1, Kenneth Koon-Ho Wong1, Harry Bartlett1,
Leonie Simpson1, Ed Dawson1, and Josef Pieprzyk1,2

1 Queensland University of Technology,
Brisbane, QLD 4000, Australia
2 Institute of Computer Science

Polish Academy of Sciences
Warsaw, Poland

{m.salam,kk.wong,h.bartlett,lr.simpson,

e.dawson,josef.pieprzyk}@qut.edu.au

Abstract. This paper analyzes the authenticated encryption algorithm
ACORN, a candidate in the CAESAR cryptographic competition. We
identify weaknesses in the state update function of ACORN which result
in collisions in the internal state of ACORN. This paper shows that for
a given set of key and initialization vector values we can construct two
distinct input messages which result in a collision in the ACORN internal
state. Using a standard PC the collision can be found almost instantly
when the secret key is known.

Keywords: CAESAR, Authenticated encryption, AEAD, ACORN, col-
lision, stream cipher, integrity, symmetric encryption, message authenti-
cation code

1 Introduction

ACORNv1 [1] is a simple binary feedback shift register based authenticated en-
cryption stream cipher which was recently submitted to the Competition for
Authenticated Encryption: Security, Applicability, and Robustness (CAESAR)
[2]. Including ACORNv1, there are 57 cipher proposals submitted to the first
round of the CAESAR competition. Recently, successful candidates for the sec-
ond round of the CAESAR competition were announced. ACORNv1 is one of
the 30 selected cipher proposals for the second round of the CAESAR competi-
tion. In September 2015, a tweaked version of ACORNv1 named ACORNv2 [3]
was submitted to the second-round submission of the CAESAR competition.

Both version of ACORN use a 128-bit secret key and a 128-bit initialization
vector. This proposed cipher provides authentication and encryption function-
ality for the input message. Encryption is performed by XOR-ing the plaintext
message bits with the keystream bits output by the keystream generation func-
tion. Message authentication is provided by including a tag computed from the

2 Finding State Collisions in ACORN

message. The cipher also provides authentication but not encryption of the as-
sociated data (AD).

To the best of our knowledge there are two published analyses of ACORNv1
[4,5]. Liu and Lin [4] analyze the existence of slid pairs in ACORNv1 that gen-
erate the same state, up to a clock difference. They also explore possible state
recovery attacks using guess-and-determine and differential algebraic techniques,
although the attacks described in their paper are worse than exhaustive key
search. Chaigneau et al. [5] show that a key recovery attack can be applied to
ACORNv1 under the nonce-reuse and decryption-misuse settings. However, as
the designer specifically prohibits the nonce-reuse and decryption-misuse set-
tings, this should not be considered a feasible attack.

In this paper, we demonstrate the existence of state collisions in ACORN
which can be exploited in a forgery attack. The analysis provided in this paper
is based on the description of ACORNv1; however, the differences between the
two versions of ACORN do not affect the validity of our analysis, so our results
and conclusions are applicable to ACORNv2 also. For the rest of the paper, we
used ACORN to refer to the first round submission of ACORNv1.

2 Description of ACORN

ACORN-128 uses a 128-bit key, K ∈ {0, 1}128 and a 128-bit initialization vec-

tor, V ∈ {0, 1}128. The cipher takes a plaintext message P ∈ {0, 1}∗ of arbitrary
length within the range 0 ≤ |P |≤ 264. The input to the cipher may also in-
clude associated data D ∈ {0, 1}∗, again of arbitrary length within the range
0 ≤ |D|≤ 264. The associated data does not require confidentiality and so is not
encrypted, but an integrity mechanism is applied. The output of ACORN con-

sists of ciphertext C ∈ {0, 1}|P |
and an authentication tag T ∈ {0, 1}64≤|T |≤128

.
The designer of the cipher strongly recommends the use of a 128-bit tag.

The structure of ACORN is based on six binary linear feedback shift registers
(LFSRs) of lengths 61, 46, 47, 39, 37 and 59, respectively, and an additional 4
bit register. This gives the cipher a total internal state size of 293 bits. Let St

denote the internal state of ACORN at time t. Let sti denote the contents of
register stage i of the state at time t, where 0 ≤ i < 293.

Operations performed in the ACORN stream cipher can be divided into
four phases: Initialization, Encryption, Tag Generation and Decryption and Tag
Verification. The differences between ACORNv1 and ACORNv2 occur only in
the initialization phase. The operations performed by the cipher during these
phases are based on several component functions, as described below.

2.1 ACORN Component Functions

ACORN uses three functions: an output function which generates a single bit
from the internal state of the cipher, a nonlinear feedback function used to
update the register stage s292 and a state update function used to update the
register stages of the LFSRs. In the paper the author describes the state update
function as follows:

Finding State Collisions in ACORN 3

Algorithm 1 Wu’s Pseudo code for ACORN state update function

st289 = st289 ⊕ st235 ⊕ st230
st230 = st230 ⊕ st196 ⊕ st193
st193 = st193 ⊕ st160 ⊕ st154
st154 = st154 ⊕ st111 ⊕ st107
st107 = st107 ⊕ st66 ⊕ st61
st61 = st61 ⊕ st23 ⊕ st0
Compute Output Function, Y t

Compute Feedback Function, f ′

for i := 0 to 291 do
st+1
i = sti+1

end for
st+1
292 = f t ⊕M t

Output Function. At time instant t, the output function of ACORN described
by Wu [1], takes input from five of the stages: s12, s61, s154, s193 and s235. This
version of the output bit Y t at time t is defined as:

Y t = fy(s
t
12, s

t
61, s

t
154, s

t
193, s

t
235)

= st12 ⊕ st154 ⊕maj(st61, s
t
193, s

t
235) (1)

where the majority function is defined as:

maj(x1, x2, x3) = x1x2 ⊕ x2x3 ⊕ x1x3 (2)

Note that in Equation 1, the contents of register stages s61, s154 and s193 have
undergone an intermediate update before they are used as inputs. This is not
highlighted in Wu’s version of the output function but is implicit in the state
update function given in Algorithm 1.

We wish to express the output function directly in terms of the contents
of the register prior to update. To do this, we substitute the updated values
of stages s61, s154 and s193 into Equation 1 and also use the definition of the
majority function to obtain the following function:

Zt = fz(s
t
12, s

t
61, s

t
23, s

t
0, s

t
154, s

t
111, s

t
107, s

t
193, s

t
160, s

t
235)

= st12 ⊕ st154 ⊕ st111 ⊕ st107 ⊕ st61s
t
193 ⊕ st61s

t
160 ⊕ st61s

t
154 ⊕ st23s

t
193

⊕ st23s
t
160 ⊕ st23s

t
154 ⊕ st0s

t
193 ⊕ st0s

t
160 ⊕ st0s

t
154 ⊕ st193s

t
235 ⊕ st160s

t
235

⊕ st154s
t
235 ⊕ st61s

t
235 ⊕ st23s

t
235 ⊕ st0s

t
235 (3)

Note that including the intermediate updates in the output function increases
the number of input register stages by five, as shown in Equation 3. However, it
does not affect the degree of the output equation, which remains quadratic. In
total, the output function will take input from ten register stages: st0, s

t
12, s

t
23,

st61, s
t
107, s

t
111, s

t
154, s

t
160, s

t
193 and st235.

4 Finding State Collisions in ACORN

Feedback Function. The generic form of the feedback function of ACORN, as
described by Wu, uses the contents of the fourteen register stages s0, s12, s23,
s61, s66, s107, s111, s154, s160, s193, s196, s230, s235, s244 and two control bits a,
b. The values for a and b vary depending on the phase: initialization, encryption
or tag generation. Wu describes the feedback function as:

f ′ = st0 ⊕ st107 ⊕maj(st244, s
t
23, s

t
160)⊕ ch(st230, s

t
111, s

t
66)⊕ atst196 ⊕ btZt (4)

where st107 denotes the complement value of the content of register stage st107.
In Equation 4, the choice function is defined as:

ch(x1, x2, x3) = x1x2 ⊕ x1x3 (5)

where x1 denotes the complement of x1. Similar to the output function, Wu’s
version of the feedback function given in Equation 4 incorporates implicitly the
intermediate updates of the register stages s61, s107, s154, s193 and s230. After
substituting the updated values of these register stages and using algebraic ex-
pressions for the majority function, choice function and output function, we can
express the generic form of the feedback function as follows:

f(St, at, bt) = 1⊕ st0 ⊕ st107 ⊕ st61 ⊕ st244s
t
23 ⊕ st23s

t
160 ⊕ st160s

t
244 ⊕ st230s

t
111

⊕st196s
t
111 ⊕ st193s

t
111 ⊕ st230s

t
66 ⊕ st196s

t
66 ⊕ st193s

t
66 ⊕ atst196 ⊕ bt

(
st12

⊕st154 ⊕ st111 ⊕ s107 ⊕ st61s
t
193 ⊕ s61s

t
160 ⊕ st61s

t
154 ⊕ st23s

t
193 ⊕ st23s

t
160

⊕st23s
t
154 ⊕ st0s

t
193 ⊕ st0s

t
160 ⊕ st0s

t
154 ⊕ st193s

t
235 ⊕ st160s

t
235 ⊕ st154s

t
235

⊕st61s
t
235 ⊕ st23s

t
235 ⊕ st0s

t
235

)
(6)

Equation 6 is quadratic for given constant values of a and b. We fix the val-
ues of a and b to specifiy four possible feedback functions. We use the nota-
tion fT , fA, fE and fI to denote the specific feedback functions for (a, b) =
(0, 0), (0, 1), (1, 0) and (1, 1) respectively. These four feedback functions are
given in Table 1.

State Update Function. Let the input to the state at time t be denoted by
M t. In each iteration of the state update function the register stages are updated
by shifting, except for seven stages s60, s106, s153, s192, s229, s288 and s292. The
last register stage, s292, is updated by combining the output of the nonlinear
feedback function with the input message. Register stages s60, s106, s153, s192,
s229 and s288 are updated as linear combinations of the contents of selected
register stages. The state of ACORN at time t+ 1 is defined as:

st+1
i =

M t+1 ⊕ f (St, at, bt) for i = 292
st289 ⊕ st235 ⊕ st230 for i = 288
st230 ⊕ st196 ⊕ st193 for i = 229
st193 ⊕ st160 ⊕ st154 for i = 192
st154 ⊕ st111 ⊕ st107 for i = 153
st107 ⊕ st66 ⊕ st61 for i = 106
st61 ⊕ st23 ⊕ st0 for i = 60

sti+1 otherwise

(7)

Finding State Collisions in ACORN 5

Table 1. Feedback functions for different operation phase of the cipher

a b f Feedback Function

0 0 fT
1⊕ st0 ⊕ st61 ⊕ st244s

t
23 ⊕ st160

(
st23 ⊕ st244

)
⊕

(
st230 ⊕ st196 ⊕ st193

) (
st66 ⊕ st111

)
⊕st107

0 1 fA

1⊕ st0 ⊕ st61 ⊕ st244s
t
23 ⊕ st160

(
st23 ⊕ st244

)
⊕

(
st230 ⊕ st196 ⊕ st193

) (
st66 ⊕ st111

)
⊕st12 ⊕ st154 ⊕ st111 ⊕ st61s

t
193 ⊕ st61s

t
160 ⊕ st61s

t
154 ⊕ st23s

t
193 ⊕ st23s

t
160

⊕st23s
t
154 ⊕ st0s

t
193 ⊕ st0s

t
160 ⊕ st0s

t
154 ⊕ st193s

t
235 ⊕ st160s

t
235

⊕st154s
t
235 ⊕ st61s

t
235 ⊕ st23s

t
235 ⊕ st0s

t
235

1 0 fE
1⊕ st0 ⊕ st61 ⊕ st244s

t
23 ⊕ st160

(
st23 ⊕ st244

)
⊕

(
st230 ⊕ st196 ⊕ st193

) (
st66 ⊕ st111

)
⊕st107 ⊕ st196

1 1 fI

1⊕ st0 ⊕ st61 ⊕ st244s
t
23 ⊕ st160

(
st23 ⊕ st244

)
⊕

(
st230 ⊕ st196 ⊕ st193

) (
st66 ⊕ st111

)
⊕st196 ⊕ st12 ⊕ st154 ⊕ st111 ⊕ st61s

t
193 ⊕ st61s

t
160 ⊕ st61s

t
154 ⊕ st23s

t
193 ⊕ st23s

t
160

⊕st23s
t
154 ⊕ st0s

t
193 ⊕ st0s

t
160 ⊕ st0s

t
154 ⊕ st193s

t
235 ⊕ st160s

t
235

⊕st154s
t
235 ⊕ st61s

t
235 ⊕ st23s

t
235 ⊕ st0s

t
235

where 0 ≤ i ≤ 292. Figure 1 shows the state update process for ACORN in
diagrammatic form. Depending on the phase the cipher is in, the input M can
denote either the key, initialization vector, associated data, plaintext or fixed
length padding.

2.2 Initialization

The initialization procedure uses the key, initialization vector and associated
data as inputs to construct the initial internal state of ACORN. The initialization
process is performed in two phases: first the key and initialization vector are
loaded and then the associated data is loaded. The description below applies to
ACORNv1. As noted above, the changes in ACORNv2 do not affect the validity
of our analysis below.

Key and Initialization Vector Loading. To begin, the internal state of the
cipher is loaded with all zero bits, i.e, si = 0 for i = 0, · · · , 292. The cipher
takes an input, I, of 1536 bits which consists of the concatenation of the 128-bit
key, K, the 128-bit initialization vector, V , and 1280 bits of padding, πI . The
padding consists of one bit with value 1, followed by 1279 bits of 0.

I = (k1, · · · , k128||v1, · · · , v128||πI1, πI2, · · · , πI1280)

= (k1, · · · , k128||v1, · · · , v128||1, 0, 0, 0, · · · , 0) (8)

During the key and initialization vector loading, both of the control bits are
set to 1, i.e, a = b = 1. Therefore, during the key and initialization vector loading
phase the nonlinear update function is the function fI as per Table 1. The cipher
is run for 1536 clocks. At each clock, the register stages are updated using the
state update function given in Equation 7, with the input I used as the message
M . Figure 2 shows the initialization procedure of ACORNv1.

6 Finding State Collisions in ACORN

Fig. 1. ACORN State update

Finding State Collisions in ACORN 7

Fig. 2. Initialization

Associated Data Loading. After loading the key, initialization vector and
subsequent padding, the cipher next processes the associated data. In this phase,
the cipher takes an input vector A consisting of l bits of associated data, D, with
512 bits of padding, πA. The first padding bit is set to one and the rest of the
padding bits are set to zeroes, i.e, πA = 1, 0, 0, 0, · · · , 0.

A = (d1, · · · , dl||πA1, πA2, · · · , πA512)

= (d1, · · · , dl||1, 0, 0, 0, · · · , 0) (9)

The cipher is run for l+512 clocks to update the state using the state update
function. During associated data loading, the control bits a and b are set to 1,
i.e, a = b = 1 for the first l + 256 clocks. Therefore, feedback function f I given
in Table 1 will be used for the first l + 256 steps of the associated data loading
process with the input vector A1 = (d1, · · · , dl||πA1, πA2, · · · , πA256). For the
remaining 256 iterations, control bit a is set to zero and b is set to one. That is,
the feedback function fA given in Table 1 is used for the last 256 clocks of the
associated data loading process with the input vector A2 = (πA257, · · · , πA512).

8 Finding State Collisions in ACORN

Note that even if there is no associated data the cipher will still need to run for
512 clocks to incorporate the padding bits.

2.3 Encryption

The encryption procedure takes the plaintext, P , as input and computes the
output ciphertext, C. During the encryption phase, the control bits a and b are
set to one and zero, respectively. Therefore, the nonlinear update function fE
given in Table 1 is used during the encryption phase.

The n-bit plaintext message P = (p1, · · · , pn) is loaded into the register stages
using the state update function. In the state update function, the plaintext
message P will be used as the input message M during the encryption phase.
The output bits Z are used as keystream bits and the ciphertext, C is computed
by XOR-ing these bits with the input message bits, P . The encryption procedure
of ACORNv1 is shown in Figure 3.

Fig. 3. Encryption

2.4 Tag Generation

After all the plaintext has been encrypted, the cipher goes through some final-
ization steps to generate the authentication tag. During this procedure, it takes
a 1024 bit input vector τ , consisting of one bit with value 1, followed by 1023
bits of value 0.

τ = (τ1, τ2, · · · , τ1024)
= (1, 0, 0, 0, · · · , 0) (10)

Finding State Collisions in ACORN 9

This input vector is XOR-ed with the feedback bits to update the cipher. The
cipher uses different feedback functions at different steps of this phase. For the
first 256 clocks, the feedback function fE given in Table 1 is used in the state
update function. For the next 256 clocks, both of the control bits are set to zero
and the function fT given in Table 1 is used. For the next 512 clocks, the cipher
is run with the feedback function fI and for the last ltag number of iterations
the keystream bits Z are computed and used as the tag, where 64 ≤ ltag ≤ 128
is the length of the tag. Figure 4 shows the tag generation phase of ACORNv1.

Fig. 4. Tag Generation

2.5 Decryption and Tag Verification

To carry out the decryption, the cipher first performs the initialization pro-
cess to obtain the initial internal state. During the actual decryption phase, the
keystream generator generates a keystream bit Zt at each clock, t. This bit is
XOR-ed with the ciphertext bit Ct at that time instant to obtain the decrypted
plaintext bit. The decrypted plaintext bit is then fed into the keystream gener-
ator as the input message M . This process is iterated till all the ciphertext bits
are processed. After processing all the ciphertext bits the tag is generated at
the receiver, following the same procedure as mentioned above. Finally for the

10 Finding State Collisions in ACORN

verification, the tag generated at the receiver side is matched with the received
tag from the sender. Clearly, the verification succeeds if the plaintext used at
the sender is the same as the decrypted plaintext at the receiver.

3 Analysis of ACORN

In this section we make observations on the ACORN design, related to the possi-
bility of state convergence and state collision in the internal state. Our motivation
for analyzing the convergence or collision in ACORN is to find different input
messages which generate the same tag, and hence could be used to facilitate
forgery attacks.

We consider state convergence for the situation in which the keystream gener-
ator has no external input (or in which the external input is fixed and an attacker
therefore has no opportunity to influence the values of M). Convergence occurs
when two or more distinct states at a given time are mapped into the same state
after α iterations, for some α > 0. In the operation of a general cipher, state
convergence can occur during any phase, i.e., initialization, encryption or the
tag generation, if the state update function is not one-to-one.

State collisions occur when two different sets of inputs produce identical
internal states at some point of operation of the cipher. Here, the input com-
bination implies different possibilities for key, initialization vector and external
input message combination. State collisions may be exploited in a forgery attack
or used in secret key recovery attacks.

Both state convergence and state collision result in identical internal states at
some point in the operation of a cipher. The difference is that state convergence
occurs when the cipher runs autonomously (or with fixed input) whereas state
collisions can be engineered by manipulating the external inputs to the cipher.
ACORN does not have any external variable input messages during the tag gen-
eration phase, so state collisions can not be forced in this phase of the cipher
operation. However, state collision might be obtained in either initialization or
encryption phase for different inputs of key, initialization vector and input mes-
sage. This will then lead to the formation of identical message authentication
tags. That is, if two sets of inputs K,V,M and K ′, V ′,M ′ result in colliding
states, then the generated tag after the final phase will be the same, given that
the rest of the input bits are the same once the colliding states are obtained.

A forgery attack can be applied to the ACORN message authentication al-
gorithm if two input combinations which result in the same tag value can be
identified. This is particularly useful for the scenario where K = K ′, V = V ′

but M ̸= M ′. That is, for a given key and initialization vector, an attacker can
find two distinct input messages which will result in the same tag. A malicious
sender can manipulate either the associated data or the plaintext messages to
obtain the collision of the tag and therefore can frame a forged message accepted
as legitimate. An attacker can easily manipulate the associated data, because
this is a publicly available information.

Finding State Collisions in ACORN 11

3.1 Convergence of Two Different States

In this section, we explore the possibility of state convergence in ACORN. From
the state update function given in Equation 7, we see that register stages s60,
s106, s153, s192, s229 and s288 are updated with linear combinations of the con-
tents of several other stage bits. If two ACORN states differ only in the register
stages s0, s61, s107, s154, s193, s230 and s289 by complementing the contents of all
these stages, then the effect of these linear updates remain unchanged. However,
some of these register stage bits are fed to the nonlinear feedback function which
updates the register stage s292.

ACORN uses different feedback functions fI , fA, fE and fT at various points
during the different operation phases of the cipher. The quadratic terms involv-
ing the register stages s0, s61, s107, s154, s193, s230 and s289 in these feedback
functions always occur in an even number of XOR combinations. Complement-
ing the values in these stages does not change the computed value of the sum
of the quadratic terms, since the rest of the register stage values are same for
both states. On the other hand, the linear terms involving these register stages
in these feedback functions always occur in odd number, e.g., both fI and fA
contain the XOR combination of the linear terms s0, s61 and s154. Complement-
ing the values in these register stages will also complement the output from
the the sum of the linear terms. Since the sum of the quadratic terms does not
change and the sum of the linear terms does change, the computed value for
the feedback functions will be complemented when the contents of these stages
are all complemented. Hence state convergence is not possible during any of the
operation phases of ACORN.

3.2 Collision of States from Different Inputs

During the initialization and encryption phase, external input messages are
fed into the keystream generator. During the initialization phase the inputs to
the keystream generator are the key, initialization vector and associated data,
whereas during the encryption phase the external input is the plaintext. In this
section we discuss the state collisions by exploiting these external messages dur-
ing the initialization and encryption phase of ACORN.

In section 3.1 we noted that two different ACORN states which differ only
in the contents of register stages s0, s61, s107, s154, s193, s230 and s289, will have
identical register stages in the next clock for all stages except stage s292. Note
that the content of register stage s292 can be influenced at certain times by
the external input M . We can therefore force a state collision by choosing the
appropriate external input. For example, consider two different states S and S′,
which differ only in the register stages shown in Table 2.

Here, si corresponds to the complement of si, andM denotes the complement
value of input M . Notice that the two states described in Table 2 will collide in
the next clock, if the next input bit M is complemented for the corresponding
time instant. So, there will be 128 possible combinations of values for the register
stages shown in Table 2. We can group these into 64 complementary pairs. For

12 Finding State Collisions in ACORN

Table 2. Obtaining a collision with different inputs

State Differences in the register stage Input

S s0, s61, s107, s154, s193, s230, s289 M

S′ s0, s61, s107, s154, s193, s230, s289 M

any combination of values in these stages and either choice for the external
message bit, a collision can be obtained by complementing all of these stages and
also complementing the external input message bit. In practice, this means if we
take any state and any value for the next bit of input data, that combination will
collide with the state that is identical apart from having the contents of register
stages s0, s61, s107, s154, s193, s230 and s289 complemented and also using the
complementary value for the next bit of input data.

Now consider the different phases of ACORN to determine when we can
obtain a state collision with chosen set of external input data. At the beginning,
the 128-bit secret key and 128-bit public initialization vector is the input to the
cipher for the key and initialization vector loading process of the initialization
phase. The cipher will be clocked 256 times to load these key and initialization
vector into the register stages. To manipulate the state collision with the selected
input value, i.e., using chosen initialization vector for this instance, two states
need to have complementary values in the above mentioned seven register stages.
However, this will not happen after 256 clocks since the key-initialization vector
mapping will reach up to register stage s37 and the rest of the register stages
s0, · · · , s36 still contain zero values. To force the collision, the two states need
to have complementary values in s0 which is not the case. Therefore, collisions
can not be forced during the key and initialization vector loading phase by the
above mentioned process.

During the associated data loading process in the initialization phase, the
feedback function fI is used to load the l bits of associated data into the register
stages of the cipher. If l + 256 > 293 then the input to the cipher in bits is
greater than the total internal state size. Therefore, if the associated data length
is more than 37 bits, i.e, l > 37, then there must exist state collisions. At the
beginning of the associated data loading process, the internal state consists of
the key and initialization vector loaded state and the input to the cipher is the
publicly known associated data. The key, initialization vector and associated
data combination will be mapped into all the 293 register stages when there are
more than 37 bits of associated data. Alternatively, if we consider a fixed secret
key while varying both the initialization vector and associated data to obtain
a state collision, then we need to have the associated data length, l > 165. At
this point any two states which are identical except from having complementary
values in the specific seven register stages will be forced to have a collision if they
are fed with complementary values of associated data in the corresponding time
instant. Therefore, a collision can be forced during the associated data loading
process. Similar comments apply to the encryption phase of the cipher where
one can obtain a state collision by manipulating the plaintext messages.

Finding State Collisions in ACORN 13

4 Finding State Collisions

In this section, we describe the procedure for finding state collisions in ACORN.
We also discuss the feasibility of this approach.

To find the state collisions, a set of quadratic equations is defined, relating
the contents of two ACORN states formed from two different input messages.
We can solve this system of equations to obtain pairs of distinct input messages
which generate the colliding states.

4.1 Equation Generation

Let St denote an internal state of ACORN at time t with an input message M .
Our goal is to construct another input message M ′ for an internal state S′t in
such a way, that M ̸= M ′ and it results in identical state after processing the
input messages. The input messageM andM ′ can represent either the associated
data or the plaintext.

We first define the contents of the internal state St with 293 variables,
i.e., St = (st0, · · · , st292). Similarly, the contents of the internal state S′t =
(s′t0 , · · · , s′t292). At this stage, we are not assuming that St = S′t. To find the col-
liding states, we construct a set of equations by relating the contents of St+293

and S′t+293, formed from the input message M and M ′, respectively. For an
input message of length 293 bits, processing the message results in changes in
all the register stages.

While the input message is being loaded, the degree of the generated equation
system increases because of the nonlinear feedback function. To keep the degree
of the nonlinear feedback function in quadratic form we apply the relabeling
technique at each iteration of the message loading. In total, the relabeling in-
troduces 586 new variables and 586 new equations in the equation system. Also,
586 more variables are required to represent the input messages to the internal
state St and S′t.

After loading the 293 bit message, the two ACORN internal states are defined
as: St+293 = st+293

0 , · · · , st+293
292 and S′t+293 = s′t+293

0 , · · · , s′t+293
292 . We obtain 293

equations which equate the content of each register stage in St+293 and S′t+293

except for register stages numbered 0, 61, 107, 154, 193, 230 and 289. Equations
for these remaining seven pairs of register stages are generated in a way that
the corresponding register stages in St+293 and S′t+293 contain complementary
values. Thus after 293 clocks of message loading phase, the equations comparing
the internal state St+293 and S′t+293 are given by Equation 11.

sti ⊕ s′ti =

{
1 i = 0, 61, 107, 154, 193, 230, 289
0 otherwise

(11)

where 0 ≤ i ≤ 292. In total there are 879 equations with 1758 variables. Ob-
taining solutions for M and M ′ by solving these system of equations means we
can obtain all possible combinations of states and input messages which differ
only by complementing the specific register stages. If a solution for this system

14 Finding State Collisions in ACORN

of equations can be obtained, then a collision can be forced by choosing comple-
mentary values for M and M ′ at the 294th clock of the associated data loading
phase or plaintext loading phase.

4.2 Solving the Equations

In this section we discuss how to solve the generated system of equations to
obtain inputs which demonstrate state collision in ACORN. Experiments to
obtain collision examples are performed using Sage version 6.4.1 [6] on a standard
3.4GHz Intel core i7 PC with 16GB memory.

The generated equation system as described in the previous section is under-
defined and the number of equations in the system is quite large, which makes
it hard to solve. A large portion of the variables are due to the unknowns in
the internal state St and S′t. So, we reduced the size of the system of equations
by fixing the contents in St and S′t instead of defining them with unknown
variables. More precisely the assumption here is that the internal states St and
S′t are known. The key and initialization vector loaded state is assumed to be
known if associated data is used as the input message to generate the collision.
The initial internal state is assumed to be known if plaintext is used as the input
message to generate the collision. Also, we assume that the input message M for
state St is known. Only the input messageM ′ for state S′t is represented with 293
unknown variables. These assumptions reduces the size of the equation system
to 586 equations with 586 variables. These equations are solved using Gröbner
basis methods. Solving this equation system give unique values for each of the
unknown variables that constitute the bits of the input message M ′.

Collisions for Different Associated Data Sets. This section demonstrate
state collisions in ACORN for two distinct inputs of associated data. We used the
technique described in the previous section to find two different sets of associated
data which generate identical associated data loaded states.

In ACORN, associated data are fed into the key and initialization vector
loaded state after t = 1536 iterations of the key and initialization vector loading
phase. Let the key and initialization vector loaded states S1536 and S′1536 be
formed using the key and initialization vector pair (K,V) and (K ′, V ′), respec-
tively. Suppose first that these two states S1536 and S′1536 are identical, i.e.,
K = K ′ and V = V ′. At this point, associated data D and D′ are fed into S1536

and S′1536, respectively. At each iteration of the associated data loading, a set
of equations are generated relating the input associated data D and D′ with the
contents of the corresponding internal state. To keep the size of the equation
system small, we assume that the key and IV loaded states S1536 and S′1536

are known. For a chosen associated data D, calculations are then performed to
obtain the associated data D′ generating state S1829 and S′1829, respectively,
which differ only in the register stages numbered 0, 61, 107, 154, 193, 230 and
289. A state collision is then forced at the 294th clock by choosing complemen-
tary values of the input associated data bits D and D′ for that time instant. This

Finding State Collisions in ACORN 15

gives two identical associated data loaded state S1830 = S′1830, for two distinct
associated data sets D and D′, respectively.

Table 3 gives an example of pair of input data sets which leads to a collision
for same key and initialization vector pair with different associated data (All
tabulated values are in hexadecimal notation). As shown in Table 3, except for
the associated data all the other inputs are same, i.e., K = K ′, V = V ′ and
P = P ′. The input associated data D in the above example is changed to D′

which results in a collided associated data loaded state after 294 iterations. Since
the inputs to the states are kept same once the identical associated data loaded
states are obtained, it will result in the same ciphertext C = C ′ and tag T = T ′

after processing the rest of the inputs.

Table 3. Example of collision for same K, V , with different D but same P

K 12 24 36 48 9a bc de f0 10 35 59 78 9b bc de f1
V ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
D ff 3f
P 81 01 01 01 01 01 01 01 01 81
C a6 46 3a 55 73 f6 13 bb dd 7f
T c7 a8 06 c1 5a d1 40 50 62 59 7b 47 63 51 18 57

K′ 12 24 36 48 9a bc de f0 10 35 59 78 9b bc de f1
V ′ ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
D′ fe ff ff ff 19 35 bd 53 37 b8 eb 8c cd c5 bc a0 57 6b 21 fd dd 82 47 71 f9 46 f5 b6 21 72 7d fe 84 2c 9a 4a 1a
P ′ 81 01 01 01 01 01 01 01 01 81
C′ a6 46 3a 55 73 f6 13 bb dd 7f
T ′ c7 a8 06 c1 5a d1 40 50 62 59 7b 47 63 51 18 57

The same procedure can be also applied to the case of different key and
initialization vector loaded state, i.e.,K ̸= K ′ and V ̸= V ′, and therefore S1536 ̸=
S′1536. Table 4 gives an example where S1536 ̸= S′1536, having two different
associated data inputs D and D′, respectively, which generate two identical
associated data loaded states.

Table 4. Example of collision for different K, V and D with same P

K 12 24 36 48 9a bc de f0 10 35 59 78 9b bc de f1
V ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
D ff 3f
P 81 01 01 01 01 01 01 01 01 81
C a6 46 3a 55 73 f6 13 bb dd 7f
T c7 a8 06 c1 5a d1 40 50 62 59 7b 47 63 51 18 57

K′ 10 20 36 40 9a bc de f0 10 35 59 78 9a be dd f0
V ′ f0 f1 f0 f1 f0 f1 f0 f1 f0 f1 f0 f1 f0 f1 f0 f1
D′ f2 f1 c5 2f a3 cc 25 e5 d4 74 be 3b 54 8f d1 30 9d e2 6e ce e7 81 c9 ab 8f e3 db 0f c4 89 da ea 11 84 c0 28 18
P ′ 81 01 01 01 01 01 01 01 01 81
C′ a6 46 3a 55 73 f6 13 bb dd 7f
T ′ c7 a8 06 c1 5a d1 40 50 62 59 7b 47 63 51 18 57

The above-mentioned examples show that given the secret key, public initial-
ization vector and at least 294 bits (37 bytes) of input associated data, a state
collision can be forced against the authenticated encryption cipher ACORN. In
practice a malicious sender who knows the secret key can find two distinct as-
sociated data strings which generate the same tag and therefore can break the
integrity component of the cipher.

16 Finding State Collisions in ACORN

Note that, earlier we stated that there must exist state collision if the asso-
ciated data length is more than 37 bits. However for our experiments we have
used 294 bits of associated data to find the collision. This is because to find
the collision after 37 bits of associated data loading, we need to manipulate the
key and initialization vector with the 37 bits of associated data. In that case,
the experiments need to go through 1536 clock of key and initialization vector
loading phase which is infeasible. Therefore, we have used 294 bits of associated
data to obtain state collisions in ACORN.

Collisions for Different Plaintexts. In this section we demonstrate collisions
in the ACORN internal state for two distinct plaintext messages. The same tech-
nique used to obtain the collision during the associated data loading process can
be also applied in the encryption phase to find a pair of input plaintext mes-
sages which results in identical plaintext loaded states. The resultant ciphertext
will be different for this case but the generated tag after the final phase will be
the same given that rest of the input plaintexts (if any) are the same once the
colliding plaintext loaded states are obtained.

Plaintext bits are fed into the initial internal state of the keystream gen-
erator after t = l + 2048 iterations of initialization phase. Here, l denotes the
length of the associated data. The initial internal states Sl+2048 and S′l+2048

are formed using the key, initialization vector and associated data pair (K,V,D)
and (K ′, V ′, D′), respectively. Suppose firstly that these two initial internal states
Sl+2048 and S′l+2048 are identical, i.e., K = K ′, V = V ′ and D = D′. Plaintexts
P and P ′ are fed to the initial internal state Sl+2048 and S′l+2048, respectively. At
each iteration of the plaintext loading, equations are generated relating the input
plaintext P and P ′ with the contents of the corresponding states. To reduce the
size of the equation system, we assume that the initial internal states Sl+2048

and S′l+2048 are known. For a chosen input plaintext, P , calculations are then
performed to determine the other plaintext, P ′ which will lead to the colliding
plaintext loaded states. To obtain the collisions in the internal state the plaintext
needs to be at least 294 bits since we need to map the plaintext inputs into all
the internal state bits of the keystream generator. For the first 293 iterations of
the encryption phase the input plaintexts are used to obtain two different states
Sl+2341 and S′l+2341 which differ only in the register stages numbered 0, 61, 107,
154, 193, 230 and 289. The collision is forced at the 294th iteration by having
complementary values of input plaintexts P and P ′ for that time instant. This
gives us two identical plaintext loaded states Sl+2342 = S′l+2342, for two distinct
plaintext messages P and P ′, respectively.

Table 5 shows an example of obtaining state collision for two different input
of plaintexts, P and P ′, with the same key K = K ′, initialization vector V = V ′

and associated data D = D′. As shown in the example, the resultant ciphertexts
C and C ′ are different because the input plaintexts P and P ′ are different,
however the tags T and T ′ generated after the final phase are the same, since no
additional plaintexts are fed into the input after the colliding plaintext loaded
states are obtained.

Finding State Collisions in ACORN 17

Table 5. Example of collision for same K, V and D with different P

K 12 24 36 48 9a bc de f0 10 35 59 78 9b bc de f1
V ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
D ff 3f
P 51 75 65 65 6e 73 6c 61 6e 64 20 55 6e 69 76 65 72 73 69 74 79 20 6f 66 20 54 65 63 68 6e 6f 6c 6f 67 79 21 21
C 76 32 5e 31 1c 84 7e 9b e1 9a 9e ac 7f c9 01 fd 10 8c d7 88 ea 16 f3 72 bc 6d cb 9f bc 1e 96 58 02 bb 11 9a 51
T b5 83 b2 04 73 a5 35 e0 b4 df 98 1b 1f 40 08 9a

K′ 12 24 36 48 9a bc de f0 10 35 59 78 9b bc de f1
V ′ ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
D′ ff 3f
P ′ 50 75 65 65 88 b9 2c 49 a6 23 f0 bb 7c 31 35 3d 85 8c 30 c5 f2 5d c5 d3 e9 49 cd c8 9a 4b 06 43 42 5e 20 3b 05
C′ 77 32 5e 31 fa 4e 3e b7 29 dd 4e 52 6d 90 42 a5 e4 4e 86 6a 45 6b d1 b6 56 04 e3 a2 32 ba 9f 61 73 82 46 a1 75
T ′ b5 83 b2 04 73 a5 35 e0 b4 df 98 1b 1f 40 08 9a

For the example shown in Table 5, the two initial internal state pairs of
ACORN are the same before the encryption phase. This is because for both pairs
of internal state Sl+2048 and S′l+2048, we considered the same key, initialization
vector and associated data input. Note that a collision can be still obtained in
the encryption phase by using appropriate plaintext inputs even if any of these
inputs are different, e.g., K ̸= K ′, V ̸= V ′ or D ̸= D′, during the initialization
phase. Table 6 shows a such example where the initial internal states are different,
i.e., Sl+2048 ̸= S′l+2048 and two collided plaintext loaded states are obtained by
manipulating the plaintexts.

Table 6. Example of collision for same K, V with different D and P

K 12 24 36 48 9a bc de f0 10 35 59 78 9b bc de f1
V ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
D ff 3f
P 51 75 65 65 6e 73 6c 61 6e 64 20 55 6e 69 76 65 72 73 69 74 79 20 6f 66 20 54 65 63 68 6e 6f 6c 6f 67 79 21 21
C 76 32 5e 31 1c 84 7e 9b e1 9a 9e ac 7f c9 01 fd 10 8c d7 88 ea 16 f3 72 bc 6d cb 9f bc 1e 96 58 02 bb 11 9a 51
T b5 83 b2 04 73 a5 35 e0 b4 df 98 1b 1f 40 08 9a

K′ 12 24 36 48 9a bc de f0 10 35 59 78 9b bc de f1
V ′ ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
D′ aa 2a
P ′ 62 af ff 7d fd 60 5b 3c f5 d7 73 72 50 8a 3e 10 a1 09 3f 05 61 a2 b7 a9 2e aa 56 90 63 8f 23 d0 7b ac ce d3 1a
C′ 52 c5 0b 94 04 05 b2 06 39 0a 63 20 a7 49 5e 9c 60 9e 39 8c 06 b5 1d cf 18 5c 75 d1 4c c7 47 59 b5 84 64 a8 6a
T ′ b5 83 b2 04 73 a5 35 e0 b4 df 98 1b 1f 40 08 9a

As shown in Table 6, the key and initialization vector are the same for both
states, i.e., K = K ′ and V = V ′. On the other hand both the associated data
and the plaintext are different for both states St and S′t, i.e., D ̸= D′ and
P ̸= P ′, and the state collision is forced by manipulating the plaintext. This
means anyone having the knowledge of the secret key, e.g., a malicious sender,
can forge both the associated data and the plaintext. For this instance, the
changes in the associated data can be made arbitrarily, whereas changes in the
plainext are determined by the equations that must be satisfied in order to obtain
a collision. In this case, a malicious sender can apply a selective forgery attack
on the associated data as he/she can select the associated data of his/her own
choice.

Collisions for More than 294 Clocks. In this section we briefly discuss state
collisions in ACORN if we manipulate more than 294 bits of input messages.

18 Finding State Collisions in ACORN

The examples shown in the previous sections are to obtain collided states after
294 iteration of the associated data or plaintext loading phase. Experiments
are also performed to obtain a collision by manipulating more than 294 bits of
input messages. As the number of iterations were increased the time to obtain
the solutions increases. This is because when we increase the number of clocks
there are more free variables in the equation system and the time complexity is
expected to grow exponentially. However, the number of alternative inputs that
can be used to obtain a collision doubles with the increase of each clock. Table 7
lists the required CPU time and memory for solving the equation system with
294 or more iterations of input message loading.

Table 7. Required resources to find a solution for the input message with more than
294 clocks

Number of
Clocks

Number of
Equations

CPU Time
(Seconds)

Memory
(KB)

294 586 3.57 127568

295 587 3.85 130872

296 588 4.19 140792

297 589 4.44 144828

298 590 4.68 145528

299 591 5.35 150748

300 592 5.58 152916

301 593 6.01 152792

302 594 6.44 152940

303 595 6.64 152828

304 596 6.89 152988

305 597 7.14 153396

306 598 7.40 153560

307 599 7.88 153744

308 600 8.21 153880

309 601 9.34 154196

310 602 11.18 167968

Even with a limited computational environment, the experiments were able
to perform till 310 iterations of input message loading. The program runs out of
allocated memory for experiments with 311 or more iterations.

4.3 Collisions for Unknown Internal State

In this section we discuss the feasibility of finding state collisions in ACORN
when the internal state of the keystream generator is unknown. To do this, we
defined the key and initialization vector loaded state S1536 and S′1536 in terms
of unknown variables. For a chosen associated data, D, experiments are then
conducted to determine the other associated data, D′ which will generate two
colliding associated data loaded states. However, it was found that the program

Finding State Collisions in ACORN 19

becomes very slow and runs out of computational resources when all the key and
initialization vector loaded state bits are defined as variables.

So, instead of defining all the key and initialization vector loaded state bits
as variables, we tried a guess and determine approach by defining some of the
state bits as variable while keeping the remaining fixed. We started with defining
one variable bit in the internal state of S1536 and S′1536, while the remaining 292
bits are kept as fixed. Successive experiments were performed by increasing the
number of unknown variables in the key and initialization vector loaded state. For
this experiment, we have also applied the relabeling technique at each iteration
of the associated data loading into the states S1536 and S′1536. It was found that
the experiment could be performed while there are less than 6 unknown variables
in the key and initialization vector loaded state. For these attempts the required
CPU time, memory, size of the equation system and maximum degree of the
generated equations are given in Table 8.

Table 8. Required resources for solving the equation system for different number of
unknown variable in the internal state of ACORN (with full relabeling)

Unknowns
in the
state

CPU
Time

(Seconds)

Memory
(KB)

Number
of

equations

Number
of

variables

Max.
degree

1 7.60 131348 879 880 2

2 7.80 139392 879 881 2

3 8.90 152948 879 882 2

4 16.22 320700 879 883 2

5 78.08 1585012 879 884 2

It can be seen that the complexity of solving the equation system is in-
creasing as the number of unknown variable increases. The experiment seems
to run out of memory when there are more than 5 unknown variables in the
key and initialization vector loaded state. Table 8 shows that there is a sig-
nificant increase in the required CPU time and memory when then number of
unknown variables are increased to 5. This may be due to the limitations of
the software. As given in Table 8, obtaining a solution with 5 unknown vari-
ables will require an exhaustive search to guess the contents of the other 288
register stages with a complexity of 2288. The total complexity of the attack
will be 2288 × complexity of solving the equation system. This is worse than the
exhaustive search on the key and therefore not a feasible approach.

Similar experiments are conducted to determine the feasibility of the above-
mentioned experiment when no relabeling technique is applied while loading the
associated data D into the internal state S1536. In this case, relabeling technique
is only applied while the associated data D′ are being loaded to the internal state
S′t. For these attempts the required CPU time, memory, size of the equation
system and maximum degree of the generated equations are given in Table 9.

20 Finding State Collisions in ACORN

Table 9. Required resources for solving the equation system for different number of
unknown variable in the internal state of ACORN (with partial relabeling)

Unknowns
in the
state

CPU
Time

(Seconds)

Memory
(KB)

Number
of

equations

Number
of

variables

Max.
degree

1 3.46 128232 586 587 2

2 3.61 127732 586 588 2

3 4.20 131544 586 589 2

4 9.37 181712 586 590 3

5 16.38 251044 586 591 5

6 488.07 923560 586 592 5

The experiments were able to perform when there are less than 7 unknown
variables in the internal state. Thus this will require an exhaustive search of
2286 over the internal state. The total complexity of this attack will be 2286 ×
complexity of solving the equation system. The size of the generated equation
system shown in Table 9 is small compare to the one given in Table 8. This
is because relabeling is applied only when loading the associated data D′ for
the experiment results given in Table 9. However, this comes with the trade-off
of an increase in the degree of the generated equation system, as indicated in
Table 9. These comments also apply to the case for obtaining state collision by
manipulating the plaintexts during the encryption phase of ACORN.

Experiments are also performed by representing the key bits as unknown
variables, rather than defining the internal state bits as variables. For this case
the experiment needs to go through a large 1536 iteration of key and initialization
vector loading phase. Therefore, if there are too many unknown variables then
the degree of the generated equations will be high and can reach up to the
maximum degree.

On the other hand, relabeling 1536 iterations will keep the degree of the gen-
erated equations to quadratic, but this will introduce a large number of equations
and variables in the system. Instead, we approach this without applying the re-
labeling during these 1536 iterations. One unknown variable is defined in the key
space while the remaining are kept fixed. The experiment gives a solution when
there is only one unknown variable in the key space. This is because the system
of equation remains quadratic when there is only one unknown variable in the
key. However, for more than one unknown variable the degree of the generated
equations goes beyond quadratic and may reach up to the maximum degree. This
makes it infeasible to obtain a solution when there are more than one unknown
variables in the key space.

5 Conclusion

This paper identifies a weakness in ACORN. We have identified the phases dur-
ing operation of the cipher where inputs to the state can be manipulated to

Finding State Collisions in ACORN 21

obtain state collisions. Our analysis shows that collision of the internal states
can be forced by selecting complementary values in the external input messages
if there exist two ACORN states which differ only in the values contained in
seven particular register stages. The input bits that are manipulated can be
either associated data bits or plaintext bits.

Experimental results show that for a chosen key and initialization vector, it
is trivial to find two distinct messages which result in two ACORN states which
differ only in the stages mentioned above. Given these states, a collision can be
easily forced in the internal state of ACORN.

In our experiments, we assumed that the key is known. This is not necessarily
true for an external attacker. However, the sender has access to the secret key
and allowing the sender to create collisions is not a desirable property either. For
ACORN, the sender can find a collision for any given key, initialization vector
and input message combination, thereby compromising the integrity component
of the cipher. A malicious sender can manipulate either the associated data or
the plaintext messages to obtain the collision of the tag and therefore can frame
a forged message accepted as legitimate.

Finally we note that the collisions found in ACORN are key dependent, thus
obtaining a set of colliding input message must leak information about the key.
We aim to investigate methods for exploiting this leakage in our future work.

Acknowledgements. Josef Pieprzyk was supported by Polish National Science
Centre grant DEC-2014/15/B/ST6/05130. Md Iftekhar Salam was supported
by the QUT Postgraduate Research Award (QUTPRA), QUT Higher Degree
Research Tuition Fee Sponsorship and QUT Excellence Top Up Scholarship.

References

1. Wu, H., ACORN: A Lightweight Authenticated Cipher (v1). CAESAR Competition.
Retrieved from http://competitions.cr.yp.to/round1/acornv1.pdf, Accessed 29 May
2015.

2. CAESAR: Competition for Authenticated Encryption: Security, Applicability, and
Robustness. Available from: http://competitions.cr.yp.to/index.html, Accessed 10
September 2015.

3. Wu, H., ACORN: A Lightweight Authenticated Cipher (v2). CAESAR Competi-
tion. Retrieved from http://competitions.cr.yp.to/round2/acornv2.pdf, Accessed 10
September 2015.

4. Liu, M. and Lin, D., Cryptanalysis of Lightweight Authenticated Ci-
pher Acorn. Cryptographic Competitions Mailing List. Retrieved from
https://groups.google.com/forum/#!topic/crypto-competitions/2mrDnyb9hfM,
Accessed 29 May 2015.

5. Chaigneau C., Fuhr T., and H.., G., Full Key-Recovery on ACORN in
Nonce-Reuse and Decryption-Misuse Settings. Cryptographic Competitions
Mailing List. Retrieved from https://groups.google.com/forum/#!topic/crypto-
competitions/RTtZvFZay7k, Accessed 10 August 2015.

6. Stein, W., et al., Sage Mathematics Software (Version 6.4.1), The Sage Development
Team, 2015, http://www.sagemath.org.

	Finding State Collisions in the Authenticated Encryption Stream Cipher ACORN
	Introduction
	Description of ACORN
	ACORN Component Functions
	Output Function.
	Feedback Function.
	State Update Function.

	Initialization
	Key and Initialization Vector Loading.
	Associated Data Loading.

	Encryption
	Tag Generation
	Decryption and Tag Verification

	Analysis of ACORN
	Convergence of Two Different States
	Collision of States from Different Inputs

	Finding State Collisions
	Equation Generation
	Solving the Equations
	Collisions for Different Associated Data Sets.
	Collisions for Different Plaintexts.
	Collisions for More than 294 Clocks.

	Collisions for Unknown Internal State

	Conclusion
	Acknowledgements.

