
Privacy-Preserving Data Management for Outsourced
Databases

Hung Dang, Anh Dinh, Ee-Chien Chang, Beng Chin Ooi, Shruti Tople, Prateek Saxena
School of Computing, National University of Singapore

ABSTRACT
Cloud providers are realizing the outsourced database model
in the form of database-as-a-service offerings. Security in
terms of data privacy remains an obstacle because data stor-
age and processing are done on an untrusted cloud. As such,
providing a strong notion of security under additional con-
straints of functionality and performance is challenging, for
which advanced encryption and recent trusted computing
primitives alone prove insufficient.

This paper proposes a practical system for privacy-
preserving data management, called PRAMOD, in which
data is stored in encrypted form and data-dependent com-
putations are carried out inside a trusted environment. The
system supports popular algorithms underlying many data
management applications, including sort, compaction, join
and group aggregation. Data privacy is ensured even when
data movement between different components (caused by
limited private memory) is observed by the adversary. For
many algorithms, this is achieved by appending a compo-
nent called scrambler which breaks the linkage between the
input and output. Our experimental study indicates reason-
able overheads over a baseline system with a weaker level of
security. In addition, PRAMOD shows better performance
than state-of-the-art solutions with similar levels of secu-
rity. For example, PRAMOD achieves 4.4× speedup over
the alternative data-oblivious sorting algorithm.

1. INTRODUCTION
Big data is the driving force behind the database-as-a-

service model offered by incumbent cloud providers. Ama-
zon, Google, Microsoft, etc. are providing cost-effective and
scalable solutions for storing and managing tremendous vol-
umes of data. However, security in terms of data privacy
remains a challenge, as the data is being handled by an
untrusted party. Despite being a well-studied problem in
the context of outsourced database in the past [40, 41, 33],
data privacy in the big data era faces new challenges. First,
the cloud providers have more incentives in learning and

mining content of the outsourced data because it contains
commercial values [44, 45]. Second, even when the providers
are trusted, multi-tenancy, complexity of the software stack,
and the distributed computing model contribute the large
attack surface [16, 18]. Third, there is a tight constraint on
the performance overhead, since most data analytics tasks,
e.g. data mining, consume huge CPU cycles which are di-
rectly billable [17, 10].

The first step toward securing the data is to encrypt it
before outsourcing to the cloud, but this only protects data
at rest [40, 33]. To enable more operations over encrypted
data, one option is to use fully homomorphic encryption,
but existing schemes are not yet practical [20, 14]. An-
other option is to employ partially homomorphic encryp-
tion schemes [38, 19] which are more practical but limited
in the range of supported operations [41, 46]. Recent works
have advocated combining encryption with trusted comput-
ing primitives [11, 29, 42, 47, 8, 10]. Confidentiality and
integrity protected execution environments are provisioned
by hardware (IBM secure coprocessors [2], Intel SGX [3])
or by hardware-software combination [34, 35]. In these en-
vironments, the computations are performed on decrypted
data, and the results are encrypted before returned. How-
ever, there is a limit on the amount of data such a secure
environment can process at any time (upper bound being
the size of physical memory allocated to a process), giving
rise to a communication channel between the trusted en-
vironment and the untrusted storage. This channel often
can leak information about the data [43, 16, 18]. For in-
stance, by observing I/O access patterns (or access patterns
for short) during merge-sort, an attacker can infer the order
of the original input. Such leakage can be eliminated by ei-
ther generic oblivious-RAM (ORAM) or operation-specific
data-oblivious algorithms1 [39, 25, 43]. However, both ap-
proaches are complex and incur high performance overheads.
Moreover, it is also worth noting that since vetting software
for implicit vulnerabilities is non-trivial and expensive, keep-
ing the codebase which resides in the secure environment
simple is essential for overall security of the system. Un-
fortunately, ORAM approach and operation-specific data-
oblivious algorithms are often convoluted.

In this work, we aim to enable practical, privacy-
preserving data management. In particular, the data man-
agement algorithms running on the untrusted cloud leak
no information about the inputs via access patterns, while

1An algorithm is data-oblivious if once the input and output
sizes are fixed, it will perform a similar sequence of opera-
tions on all inputs

1

incurring reasonable performance overhead. We consider
two basic algorithms, namely sort and compaction, and two
complex algorithms based on sort and compaction, namely
group aggregation and join. These algorithms underlie many
data management applications. Sort is fundamental to any
database system. Compaction is vital in many distributed
key-value stores where updates are directly appended to disk
and compaction process is frequently scheduled to improve
query performance [7, 32, 6]. Join is a common algorithm
for data integration which is becoming more important given
the variety of data sources [27]. Group aggregation is widely
used in decision support systems to summarize data, mak-
ing it an integral part of data warehouse systems. These
last two algorithms account for a majority of queries in the
TPC benchmarks: 80/99 join queries in TPC-DS and YY
aggregation queries in TPC-DI.

We make two observations in this paper. The first obser-
vation is that, in order to prevent leakage from access pat-
terns for sort and compaction, it is sufficient to randomly
scramble (or permute) the input before feeding it to the
actual algorithm. For example, consider a merge-sort algo-
rithm where the original input is randomly scrambled. An
adversary observing access patterns will be able to infer only
the order of the scrambled input, which says nothing about
the order of the original input. This approach to security
— scrambling the input before executing the algorithm —
leads to two important results. First, it is superior in per-
formance compared with generic ORAM solutions, because
the overhead factor is additive rather than multiplicative.
Second, this approach generalizes to all algorithms imple-
menting the same operation, hence we can take advantage
of state-of-the-arts algorithms to achieve simpler solution
with better performance than existing data-oblivious algo-
rithms. For example, scrambling followed by an optimized
merge sort (or any other popular sort algorithms) is simpler
than existing data-oblivious external sort algorithms [25],
and we show later that the former indeed has better perfor-
mance. We note that the simplicity of this approach implies
smaller TCB which translates to better security. The second
observation is that, for a complex algorithm made up of a
sequence of sub-steps, there will be no leakage via access pat-
terns if the sub-steps themselves do not leak information via
access patterns. We use this observation to achieve security
for group aggregation and join algorithm by implementing
them based on sort and compaction.

We design a system called PRAMOD (PRivate dAta
Management for Outsourced Databases), in which user data
is encrypted with an authenticated encryption scheme, and
data-dependent computations are to be performed in trusted
computation units (or trusted units). Data movements and
other house keeping tasks are done by an untrusted worker.
We assume that trusted units are securely provisioned ei-
ther by pure hardware or a hardware-software combina-
tion. PRAMOD consists of a component called scrambler
which randomly and securely permutes data. For input
of size n, the scrambler runs in O(n) and requires private
memory of size O(

√
n). It is prepended to the traditional,

not necessarily privacy-preserving sort and compaction al-
gorithms to make them privacy-preserving. The latter are
then composed with other privacy-preserving steps to real-
ize group aggregation and join. We implement the four al-
gorithms in PRAMOD to evaluate their performances and
costs of security. Compared with a baseline system offering a

weaker level of security, the overhead added by PRAMOD is
2.43×−4.99×. We also compare PRAMODagainst state-of-
the-art data-oblivious algorithms [25, 22, 8, 9] which offer
similar level of security. The results demonstrate that our
implementations achieve speedup as high as 4.4×. In sum-
mary, we make the following contributions:

1. We define a security model for privacy-preserving data
management algorithms. The model implies data con-
fidentiality even when the adversary can observe I/O
access patterns.

2. We propose a system — PRAMOD — for implement-
ing algorithms that meet our security definition. Cer-
tain classes of algorithms achieve security by simply
adding a scrambling step. Other more complex algo-
rithms achieve security by decomposing into smaller,
privacy-preserving substeps.

3. We describe the implementation of four algo-
rithms in PRAMOD, namely: pSort, pCompact,
pAgregation and pJoin. We find that they are ef-
ficient. Especially, pCompact achieves O(n) running
time, outperforming the state-of-the-art data-oblivious
compaction algorithm which runs in O(n logn).

4. We benchmark these implementations against the
baseline and state-of-the-art implementations. Exper-
iment results demonstrate reasonable security over-
heads over the less secure (baseline) implementations,
and running time speedup of 4.4×, 3.5×, 3.8× and
2.6× over ones with similar level of security.

The rest of this paper is organized as follows. Section 2
discusses the system, security model and the problem be-
ing addressed. Section 3 describes the design of PRAMOD,
followed by details of the four algorithms in Section 4. Sec-
tion 5 reports our experimental evaluation of PRAMOD.
We discuss related works in Section 6 before concluding in
Section 7.

2. PROBLEM DEFINITION
Our goal is to enable privacy-preserving data manage-

ment algorithms on outsourced data with trusted comput-
ing. This section discusses the scope in detail. We present
a simplified, running example to illustrate our ideas, and
describe a baseline system to help motivate our work.

Running Example. We consider a user storing her data
consisting of integer-value records on the cloud. The user
then wishes to sort her data, as a pre-processing step
for other tasks such as database loading, ranking, de-
duplication, etc. More often than not, the user will encrypt
her data so that no untrusted party can learn its content.
Although sorting encrypted data is possible to a certain ex-
tent, it is highly impractical [5]. Thus, to efficiently sort the
data, the user must delegate the decryption capability to
a trusted unit, which decrypts the records and sorts them
in its secure memory before re-encrypting and sending them
back to the cloud storage. Because secure memory is limited
in size, the cloud provider performs sorting using external,
k-way merge sort algorithm. Figure 1 depicts a simple ex-
ample of 3-way merge sort in which the secure memory is
limited to holding only 3 records at a time. The input con-
sists of 9 records, and sorting involves 1 merging step.

2

30Input 50 10 60 20 40 90 70 80

S1

3010 50

1 4 6

S4

S2

4020 60

2 5 7

S5

S3

8070 90

3 8 9

S6

10Output 20 30 40 50 60 70 80 90

S7

Figure 1: An example of 3-way external merge-sort. The records
are encrypted (filled objects), black numbers represent integer-
value of the records while orange numbers denote the order in
which each encrypted records is read into the trusted unit during
the merging.

Trusted
Unit Worker · · ·

Storage

Figure 2: Computation model of a cloud server, consisting of a
trusted unit capable of processing a limited of number of records
at a time. Storage is untrusted, and its communication with
the trusted unit is mediated by an untrusted worker (honest-but-
curious). Only the trusted unite can see and compute the content
of the encrypted records (filled squares).

2.1 Baseline System and Adversary Model
We consider a system in which the user uploads data

to the cloud and relies entirely on the latter to store and
carry out computations on her data. The data X =
〈x1, x2, . . . , xn〉 consists of a sequence of n equal-sized, key-
value records. We use key(x) and value(x) to denote the
key and value component of record x, respectively. In this
system, data records are protected by a semantically secure
encrypted scheme. The cloud server’s computation model
is shown in Figure 2. It consists of a trusted unit, a worker
and a storage component. The trusted unit can hold up to
m = O(

√
n) records and some constant number of control

variables at any time, and it is trusted by the user. Read
and write access to the untrusted storage are mediated by
the worker which is also responsible for other house-keeping
tasks. Both the worker and storage component see only en-
crypted data.

Threat Model. The adversary is a malicious insider at the
cloud provider, who has complete access to the cloud in-
frastructure, either via misuses of privilege or via exploiting
vulnerabilities in the software stack. This work considers
honest-but-curious (or passive) attacker which tries to learn
information from what observable but does not tamper with
the data or the computation. This is a realistic model, given
that insider threats are a serious concern to organizations as
they are one of main causes of security breaches [?]. Active
attackers who deviate from the expected computation are
out of scope, but we refer readers to recent works demon-
strating effective defense against this stronger model [18,
42].

We assume the worker and storage component are under
the attacker’s control, but the trusted unit are sufficiently

Algorithm Baseline PRAMOD
Oblivious
Algorithms

Sort Order of original input
Input &
Output
sizes

Input &
Output
sizes

Compaction Distribution of removed records
Group aggregation Distribution of original input
Join Distribution of original input

Table 1: Leakage of PRAMOD’s algorithms, compared with that
of the baseline system and relevant oblivious algorithms

protected. Specifically, the trusted unit corresponds to the
user’s trusted computing base (TCB), the worker and stor-
age component correspond to the cloud software stack and
storage controller. We exclude physical attacks that could
compromise the trusted unit’s confidentiality and integrity,
such as cold-boot or attacks subverting the CPU security
mechanisms. For TCB based on hardware-software combi-
nation, we assume that the software is void of vulnerabilities
and malwares. Furthermore, there is no side-channel leakage
(via cache or power analysis) from the trusted unit. Finally,
we assume that decryption keys have already been deliv-
ered securely to the trusted unit; details of the specific key
provisioning scheme is beyond our scope.

Leakage of the Baseline System. Let us use the running
example to demonstrate how the baseline system fails to
ensure data privacy. Figure 1 shows the encrypted input di-
vided into three blocks. In the first round, the trusted unit
independently sorts each block in-memory and returns three
sorted, encrypted blocks. Next, 3-way merging is performed:
three records are kept in the memory at a time and new en-
crypted records are pulled, with help from the worker, from
the sorted blocks. However, the adversary observes that the
trusted unit first takes one record from each sorted block,
writes 1 record out, then takes another record from the first
block. Hence, it can infer that the smallest record comes
from S1. In general, such inference can reveal relative order
of records from different blocks. For algorithms taking data
from different sources, this leakage can expose the source’s
identity.

2.2 Problem Overview
This paper concerns two basic algorithms — sort and com-

paction — and others based on these algorithms. Let P be
the algorithm over input X, our first goal is to restrict leak-
age from the execution of P to only input and output sizes,
i.e. |X| and |P(X)|. The baseline system fails this goal, as
summarized in Table 1. One solution is to employ oblivious
RAM [43] directly as the storage backend. However, the
overhead per read/write request is at least O(logn), render-
ing it impractical for big data processing. Another option is
to use application-specific algorithms such as data-oblivious
sort [25], but they are convoluted and do not generalize well
to other algorithms. Thus, our second goal is to attain a
simple design with low performance overhead.

2.3 Security Definition
We now describe the formal security definition that al-

lows the adversary to learn only the input and output sizes.
Let QP(X) = 〈q1, q2, . . . , qz〉 be the read/write sequence
observed by the adversary during the execution of the oper-
ation P on input X. In the baseline system, QP(X) repre-
sents I/O requests made by the trusted units to the worker.
Each qi is a 4-value tuple 〈ops, addr, time, info〉 where ops

3

· · ·
Input

S P

AP

· · ·
Output

· · ·
Input

AP1 AP2 AP3 · · ·
Output

Figure 3: PRAMOD constructs privacy-preserving algorithm
AP from an algorithm P by appending it with the scrambler
S. PRAMOD can also combine simple privacy-preserving algo-
rithms to build a more complex algorithm which is also privacy-
preserving.

is the type of the request (“read” or “write”), addr is the
address accessed by ops, time is the time of request and
info is the record’s metadata. The last component is use-
ful when the trusted unit offloads parts of the processing
on non-sensitive data fields to the worker. For example, in
secondary sorting operation where the secondary sort keys
are non-sensitive, after sorting encrypted records on the pri-
mary keys, the trusted unit sets info in each record to be
the secondary sort key, thus allowing the worker to complete
the sorting operation.

During the execution of P, QP(X) is the only source of
leakage from which the attacker can learn information about
X. Our security definition dictates that QP(X) reveals
nothing about X besides its output sizes |P(X)|. Specifi-
cally:

Definition 1 (Privacy-Preserving Operation).
An operation P is privacy-preserving if for any two datasets
X1, X2 of size n and |P(X1)| = |P(X2)|, the QP(X1) is
computationally indistinguishable from QP(X2).

Informally, the definition says that for any two inputs which
are of the same size and induce outputs also of the same size,
the operation is privacy-preserving if the observed I/O se-
quences are similar. No computationally bounded adversary
can distinguish the two I/O sequences, thus the observed ex-
ecution does not reveal any information about the input.

Discussion. We note that a similar security definition,
data-obliviousness, theoretically provides stronger security
than ours [22, 12]. P is data-oblivious (or oblivious for
short) if the observed I/O sequences are the same for X1

and X2, i.e. QP(X1) = QP(X2) (where |X1| = |X2|
and |P(X1)| = |P(X2)|). This definition implies perfect
zero leakage against all adversaries, as opposed to ours
which guarantees negligible leakage against computationally
bounded adversaries. However, we remark that both defini-
tions assume that the adversary does not know the content
of the record as they are encrypted, hence the overall secu-
rity relies on security of the encryption scheme. Since prac-
tical encryption schemes fail to achieve perfect secrecy, it is
reasonable to expect that, in practice, a privacy-preserving
operation with respect to Definition 1 and a data-oblivious
operation offer the same level of security.

3. DESIGN

This section describes PRAMOD’s design, focusing on the
new component added to the baseline system — the scram-
bler. We explain how to design privacy-preserving prim-
itives, namely sort and compaction, using the scrambler.
Later, we discuss how to construct the more complex algo-
rithms using these two primitives.

PRAMOD is built from the baseline system described ear-
lier in Section 2.1. Specifically, data records are encrypted
with a semantically secure scheme, and data-dependent
computations are done inside the trusted unit with limited
memory. Algorithms implemented in the baseline system
may not be privacy preserving. For example, implementing
merge sort in the baseline system reveals the input order.
In PRAMOD, privacy-preserving algorithms are realized in
two ways. First, for algorithms which essentially re-arranges
the input, PRAMODcan achieve our security definition by
prepending it with a scrambling step (Figure 3[a]). This
step, implemented by the scrambler, randomly permutes
the input before feeding it to the traditional non-privacy-
preserving algorithm. It essentially breaks the linkage be-
tween input and output, therefore preventing leakage during
execution of the algorithm. To ensure overall security, how-
ever, there must also be no leakage during the scrambling
step.

Second, a complex algorithm which involves more data
processing than simple rearrangement can be decomposed
to a sequence of sub-steps AP1 ,AP2 , . . . , all of which are
privacy-preserving (Figure 3[b]). We remark that for com-
plex algorithms, input scrambling alone is not sufficient
to render them privacy-preserving. For instance, consider
group aggregation algorithm which first rearranges data into
groups and then aggregates the values of each group. Even
if the inputs are scrambled beforehand, the adversary can
still learn information about group sizes, which is considered
as a leakage since it is beyond what admitted by definition 1
(the number of groups).

3.1 The Scrambler
The goal of the scrambler is to privately realize a permuta-

tion π : [1..n]→ [1..n], which can be generated by a pseudo-
random permutation [28] and represented by a short secret

seed, on the input X, obtaining X̃ such that X̃[j] = X[π[i]].
In particular, π is uniformly chosen at random, and the

linkage between X[i] and X̃[j] = X[π[i]] cannot be learned
from observing I/O patterns during the execution. In other
words, the scrambler ensures that the adversary is oblivious
to the underlying permutation π. A simple solution which
sequentially scans through X and places the ith record at

position π[i] in X̃ reveals π, because the adversary is able
to observe all read/write accesses on the storage.

The scrambler can be implemented using the shuffle algo-
rithm recently introduced in [36] or a cascaded mix-network
proposed in [15]. There are two key differences between
these approaches. First, the shuffle algorithm takes as input

X and π and outputs X̃, whereas the cascaded mix-network

takes as input only X and generates X̃ without a priori
knowledge of the permutation π. The output space of the
former is of size (1− ε)×n! where ε is a negligible function,
while that of the latter is much smaller: (1−ε′)×n! where ε′

is a non-negligible function [30]. Thus, the shuffle algorithm
offers higher privacy protection than mix-network. Second,
the former’s time complexity and trusted memory require-
ment are O(n) and O(

√
n) respectively, which is lower than

4

those of the latter: O(n logn) and O(n0.85) respectively.
We implement the Melbourne shuffle algorithm [36] us-

ing the trusted unit. The algorithm consists of two phases:
distribution and clean-up phase. The overall performance
and probability of the algorithm aborting due to overflow
of memory segments depends on two variables p1 and p2.
Larger values of p1 and p2 lead to higher running time
but lower probability of aborting. We refer readers to Ap-
pendix A for more details.

3.2 Privacy-Preserving Algorithms
We first show how to construct basic privacy-preserving

algorithms using the scrambler. Next, we discuss how to
build more complex ones.

3.2.1 Basic algorithms
We consider algorithms which essentially rearrange the

input. Specifically, given the output P(X) = Y =
〈y1, y2, .., yn〉, the algorithm can be characterized by a per-
mutation (or tag) T = 〈t1, t2, .., tn〉 such that Y [i] = X[T [i]].
In other words, the tag T represents the linkage between in-
put and output records. For example, in the example in
Figure 1, T = 〈3, 5, 1, 6, 2, 4, 9, 7, 8〉. Let QP(X) be the ob-
served read/write sequence defined earlier in Section 2.3.
Let AP be the algorithm derived from P by prepending it
with the scrambler. We show that if QP(X) = QP(T), then
AP is privacy preserving.

Theorem 1. Given any input X and its corresponding
tag T , if an algorithm P, when being computed on X and
T , generate the same read/write sequences (i.e. QP(T) =
QP(X)), then the derived algorithm AP , which first has
the scrambler permute the input and then applies P on the
scrambled input, is privacy-preserving.

Proof Sketch: We consider two inputs X1, X2 of the same
size whose outputs computed by a P are also of the same
size (i.e. |P(X1)| = |P(X2)|). We denote by T1, T2 tags

of X1, X2, and by T̃1, T̃2 the tags of the scrambled input

X̃1, X̃2, respectively. The property of the scrambler assures

that the distributions of T̃1 and T̃2 are indistinguishable.
This, together with the fact that the scrambler obliviously

transforms T1 to T̃1 and T2 to T̃2, imply that QP(T1) is
indistinguishable from QP(T2). Moreover, since QP(T1) =
QP(X1) and QP(T2) = QP(X2), it follows that QP(X1) and
QP(X2) are also indistinguishable. Therefore, Ap is privacy-
preserving.

�

3.2.2 Complex algorithms
We consider a complex algorithm which can be decom-

posed into a sequence of substeps. Specifically, let AP =
(AP1 ;AP2 ; ..;APm) be the algorithm consisting of m sub-
steps, in which the output of APi is the input of APi+1 . It
is trivial that if every sub-step APi is privacy-preserving,
then so is AP . It is derived from the following theorem (we
omit the proof due to space constraint).

Theorem 2. Given two algorithms P1,P2 which are pri-
vacy preserving. The combined algorithm P which executes
P1 followed by P2 is also privacy preserving.

3.3 Discussion

Algorithm Baseline Data-oblivious PRAMOD
Sort O(n logn) O(n log2 n) O(n logn)
Compaction O(n) O(n logn) O(n)
Group aggregation O(n logn) O(n logn) O(n logn)

Join
O(n1 logn1 +
n2 logn2)

O(n1 logn1 +
n2 logn2 + l log l)

O(n1 logn1 +
n2 logn2 + l log l)

Table 2: Comparison of time complexities of different implemen-
tations. For join algorithm, l is the size of the result join set.

One important implication of Theorem 1 is that the out-
put of AP is not always the same as that of P because
the input has been permuted. For example, consider merge
sort algorithm on X = 〈00, 01, 02, 03, 04, 05〉 where the sub-
scripts indicate the original positions in the input. The
output P(X) = 〈00, 03, 01, 04, 02, 05〉, whereas AP (X) =
〈00, 02, 01, 05, 03, 04〉 for a certain permutation generated by
the scrambler. We note that to achieve the output consis-
tency, it is sufficient to make P invariant to input permuta-
tion, that is P(X) = P(X ′) where X ′ is a permutation of X.
In practice, this can be achieved by adding a pre-processing
step which transform the inputs, and a post-processing step
to reverse the effect. In the sort example, the pre-processing
step adds metadata to the keys so that the input contains
no duplicates (for instance, by using the record address as
the secondary key), and the post-processing step removes
the metadata.

The algorithms considered so far are deterministic. How-
ever, Theorem 1 also generalizes to probabilistic algorithms
(quick sort, for example). Essentially, we transform these
algorithms to take the random choices as additional input,
thus making them deterministic and to which the theorem
is applicable.

We remark that there exists many privacy-preserving al-
gorithms, which makes it possible to implement complex
algorithms that meet our security definition. As noted ear-
lier, scanning algorithms which scan through the input and
write the output to the same address are inherently privacy-
preserving. Existing data-oblivious algorithms proposed in
the literature, such as oblivious data expansion [9], are also
privacy-preservingThese algorithms can be ported directly
to PRAMOD. In fact, for complex algorithms for which
data-oblivious implementations exist, we can re-use these
implementations directly by replacing data-oblivious sub-
steps with more efficient privacy-preserving algorithms in
PRAMOD. We demonstrate this approach later with the
privacy-preserving join algorithm.

4. IMPLEMENTATION
In this section, we describe implementations of four al-

gorithms, namely sort, compaction, group aggregation and
join. The first two algorithms achieve security directly us-
ing the scrambler, the last two derive security from that of
their substeps. For each algorithm, we first explain how it
is implemented in the baseline system, then contrast it with
the privacy preserving implementation. Finally, we compare
the performance of different implementations, the results of
which are shown in Table 2

4.1 Sort
The algorithm rearranges the input according to a certain

order of the record keys.

5

Baseline solution. We implement the well known external
merge sort [31]. First, the input is divided into s = n/m
blocks (for simplicity, suppose s < m). Each block is sorted
entirely inside the trusted unit. Next, all s sorted blocks are
combined in 1 merge step using s-way merge. Specifically,
the trusted memory is divided into s + 1 parts, s of which
serve as input buffers, one for each sorted block. The last
part is used as the output buffer. s-way merge results in op-
timal I/O performance as the input is read only once during
merging. This solution, however, leaks information about
the input order, as illustrated in the example (Section 2).

Algorithm 1 Privacy-Preserving Sort

1: procedure Sort(X)
2: X ′ ← MakeKeyDistinct(X);

3: X̃ ← Scramble (X ′);

4: Y ′ ←ExternalMergeSort(X̃);
5: Y ← RevertKey(Y ′);
6: return Y ;
7: end procedure

Privacy-Preserving Solution . Algorithm 1 shows the
privacy-preserving sort algorithm — pSort — consisting
of four steps. (1) The input is transformed to X ′ whose
keys are distinct (pre-processing step). This can be done
by appending the address of the record to its key, i.e.
key(x′i) = key(xi)||i. (2) X ′ is securely permuted by the

scrambler, the result is X̃. (3) Merge sort is performed on

X̃, in which the comparison function uses the address to
break ties. (4) Output of step 3 is scanned through to re-
move the address information (post-processing).

We stress that even though merge sort is used in step 3,
this solution can be applied to any other algorithms. This
generality is advantageous to our system – it can adopt the
algorithm most appropriate and efficient for the targeted
applications.

Performance Analysis. The scrambler and merge sort run
in O(n) and O(n logn) respectively, hence pSort runs in
O(n logn). To the best of our knowledge, the most effi-
cient external, oblivious sort algorithms are from Goodrich
et al. [25, 22] which run in O(n log2 n) for the deterministic
version, and O(n logn for the randomized version. It can be
seen that pSort has asymptotically optimal performance,
while being simpler than existing oblivious algorithms.

4.2 Compaction
The algorithm removes marked records from the input.

The output is a compact dataset of size n′ ≤ n which is
order-preserving: if xi and xj are to be retained and i < j,
then in the output xi appears before xj . We assume that
a record is marked with 1 if it is to be retained, and with
0 if it is to be dropped. Note that that the output size n′

is not a secret, i.e. our security definition allows this to be
learned by the adversary. This is reasonable, because the
purpose of the algorithm is to reduce the number of records
stored on the storage which, in turn, resides in the untrusted
environment and is accessible to the adversary. Keeping n′

secret would incur unnecessary complexity and defeat the
purpose of compaction.

Baseline solution. We adopt a simple approach which se-
quentially pulls data records into the trusted unit, decrypts
them inside the secure environment, re-encrypts and writes
back to the storage only those whose labels are 1. Those
with labels 0 are discarded. This approach is efficient, but
it reveals positions of the discarded records.

Algorithm 2 Privacy-Preserving Compaction

1: procedure Compact(X)
2: X ′ ← Mark(X)

3: X̃ ← Scramble (X ′)

4: Ỹ ← Filter (X̃)

5: Y ← Arrange (Ỹ)
. Arrange() is offloaded to the worker

6: return Y
7: end procedure

Privacy Preserving Solution . Algorithm 2 shows the pri-
vacy preserving compaction algorithm — pCompact — con-
sisting of four steps. (1) In the pre-processing step, the
trusted unit initiates two counters, C1 = 0 and C2 = n.
Scanning through X, if a record is to be retained, it marks
the record with C1 and increments C1 by 1; if a record
is to be removed, it marks the record with C2 and decre-
ments C2 by 1. (2) The scrambler randomly permutes the

marked dataset to X̃. (3) The baseline algorithm is ap-

plied on X̃ to get a compact dataset Ỹ . Note that Ỹ is not
order-preserving. (4) The mark information of the retain-
ing records is revealed to the worker which arranges records
to their desired positions. The worker can finish this step

by one linear scan through Ỹ as opposed to sorting Ỹ with
respect to the mark information. We remark that revealing
the marking of the records does not leak any sensitive in-
formation on X, thus it does not compromise pCompact’s
privacy.

Performance Analysis. Every step of pCompact runs in
linear time, thus the algorithm runs in O(n). The data-
oblivious algorithm [22] first performs oblivious stable sort
on the labels (which are either 0 or 1), then discards the last
n−n′ records. This approach runs in O(n logn) with a small
constant factor. It can be seen that, pCompact is asymptot-
ically better than the state-of-the-art oblivious compaction
algorithm.

4.3 Grouping and Aggregation
This algorithm groups input records based on their keys

and then performs an aggregation, such as summing or av-
eraging, over the group members. Specifically, let K =
〈k1, k2, . . . , kn′〉 be the set of distinct keys, the output of
this algorithm is the sequence Y = 〈y1, y2, . . . , yn′〉 in
which key(yi) = ki and value(yi) = Agg(value(x) : x ∈
X; key(x) = ki).

Baseline solution. The algorithm starts by sorting the
records on the keys. Next, the sorted records are scanned,
the aggregate values accumulated and written out immedi-
ately after encountering the last keys of the groups. Even
if privacy-preserving sort is used, because of this last step,
the overall execution reveals the size of each group.

6

X V2 V1 W1 W2 X1exp X2exp Y
〈a, fde〉X1

〈a, fde〉X1
(1) 〈d, kbs〉X2

(1) 〈b, xdj〉(1) 〈a,maj〉(2) 〈b, xdj〉 〈b,med〉 〈b, xdjmed〉〈a, tol〉X1
〈a, tol〉X1

(2) 〈c, tfn〉X2
(1)

〈a,maj〉X2
〈a,maj〉X2

(2) 〈b,med〉X2
(1) 〈b, lxv〉(1) 〈b,med〉(2) 〈b, lxv〉 〈b,med〉 〈b, lxvmed〉〈b, lxv〉X1

〈b, lxv〉X1
(1) 〈b, xdj〉X1

(1)

〈b, xdj〉X1
〈b, xdj〉X1

(2) 〈b, lxv〉X1
(1) 〈a, tol〉(1) 〈c, tfn〉(0) 〈a, tol〉 〈a,maj〉 〈a, tolmaj〉〈b,med〉X2

〈b,med〉X2
(2) 〈a,maj〉X2

(1)

〈c, tfn〉X2
〈c, tfn〉X2

(0) 〈a, tol〉X1
(1) 〈a, fde〉(1) 〈d, kbs〉(0) 〈a, fde〉 〈a,maj〉 〈a, fdemaj〉〈d, kbs〉X2

〈d, kbs〉X2
(0) 〈a, fde〉X1

(1)

Table 3: Example of join for input X1 = {〈a, fde〉, 〈a, tol〉, 〈b, lxv〉, 〈b, xdj〉} and X2 = {〈a,maj〉, 〈b,med〉, 〈c, tfn〉, 〈d, kbs〉}. Values in
parentheses appeared in columns W1 and W2 represent records’ degree in the join graph while those in columns V1 and V2 are running
sum computed by FRSum() and RRSum().

Algorithm 3 Privacy-Preserving Aggregation

1: procedure PrivateSum(X)
2: G← pSort(X)
3: k = k1

. k1 is first element in the the set of distinct keys K.
4: v = 0
5: for each g in G do
6: if key(g) = k then
7: v ← v + value(g)
8: Add 〈dummy〉 to V . output dummy records
9: else

10: Add 〈k, v〉 to V
11: k ← key(g)
12: v ← value(g)
13: end if
14: end for
15: Y ← pCompact(V) . Remove all 〈dummy〉 from V
16: return Y
17: end procedure

Privacy-Preserving Solution . Algorithm 3 shows our
privacy-preserving algorithm based on sort, compaction and
a scanning step. First, we sort X using pSort algorithm,
obtaining G in which records of the same keys are inherently
grouped together. Next, the trusted unit scans through
G, processes each record in G and computes an interme-
diate result V . To prevent the worker from inferring the
sizes of each group, the trusted unit not only outputs a
valid aggregation value, but also dummy records. Finally,
pCompact is used to removes dummy records in V . Since
these 3 steps are privacy-preserving, it follows from Theo-
rem 2 that pAgregation is also privacy-preserving.

Performance Analysis. pAgregation is constructed from
pSort and pCompact, thus it runs O(n logn) time. The
data oblivious algorithm [8] adopts the same workflow, and
its time complexity is also O(n logn).

4.4 Join
The algorithm takes as input two datasets X1, X2 of size

n1, n2 and outputs Y = X1 1 X2. For simplicity, we use
the following conventions. A record xi ∈ X1 matches with
another record xj ∈ X2 if and only if key(xi) = key(xj).
Denote yij = xi · xj as the join output of xi and xj , it fol-
lows that key(yij) = key(xi) = key(xj) and value(yij) =

Algorithm 4 Privacy-Preserving Join

1: procedure Join(X1, X2)
2: X ← X1||X2

3: S ← pSort(X)
. tie is broken such that X1 records always come

before X2 records
4: V2 ← FRSum(S)
5: V1 ← RRSum(S)
6: W1 ← pCompact(V1)
7: W2 ← pCompact(V2)
8: X1exp ← OExpand (W1)
9: X2exp ← OExpand (W2)

10: Y ← X1exp ·X2exp

. stitch expansion of X1 and X2 to get the join output
11: return Y
12: end procedure

value(xi)||value(xj). Unlike previous algorithms, the out-
put size of pJoin can be larger than its input sizes.

Baseline solution. We consider the sort-merge join algo-
rithm. Specifically, X1 and X2 are first sorted, then inter-
leaved linear scans are performed to find matching records.
However, combined leakage from the sorting step and the
matching step may reveal the entire join graph.

Privacy-Preserving Solution. Algorithm 4 shows our
privacy-preserving join algorithm — pJoin — which is based
on the data oblivious algorithm proposed by Arasu el al. [9].
It consists of two stages. The first stage computes the degree
of each record in the join graph, followed by the second stage
that duplicates each record a number of times indicated by
its degree. The output is generated by “stitching” corre-
sponding (duplicated) records with each other. pJoin ba-
sically replaces the oblivious algorithm in [9] for comput-
ing record degrees with pSort and pCompact (line 2-7).
However, it use the oblivious expansion algorithm without
change (line 8-9). It follows from Theorem 2 that pJoin is
privacy preserving.

In the first stage, pJoin first combines X1 and X2 into
one big dataset X, then privately sorts X, ensuring that
for those records that have the same keys, tie is broken by
placing X1’s records before X2’s. Since X is sorted, records
having the same key are naturally grouped together. The
trusted unit then scans the entire X in two passes. The first
pass, FRSum(), assumes that each X1 record has weight of 1

7

while X2 record has weight of 0. It scans X from left to right
and computes the sum of weights in each group. At the end
of this pass, each record in X2 is associated with a weight
representing its degree in the join graph. The second pass,
RRSum(), similarly scans from right to left, at the end of
which each record in X1 is associated with its degree in the
join graph. After the two passes, pCompact is invoked twice
to remove X2 and X1 records from V1 and V2, respectively,
giving two weight sequences W1 and W2.

In the second stage, each record in X1 and X2 is dupli-
cated a number of times indicated by its associated weight.
We use the oblivious expansion algorithm presented in [9]
directly to implement this step. The results are stitched to-
gether via a linear scan to generate the final join output Y .
Table 3 gives an example for pJoin.

Performance Analysis.. The time complexity of the first
stage is O(n logn), of the second stage is O(n1 logn1 +
n2 logn2 + l log l) where l = |X1 1 X2|. Overall, pJoin runs
in O(n logn+l log l), which is the same complexity as that of
the oblivious algorithm [9]. However, we show later in Sec-
tion 5, pJoin has lower running time because of the efficient
pSort and pCompact algorithm.

5. PERFORMANCE EVALUATION
In this section, we evaluate the performances of

our privacy-preserving algorithms pSort, pCompact,
pAgregation and pJoin. Data records are generated fol-
lowing Yahoo! TeraSort benchmark [37], in which each
record comprises of a 10 bytes key and 90 bytes value. All
the records are encrypted with AES-GCM utilizing 256-bit
keys, generating 132 bytes ciphertexts. All experiments are
run on a DELL system equipped with Intel i5-4570 Proces-
sor running at 3.2GHz frequency and a 500GB SATA hard
drive. The trusted unit assumes a 20MB secure memory. In-
put datasets are assumed to be uniformly distributed. Their
sizes are varied from 8 to 64 GB. Our implementation uti-
lizes Crypto++ library [1] for implementing cryptographic
operations. We repeat each experiment 10 times and report
average results.

5.1 Cost of Security

Operations Baseline PRAMOD
Oblivious

Algorithms

Sorting 3782.86
9195.78 37641.81
(2.43×) (9.95×)

Compaction 1553.88
7364.8 24636.32

(4.74×) (15.85×)

Group-Aggregation 5336.74
18144.46 63831.98
(3.39×) (11.96×)

Join 8444.53
42221.43 105210.44
(4.99×) (12.46×)

Table 4: Overall running time (in seconds) of our PRAMOD’s
algorithms in comparison with: (1) baseline system protecting
data confidentiality at rest and (2) corresponding data-oblivious
algorithms.

We first benchmark our algorithms against baseline sys-
tem that uses conventional external-memory algorithms to
process the encrypted data without our proposed privacy-
preserving technique. The baseline system implements the

pSort pCompactpAgregation pJoin
0

0.2

0.4

0.6

0.8

1

n
o
rm

a
li
z
e
d

ru
n
n
in
g
ti
m
e

scrambler worker other operations of trusted unit

Figure 4: Normalized break-down running time of PRAMOD’s
algorithms. The running time consists of the time taken by the
scrambler, plus the time required by the worker (if any). The
rest is incurred by the adopted non-privacy-preserving algorithm
together with the pre-processing and/or post-processing steps (if
any).

external-memory algorithms in a sense that the trusted unit
serves a role of main memory while the storage is considered
as the secondary storage. This baseline system only protects
data confidentiality at rest, while reveals sensitive informa-
tion on the input via access-pattern as discussed in section 4.
Further, we also compare PRAMOD’s algorithms with a
class of corresponding data-oblivious algorithms for sort-
ing [25], compaction [22], group-aggregation [8] and join [9].
For conciseness, hereafter we shall refer to these oblivious al-
gorithms as oblSort, oblCompact, oblAggregate and
oblJoin, respectively.

Overhead. Table 4 describes overheads in processing an
input database X of size 32GB containing n = 228 records2

by a trusted unit whose memory is of size 20MB (i.e. it is
able to process m = 217 records at once). To guard against
the adversary aiming to traverse the execution to learn sensi-
tive information on input, PRAMOD witnesses overheads of
between 2.43× to 4.99× over the baseline system. Although
this cost of security is admittedly large, PRAMOD is more
practical than the relevant data-oblivious solutions, which
offers a similar level of privacy-protection, yet incurs 9.95×
to 15.85× overheads.

Cost breakdown. To provide an insight into the cost
factors that contribute to the overheads, we report time
taken by the scrambler, the worker (if any) and other oper-
ations performed by the trusted unit, such as pre-processing
and/or post-processing steps along with the running time of
the adopted non-privacy-preserving algorithms.

Figure 4 depicts this breakdown. As can be seen, the
cost of the scrambler is significant. In particular, this prim-
itive contributes 42%, 52.3%, 42.6% and 27.4% the costs of
pSort, pCompact, pAgregation and pJoin, respectively.
For those algorithms that involve the untrusted worker in
processing the intermediate values, its processing time only

2For join algorithms which take as input two dataset X1 and
X2, we consider the input size to be the total size of X1 and
X2 (i.e. n = |X1|+ |X2|)

8

Algorithm # Re-Encryption I/O Complexity
pSort (p1 + p2 + 5) · n O(n)

oblSort[25] (
∑log s

i=1 i+ log s+ 1) · n O(n log2 n)
pCompact (p1 + p2 + 2) · n O(n)

oblCompact[22] (1 + logn) · n O(n logn)
pAgregation (2p1 + 2p2 + 8) · n O(n)

oblAggregate[8] (
∑log s

i=1 i+ log s+ logn+ 3) · n O(n log2 n)
pJoin (3p1 + 3p2 + 9 + d) · n O(dn)

oblJoin[9] (
∑log s

i=1 i+ log s+ 2 logn+ 5 + d) · n O((dn) log(dn) + n log2 n)

Table 5: Number of re-encryptions and read/write complexity required by PRAMOD’s algorithm and relevant oblivious algorithms in
processing input of size n. p1 and p2 are constant parameters in the scrambler’s configuration (see Section 3.1). In our experiments,
p1 = 2 and p2 = 3. Let m be the capacity of the secure memory, then s = n/m. d is the average degree of records in the join graph. In
our experiments, d = 3.

226 227 228 229
211

212

213

214

215

216

Input size (# records)

ru
n
n
in
g
ti
m
e
(s
)

pSort
oblSort[25]

(a) Sorting

226 227 228 229

211

212

213

214

215

216

Input size (# records)

ru
n
n
in
g
ti
m
e
(s
)

pCompact
oblCompact[22]

(b) Compaction

226 227 228 229

212

213

214

215

216

217

Input size (# records)
ru

n
n
in
g
ti
m
e
(s
)

pAgregation
oblAggregate[8]

(c) Group-Aggregation

226 227 228 229
213

214

215

216

217

218

Input size (# records)

ru
n
n
in
g
ti
m
e
(s
)

pJoin
oblJoin[9]

(d) Join

Figure 5: Performance comparison between our algorithms and the related data-oblivious algorithms. Running time is reported in
log-scale (y-axis) for different input sizes (x-axis).

constitutes a small proportion of the the total running time,
ranging from 1.8% (for pJoin) to 5.4% (for pCompact).
This is because the worker operates directly on the cloud
storage in the untrusted environments, thus incurring no
I/O request. Moreover, its operations do not involve re-
encryptions, which are computationally expensive.

Re-Encryptions and I/O costs. Since cryptographic
operation is CPU-intensive and I/O communication between
the trusted unit and the storage is slow (in comparison with
in-memory computation), these two operations significantly
affect the overall running time of the algorithms. Indeed,
Goodrich et al. measure the complexity of their external-
memory algorithms in term of I/O requests [25]. Table 5
details the number of re-encryptions required and I/O com-
plexity of each algorithm.

We observe that on input of size n, PRAMOD’s algo-
rithms need O(n) I/Os, while the relevant oblivious algo-
rithms, except for oblCompact, require O(n log2 n) I/Os.
We note that for join algorithms, the I/O complexity also
depends on d, the average degree of each record in the join
graph. For uniformly distributed datasets, d can be consid-
ered as a constant. In our experiments, we assume d = 3
and exclude the situations in which d is proportional n.

Recall that a record is re-encrypted every time it is pulled
to the trusted unit and then sent back to the storage,
the number of re-encryptions necessitated in each execu-
tion is proportional to its I/O complexity. More specifi-
cally, PRAMOD’s algorithms requires O(n) re-encryptions,
while corresponding oblivious algorithms needs Θ(n logn)
re-encryptions in processing input of size n. In Table 5, we
give the actual number of re-encryptions needed in each al-
gorithm. These numbers depend on the configuration and

the implementation of the algorithm. More specifically, for
PRAMOD’s algorithms, the scrambler needs (p1 +p2 +1) ·n
re-encryptions in scrambling n records. In our experiments,
we find that with respect to the datasets under consider-
ation, the scrambler achieves fast running time and zero
possibility of failure when p1 = 2 and p2 = 3. On the other
hand, the numbers of re-encryptions performed by oblSort,
oblCompact, oblJoin are affected by the capacity of the
secure memory. With respect to our assumption on the size
of the secure memory (m = O(

√
n)), given the same in-

put, the oblivious algorithms executes 2 to 3 times more
re-encryptions than PRAMOD’s algorithms.

5.2 Efficiency and Scalability
We further investigate the efficiency of our algorithms by

varying the input sizes between 8 and 64 GB. Figure 5 re-
ports performance of our algorithms (in log-scale) in com-
parison with the oblivious alternatives. pSort outperforms
oblSort [25] by 2.6× to 4.4× (Figure 5a). Similarly,
pCompact is 3× to 3.5× faster than oblCompact [22] (Fig-
ure 5b), pAgregation outruns oblAggregate [8] by 2.7×
to 3.8× (Figure 5c), and pJoin is 2× to 2.6× more efficient
than oblJoin [9] (Figure 5d).

It is also worth noting that the speed-up that PRAMOD’s
algorithms gains over the oblivious algorithms becomes more
significant for large input, from 2× to 3× for 8GB dataset to
2.6× to 4.4× for 64GB dataset. The speeding-up is mainly
because our algorithms requires less re-encryptions and I/O
operations than the oblivious algorithms. With this, we
conclude that our privacy-preserving algorithms are efficient
and scalable.

9

Discussion. We remark that it is possible to port
PRAMOD to distributed environments. Our algorithms
mainly comprise of two components, the scrambler and
the underlying non-privacy-preserving external-memory al-
gorithms. The scrambler processes data in blocks indepen-
dent of each other, thus it is trivial to adapt this primitive
to the distributed settings, enabling optimal speed-up for
the scrambler with parallelization (i.e. doubling the num-
ber of trusted units should halve the scrambler’s runtime).
Indeed, our implementation multi-threads this primitive
and witnesses a speed-up of 1.8×. Besides, most external-
memory algorithms are often designed to seamlessly sup-
port parallelism. Although we have not yet ported it to
distributed computing settings, we believe that paralleliza-
tion can significantly speed up the execution of PRAMOD.
On the other hand, we believe that it is difficult to parallelise
the oblivious algorithms oblSort [25], oblCompact [22],
oblAggregate [8] and oblJoin [9].

6. RELATED WORK
Secure Data Management using Trusted Hard-

ware. A large body of systems have utilized trusted hard-
ware such as IBM 4764 PCI-X [2] or Intel SGX [3] to en-
able secure data management. TrustedDB [10] presents a
secure outsourced database prototype which leverages on
IBM 4764 secure CPU (SCPU) to enable privacy-preserving
SQL queries on untrusted servers. Cipherbase [8] follows
TrustedDB’s idea on combining SCPU with commodity
servers to offer a full-fledged SQL database system that as-
sures high data confidentiality. Besides, SCPUs are also em-
ployed in secure multi-party computation settings [4]. V C3

uses another trusted computing primitive, namely Intel SGX
processors, as a building blocks in their general-purposed
data analytics system. It enables MapReduce computations,
and offers privacy guarantee not only for users’ data, but
also their code. However, these techniques either only pro-
tect data confidentiality at rest or incurs large overhead in
preserving overall privacy and security.

Secure Computation by Data Oblivious Tech-
nique. Oblivious-RAM [21] enables secure and oblivious
computation by hiding data read/write patterns during the
program execution. ORAM setting places trust on a CPU
with limited internal memory, while the users’ program and
data are both stored encrypted on the untrusted server. Se-
curity is achieve by making data accesses to the untrusted
server appear random and irrelevant to the true and in-
tended access sequence. The ubiquity of cloud comput-
ing and storage services, together with a variety of privacy
concerns have revived research interest in ORAM. Various
works have been proposed [39, 13, 25]. A non-oblivious algo-
rithm can be made oblivious by utilizing ORAM technique.
However, this comes at an expense of performance degra-
dation of at least a O(logn) multiplicative factor, where n
is the data size. PRAMODoffers a similar level of security,
with only O(n) additive overhead.

Another line of works advocate for designing data-
oblivious algorithms. Goodrich et al. present several oblivi-
ous algorithms for sorting [25, 23, 24], compaction and selec-
tion [22]. The authors also propose approaches to simulate
ORAM environment using data-oblivious algorithms [25].
Other interesting data-oblivious algorithms have also been
proposed for graph drawing [26], graph-related computa-
tions such as maximum flow, minimum spanning tree, single-

source single-destination (SSSD) shortest path, and breath-
first search [12]. Unfortunately, these algorithms are on
the one hand operation-specific, while less efficient than
PRAMOD’s algorithms on the other hand.

7. CONCLUSION
In this paper, we have introduced a simple yet efficient

privacy-preserving approach for enabling computation on
large dataset using a trusted unit with limited secure mem-
ory. We mainly focus on data management operations whose
purpose is to rearrange data items. We show that for var-
ious applications, appending a non-privacy-preserving al-
gorithm with a scrambling step gives an efficient privacy-
preserving algorithm. To better illustrate our proposed
approach, we described four privacy-preserving algorithms
for sorting, compaction, aggregation and join. Experiments
have shown that our privacy-preserving algorithms are effi-
cient and scalable, outperforming data-oblivious algorithms
for the set of operations under consideration upto 3×, while
offering the similar level of privacy protection.

8. REFERENCES
[1] Crypto++ library. www.cryptopp.com/.

[2] Ibm 4764 pci-x cryptographic coprocessor.
http://www-03.ibm.com/security/cryptocards/

pcixcc/overview.shtml.

[3] Software guard extensions programming reference.
https://software.intel.com/sites/default/

files/managed/48/88/329298-002.pdf.

[4] R. Agrawal, D. Asonov, M. Kantarcioglu, and Y. Li.
Sovereign joins. In ICDE 2006.

[5] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order
preserving encryption for numeric data. In ACM
SIGMOD, 2004.

[6] M. Y. Ahmad and B. Kemme. Compaction
management in distributed key-value datastores. In
PVLDB, 2015.

[7] A. Aiyer, M. Bautin, G. J. Chen, P. Damania,
P. Khemani, K. Muthukkaruppan, K. Ranganathan,
N. Spiegelberg, L. Tang, and M. Vaidya. Storage
infrastructure behind facebook messages using hbase
at scale. Data Engineering Bulletin, 2012.

[8] A. Arasu, S. Blanas, K. Eguro, R. Kaushik,
D. Kossmann, R. Ramamurthy, and R. Venkatesan.
Orthogonal security with cipherbase. CIDR’13.

[9] A. Arasu and R. Kaushik. Oblivious query processing.
arXiv preprint arXiv:1312.4012, 2013.

[10] S. Bajaj and R. Sion. Trusteddb: A trusted
hardware-based database with privacy and data
confidentiality. TKDE, 2014.

[11] A. Baumann, M. Peinado, and G. Hunt. Shielding
applications from an untrusted cloud with haven. In
OSDI, 2014.

[12] M. Blanton, A. Steele, and M. Alisagari.
Data-oblivious graph algorithms for secure
computation and outsourcing. ASIACCS ’13.

[13] D. Boneh, D. Mazieres, and R. A. Popa. Remote
oblivious storage: Making oblivious ram practical.
2011.

[14] Z. Brakerski and Z. Brakerski. Efficient fully
homomorphic encryption from (standard) lwe. In
FOCS, 2011.

10

[15] D. L. Chaum. Untraceable electronic mail, return
addresses, and digital pseudonyms. Communications
of the ACM, 1981.

[16] S. Chen, R. Wang, X. Wang, and K. Zhang.
Side-channel leaks in web applications: A reality
today, a challenge tomorrow. In IEEE Security and
Privacy, 2010.

[17] Y. Chen and R. Sion. On securing untrusted clouds
with cryptography. Data Engineering Bulletin, 36,
2012.

[18] A. Dinh, P. Saxena, E.-C. Chang, B. C. Ooi, and
C. Zhang. M2r: Enabling stronger privacy in
mapreduce computation. In USENIX Security,15.

[19] T. ElGamal. A public key cryptosystem and a
signature scheme based on discrete logarithms. In
Advances in Cryptology, 1985.

[20] C. Gentry et al. Fully homomorphic encryption using
ideal lattices. In STOC, 2009.

[21] O. Goldreich and R. Ostrovsky. Software protection
and simulation on oblivious rams. J. ACM.

[22] M. T. Goodrich. Data-oblivious external-memory
algorithms for the compaction, selection, and sorting
of outsourced data. SPAA ’11.

[23] M. T. Goodrich. Randomized shellsort: A simple
data-oblivious sorting algorithm. J. ACM, 2011.

[24] M. T. Goodrich. Zig-zag sort: A simple deterministic
data-oblivious sorting algorithm running in o(n log n)
time. CoRR, 2014.

[25] M. T. Goodrich and M. Mitzenmacher.
Privacy-preserving access of outsourced data via
oblivious ram simulation. CoRR, abs/1007.1259, 2010.

[26] M. T. Goodrich, O. Ohrimenko, and R. Tamassia.
Data-oblivious graph drawing model and algorithms.
arXiv preprint arXiv:1209.0756, 2012.

[27] A. Halevy, A. Rajaraman, and J. Ordille. Data
integration: The teenage years. In VLDB, 2006.

[28] J. Katz and Y. Lindell. Introduction to modern
cryptography. CRC Press, 2014.

[29] A. Khoshgozaran, H. Shirani-Mehr, and C. Shahabi.
Spiral: A scalable private information retrieval
approach to location privacy. In MDMW 2008.

[30] M. Klonowski and M. Kuty lowski. Provable anonymity
for networks of mixes. In Information Hiding, 2005.

[31] D. Knuth. The art of computer programming 1:
Fundamental algorithms 2: Seminumerical algorithms
3: Sorting and searching, 1968.

[32] A. Lakshman and P. Malik. Cassandra: a
decentralized structured storage system. Operating
Systems Review, 44, 2010.

[33] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin.
Dynamic authenticated index structure for outsourced
databases. In SIGMOD, 2006.

[34] J. M. McCun, B. Parno, A. Perrig, M. K. Reiter, and
H. Isozaki. Flicker: An execution infrastructure for tcb
minimization. In EuroSys, 2008.

[35] J. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta,
V. Gligor, and A. Perrig. Trustvisor: Efficient tcb
reduction and attestation. In IEEE Symposium on
Security and Privacy, pages 143–158, 2010.

[36] O. Ohrimenko, M. T. Goodrich, R. Tamassia, and
E. Upfal. The melbourne shuffle: Improving oblivious
storage in the cloud. In Automata, Languages, and

Programming. 2014.

[37] O. OMalley and A. C. Murthy. Winning a 60 second
dash with a yellow elephant. Proceedings of sort
benchmark, 2009.

[38] P. Paillier. Public-key cryptosystems based on
composite degree residuosity classes. In
EUROCRYPT, 1999.

[39] B. Pinkas and T. Reinman. Oblivious ram revisited.
In CRYPTO, 2010.

[40] R. A. Popa, J. R. Lorch, D. Molnar, H. J. Wang, and
L. Zhuang. Enabling security in cloud storage slas
with cloudproof. In USENIX Security, 2011.

[41] R. A. Popa, C. Redfield, N. Zeldovich, and
H. Balakrishnan. Cryptdb: protecting confidentiality
with encrypted query processing. In SOSP, 2011.

[42] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis,
M. Peinado, G. Mainar-Ruiz, and M. Russinovich.
Vc3: Trustworthy data analytics in the cloud. In IEEE
Security and Privacy, 2014.

[43] E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren,
X. Yu, and S. Devadas. Path oram: An extremely
simple oblivious ram protocol. CCS ’13.

[44] S. Subashini and V. Kavitha. A survey on security
issues in service delivery models of cloud computing.
Journal of network and computer applications, 2011.

[45] H. Takabi, J. Joshi, and G.-J. Ahn. Security and
privacy challenges in cloud computing environments.

[46] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich.
Processing analytical queries over encrypted data. In
PVLDB, 2013.

[47] S. Wang, X. Ding, R. H. Deng, and F. Bao. Private
information retrieval using trusted hardware. In
ESORICS 2006.

A. THE MELBOURN SHUFFLE
The shuffle algorithm shares our assumptions on encryp-

tion of data records. Particularly, all records are encrypted
using a semantic secure encryption scheme. They are only
decrypted inside the trusted unit and re-encrypted before
being written back to the storage.

The shuffle takes as input a randomly chosen permutation
π and a data set X of n items. The permutation π can be
chosen by employing a pseudo random permutation [28],
and represented using a short secret seed. It obliviously

arranges n items to their final position in X̃ with respect to
π. The shuffling requires two intermediate arrays T1 and T2

which are of size p1n and p2n where p1 and p2 are constants

and p2 ≥ p1. First, X, T1, T2 and X̃ are divided into
√
n

buckets, each contains O(
√
n) records. Every 4

√
n buckets

constitute a chunk and there are 4
√
n chunks in total. Each

bucket of T1 holds p1
√
n records while each bucket in T2

stores p2
√
n.

The algorithm proceeds in two phases: distribution and
clean-up. The first phase comprises of two rounds. Records
are moved from X to T1 in the first round, such that records

belonging to the ith chunk of X̃ will be put in the ith chunk
of T1. In the second round, records in T1 are distributed
among buckets of T2 such that at the end of this distribution,
records are located in their correct buckets. To ensure the
obliviousness, data written to T1 and T2 are padded to equal
size. This implies adding dummy records. There are (p1 −

11

1)n dummy records in T1 and similarly (p2−1)n are written
to T2. The second phase, clean-up, removes dummy records
and arranges real records to correct positions within their
own bucket.

In each round, the trusted unit sequentially process each
of

√
(n) buckets. Recall that each bucket contains O(

√
n)

records, the entire bucket can fit in the secure memory of the
trusted unit. Records within the bucket, after being read to
the secure memory, are divided into 4

√
n segments according

to their final positions. In distributing records from X to

T1, each segment has at most p1 4
√
n records and they are

written to corresponding chunks in T1. Similarly, in the
second distribution, each segment hold upto p2 4

√
n records,

which are then placed to their corresponding buckets. If
a segment contains less records than its capacity, dummy
records are added to ensure data-obliviousness. However, if
so many records are located to one segment that it becomes
overflowed, the algorithm fails. Nevertheless, it is proven
that with appropriate value of p1 and p2, the probability of
failure is negligible [36].

12

