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ABSTRACT
Cloud providers are realizing the outsourced database model
in the form of database-as-a-service offerings. However,
security in terms of data privacy remains an obstacle be-
cause data storage and processing are performed on an un-
trusted cloud. Strong security under additional constraints
of functionality and performance is even more challenging to
achieve, for which advanced encryption and recent trusted
computing primitives alone prove insufficient.

In this paper, we propose PRAMOD – a novel framework
for enabling efficient and secure database-as-a-service. We
consider a setting in which data is stored encrypted on the
untrusted cloud and data-dependent computations are per-
formed inside a trusted environment. The proposed frame-
work protects against leakage caused by observable data
movement between different components (due to limited pri-
vate memory) by using a special component called scrambler
running inO(n) time. It supports popular algorithms under-
lying many data management applications, including sort,
compaction, join and group aggregation. The algorithms
implemented in PRAMOD are not only privacy-preserving
but also asymptotically optimal. They can be used as build-
ing blocks to construct efficient and secure query process-
ing algorithms. The experimental study shows reasonable
overheads over a baseline system offering a weaker level of
security. More remarkably, PRAMOD shows superior per-
formance in comparison with state-of-the-art solutions with
similar privacy protection: up to 4.4× speedup over the al-
ternative data-oblivious algorithms.

1. INTRODUCTION
Big data is the driving force behind the database-as-a-

service model offered by most cloud providers. Amazon,
Google, Microsoft, etc. are providing cost-effective and scal-
able solutions for storing and managing tremendous volumes
of data. However, security in terms of data privacy remains
a challenge, as the data is being handled by an untrusted
party. Despite being a well-studied problem in the context

of outsourced database in the past [40, 41, 31], data privacy
in the big data era faces new challenges. First, the cloud
providers have more incentives in extracting content of the
outsourced data for its commercial values [45, ?]. Second,
even when the providers are trusted, multi-tenancy, com-
plexity of software stacks, and distributed computing models
continue to enlarge the attack surface [16, 18]. Third, there
is a tight constraint on the performance overhead, since most
data analytics tasks, e.g. data mining, consume huge CPU
cycles which are directly billable [17, 9].

The first step towards securing the data is to encrypt it
before outsourcing to the cloud. Unfortunately, this only
protects data at rest [40, 31]. Fully homomorphic encryp-
tion allows computation over encrypted data, but it suf-
fers from prohibitive performance [20, 14]. Partially ho-
momorphic encryption schemes [38, 19] are more practi-
cal, but they are limited in the range of supported oper-
ations [41, 46], and have been shown to be vulnerable to
attacks [34]. Consequently, some recent works have advo-
cated an approach combining encryption with trusted com-
puting primitives [11, 42, 7, 9], in which confidentiality and
integrity protected execution environments are provisioned
by hardware (e.g. Intel SGX [3]) or by hardware-software
combination [32, 33]. In such a secure environment, com-
putations are performed on decrypted data, and the results
are encrypted before being returned. However, there is a
limit on the amount of data that the secure environment
can process at any time, the upper bound being the size
of physical memory allocated to a process. This results in
a data communication channel between the trusted and un-
trusted parties, and this channel can leak information about
the data [44, 16, 18]. For instance, by observing I/O access
patterns during merge-sort, an attacker can infer the or-
der of the original input. Such leakage can be eliminated
by either generic oblivious-RAM (ORAM) or application-
specific data-oblivious algorithms1 [39, 25, 44]. Both ap-
proaches, however, are complex and incur high performance
overheads. It is worth noting that complexity of the code-
base running inside the secure environment is undesirable
for security, because it raises the cost of vetting software for
implicit vulnerabilities.

In this paper, we consider a setting in which user data is
stored encrypted2 on the untrusted storage, and all data-

1A data-oblivious algorithm (or oblivious algorithm for
short) performs the same sequence of I/O accesses on all
inputs of the same size.
2We assume data is encrypted using a semantic secure and
authenticated encryption scheme.
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dependent computations are performed inside trusted com-
putation units (or trusted units). The trusted units are
securely provisioned either purely by hardware or by a
hardware-software combination. An untrusted worker is re-
sponsible for data movements and other house keeping tasks,
during these process the worker can observe access patterns.
Given this setting, we aim to enable practical, privacy-
preserving data management. In particular, the data man-
agement algorithms running on the untrusted cloud must
not leak any information about the inputs via access pat-
terns, while admitting reasonable performance overheads.

We propose PRAMOD (PRivate dAta Management for
Outsourced Databases) – a framework for implementing ef-
ficient and privacy-preserving data management algorithms.
PRAMOD protects against potential leakage via access pat-
terns. It ensures data privacy in the presence of honest-
but-curious adversaries by using a component called scram-
bler. The scrambler randomly and securely permutes input
data of size n in O(n) time while requiring O(

√
n) secure

memory. It is used to construct four data management al-
gorithms, namely sort, compaction, group aggregation and
join. The first two algorithms can immediately achieve se-
curity using the scrambler. They are then composed with
other privacy-preserving steps to realize group aggregation
and join. These four algorithms form the building blocks
for constructing efficient and secure query processing algo-
rithms.

The four algorithms under consideration underlie many
data management applications. Sort is fundamental to any
database systems. Compaction is vital in many distributed
key-value stores where updates are directly appended to disk
and compaction is frequently scheduled to improve query
performance [6, 30, 5]. Join is arguably one of the most
important operators in data management, and commonly
used for data integration which is becoming more important
given the variety of data sources [27]. Group aggregation is
widely used in decision support systems to summarize data,
making it an integral part of data warehouse systems. The
last two algorithms account for 80 over 99 queries in the
TPC-DS benchmarks [43]

In PRAMOD, we make a key observation. In order to
prevent leakage from access patterns, for a large class of al-
gorithms including sort and compaction, it is sufficient to
randomly permute (or scramble) the input before feeding
it to the actual algorithm. Let us consider merge-sort al-
gorithm in which the original input is randomly permuted.
During the execution, an adversary observing access pat-
terns will, at best, be able to infer only sensitive informa-
tion on the scrambled input, which cannot be linked back to
that of original input. This approach to security — scram-
bling the input before executing the algorithm — leads to
two important results. First, it is superior in performance
compared with generic ORAM solutions, because its over-
head factor is additive rather than multiplicative. Second,
it generalizes to all algorithms implementing the same ap-
plication, i.e. we can take advantage of state-of-the-art al-
gorithms to achieve simpler yet more efficient solutions than
existing data-oblivious algorithms. For instance, scrambling
followed by an optimized merge sort (or any other popular
sort algorithms) is simpler than data-oblivious external sort
algorithms [25], and it is shown later to have better per-
formance. It is worth noting that the simplicity of this ap-
proach implies smaller trusted computing base (TCB) which

translates to better security. Also, for a complex algorithm
made up of a sequence of sub-steps, there will be no leakage
via access patterns when the sub-steps themselves do not
leak information. This allows PRAMOD to achieve security
for group aggregation and join algorithms by implementing
them based on sort and compaction.

We implement the four algorithms in our framework,
evaluate their performances and study the costs of secu-
rity. Compared with a baseline system, PRAMOD offers
a stronger privacy protection at a cost of 3.85× overhead
on average. Compared with state-of-the-art data-oblivious
alternatives [25, 22, 7, 8] which offer similar level of secu-
rity, PRAMOD demonstrates speedup as high as 4.4×. In
summary, we make the following contributions:

1. We define a security model for privacy-preserving data
management algorithms. The model implies data con-
fidentiality even when the adversary can observe I/O
access patterns.

2. We propose a framework — PRAMOD — for im-
plementing privacy-preserving algorithms. Certain
classes of algorithms including sort and compaction
immediately achieve security with a prepended scram-
bler, while other more complex algorithms such as
group aggregation and join derive security from their
substeps so long as each of which is privacy-preserving.

3. We implement the basic algorithms, namely pSort,
pCompact, pAggr and pJoin, and analyze their com-
plexity. These algorithms attain optimal complexity.
pSort, pAggr and pJoin run in O(n logn) time, and
pCompact runs in O(n) time.

4. We conduct extensive experiments to benchmark the
implementations against a baseline and state-of-the-
art data-oblivious alternatives. The results demon-
strate reasonable overheads over the less secure (base-
line) implementations, and running time speedup of
4.4×, 3.5×, 3.8× and 2.6× over data-oblivious alter-
natives with similar level of security.

Next section explains the framework, security model and
the problem being addressed. Section 3 describes the design
of PRAMOD. Section 4 lays out detailed implementation
of the four algorithms. Section 5 reports our experimental
evaluation of PRAMOD. Section 6 discusses related work
before Section 7 concludes.

2. PROBLEM DEFINITION
In this section, we define the problem of privacy-

preserving data management of outsourced data. We state
the nececssary conditions for data management algorithms
to be privacy-preserving using trusted computing primitives.
We provide a running example to illustrate our ideas.

Running Example. We consider a user wanting to store
her data consisting of integer-value records on the cloud.
The user then wishes to sort the data, as a pre-processing
step for other tasks such as database loading, ranking, de-
duplication, etc. To this end, the user encrypts the data
so that no untrusted party can learn its content. Although
sorting directly over encrypted data is possible, it is highly
impractical [4]. To efficiently sort the data, the user relies
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Figure 1: An example of 3-way external merge-sort. The records
are encrypted (filled objects), black numbers represent integer-
value of the records (invisible to untrusted parties thanks to en-
cryption) while orange numbers denote the order in which each
encrypted record is read into the trusted unit during the merging.

Trusted
Unit Worker · · ·

Storage

Figure 2: Computation model of a cloud server, consisting of a
trusted unit capable of processing a limited of number of records
at a time. Storage is untrusted, and its communication with
the trusted unit is mediated by an untrusted worker (honest-but-
curious). Only the trusted unit can see and compute the content
of the encrypted records (filled squares).

on a trusted unit which decrypts the records and sort them
in its secure memory before re-encrypting and sending them
back to the cloud storage. Because secure memory is limited
in size, the user must employ an external, k-way merge sort
algorithm. Figure 1 depicts a simple example of 3-way merge
sort in which the secure memory is limited to holding only
3 records at a time. The input consists of 9 records, and
sorting involves 1 merging step.

2.1 Baseline System and Adversary Model
We now describe the baseline system, in which the user

uploads data to the cloud and relies entirely on the cloud in-
frastructure to store and execute computations on her data.
The data X = 〈x1, x2, . . . , xn〉 is a sequence of n equal-sized,
key-value records, and let key(x) and value(x) be the key
and value components of record x respectively. The data
records are protected by a semantically secure encrypted
scheme. Figure 2 details the cloud’s comptutation model
which consists of a trusted unit, a worker and a storage
component. The trusted unit is trusted by the user, and
it can only hold up to m = O(

√
n) records at a time, plus

a constant number of control variables. The worker is not
trusted, and it mediates access to the cloud storage which
is also not trusted. The worker is also responsible for other
house-keeping tasks. Both the worker and storage see only
encrypted data.

Threat Model. The adversary is a curious insider at the
cloud provider, who has complete access to the cloud infras-
tructure, either via misuses of privilege or via exploiting vul-
nerabilities in the software stack. We consider honest-but-
curious (or passive) attackers who try to learn information
from what are observable but do not tamper with the data

or the computation. This is a realistic model, given that in-
sider threats are a serious concern to organizations as they
are one of the main causes of security breaches (NSA and
Target data breach, for example). The model with active
attackers who deviate arbitrarily from the expected compu-
tation are out of the scope, and we refer readers to recent
works demonstrating effective defenses against the active ad-
versaries [18, 42].

We assume that the worker and storage component are
under the attacker’s control, while the trusted unit is suffi-
ciently protected. Specifically, the trusted unit corresponds
to the user’s trusted computing base (TCB), and the worker
and storage component correspond to the cloud software
stack and storage controller. For TCB based on hardware-
software combination, we assume that the software is void
of vulnerabilities and malwares. Furthermore, there is no
side-channel leakage (e.g. power analysis) from the trusted
unit. Physical attacks, which could compromise the trusted
unit’s confidentiality and integrity, such as cold-boot or at-
tacks aiming to subvert the CPU’s security mechanisms, are
out of scope. Finally, we assume that decryption keys have
already been provisioned securely to the trusted unit, and
when there are more than one trusted units, they all agree
on the same decryption keys.

Leakage of the Baseline System. Let us use the running
example to illustrate how the baseline system fails to ensure
data privacy. As shown in Figure 1, the encrypted input
is divided into three blocks, and the trusted unit execute
the algorithm in two phases. In the first phase, the it in-
dependently sorts each block in-memory and returns three
sorted, encrypted blocks. Next, it performs 3-way merge:
3 encrypted records are kept in memory, each of which is
pulled, with help from the worker, from the sorted blocks.
Observing this process, the adversary learn that the trusted
unit first takes one record from each sorted block, writes one
record out, then takes another record from the first block.
Although it cannot learn records’ content, it can still infer
that the smallest record comes from S1. Such inference in
general can reveal relative order of records from different
blocks. For algorithms taking data from different sources,
this leakage can expose the sources’ identities.

2.2 Problem Overview
This paper concerns privacy-preserving data management

algorithms using trusted computing with limited private
memory. This private memory is limited in a sense that
it can hold (and process) only m = O(

√
n) records at any

time. Let P be the algorithm executed on input X. The first
goal is to restrict leakage from the execution of P to only the
input and output sizes, i.e. |X| and |P(X)|. The baseline
system fails this goal for sort as well as for other algorithms,
as summarized in Table 1. One solution is to employ oblivi-
ous RAM [44] directly as the storage backend. However, this
approach incurs an overhead of at least O(logn), rendering
it impractical for big data processing. Another option is
to use application-specific algorithms such as data-oblivious
sort [25], but they are convoluted and do not generalize well
to other algorithms. Thus, the second goal of the paper is
to attain a simple design with low performance overhead.

2.3 Security Definition

3



Table 1: Leakage of PRAMOD, compared with that of the baseline system and relevant oblivious algorithms.

Algorithm Baseline Oblivious Algorithms PRAMOD
Sort Order of original input

Input & Output sizes Input & Output sizes
Compaction Distribution of removed records
Group aggregation Distribution of original input
Join Distribution of original input

We now describe the formal security definition that allows
the adversary to learn only the input and output sizes. Let
QP(X) = 〈q1, q2, . . . , qz〉 be the access (read/write or I/O)
sequence observed by the adversary. In the baseline system,
QP(X) represents I/O requests made by the trusted units
to the worker. qi is a 5-value tuple 〈op, addr, val, time3,
info〉 where op ∈ {r, w} is the type of the request (“read” or
“write”), addr and val is the address and content accessed
by op respectively, time is the time of request and info is
the record’s metadata (⊥ if undefined). The last component
is useful when the trusted unit wishes to offload parts of
the processing on non-sensitive data fields to the worker.
For example, if an algorithm requires arranging records with
respect to an order that is not secret, the trusted unit sets
info to be the record’s desired address, thus allowing the
worker to complete the arranging step.

Consider the example in Figure 1, the observed read
sequence, denoted as QP(X)read, is as follows (the complete
sequence, including write, is similar):

QP(X)read =


〈r, S1, e(S1), t1,⊥〉, 〈r, S2, e(S2), t2,⊥〉,
〈r, S3, e(S3), t3,⊥〉, 〈r, S1, e(S4), t4,⊥〉,
· · ·
〈r, S3 + 1, e(S3 + 1), t10,⊥〉,
〈r, S3 + 2, e(S3 + 2), t11,⊥〉


where ti represents the request time, and Si + j, e(Si + j)
represents the address and ciphertext of the jth record in
block Si respectively.

During the execution of P, QP(X) is the only source of
leakage from which the attacker can learn information about
X. Our security definition, using the well-accepted notion
of indistinguishability in the literature [28], dictates that
QP(X) reveals nothing more than the input and output size.
Specifically:

Definition 1 (Privacy-Preserving Algorithm).
An algorithm P is privacy-preserving with advantage
at most ε if for any two datasets X1, X2 of size n and
|P(X1)| = |P(X2)|, the QP(X1) is computationally in-
distinguishable from QP(X2) with advantage at most ε.

Informally, the definition says that for any two inputs which
are of the same size and which induce outputs of the same
size, the algorithm is privacy-preserving if the observed I/O
sequences are similar. No computationally bounded adver-
sary can distinguish the two inputs, therefore the observed
execution does not reveal any information about the input.

Any algorithm which does not encrypt data fails to meet
this definition, because QP(.) contains the record content.
If not encrypted, the content is visible to the adversary
and can be used to distinguish two different inputs. Al-
gorithms which induce fixed access patterns over encrypted
data, for instance scanning-based algorithms in the baseline

3For simplicity, we assume there exists a global clock
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Figure 3: PRAMOD constructs privacy-preserving algorithm
AP from an algorithm P by appending it with the scrambler
S. PRAMOD can also combine simple privacy-preserving algo-
rithms to build a more complex algorithm which is also privacy-
preserving.

system which read and then immediately write records to
the same addresses, are privacy-preserving because the ac-
cess sequence is the same for all inputs of the same size.
On contrary, merge-sort is not privacy-preserving because
there exists X1, X2 such that QP(X1) 6= QP(X2). For
example, X1 = 〈10, 20, 30, 40, 50, 60, 70, 80, 90〉 and X2 =
〈30, 50, 10, 60, 20, 40, 90, 70, 80〉.

Discussion. A similar definition is called data oblivious-
ness, which states that an algorithm P is data-oblivious if
the observed I/O sequences are the same for X1 and X2

(where |X1| = |X2|), i.e. QP(X1) = QP(X2). This defini-
tion implies perfect zero leakage against all adversaries, as
opposed to ours which guarantees negligible leakage against
computationally bounded adversaries. Data-obliviousness
offers a stronger assurance, both similar to ours, it assumes
that data records are always protected and the adversary
cannot see their content. This assumption relies on the de-
ployment of secure encryption. However, practical encryp-
tion schemes cannot achieve perfect secrecy. As a result, it
is reasonable to expect that, in practice, both data-oblivious
algorithms and privacy-preserving algorithms satisfying Def-
inition 1 offer a similar level of privacy-protection.

3. PRAMOD
This section describes PRAMOD’s design, focusing on the

new component — the scrambler. We explain how to de-
sign simple privacy-preserving algorithms, namely sort and
compaction, using the scrambler. We then discuss how to
build more complex algorithms based on simpler, privacy-
preserving steps.

PRAMOD is designed on top of the baseline system de-
scribed earlier in Section 2.1. Specifically, data records are
encrypted with semantically secure encryption scheme, and
data-dependent computations are done inside the trusted
unit with limited memory. Note that algorithms im-
plemented in the baseline system may not be privacy-
preserving. For example, merge sort in the baseline system
leaks information about the input order. PRAMOD realizes
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privacy-preserving algorithms in two ways. First, for al-
gorithms which essentially re-arrange the input, it simply
prepends them with a scrambler S which randomly per-
mutes the input before feeding it to the algorithm (Fig-
ure 3[a]). To ensure overall security, however, the scram-
bler S must not leak information during its execution. Sec-
ond, PRAMOD allows for complex, privacy-preserving algo-
rithms to be built from a sequence of privacy-preserving sub-
steps AP1 ,AP2 , . . . (Figure 3[b]). We note that for complex
algorithms, input scrambling alone is not sufficient to meet
our security definition. For example, consider a group ag-
gregation algorithm which first rearranges data into groups
and then aggregates the values of each group. Even if the
input is scrambled beforehand, the adversary can still learn
information about group sizes, which is more than what per-
mitted by our definition (the number of groups).

3.1 The Scrambler
The scrambler S is responsible for generating the scram-

bled data X̃ from X such that their linkage is not revealed
via I/O patterns of S (i.e. QS(X)). In particular, the scram-
bler S first chooses a permutation π : [1..n] → [1..n] uni-
formly at random. It then privately realizes the permuta-

tion π on the input X, obtaining X̃ such that X̃[j] = X[π[i]],
while ensuring that the adversary is oblivious to the under-
lying permutation π. A simple solution which sequentially
scans through X and places the ith record at position π[i]

in X̃ reveals π, because the adversary is able to observe all
read/write accesses on the storage.

The scrambler can be implemented using the Melbourne
shuffle algorithm recently introduced in [36] or a cascaded
mix-network proposed in [15]. The two approaches have
three key differences. First, the former takes X and π as

input and outputs X̃, whereas the latter takes in only X

and generates X̃ without a priori knowledge of π. Second,
the output space of the former is of size (1 − ε) × n! where
ε is a negligible function, while that of the latter is much
smaller: (1 − ε′) × n! where ε′ is a non-negligible function.
Since the scrambler is voided if the adversary can correctly
guess the permutation π, we wish to make the probability
of such even negligible. Regarding this concern, the shuffle
algorithm offers higher privacy protection than mix-network,
because it reduces the probability of the scrambler being
voided to a negligible value (i.e. 1

(1−ε)×n! ≈
1
n!

). Third,

time complexity and trusted memory requirement for the
shuffle algorithm are O(n) and O(

√
n), respectively. These

metrics are lower than those of the cascaded mix-network:
O(n logn) and O(n0.85).

We implement the scrambler S using the Melbourne shuf-
fle algorithm [36]. Specifically, the scrambler S generates
π using a pseudo-random permutation [28] and represents
it by a short secret seed. Then, it executes the Melbourn
shuffle algorithm with π and X as input, outputting the

scrambled data X̃. The shuffle algorithm is oblivious and
consists of two phases: distribution and clean-up. The algo-
rithm is configurable by two variables p1, p2 that affect the
overall performance and probability of the algorithm restart-
ing4. Fortunately, such probability is negligible. Details of
the algorithm are provided in Appendix A.

As already discussed, the probability that the adversary
can correctly guess the underlying permutation π and thus

4due to overflow of memory segments

void the scrambler is negligible. Moreover, since Melbourn
shuffle algorithm is oblivious, so long as the encryption
scheme in use in not broken, the scrambler S is secure. Infor-
mally, there exists no algorithm D that can distinguish two
inputs X1, X2 of the same size by observing the scrambler’s
access patterns.

3.2 Privacy-Preserving Algorithms
We first show how to construct basic privacy-preserving

algorithms using the scrambler. Next, we discuss how to
build more complex ones.

3.2.1 Basic algorithms
We first consider algorithms which essentially rearrange

the input. Specifically, given the output P(X) = Y =
〈y1, y2, .., yn〉, the algorithm can be characterized by a per-
mutation (or tag) T = 〈t1, t2, .., tn〉 such that Y [i] = X[T [i]].
The tag T represents the linkage between input and out-
put records. In the running example (Figure 1), T =
〈3, 5, 1, 6, 2, 4, 9, 7, 8〉. Let QP(X) be the observable access
sequence defined earlier in Section 2.3. Let AP be the al-
gorithm derived from P by prepending it with the scram-
bler. We show that if QP(X) = QP(T ), then AP is privacy-
preserving.

Theorem 1. Given any input X and its corresponding
tag T , if an algorithm P, when being computed on X and
T , generate the same read/write sequences (i.e. QP(T ) =
QP(X)), then the derived algorithm AP , which first has the
scrambler S permute the input and then applies P on the
scrambled input, is privacy-preserving.

Proof Sketch: We consider two inputs X1, X2 of the same
size whose outputs computed by P are also of the same
size (i.e. |P(X1)| = |P(X2)|). We denote by T1, T2 tags of

X1, X2, and by T̃1, T̃2 tags of the scrambled input X̃1, X̃2, re-
spectively. Since the scrambler is data oblivious, QS(X1) =
QS(T1) = QS(X2) = QS(T2). Moreover, the security of the

scrambler also assures the distributions of T̃1 and T̃2 are in-
distinguishable. It follows that QP(T̃1) is indistinguishable

from QP(T̃2). Recall that QP(T̃1) = QP(X̃1) and QP(T̃2)

= QP(X̃2), QP(X̃1) and QP(X̃2) are indistinguishable.
Since AP executes S followed by P, QAP (X1) =

QS(X1)||QP(X̃1) and QAP (X2) = QS(X2)||QP(X̃2). So

far, we have proven that QS(X1) = QS(X2), and QP(X̃1)

is indistinguishable from QP(X̃2). Thus, it follows that
QAP (X1) and QAP (X2) are computationally indistinguish-
able. Therefore, Ap is privacy-preserving.

�

3.2.2 Complex algorithms
We consider complex algorithms which can be decom-

posed into sequences of substeps. By hybrid arguments [28],
PRAMOD enables combining privacy-preserving sub-steps
to construct a complex algorithm which is also privacy-
preserving. More specifically, let AP = (AP1 ;AP2 ; ..;APm)
be the algorithm consisting of m substeps, in which the out-
put of APi is the input of APi+1 . If every sub-step APi is
privacy-preserving, then so is AP .
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Corollary 1. Given two algorithms P1,P2 which are
privacy preserving with advantage at most ε1, ε2, respec-
tively. The combined algorithm P which executes P1 fol-
lowed by P2 is also privacy preserving with advantage at
most ε1 + ε2.

Proof Sketch: The proof follows from the hybrid argu-
ments. �

3.3 Discussion
One important implication of Theorem 1 is that the out-

put of AP is not always the same as that of P, since the
input has been permuted. For example, consider merge
sort algorithm on X = 〈00, 01, 02, 03, 04, 05〉 where the sub-
scripts indicate the original positions in the input. The
output P(X) = 〈00, 03, 01, 04, 02, 05〉, whereas AP (X) =
〈00, 02, 01, 05, 03, 04〉 for a certain permutation generated by
the scrambler. We note that to guarantee the same output,
it is sufficient to make P invariant to input permutation,
that is P(X) = P(X ′) where X ′ is a permutation of X. In
practice, this can be achieved by adding a pre-processing
step which transforms the input, and a post-processing step
to reverse the effect. In the sort example, the pre-processing
step adds metadata to the keys so that the input contains no
duplicates (for instance, by using address as the secondary
key), and the post-processing step removes the metadata.

The algorithms considered so far are deterministic. How-
ever, Theorem 1 also generalizes to probabilistic algorithms
(quick sort, for example). Essentially, we transform these
algorithms to take the random choices as additional input,
thus making them deterministic and to which the theorem
is applicable.

There exists many privacy-preserving algorithms which
can be combined into complex algorithms which meet
our security definition. As noted earlier, scanning algo-
rithms which go through the input and write the output to
the same addresses are privacy-preserving. We will show
later that PRAMOD’s sort and compaction are privacy-
preserving. Existing data-oblivious algorithms proposed in
the literature, such as oblivious data expansion [8], are also
privacy-preserving. These algorithms can be ported directly
to PRAMOD. In fact, for complex algorithms for which
data-oblivious implementations exist, we can re-use these
implementations directly by replacing data-oblivious sub-
steps with more efficient privacy-preserving algorithms in
PRAMOD. We demonstrate this approach later with the
join algorithm (section 4.4).

4. PRIVACY-PRESERVING DATA MAN-
AGEMENT ALGORITHMS

This section describes implementations of four algorithms
pSort, pCompact, pAggr and pJoin , illustrating the
utilisation of PRAMOD in enabling privacy-preserving data
management. Our proposed framework can be applied to de-
rive various efficient and secure query processing algorithms.
We leave provisioning a secure full-fledged SQL system as
future work.

For clarity, all algorithms assume inputs comprising of
key-value records all of which are equal-sized. We denote by
key(x) and value(x) the key and value components of record
x, respectively. pSort and pCompact achieve security di-
rectly using the scrambler, while pAggr and pJoin derive
security from that of their sub-steps. For each algorithm, we

first explain how it is implemented in the baseline system,
then contrast such non-privacy-preserving implementation
with the implementation in PRAMOD. Finally, we analyse
the performance of different implementations, the results of
which are shown in Table 2.

4.1 Sort
The algorithm rearranges the input according to a certain

order of the record keys.

Baseline solution. We implement the well-known external
merge sort [29]. First, the input is divided into s = n/m
blocks (for simplicity, suppose s < m). Each block is sorted
entirely inside the trusted unit. Next, all s sorted blocks are
combined in 1 merge step using s-way merge. Specifically,
the trusted memory is divided into s + 1 parts, s of which
serve as input buffers, one for each sorted block. The last is
the output buffer. s-way merge results in optimal I/O per-
formance because the each record is read only once during
merging. This solution, however, leaks the input order as
discussed earlier in Section 2.

Algorithm 1 Privacy-Preserving Sort

1: procedure Sort(X)
2: X ′ ← MakeKeyDistinct(X);

3: X̃ ← Scramble (X ′);

4: Y ′ ←ExternalMergeSort(X̃);
5: Y ← RevertKey(Y ′);
6: return Y ;
7: end procedure

Privacy-preserving solution. Algorithm 1 shows the
privacy-preserving sort algorithm — pSort — consisting of
four steps. (1) The pre-processing step appends the address
of each record to its key, i.e. key(x′i) = key(xi)||i, trans-
forming the input X to X ′ whose keys are distinct. (2) X ′

is securely permuted by the scrambler, which results in X̃.

(3) X̃ is sorted into Y ′. The comparison function break ties
(if any) using the addresses attached to records in step pre-
processing step. (4) The post-processing scan through Y ′ to
remove the address information, generating the output Y .

Although this implementation employs merge sort as an
underlying sorting algorithm, it can be applied to any other
algorithms. This generality is advantageous to our frame-
work: it can adopt the most appropriate and efficient algo-
rithm for the targeted applications.

Performance analysis. The scrambler and merge sort
run in O(n) and O(n logn) time, respectively, therefore
pSort runs in O(n logn). To the best of our knowledge,
the most efficient data-oblivious sort algorithms are from
Goodrich et al. [25, 22]. The deterministic version [25] runs
in O(n log2 n) time, while the randomized version [22] runs
in O(n logn) time but with large constant factor. pSort at-
tains optimal performance with low constant factor, and is
arguably simpler than the data-oblivious alternatives.

4.2 Compaction
The algorithm removes marked records from the input.

The output contains n′ ≤ n unmarked records while pre-
serving the original order: if xi and xj are to be retained
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Table 2: Comparison of time complexities of different implementations. For join algorithm, l is the size of the result join set.

Algorithm Baseline Data-oblivious PRAMOD
Sort O(n logn) O(n log2 n) O(n logn)
Compaction O(n) O(n logn) O(n)
Group aggregation O(n logn) O(n logn) O(n logn)
Join O(n1 logn1 + n2 logn2) O(n1 logn1 + n2 logn2 + l log l) O(n1 logn1 + n2 logn2 + l log l)

and i < j, xi appears before xj in the output. We assume
that a record is marked with 1 if it is to be retained, and
with 0 if it is to be dropped. Note that the output size n′

is not a secret, i.e. our security definition allows this to be
learned by the adversary. This is reasonable, because the
purpose of the algorithm is to reduce the number of records
stored on the storage which is accessible to the adversary.
Keeping n′ secret would incur storage overhead and defeat
the purpose of compaction.

Baseline solution. We adopt a simple approach which se-
quentially pulls and decrypts records in the trusted unit,
then re-encrypts and writes back to the storage only those
marked with 1 while discarding the others. This approach is
efficient, but it reveals distribution of the discarded records.

Algorithm 2 Privacy-Preserving Compaction

1: procedure Compact(X)
2: X ′ ← Mark(X)

3: X̃ ← Scramble (X ′)

4: Ỹ ← Filter (X̃)

5: Y ← Arrange (Ỹ )
. Arrange() is offloaded to the worker

6: return Y
7: end procedure

Privacy-preserving solution. Algorithm 2 shows the
privacy-preserving compaction algorithm — pCompact —
consisting of four steps. (1) In the pre-processing step, the
trusted unit initiates two counters, C1 = 0 and C2 = n.
Scanning through X, it marks retaining records with C1

and to-be-removed record with C2. C1 is incremented by 1
for each retaining record encounters, and C2 is decremented
by 1 for each to-be-removed record met. (2) The scrambler

randomly permutes the marked dataset to X̃. (3) The base-

line algorithm is applied on X̃ to get a compact dataset Ỹ .

Note that Ỹ is not order-preserving. (4) The mark infor-
mation of the retaining records is revealed to the worker so
that it can arrange records to their desired positions. The

worker can finish this step by one linear scan through Ỹ as

opposed to sorting Ỹ with respect to the mark information.
Note that revealing the marking of the records does not leak
any sensitive information on X, thus it does not compromise
pCompact’s privacy.

Performance analysis. Every step of pCompact runs in
linear time, thus the algorithm runs in O(n). The data-
oblivious algorithm [22] runs in O(n logn) time. The pro-
posed pCompact achieves the asymptotically optimal time
complexity of O(n) while keeping the constant factor low.

4.3 Grouping and aggregation

The algorithm groups input records based on their keys
and then applies an aggregation function, such as summing
or averaging, over the group members. Specifically, let K =
{k1, k2, . . . , kn′} be the set of unique keys, the algorithm
outputs Y = 〈y1, y2, . . . , yn′〉 in which key(yi) = ki and
value(yi) = Agg(value(x) : x ∈ X; key(x) = ki).

Baseline solution. The algorithm starts by sorting records
based on their keys. Next, the sorted records are scanned,
and the aggregate values are accumulated and written out
immediately after the last record of each group is encoun-
tered. Even if privacy-preserving sort is used, because of
this last step, the overall execution reveals the size of each
group.

Algorithm 3 Privacy-Preserving Aggregation

1: procedure PrivateSum(X)
2: G← pSort(X)
3: k = k1

. k1 is first element in the the set of distinct keys K.
4: v = 0
5: for each g in G do
6: if key(g) = k then
7: v ← v + value(g)
8: Add 〈dummy〉 to V . output dummy records
9: else

10: Add 〈k, v〉 to V
11: k ← key(g)
12: v ← value(g)
13: end if
14: end for
15: Y ← pCompact(V ) . Remove all 〈dummy〉 from V
16: return Y
17: end procedure

Privacy-preserving solution. Algorithm 3 shows our
privacy-preserving algorithm (pAggr) based on a sort, a
compaction and a scanning step. pAggr illustrates a spe-
cial case of grouping with Sum(.) as an aggregation function.
It is trivial to modify pAggr to handle all other standard
aggregation functions. First, pAggr sorts X using pSort,
obtaining G in which records of the same key are inherently
grouped together. Next, the trusted unit scans through G,
processes each record in G and computes an intermediate re-
sult V . To prevent the worker from inferring the size of each
group, the trusted unit not only outputs a valid aggrega-
tion value, but also dummy records. Finally, pCompact is
used to remove dummy records in V . Since these 3 steps
are all privacy-preserving, from Corollary 1, it follows that
pAggr is also privacy-preserving.
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Table 3: Example of join for input X1 = {〈a, fde〉, 〈a, tol〉, 〈b, lxv〉, 〈b, xdj〉} and X2 = {〈a,maj〉, 〈b,med〉, 〈c, tfn〉, 〈d, kbs〉}. Values in
parentheses appeared in columns W1 and W2 represent records’ degree in the join graph while those in columns V1 and V2 are running
sum computed by FRSum() and RRSum().

X V2 V1 W1 W2 X1exp X2exp Y
〈a, fde〉X1

〈a, fde〉X1
(1) 〈d, kbs〉X2

(1) 〈b, xdj〉(1) 〈a,maj〉(2) 〈b, xdj〉 〈b,med〉 〈b, xdjmed〉〈a, tol〉X1
〈a, tol〉X1

(2) 〈c, tfn〉X2
(1)

〈a,maj〉X2
〈a,maj〉X2

(2) 〈b,med〉X2
(1) 〈b, lxv〉(1) 〈b,med〉(2) 〈b, lxv〉 〈b,med〉 〈b, lxvmed〉〈b, lxv〉X1

〈b, lxv〉X1
(1) 〈b, xdj〉X1

(1)

〈b, xdj〉X1
〈b, xdj〉X1

(2) 〈b, lxv〉X1
(1) 〈a, tol〉(1) 〈c, tfn〉(0) 〈a, tol〉 〈a,maj〉 〈a, tolmaj〉〈b,med〉X2

〈b,med〉X2
(2) 〈a,maj〉X2

(1)

〈c, tfn〉X2
〈c, tfn〉X2

(0) 〈a, tol〉X1
(1) 〈a, fde〉(1) 〈d, kbs〉(0) 〈a, fde〉 〈a,maj〉 〈a, fdemaj〉〈d, kbs〉X2

〈d, kbs〉X2
(0) 〈a, fde〉X1

(1)

Performance analysis. pAggr is constructed from
pSort and pCompact, thus it runs O(n logn) time. The
data-oblivious algorithm [7] adopts the same workflow, and
its time complexity is also O(n logn).

4.4 Join

Algorithm 4 Privacy-preserving join

1: procedure Join(X1, X2)
2: X ← X1||X2

3: S ← pSort(X)
. tie is broken such that X1 records always come

before X2 records
4: V2 ← FRSum(S)
5: V1 ← RRSum(S)
6: W1 ← pCompact(V1)
7: W2 ← pCompact(V2)
8: X1exp ← OExpand (W1)
9: X2exp ← OExpand (W2)

10: Y ← X1exp ·X2exp

. stitch expansion of X1 and X2 to get the join output
11: return Y
12: end procedure

The algorithm takes as input two datasets X1, X2 of size
n1, n2 and outputs Y = X1 1 X2. For the sake of dis-
position, we consider a simplified version of join for key-
value datasets. It is straight-forward to generalize ours for
other standard join algorithms. A record xi ∈ X1 matches
with another record xj ∈ X2 if key(xi) = key(xj). De-
note yij = xi · xj as the join output of xi and xj , it fol-
lows that key(yij) = key(xi) = key(xj) and value(yij) =
value(xi)||value(xj). Unlike previous algorithms, the out-
put size of this algorithm can be larger than its input size.

Baseline solution. We consider the sort-merge join algo-
rithm. Specifically, X1 and X2 are first sorted, then inter-
leaved linear scans are performed to find matching records.
However, the combined leakage from the sorting and match-
ing step may reveal the entire join graph.

Privacy-preserving solution. Algorithm 4 shows our
privacy-preserving join algorithm — pJoin — which is based
on the data-oblivious algorithm proposed by Arasu el al. [8].
It consists of two stages. The first stage computes the degree
of each record in the join graph. The second stage dupli-
cates each record a number of times indicated by its degree.

The output is generated by “stitching” corresponding (du-
plicated) records with each other. pJoin basically replaces
the data-oblivious substeps in [8] for computing record de-
grees with pSort, pCompact and two linear scans (line
2-7). However, it uses the data-oblivious expansion algo-
rithm without change (line 8-9). For every step is privacy-
preserving, it follows from Corollary 1 that pJoin is also
privacy-preserving.

In the first stage, pJoin first combines X1 and X2 into
one big dataset X, then privately sorts X, ensuring that
for those records which have the same key, tie is broken by
placing X1’s records before X2’s. Since X is sorted, records
having the same key are naturally grouped together. The
trusted unit then scans the entire X in two passes. The
first pass, FRSum(), assumes that each X1 record has a
weight value of 1 while X2 record has a weight value of
0. It scans X from left to right and associates with each
record the running sum of weights in its group. At the end
of this pass, each record in X2 is associated with a weight
representing its degree in the join graph. The second pass,
RRSum(), similarly scans from right to left, assuming weight
values of 0 for X1 records and 1 for X2 records. At the end
of this second pass, X1’s records are associated with theirs
degree in the join graph. After the two passes, pCompact is
invoked twice to remove X2 and X1 records from V1 and V2,
respectively, giving two weight sequences W1 and W2.

In the second stage, each record in X1 and X2 is dupli-
cated a number of times indicated by its associated weight.
We use the oblivious expansion algorithm presented in [8] di-
rectly to implement this step. The results are then stitched
together via a linear scan to generate the final output Y .
Table 3 gives a detailed example for pJoin.

Performance analysis. The time complexity of the first
stage is O(n logn), of the second stage is O(n1 logn1 +
n2 logn2 + l log l) where l = |X1 1 X2|. Overall, pJoin runs
in O(n logn + l log l), which is the same as that of the
oblivious algorithm [8]. However, we show later in Section
5 that pJoin has lower running time because pSort and
pCompact algorithm are more efficient than the corre-
sponding data-oblivious components.

5. PERFORMANCE EVALUATION
This section reports the performance of the four algo-

rithms described in the last section: pSort, pCompact,
pAggr and pJoin. We generate input data following Ya-
hoo! TeraSort benchmark [37], in which each record com-
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Table 4: Overall running time (in seconds) of our PRAMOD’s al-
gorithms in comparison with: (1) implementation in the baseline
system with weaker security (2) data-oblivious algorithms with
same level of security.

Algorithm Baseline PRAMOD
Oblivious

Algorithms

Sorting 3782.86
9195.78 37641.81
(2.43×) (9.95×)

Compaction 1553.88
7364.8 24636.32

(4.74×) (15.85×)

Group-Aggregation 5336.74
18144.46 63831.98
(3.39×) (11.96×)

Join 8444.53
42221.43 105210.44
(4.99×) (12.46×)
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Figure 4: Normalized running time breakdowns for PRAMOD’s
algorithms. The overall cost consists of the time taken by the
scrambler, plus the time required by the worker (if any). The rest
is taken by pre-processing, post-processing steps and the (non-
privacy-preserving) algorithm itself.

prises of a 10-byte key and a 90-byte value. We encrypt
the records with AES-GCM using a 256-bit key, generating
132-byte ciphertexts. Experiments are run on a DELL work-
station equipped with an Intel i5-4570 3.2GHz CPU and a
500GB SATA disk. We assign 64MB5 of secure memory to
the trusted unit, and vary the input size from 8GB to 64GB.
Our implementations use Crypto++6for cryptographic op-
erations. We repeat each experiment 10 times and report
the average result.

5.1 Cost of Security
We first compare PRAMOD’s algorithms with the al-

ternatives in the baseline system. As noted in Sec-
tion 4, the baseline implementations reveal information
about the input via access patterns. We then compare them
with data-oblivious solutions: oblSort for sorting [25],
oblCompact for compaction [22], oblAggr for group ag-
gregation [7] and oblJoin for join [8].

Overhead. Table 4 quantifies the execution time

5We have also run other sets of experiments with various
secure memory capacities (e.g. 128MB and 256MB). We find
that varying the secure memory size within the small range
does not affect the overall running time of all algorithms. On
the other hand, assigning much larger secure memory for the
trusted unit, say a few GB, will improve the performance.
However, since we consider scenario in which m = O(

√
n),

this option is ruled out
6Crypto++ library. http://www.cryptopp.com
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Figure 5: Normalized running time breakdowns for group aggre-
gation and join algorithms. The running time consists of the time
taken by sort, compaction. The rest is taken by other substeps.
The value on top of each bar indicates the total running time of
each algorithm (in minutes).

for 32GB inputs (or n = 228 records7). It shows that
PRAMOD incurs overheads between 2.43× to 4.99× over
the baseline system. This cost of security is admittedly con-
siderable. However, we argue that PRAMOD is still practi-
cal, given the overheads of existing data-oblivious solutions
which offer the similar security level are between 9.95× to
15.85×.

Cost breakdown. To better understand factors that
contribute to the overheads, we measured the time taken by
the scrambler, by the worker (if any) and by other opera-
tions in the trusted unit. The last factor includes the time
spent on pre-processing, post-processing and on the main
algorithm logic. Figure 4 shows this breakdown. It can be
seen consistently across all algorithms that the cost of scram-
bling is significant. Particularly, it contributes 42%, 52.3%,
42.6% and 27.4% to the overall cost of pSort, pCompact,
pAggr and pJoin, respectively. The untrusted worker ac-
counts for small proportion of the total running time, be-
tween 1.8% (for pJoin) to 5.4% (for pCompact). This is
because the worker does not perform cryptographic opera-
tions which are computationally expensive.

As the security of group aggregation and join algorithms
are derived from that of sort and compaction algorithms,
we also report cost break-down of the two algorithms with
respect to sort, compaction and other sub-steps in Figure 5.
The superior performance of pSort and pCompact helps
pAggr and pJoin achieve security with low cost. Besides
sort and compaction, other sub-steps (e.g. oblivious expan-
sion step in join (see section 4.4)) of the data-oblivious algo-
rithms and ours have the same running time. This reasons
why the contributions of sort and compaction steps to the
overall running time of pAggr and pJoin are less than that
of the oblivious alternatives (21.7− 50.8% vs. 36.6− 58.9%
for sort and 34.8− 40.7% vs. 38.5− 46.8% for compaction)
while the corresponding portion of other sub-steps are larger
in ours compared to oblAggr and oblJoin (Figure 5).

Re-Encryptions and I/O complexity. Note that
cryptographic operations (re-encryption) are CPU inten-
sive and communication between the trusted unit and the
storage is expensive since it involves I/O. Table 5 de-
tails the costs of these two operations. Observe that
PRAMOD’s algorithms require O(n) I/Os with a small con-

7For join algorithms which take as input two dataset X1 and
X2, we consider the input size to be the total size of X1 and
X2 (i.e. n = |X1|+ |X2|)
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Table 5: Number of re-encryptions and read/write complexity required by PRAMOD’s algorithm and relevant oblivious algorithms in
processing input of size n. p1 and p2 are constant parameters in the scrambler’s configuration (see Section 3.1). In our experiments,
p1 = p2 = 2. Let m be the capacity of the secure memory, then s = n/m. d is the average degree of records in the join graph. In our
experiments, d = 3.

Algorithm # Re-Encryption I/O Complexity
pSort (p1 + p2 + 5) · n O(n)

oblSort[25] (
∑log s
i=1 i+ log s+ 1) · n O(n log2 n)

pCompact (p1 + p2 + 2) · n O(n)
oblCompact[22] (1 + logn) · n O(n logn)

pAggr (2p1 + 2p2 + 8) · n O(n)

oblAggregate[7] (
∑log s
i=1 i+ log s+ logn+ 3) · n O(n log2 n)

pJoin (3p1 + 3p2 + 9 + d) · n O(dn)

oblJoin[8] (
∑log s
i=1 i+ log s+ 2 logn+ 5 + d) · n O((dn) log(dn) + n log2 n)

stant factor, whereas all data-oblivious algorithms, except
for oblCompact, require O(n log2 n) I/Os. For join algo-
rithms, I/O complexity depends on d, the average record
degree in the join graph. For uniformly distributed datasets,
d can be considered as a constant (we assumed d = 3 in our
experiments).

Recall that a record is re-encrypted every time it leaves the
trusted unit, hence the number of re-encryptions is propor-
tional to the I/O complexity. Table 5 gives the exact number
of re-encryptions in each algorithm. These numbers depend
on specific configuration of each algorithm. More specifi-
cally, the scrambler performs (p1 +p2 +1)×n re-encryptions
in scrambling n records. In our experiments, we find that
for the datasets under consideration, with p1 = p2 = 2,
the scrambler achieves optimal running time and negligible
probability of restarting8 . On the other hand, the numbers
of re-encryptions of oblivious algorithms depend only on the
size of the private memory. We observe that given secure
memory size of m = O(

√
n) and the same input, the obliv-

ious algorithms perform a few times more re-encryptions
than PRAMOD’s privacy-preserving algorithms, which di-
rectly translates to considerable running time overheads.

5.2 Efficiency and Scalability
We evaluate how our algorithms scale with larger in-

put sizes. Figure 6 reports the running time in log-
scale. Our algorithms outperform the data-oblivious alter-
natives for all input sizes. More specifically, pSort out-
performs oblSort [25] by 2.6 − 4.4× (Figure 6a). Simi-
larly, pCompact is 3 − 3.5× faster than oblCompact [22]
(Figure 6b), pAggr outruns oblAggr [7] by 2.7 − 3.8×
(Figure 6c), and pJoin is 2 − 2.6× more efficient than
oblJoin [8] (Figure 6d). The reason for the outperformn-
ing of PRAMOD’s algorithms lies in the fact that they re-
quires less number of re-encryptions and I/O accesses than
the data-oblivious algorithms (see Table 5). Recall that re-
encryptions are computationally extensive and I/O are low,
the differences mentioned above significantly affect the run-
ning time.

It is worth noting that the speedup becomes more evi-
dent with larger inputs: from 2 − 3× for 8GB datasets to
2.6− 4.4× for 64GB datasets. This suggest PRAMOD’s al-
gorithms are more efficient and scalable than the class of
data-oblivious alternatives.

8From the Appendix A, with p1 = p2 = 2 and n = 228, the
probability that the scrambler need to restart is Prrestart =
5.3530× 10−70

Discussion. Although PRAMOD currently runs on a sin-
gle machine, we stress that it is straight forward to port
it to a distributed environment. The scrambler processes
data in blocks independently of each other, which lends it-
self naturally to distributed setting. We note that distribut-
ing the scrambler’s workload to multiple nodes could re-
sult in substantial speed-up because the scrambling process
is CPU intensive. In fact, our implementations are multi-
threaded (4 threads), and in comparison with the single-
thread version, we observe 1.8× speed-up. Furthermore,
most external-memory algorithms are often designed to sup-
port parallelism. Therefore, we believe that parallelization
will significantly lower the execution time in PRAMOD. On
the other hand, it is difficult to parallelize oblivious algo-
rithms due to their complexity.

6. RELATED WORK
Secure Data Management using Trusted Hard-

ware. Several systems have used trusted computing hard-
ware such as IBM 4764 PCI-X [2] or Intel SGX [3] to en-
able secure data management. TrustedDB [9] presents a
secure outsourced database prototype which leverages on
IBM 4764 secure CPU (SCPU) for privacy-preserving SQL
queries. Cipherbase [7] extends TrustedDB’s idea to offer
a full-fledged SQL database system with data confidential-
ity. V C3 employs Intel SGX processors to build a general-
purposed data analytics system. In particular, it supports
MapReduce computations, and protects both data and the
code inside SGX’s enclaves. However, these systems do not
meet our security definition, i.e. they offer a weaker security
guarantee.

Recent systems [18, 35] adopt a similar approach to this
paper’s to support privacy-preserving computation. How-
ever, they focus on the MapReduce computation model, and
specifically use scrambling to ensure security for the shuffling
phase (which is essentially a sort algorithm). PRAMOD is
a more general framework which supports many other algo-
rithms.

Secure Computation by Data Oblivious Tech-
nique. Oblivious-RAM [21] enables secure and oblivious
computation by hiding data read/write patterns during pro-
gram execution. ORAM techniques [39, 13, 25] trust a
CPU with limited internal memory, while user programs
and data are stored encrypted on the untrusted server. Se-
curity is achieved by making data accesses to the server ap-
pear random and irrelevant to the true and intended access

10



8 16 32 64

104

105

Input size (GB)

ru
n
n
in
g
ti
m
e
(s
)

pSort
oblSort[25]

(a) Sorting

8 16 32 64

103.5

104

104.5

Input size (GB)

ru
n
n
in
g
ti
m
e
(s
)

pCompact
oblCompact[22]

(b) Compaction

8 16 32 64

104

105

Input size (GB)

ru
n
n
in
g
ti
m
e
(s
)

pAggr
oblAggr[7]

(c) Group-Aggregation

8 16 32 64

104

105

Input size (GB)

ru
n
n
in
g
ti
m
e
(s
)

pJoin
oblJoin[8]

(d) Join

Figure 6: Performance comparison between our algorithms and the related data-oblivious algorithms. Running time is reported in
log-scale (y-axis) for different input sizes (x-axis).

sequences. A non-oblivious algorithm can be made data-
oblivious by adopting ORAM directly, but this approach
leads to performance overhead of at least a O(logn) multi-
plicative factor. PRAMOD offers a similar level of security
with only an O(n) additive overhead.

Another line of works advocate designing data-oblivious
algorithms. Goodrich et al. present several oblivious al-
gorithms for sorting [25, 23, 24], compaction and selec-
tion [22]. The authors also propose approaches to simulate
ORAM using data-oblivious algorithms [25]. Other inter-
esting data-oblivious algorithms have also been proposed
for graph drawing [26], graph-related computations such
as maximum flow, minimum spanning tree, single-source
single-destination (SSSD) shortest path, and breadth-first
search [12]. However, these algorithms are application-
specific and less efficient than PRAMOD’s algorithms.

7. CONCLUSION
In this paper, we have described PRAMOD, a framework

for enabling efficient and privacy-preserving data manage-
ment algorithms using trusted computing with limited se-
cure memory. We show that for many algorithms, prepend-
ing them with a scrambling step make the algorithms pri-
vacy preserving. PRAMOD achieves security for other com-
plex algorithms by decomposing them into smaller privacy-
preserving substeps. We demonstrated four algorithms:
pSort for sorting, pCompact for compaction, pAggr for
group aggregation and pJoin for join. We showed exper-
imentally that the algorithms are efficient and scalable,
outperforming the corresponding data-oblivious algorithms
which offer a similar level of privacy protection.
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A. THE MELBOURN SHUFFLE
The shuffle algorithm shares our assumptions on encryp-

tion of data records. Particularly, all records are encrypted
using a semantic secure encryption scheme. They are only
decrypted inside the trusted unit and re-encrypted before
being written back to the storage.

The algorithm takes in a randomly chosen permutation π
and a data set X of n items. The permutation π is generated
using a pseudo random permutation [28], and represented
by a short secret seed. It obliviously arranges n items to

their final position in X̃ with respect to π. The shuffling
requires two intermediate arrays T1 and T2 which are of size
p1n and p2n where p1 and p2 are constants and p1, p2 > 1.

First, X, T1, T2 and X̃ are divided into
√
n buckets, each

contains O(
√
n) records. Every 4

√
n buckets constitute a

chunk and there are 4
√
n chunks in total. Each bucket of T1

holds p1
√
n records while each bucket in T2 stores p2

√
n.

The algorithm proceeds in two phases: distribution and
clean-up. The first phase comprises of two rounds. Records
are moved from X to T1 in the first round, such that records

belonging to the ith chunk of X̃ will be put in the ith chunk
of T1. In the second round, records in T1 are distributed
among buckets of T2 such that at the end of this distribution,
records are located in their correct buckets. To ensure the
obliviousness, data written to T1 and T2 are padded to equal
size. This implies adding dummy records. There are (p1 −
1)n dummy records in T1 and similarly (p2−1)n are written
to T2. The second phase, clean-up, removes dummy records
and arranges real records to correct positions within their
own bucket.

In each round, the trusted unit sequentially process each
of
√
n buckets. Recall that each bucket contains O(

√
n)

records, the entire bucket can fit in the secure memory of the
trusted unit. Records within the bucket, after being read to
the secure memory, are divided into 4

√
n segments according

to their final positions. In distributing records from X to
T1, each segment has at most p1 4

√
n records and they are

written to corresponding chunks in T1. Similarly, in the
second distribution, each segment hold upto p2 4

√
n records,

which are then placed to their corresponding buckets. If
a segment contains less records than its capacity, dummy
records are added to ensure data-obliviousness. However, if
so many records are located to one segment that it becomes
overflowed, the algorithm aborts and restarts. Using Poisson
Approximation [10] and the result from [36], the probability
that the algorithm restarts is:

Prrestart ≤ 2n3/4( ep1

p
p1

4√n
1

+ ep2

p
p2

4√n
2

)
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