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Abstract. We consider privacy-preserving computation of big data us-
ing trusted computing primitives with limited private memory. Simply
ensuring that the data remains encrypted outside the trusted computing
environment is insufficient to preserve data privacy, because data move-
ment observed during computation could leak information. Designing
algorithms that thwart such leakage is challenging. Many known privacy-
preserving algorithms are complex and induce large trusted code bases
that are unwieldy to vet and verify. In this paper, we make a key obser-
vation that many basic algorithms (e.g. sorting) can be made privacy-
preserving by adding a step that securely scrambles the data before
feeding it to the original algorithms. We call this approach Scramble-
then-Compute (StC), and give a sufficient condition whereby existing
external memory algorithms can be made privacy-preserving via StC.
This approach facilitates code-reuse, and its simplicity contributes to a
smaller trusted code base. It is also general, allowing algorithm designers
to leverage on the rich set of known algorithms for better performance.
Our experiments show that StC could offer up to 4.1× speedups over
known, application-specific alternatives.

1 Introduction

Big data is the main driving force behind online data storage model offered by
incumbent cloud service providers. While these services are cost-effective and
scalable, security in terms of data privacy remains a concern, because user data
is being handled by untrusted parties. Even when the providers are trusted,
other factors like multi-tenancy, complexity of software stacks, and distributed
computing models continue to enlarge the attack surface [12, 14]. In addition,
there is a tight constraint on the performance overhead since most computations
on the data, especially data analytics tasks, consume vast numbers of CPU cycles
which are directly billable [13, 5].

The first step towards securing the data is to protect it using encryption.
Semantically secure encryption schemes ensure high level of security, but only
protect data at rest [25]. Fully homomorphic encryption schemes allow for com-
putations over encrypted data, but suffer from prohibitive overheads [16, 10].
Partially homomorphic encryption schemes [31, 15] are more practical, but lim-
ited in the range of supported operations [33, 36].



A line of recent works have advocated an approach of combining encryption
with trusted computing primitives which offer a confidentiality and integrity
protected execution environment [6, 34, 3]. This trusted environment can be pro-
visioned by either hardware (e.g. Intel SGX [1]) or hardware-software combina-
tion [26, 27]. Data is then stored in untrusted external memory/storage and pro-
tected by a semantically secure encryption. Data is only decrypted and processed
in the trusted execution environment, and the outputs are encrypted before being
written back to the storage. The trusted environment has a limit on the amount
of data it can process at any time – capped by the size of the protected physical
memory allocated to a process. This means a communication channel between
the trusted and the untrusted environments is necessary to complete the compu-
tation. Unfortunately, such a channel could leak information about the data [35,
12, 14]. For instance, by observing I/O access patterns during merge sort, an at-
tacker can infer the order of the original input, i.e. the ranks of input elements.
This leakage could be eliminated by using generic oblivious-RAM (ORAM), but
with high performance overheads. There exists also application-specific algo-
rithms whose access patterns are data-oblivious, thus eliminating the leakage.
However, designing these algorithms are challenging, and existing constructions
are complex which indirectly leads to larger trusted code bases (TCB) that are
difficult to vet and verify.

Our goal is to design algorithms which are privacy preserving and practical
while keeping the TCB lean. To this end, we make a key observation that, for a
large class of algorithms (e.g. sorting), randomly permuting (or scrambling) the
input before feeding it to the original algorithms is sufficient to prevent leakage
from access patterns. For example, consider merge sort algorithm in which the
original input is first randomly permuted. During the execution, the adversary
observing access patterns will, at best, be able to infer only sensitive informa-
tion on the scrambled input. If the scrambling is done securely, such information
cannot be linked back to that of the original input. Based on this observa-
tion, we propose an approach for designing privacy-preserving algorithms, called
Scramble-then-Compute (StC), which essentially scrambles the input before ex-
ecuting the original algorithm on the scrambled data. This approach not only
is applicable to a large number of algorithms, but also incurs only an additive
overhead factor (as opposed to a multiplicative factors when using ORAM). Its
generality facilitates code reuse, i.e. it allows us to choose among the rich set
of known algorithms the most optimized ones thereby reducing the performance
overhead. Furthermore, the scrambling step in StC is easily distributed, enabling
the algorithms constructed under StC to scale. It is also worth mentioning that
the simplicity of our solution promises an ease of implementation.

We note that not all algorithms can be made privacy-preserving by scram-
bling the input beforehand. Hence, we give a sufficient condition for algorithms
derived by StC to be privacy-preserving (Section 3). Many algorithms involving
data movement such as merge-sort, quicksort or compaction inherently satisfy



the condition1. We demonstrate StC by describing privacy-preserving imple-
mentations of five popular algorithms: sort, compaction, select, group aggregation
and join (Section 4). The first three algorithms can be made privacy-preserving
by directly applying StC, and the other two by stitching together privacy-
preserving sub-steps. We benchmark their performance and and compare them to
baseline implementations that are not privacy-preserving. StC offers a stronger
privacy protection at a cost of 3.5× overhead on average. We further compare
them to state-of-the-art data-oblivious alternatives with similar levels of secu-
rity [20, 18, 3, 4]. The results show that StC algorithms can achieve speedups
as high as 4.1×. The improvement on performance is probably gained from
the extensive known results on external memory algorithms. Furthermore, these
algorithms can be easily parallelized, thus enabling privacy-preserving compu-
tation at scale. Many data-oblivious algorithms, on the other hand, are difficult
to parallelize. In summary, we make the following contributions:

1. We define a security model for privacy-preserving algorithms. The definition
implies data confidentiality and privacy even when the adversary can observe
I/O access patterns.

2. We propose StC – an approach for implementing privacy-preserving al-
gorithms. We give a condition on algorithms whereby scrambling the in-
put beforehand is sufficient to preserve privacy (Theorem 1 & 2). Multiple
privacy-preserving sub-steps can be stitched together to realize more com-
plex algorithms. StC’s simplicity and generality help reduce the performance
overhead and keep the TCB lean.

3. We demonstrate the utility of StC by applying it to five algorithms, all of
which achieve asymptotically optimal runtime (Section 4). In particular, our
privacy-preserving compaction runs in O(n), and sorting in O(n log n) using
O(
√
n) trusted memory.

4. We conducted extensive experiments to evaluate the privacy-preserving algo-
rithms constructed under StC. The results indicate relatively low overheads
over the baseline system which is less secure, and running time speedup of
up to 4.1× over data-oblivious alternatives with a similar level of privacy
protection. The results also show that StC fits well in distributed settings,
allowing for further speedups of up to 7× when running on eight nodes.

The rest of the paper is structured as follows. The next section defines the
problem and related challenges. Section 3 presents StC and the rationale behind
the approach. Section 4 demonstrates its utility. The experimental evaluation is
reported in Section 5. Related work is discussed in Section 6 before we conclude.

1 There is a subtle issue with non-unique elements. We shall discuss techniques to
address it in Section 3.3



2 Problem Definition

In this section, we discuss the problem and challenges of enabling privacy-
preserving computation using trusted computing primitives. We also give formal
definitions of privacy-preserving algorithms.

Throughout this section, we shall use the following running example to illus-
trate the problem and its related concepts. Let us consider a user outsourcing her
data of integer-value records to the cloud in encrypted form. She then wishes to
sort the data, perhaps as a pre-processing step for other tasks such as ranking or
de-duplication. Sorting directly over encrypted data is possible, but it is imprac-
tical [2]. Instead, the user relies on a trusted unit which sorts and re-encrypts
the records in its private memory. Since the private memory is limited in size,
a k-way external memory merge sort algorithm is employed. Figure 1 depicts a
simple example of three-way merge sort in which the private memory is limited
to holding only three records at a time. The input consists of nine records, and
sorting involves one merging step.
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Fig. 1: An example of three-way external merge sort on encrypted records. The sub-
scripts denote the order in which the record is read into the trusted unit during the
merging step.

Trusted Unit Worker · · ·
Storage

Fig. 2: The system model consists of a trusted unit which can process a limited number
of records at a time. The storage and worker are untrusted. Only the trusted unit can
see the content of the encrypted records (denoted by blue squares).

2.1 Computation and Adversary Model

Computation model. Let X = 〈x1, x2, . . . , xn〉 be the input data of n equal-sized
key-value records. Let key(x) and val(x) denote the key and value component
of a record x, respectively. An algorithm P, given the input X, computes an
output sequence Y = P(X) = 〈y1, y2, .., yn′〉 of n′ key-value records. Unlike
input records, the output records need not be of the same size.

We focus on a class of algorithms which are permutation-invariant. An al-
gorithm P is permutation-invariant if P(X) = P(π(X)) for any input X and



permutation π(·) over the records in X. In our running example, P is the three-
way merge sort algorithm, key(x) is the value to be sorted, and Y is the sorted
output.

The computations are to be carried out by a trusted unit and a worker with a
storage (depicted in Figure 2). The trusted unit holds persistent secret data, e.g.
secret key used in cryptographic operations that is established prior to the algo-
rithm’s execution. It has a limited memory to hold m records. Data is persisted
in the long term storage component whose communication with the trusted unit
is mediated by the worker. The worker can also carry out computations.

Threat Model. We consider an honest-but-curious adversary who has complete
control over the storage and worker. Such adversary can be an insider who has
full access to the cloud infrastructure via misuses of privilege, or an attacker
gaining access by exploiting vulnerabilities in the software stack. The adversary
is able to see the input, output, and access sequences made by the trusted unit.
This is a realistic threat model, given recent security breaches (e.g. NSA and
Target) being attributed to insider threats. A malicious adversary (aka active
adversary), in contrast, can modify data in the storage and deviate the worker
from its execution path. Such adversaries are considered by other works [14, 34].
Although our security model considers only honest-but-curious adversary, we
believe that our approach remains applicable against malicious adversary. For
instance, by incorporating additional integrity check, we can detect malicious
tampering. We leave it as an avenue for future work.

We assume that the trusted unit constituting the system’s TCB is sufficiently
protected, and thus the adversary is unable to observe its states. For TCB based
on hardware-software combination, we assume that the software part is free of
vulnerabilities and malwares. Furthermore, we assume that there is no side-
channel leakage (e.g. power analysis) from the trusted unit. Physical attacks
which compromise the trusted unit’s protection mechanisms, such as cold-boot
attacks that subvert the CPU’s hardware protections, are beyond scope. Finally,
we assume that some data (e.g. secret keys) can be delivered securely to the
trusted unit before the algorithms’ execution.

Baseline system. For security and performance analysis, we compare the algo-
rithm in question with an external memory algorithm (which is not necessary
secure) which executes under a baseline system. Under this system, records in
the storage are protected by a semantically secure encryption scheme with a
secret key stored in the trusted unit. Moreover, all records written back to the
storage are re-encrypted. Hence, even if the adversary can observe the input and
output of the trusted unit, it is still unable to infer content of the records. This
baseline system serves as a fair point for comparison, as the overhead incurred by
encryption and decryption is arguably minimal. However, as we shall see below,
the baseline could leak important information.

Leakage of the baseline system. The baseline system fails to ensure data pri-
vacy. In our running example (Figure 1), the encrypted input is divided into



three blocks, each with three records. The trusted unit executes the algorithm
in two phases. First, it independently sorts each block and returns three sorted,
encrypted blocks. Next, it performs three-way merge: at most three records are
kept in the secure memory at any time. They are pulled from the sorted blocks
with help from the worker. The adversary observes in the merging phase that the
trusted unit first takes one record from each sorted block, writes one record out,
then takes in another record from the first block. From this, he knows that the
smallest record is from S1. Such inference may eventually reveal the distribution
of input data. For algorithms taking data from different anonymous sources, this
can potentially expose their identities.

Performance Requirements. An important performance requirement is to keep
runtime overhead low. To prevent leakage, one could employ oblivious RAM [35]
directly on the storage backend, but this approach incurs Ω(log n) overhead
per access, making it impractical for big data processing. Another option is
to use application-specific data-oblivious algorithms such as oblivious sort [20],
which are both complex and limited in scope. We note that providing privacy
while being able to leverage on state-of-the-art external memory algorithms for
improved performance is certainly of great interest.

For security, it is important to keep the overall TCB small. Even though we
assume the TCB to be free of vulnerabilities, we remark that it is desirable to
keep the TCB small since verifying a large code base is unwieldy. Our proposed
approach – StC – (Section 3) essentially adds a scrambler to existing external
memory algorithms in order to achieve security. Its simplicity leads to small TCB
and low performance overhead. Furthermore, its ability to parallelize enables
privacy-preserving computation at scale.

2.2 Security Definition

First, let us formalize the information that the adversary can learn by observing
the computation. Let Qm

P (X) = 〈q1, q2, . . . , qz〉 be the access (read/write or I/O)
sequence the adversary observes during the execution of P on X, where m is
the maximum number of records that the trusted unit can hold at any time.
Hereafter, unless stated otherwise, we assume m >

√
n where n is the number

of input records, and omit the superscript m in the notation. Each qi is an I/O
request made by the trusted unit to the worker. It is a 3-value tuple 〈op, addr,
info〉 where op ∈ {r, w} is the type of the request (“read” or “write”), addr is
the address accessed by op, and info is metadata (⊥ if not applicable) revealed
to the worker (the record content is not included in the request because it is
encrypted). The metadata is useful when the trusted unit wishes to offload parts
of the computation to the worker. For example, if an algorithm sorts records by
non-secret indices, the indices can be revealed to the worker via info, allowing the
latter to complete the sorting. In our running example (Figure 1), the observed
sequence of read requests is as follows (the sequence containing write requests is
similar):



QP(X)
read

=

 〈r, S1,⊥〉, 〈r, S2,⊥〉, 〈r, S3,⊥〉, 〈r, S1,⊥〉,
· · ·

〈r, S2 + 2,⊥〉, 〈r, S3 + 1,⊥〉, 〈r, S3 + 2,⊥〉


where Si + j denotes the address of the jth record in block Si.

Our security definition requires that QP(X) leaks no information on X (ex-
cept for its size, i.e. the number of records).

Definition 1 (Privacy-Preserving Algorithm). An algorithm P is privacy-
preserving if for any two datasets X1, X2 with the same number of records,
QP(X1) is computationally indistinguishable from QP(X2).

Note that the asymptotic notion of indistinguishability implicitly requires a
security parameter κ. In our proposed approach, κ determines the running time
(e.g. number of rounds in the scrambler), and the length of the key for crypto-
graphic operations (e.g. the seed that generates pseudorandom permutations for
the scrambler).

Relationship to data obliviousness. A related security notion is data oblivious-
ness [18], in which P is data-oblivious if QP(X1) = QP(X2) for any X1 and X2

having the same number of records. This definition is stronger than ours in the
sense that it implies perfect zero leakage via access patterns. However, in prac-
tice, since encryption is involved, we argue that the security of data-oblivious
algorithms essentially still relies on indistinguishability.

Permissible leakage. Some applications permit certain leakage of information.
For example, consider the problem of grouping records by their keys, the number
of unique keys may be considered non-sensitive, and revealing it is permissible.
We formulate such leakage by a deterministic function Ψ , and call Ψ(X) the
permissible leakage on input X. In the group-by-key example above, Ψ(X) is the
number of unique keys in X. We say that an algorithm is Ψ -privacy-preserving
if it leaks no information on X beyond Ψ(X).

Definition 2 (Ψ-Privacy-Preserving). An algorithm P is Ψ -privacy-
preserving if for any two datasets X1, X2 with the same number of records and
permissible leakage (i.e. Ψ(X1) = Ψ(X2)), QP(X1) is computationally indistin-
guishable from QP(X2).

Clearly, when Ψ(X) is a constant for any X, then a Ψ -privacy-preserving
algorithm is also privacy-preserving.

3 Scramble Then Compute

In this section, we present StC – an approach for implementing privacy-
preserving external memory algorithms. Given an algorithm P which is not
necessarily privacy-preserving, StC derives AP . We give conditions for P under
which AP is privacy-preserving.



StC follows the computation model described earlier in Section 2. For those
algorithms that are not inherently privacy-preserving, StC employs a compo-
nent called scrambler which randomly permutes the input without revealing any
information of the permutation during its execution. Some algorithms, such as
sort, compaction and selection, can be made privacy-preserving immediately via
the this approach. Others such as join and group aggregation are made privacy-
preserving by exploiting the composition property, i.e. restructuring the original
algorithms to be composed of only privacy-preserving sub-steps.

3.1 The Scrambler

The scrambler S takes input X and outputs a permuted sequence X̃ = π(X)
where π is a permutation randomly chosen by S. While there are several vari-
ants on the formal security definition of S, we adopt the one based on indistin-
guishability since it is sufficient in our construction. We say S is secure if it is
Ψ -privacy-preserving with respect to a deterministic function Ψ that outputs the
sorted sequence of the input X.

We implement the scrambler S using the Melbourne shuffle algorithm [29].
The algorithm takes input X and a permutation π, and outputs the permuted
sequence X̃ = π(X) in a data-oblivious manner. In other words, the access
sequence is the same for all X of the same size. In fact, the Melbourne shuf-
fle achieves a stronger security guarantee than our requirement on the secure
scrambler. It assures that if π is chosen randomly and uniformly, the adversary
is unable to distinguish the inputs in the information theoretic sense. Our defi-
nition only requires computational indistinguishability. Another construction of
S is Chaum’s mix-network [11], which achieves statistical indistinguishability,
but the current known provable bounds require large trusted memory [23]. We
discuss the implementation of S and its security parameter κ in Appendix A.

3.2 Deriving Privacy-Preserving Solutions

Recall that P is permutation-invariant if it always outputs the same result on dif-
ferent input permutations. Examples include sort and group-by-key algorithms.
However, hash table lookup or binary search algorithm, which assumes certain
structure or order of the input, is not permutation-invariant.

Scramble-then-compute. Given a permutation-invariant algorithm P, StC de-
rives an algorithm AP by first scrambling its input X, then forwarding the
scrambled data to P. Specifically, AP(X) = P(S(X)). Clearly, by the defini-
tion of permutation-invariant, AP preserves the correctness of the original P, in
the sense that AP(X) = P(X) for any X. For abbreviation, let us call AP the
combined algorithm.

Before stating our theorem, let us first introduce the following two definitions.

Definition 3 (Tagging Algorithm). A deterministic algorithm T operating
on X is a tagging algorithm if T (X) is a permuted sequence of 〈1, 2, . . . , n〉,
where n is the number of records in X.



For example, a tagging algorithm can, on input of a sequence of integers
〈50, 3, 1, 10〉, output 〈4, 2, 1, 3〉 representing the record ranks in the input.

Definition 4 (Imitator). Given an algorithm P, the pair of two algorithms
〈P∗, T 〉 in which T is a tagging algorithm operating on X is an imitator of
P if for any input X and permutation π, the access sequence QP(π(X)) =
QP∗(π(T (X))).

The algorithm P∗ essentially incurs the same observable behaviour as P when
operating on the “downgraded” input. We now give a sufficient condition for AP
to be privacy-preserving.

Theorem 1. Given a permutation-invariant algorithm P, if there exists an im-
itator 〈P∗, T 〉 of P, then AP is privacy-preserving.

The proof for this theorem is presented in Appendix B. The theorem provides
an easy mean to determine whether an existing external memory algorithm P
can be made privacy-preserving via StC: it suffices to define an imitator of P.
If P is a comparison-based algorithm, the tagging algorithm T can be the one
that outputs the record ranks, and P∗ be a similar comparison-based algorithm
as P but applying the comparison on the ranks. If the records are unique, then
〈P∗, T 〉 is an imitator of P.

The above theorem does not consider the case of permissible leakage. Intu-
itively, when permissible leakage is acceptable, the imitator should has access to
such leakage. Hence, given P and a permissible leakage Ψ , we say that 〈P∗, T 〉
is an Ψ -imitator of P if the access sequence QP(π(X)) = QP∗(π(T (X)), Ψ(X))
for any X and permutation π.

Theorem 2. Given a permutation-invariant algorithm P and a permissible
leakage Ψ , if there exists an Ψ -imitator of P, then AP is Ψ -privacy-preserving.

The proof for this theorem is similar to that of Theorem 1 and is omitted.

Composition. If algorithms P1 and P2 are privacy-preserving, using the hybrid
argument, their composition, i.e. executing one after another, is also privacy-
preserving. However, only a polynomial number of compositions (with respect
to κ) are allowed.

We demonstrate this composition property using two examples of group-
aggregation and join algorithms in Section 4.4 and 4.5. For now, we note that the
condition on the number of sub-steps does not imply usage restriction, because
practical algorithms do not contain an exponentially large number of sub-steps.

3.3 Discussion

The condition on being permutation-invariant is strict, as it requires the out-
put of the algorithm on the scrambled input to be exactly the same as with
the original input. Sort algorithms that take as input duplicate values do not
inherently meet this condition. For example, consider merge sort algorithm



with X = 〈00, 01, 02, 03, 04, 05〉 where the subscripts indicate the original po-
sitions in the input, it may be the case that P(X) = 〈00, 03, 01, 04, 02, 05〉 while
AP(X) = 〈00, 02, 01, 05, 03, 04〉 for a certain permutation generated by the scram-
bler. This problem can be resolved by adding metadata (e.g. address of the
record) to the keys so that the input contains no duplicate. Without loss of gen-
erality, some algorithms which are not permutation-invariant can be made so by
adding a pre-processing step that adds metadata to the input and reversing the
effect via a corresponding post-processing step.

We stress the simplicity StC offers in deriving privacy-preserving solution
from existing algorithms. One direct benefit is code reuse. For example, there are
extensive studies on sorting algorithms, each catered for different system config-
uration and application. With StC, especially its ability to support parallelism,
we can easily adopt the most suitable algorithm with the most well-tuned param-
eters. Another benefit is the ability to keep the TCB small, as we can choose an
algorithm with small codebase. This is as opposed to implementing convoluted
algorithms like existing data-oblivious ones. Furthermore, our approach offers
an arguably simpler way of implementing data-oblivious algorithms; the compo-
sition property allows us to replace the complex data-oblivious sub-steps with
more efficient StC’s alternatives. We demonstrate this advantage in Section 4.5.

Finally, although the algorithms considered so far are deterministic, StC also
generalizes to probabilistic cases such as quick sort. They can be modified to take
the random choices as additional input, making them deterministic and to which
our theorems are applicable.

4 Privacy-Preserving Algorithms

In this section, we demonstrate the utility of StC by showing the implementation
of several algorithms in StC: sort, compaction, selection, group aggregation and
join. The first three are realized through StC, and the other two by stitching
together privacy-preserving sub-steps. We provide performance analysis for each
algorithm and compare it with the baseline implementation as well as the data-
oblivious alternative. We note that each of our algorithm offers better security
than the baseline implementation and achieves similar level of privacy protection
in comparison with the data-oblivious alternative. In Appendix C, we briefly
discuss how StC can be generalized to support basic operations in Spark.

4.1 Sort

The algorithm sorts the input according to a certain order of the record keys.
We consider external merge sort algorithm [24], in which the input is divided
into s = n/m blocks (s < m) and the sorted blocks are combined in one merging
step using s-way merge. This algorithm has optimal I/O performance, but leaks
the input order when implemented in the baseline system. In StC, we first
adds a pre-processing step which appends the address of each record to its key,
i.e. key(x′i) = key(xi)||i. The result is then forwarded to the scrambler, whose



Table 1: Comparison of time complexity of different algorithms. For join algorithm, l
is the size of the result

Algorithm Baseline StC Oblivious Algorithms

Sort O(n logn) O(n logn) O(n log2 n)

Compaction O(n) O(n) O(n logn)

Selection O(n) O(n) O(n)

Group
aggregation

O(n logn) O(n logn) O(n logn)

Join O(n1 logn1 +n2 logn2)
O(n1 logn1 + n2 logn2 +

l log l)
O(n1 logn1 +

n2 logn2 + l log l)

output is used as the input to the original algorithm (the comparison function
breaks ties using the address attached to the key). Finally, the post-processing
step scans through the output and removes the address information.

This derived algorithm, called pSort, runs in O(n log n) time. The pre-
processing and post-processing steps make the original external merge sort al-
gorithm permutation-invariant. By Theorem 1, pSort is privacy-preserving. To
the best of our knowledge, the most efficient data-oblivious sorting algorithms
run in O(n log2 n) [20, 18]2.

4.2 Compaction

The algorithm removes (n − n′) marked records from the input of n records,
while preserving the original order of the remaining n′ records. The baseline al-
gorithm sequentially reads the input records into the trusted unit and writes back
(re-encrypted) those unmarked records. This solution is efficient, but it reveals
distribution of the marked records. The algorithm pCompact in StC consists
of four steps. First, the trusted unit initializes two counters, C1 = 0, C2 = n.
While scanning through X, it labels each record with C1 or C2 if the records
is unmarked (to be retained) or marked (to be removed), respectively. C1 is
incremented while C2 is decremented after each of its labelling. The next two
steps involve running the labelled input through the scrambler and the baseline
algorithm. Finally, the trusted unit reveals the labels to the worker so that the
latter can move records to their desired positions.

pCompact runs in O(n), while the data-oblivious alternative [18] runs in
O(n log n). The pre-processing and post-processing steps make the baseline al-
gorithm permutation-invariant. The tagging algorithm T produces a sequence
T = 〈t1, t2, . . . , tn〉 as follows. First, if xi is unmarked, then ti ≤ n′; otherwise,
ti > n′. Second, for any i < j, ti < tj if both xi and xj are unmarked; or ti > tj if
both xi and xj are marked. Here, the permissible leakage Ψ(X) is the number of
marked records in X (we note that the data-oblivious alternative [18] also does
reveal this information). By Theorem 2, pCompact is Ψ -privacy-preserving.

2 The randomized version [18] runs in O(n logn) time with a large constant factor.



4.3 Selection

The algorithm outputs the kth smallest element in the input according to a
certain order of the record keys. A straightforward algorithm is to first sort the
input data in ascending order and then output the kth record, but its complexity
is O(n log n). Instead, we consider the median of medians algorithm [8] which
has O(n) runtime complexity even in the worst-case. The baseline implementa-
tion of this algorithm, however, partially reveals the distribution of the input
records. The algorithm in StC, called pSelect, is the same as pSort, except
that merge sort is replaced by the median of medians algorithm. Unlike pSort,
pSelect outputs one record instead of a sorted sequence of n records.

pSelect runs in O(n) time, having the same complexity with the existing
data-oblivious alternative [18]. We show in the next section, however, that in
practice pSelect outperforms its data-oblivious counterpart by a few times.
Similar to pSort, the baseline algorithm is made permutation-invariant by the
added pre-processing and post-processing steps. pSelect is privacy-preserving
according to Theorem 1.

4.4 Group aggregation

The algorithm groups records based on their keys, then applies an aggregation
function, such as summing or averaging, over the group members. We consider an
algorithm which first sorts the input, then scans the sorted records, accumulates
the values and writes out a output record immediately after the last record of
each group is encountered. Because of this last step, the overall execution reveals
the size of each group even if a privacy-preserving sorting algorithm is used.

It can be shown that the baseline algorithm does not satisfy the condition in
Theorem 1. Thus, we design a new privacy-preserving group aggregation algo-
rithm, called pAggr, and exploits the composition property to derive its security.
First, it sorts X using pSort, obtaining G in which records of the same key are
inherently grouped together. Next, it scans through G to compute the aggregate.
During the process, it outputs one record for every record it encounters in G.
Some of these records are indeed output records, while other are dummy. The
dummy records are marked so that they can be removed later. Finally, it uses
pCompact to remove the dummy records. Since these 3 steps are all privacy-
preserving, so is pAggr. This algorithm runs O(n log n) time, having the same
time complexity with the data-oblivious alternative [3].

4.5 Join

The algorithm performs the inner join on two datasets X1 and X2. We consider
sort-merge join algorithm (generalizing to other join algorithms is straightfor-
ward). It first sorts X1 and X2, then performs interleaved linear scans on two
sorted sequence to pair matching records. Implemented in the baseline system,
these sorting and matching steps reveal the entire join graph.



Similar to the group aggregation algorithm, the baseline join algorithm can-
not be transformed using StC. We design a new privacy-preserving algorithm,
pJoin, based on the data-oblivious version proposed by Arasu et al. [4]. The
data-oblivious algorithm consists of two stages: the first stage computes the de-
gree of each record in the join graph, and the second stage duplicates each record
a number of times indicated by its degree. We refer readers to [4] for more detail.
pJoin follows the same workflow. Our algorithm implements the first stage using
pSort and pCompact while reimplementing the data-oblivious expansion step
without change for the second stage.

pJoin runs with the same complexity as the data-oblivious algorithm does,
i.e. O(n log n+ l log l) where l is the number of output records. Nevertheless, we
show later in Section 5 that pJoin has lower running time in practice, because
pSort and pCompact are more efficient than the corresponding data-oblivious
steps. Each and every step in pJoin is privacy-preserving, so is pJoin.

5 Performance Evaluation

We evaluate StC by studying the performance of the five algorithms discussed
in the last section. We first quantify the cost of security that StC incurs, by
comparing the running time of our algorithms with those implemented in the
baseline system. In addition, we also compare this cost with that of the state-of-
the-art data-oblivious alternatives: oblSort for sorting [20], oblCompact for
compaction [18], oblSelect for selection [18], oblAggr for group aggrega-
tion [3] and oblJoin for join [4]. Next, we evaluate its scalability by measuring
the algorithm performance when running on a network of multiple nodes.

We generate the input data using the Yahoo! TeraSort benchmark [30]: each
record comprises a 10-byte key and a 90-byte value. We encrypt each record with
AES-GCM using a 256-bit key, generating a 132-byte ciphertext. We vary the
trusted unit memory from 64MB to 256MB (i.e. m = 219 to m = 221), and the
input size from 8GB to 64GB. Our implementations3 use Crypto++ library for
cryptographic operations. For the distributed implementations, we use HDFS
as the backend storage and Zookeeper to synchronize between processes. We
run our experiments on an eight-node cluster of commodity servers, each node
has an Intel Xeon E5-2603 CPU, 8GB of RAM, two 500GB hard drives and
two 1GB Ethernet cards. We repeat each experiment 10 times and report the
average results for 64MB trusted memory (other trusted memory sizes have
similar performance).

5.1 Cost of Security

Table 2 compares the running time for various algorithms with 32GB inputs (or
n = 228 records) using one node. While StC algorithms can run over multiple
nodes, we are not aware of distributed implementations for the five data-oblivious
algorithms under consideration. Thus, to make the comparison fair, we also ran

3 Available at https://github.com/dkhungme/PRAMOD.



Table 2: Overall running time (in seconds) of StC’s algorithms in comparison with:
(1) implementations in the baseline system with weaker security and (2) data-oblivious
algorithms offering the similar level of privacy protection.

Oblivious
Algorithm Baseline StC

Algorithms

Sorting 7961
14330 59628

(1.79×) (7.49×)

Compaction 1678
8253 25012

(4.91×) (14.89×)

Select 2758
9451 29365

(3.42×) (16.65×)

Group-Aggregation 10593
24578 63477

(2.32×) (5.99×)

Join 12400
59610 105235

(4.81×) (8.49×)

Table 3: Normalized running time breakdowns for StC’s algorithms.

Algorithm Scrambler Worker Trusted Units

pSort 41.8% 0.6% 57.6%

pCompact 52.4% 5.4% 42.2%

pSelect 64.1% 3.4% 32.5%

pAggr 42.6% 2.2% 55.2%

pJoin 27.4% 1.9% 70.7%

StC algorithms on a single node. It can be seen that StC algorithms incur
overheads between 1.79× to 4.91× over the baseline system. To better under-
stand factors that contribute to the overheads, we measured the time taken by
the scrambler, by the worker (if any) and by other operations in the trusted
unit. The last factor includes the time spent on pre-processing, post-processing
steps and on the main algorithm logic. Table 3 details this breakdown, showing
consistently across all algorithms that the cost of scrambling is significant: from
27.4% (pJoin) to 64.1% (pSelect). The time taken by the untrusted worker
accounts for small proportion of the total running time, from 0.6% (pSort) to
5.4% (pCompact). This is because the worker does not perform cryptographic
operations which are computationally expensive.

5.2 Comparison with data-oblivious algorithms

Compared to the baseline system, the overheads of data-oblivious algorithms are
between 5.99× to 16.65×, thus we remark that StC algorithms incur relatively
low overhead and therefore is practical. Figure 3 further illustrates that com-
pared to their data-oblivious alternatives, they are consistently more efficient
across all input sizes while offering the similar level of privacy protection. More
specifically, the privacy-preserving sorting algorithm implemented under StC is
up to 4.1× faster than the data oblivious one, compaction is up to 3.4×, selection
is up to 3.8×, group aggregation is up to 3.1×, and join is 1.8×. We note that
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Fig. 3: Performance comparison between our algorithms and the corresponding data-
oblivious alternatives. Running time (s) is shown in log-scale.
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Fig. 4: StCalgorithms performance on multiple nodes with different input sizes. Run-
ning time (s) is shown in log-scale.

the speedup for join is smaller than for the others because the data-oblivious ex-
pansion algorithm, which pJoin inherits directly from [4], contributes the most
to the total running time. It is also worth noting that the speedup becomes more
evident with larger inputs: from 1.3 − 2.7× for 8GB datasets to 1.8 − 4.1× for
64GB datasets.

We refer readers to Appendix D for details on the number of cryptographic
operations and I/O complexity required by these algorithms.

5.3 Scalability

Figure 4 reports the running time of StC algorithms on multiple nodes. It
demonstrates that our proposed approach fits naturally in distributed environ-
ment, which can offer significant speedups. In particular, increasing the number
of nodes from one to eight results in 4× speedup for sort and up to 7× for com-
paction, selection and aggregation. This is over an order-of-magnitude better
than single-node data-oblivious algorithms. However, pJoin achieves only 2×
speedup, because we cannot parallelize the oblivious expansion algorithm. We
note that the speedup comes from the distribution of both the scrambler and
of the original algorithm itself. Although our current implementations may not
be the most efficient, the simplicity and considerable speedup gained while exe-
cuting the algorithms in the distributed environment are compelling evidence of
StC’s advantages over existing data-oblivious algorithms.



6 Related Work

Secure Computation using Trusted Hardware. Several systems have used
trusted computing hardware such as IBM 4764 PCI-X4 or Intel SGX [1] to en-
able secure computations, especially focusing on query processing. TrustedDB [5]
presents a secure outsourced database prototype which leverages on IBM 4764
secure CPU (SCPU) for privacy-preserving SQL queries. Cipherbase [3] extends
TrustedDB’s idea to offer a full-fledged SQL database system with data confi-
dentiality. V C3 employs Intel SGX processors to build a general-purposed data
analytics system. In particular, it supports MapReduce computations, and pro-
tects both data and the code inside SGX’s enclaves. However, these systems do
not meet our security definition, i.e. they offer a weaker security guarantee.

Recent systems [14, 28] adopt a similar approach to this paper’s to support
privacy-preserving computation. However, they focus on the MapReduce compu-
tation model, and specifically use scrambling to ensure security for the shuffling
phase (which is essentially a sorting algorithm). StC is a more general solution
which supports many other algorithms.

Secure Computation by Data-Oblivious Technique. Oblivious-
RAM [17] enables secure and oblivious computation by hiding data read/write
patterns during program execution. ORAM techniques [32, 9, 20] trust a CPU
with limited internal memory, while storing user programs and data encrypted
on the untrusted server. A non-oblivious algorithm can be made data-oblivious
by adopting ORAM directly, incurring performance overhead of Ω(log n) per
each access. StC offers a similar level of security with O(n) additive overhead.

Goodrich et al. propose several data-oblivious algorithms [20, 19, 18] which we
used for benchmarking StC. The authors also presented approaches to simulate
ORAM using data-oblivious algorithms [20]. Other interesting data-oblivious
algorithms have also been proposed for graph drawing [21] and graph-related
computations such as maximum flow, minimum spanning tree, single-source
single-destination (SSSD) shortest path, or breadth-first search [7]. However,
these algorithms are application-specific and less efficient than StC algorithms.

7 Conclusion

We have described StC, an approach for implementing efficient and privacy-
preserving algorithms using trusted computing with limited secure memory. We
showed that many algorithms can be directly ported to StC, and other com-
plex algorithms can be implemented efficiently by rewriting them using only
privacy-preserving sub-steps. We demonstrated StC’s utility by implementing
five algorithms, all of which are not only privacy-preserving but also asymptoti-
cally optimal. We showed experimentally that these algorithms are efficient and
scalable, outperforming the data-oblivious alternatives which offer the similar
level of privacy protection. StC algorithms can be distributed and therefore
able to support privacy-preserving computations at scale.

4 http://www-03.ibm.com/security/cryptocards/pcixcc/overview.shtml
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Appendix A The scrambler

The scrambler S first generates the permutation π using a pseudo-random per-
mutation [22] with a sufficiently long secret seed. Next, it executes the Melbourne

shuffle algorithm with π and X as input, outputting the scrambled data X̃. S
inherits its security from that of the Melbourne shuffle algorithm [29]. We as-
sume that the pseudorandom permutation is secure; i.e. it is indistinguishable
from a randomly and uniformly selected permutation.

The Melbourne shuffle consists of two phases: distribution and clean-up, and
processes data in blocks independently of one another. This allows distributing
the scrambler S over multiple nodes to achieve substantial speedups.

The performance of Melbourne shuffle algorithm is configurable by two vari-
ables p1, p2, and it aborts (and restarts) with a negligible probability [29]. If the
adversary has observed that the algorithm restarts, he gains some information
of the permutation. Such probability can be reduced by always executing the
algorithm multiple times, at the expense of longer running time. Note that there
is also a negligible probability that the adversary correctly guesses the secret
seed and hence the permutation, which can be further reduced by increasing
the length of the secret seed. The security parameter κ used in the notion of
indistinguishability determines the seed’s length and the number of times the
Melbourne shuffle algorithm is repeated.



Appendix B Proof of Theorem 1

The proof consists of two parts. We first show that an algorithm constructed
from the imitator is privacy-preserving, based on which we then prove that the
combined algorithm AP is privacy-preserving.

Part 1. Let AP∗ be the combined algorithm which executes the scrambler
S follows by P∗, we shall show that AP∗ is privacy-preserving. Recall P∗ is an
algorithm indicated in the description of the imitator and its input is a permuted
sequence of 〈1, 2, . . . , n〉. Let us call each element in such sequence a tag. Under
AP∗ , the tags are first scrambled, and then fed to P∗. Intuitively, even if the
scrambled tags are revealed, the adversary is still unable to gain information on
the input by observing the executions of AP∗ . We formally reason such intuition
in the following.

Let S̃ be a variant of S with an additional final step: after the data is scram-
bled, S̃ intentionally reveals the scrambled data. This can be done by revealing
the sequence via the meta data info in the read/write requests. Let ÃP∗ be the

combined algorithm that applies S̃ follows by P∗. Clearly, if ÃP∗ is privacy-
preserving, then so is AP∗ .

Let us denote by T1 and T2 the two permuted sequence π1(〈1, 2, . . . , n〉)
and π2(〈1, 2, . . . , n〉) where π1 and π2 are any two permutations. Let us also

denote by R1 and R2 the scrambled tags S̃(T1) and S̃(T2). By the security
of the scrambler, the access sequence and revealed tags 〈QS̃(T1), R1〉 is indis-
tinguishable from 〈QS̃(T2), R2〉, and hence R1 and R2 are indistinguishable.
Accordingly, it follows that the access sequences generated by P∗ (i.e. QP∗(R1),
QP∗(R2)) are indistinguishable from each other. Overall, QÃP∗ (T1) is indis-

tinguishable from QÃP∗ (T2). Therefore ÃP∗ is privacy-preserving, and so is AP∗ .

Part 2. We next show by contradiction that AP is privacy-preserving. Suppose
AP is not privacy-preserving, i.e., there exist X1, X2 having the same number
of records and an algorithm Adv that can distinguish QAP (X1) and QAP (X2).
Let T1 = T (X1) and T2 = T (X2) be the corresponding tags. We can construct a
distinguisher D that differentiates QAP∗ (T1) and QAP∗ (T2) by simulating Adv.
Recall that QP(π(X)) = QP∗(π(T (X))) for any permutation π, it shall fol-
low that QAP (X) = QAP∗ (T (X)). When given access sequences generated by
AP∗ , D can transform them to the corresponding access sequences generated by
AP . By simulating Adv on the transformed sequences, it is able to distinguish
QAP∗ (T1) and QAP∗ (T2), contradicting the fact that AP∗ is privacy-preserving
proven in Part 1. Therefore, AP must be privacy-preserving. ut

Appendix C Supporting Spark Operations
To demonstrate the generality of our proposed approach, we apply StC on
Spark functions. Since Spark is a general computing framework, supporting
these functions in StC makes it easy for developers to build complex privacy-
preserving applications. Table 4 summarizes our effort. Some functions bene-
fit immediately from StC, similar to pSort and pSelect, while other func-



Table 4: List of Spark’s functions supported in StC.
Scramble-then-compute Composition

Privacy
preserving

map, filter, mapPartition, sample,
distinct, sortByKey, cartesian,

repartition, count, first, takeOrdered

union, intersection, reduceByKey,
aggregateByKey, join, cogroup,

reduce, takeSample, countByKey

Ψ -privacy-
preserving

flatMap, groupByKey,
repartitionAndSortWithinPartitions

tions require rewriting the original algorithms to be composed of other privacy-
preserving steps. Almost all of these functions are privacy-preserving, except
for flatMap, groupByKey, and repartitionAndSortWithinPartitions which are Ψ -
privacy-preserving. The permissible leakage Ψ of those algorithms is output
records’ distribution, which conveys a certain information about the distribu-
tion of the input records with respect to their key or partition. For example, the
groupByKey function reveals how many input records sharing the same key.

Table 5: Number of re-encryptions and I/O complexity required by StC’s algorithms
and relevant data-oblivious algorithms. n is the input size, p1 and p2 are constant
parameters in the scrambler’s configuration. In our experiments, p1 = p2 = 2. s = n/m
and d is the average degree of records in the join graph.

Algorithm # Re-Encryptions I/O Complexity

pSort (p1 + p2 + 5) · n O(n)

oblSort[20] (
∑log s

i=1 i+ log s+ 1) · n O(n log2 n)

pCompact (p1 + p2 + 2) · n O(n)
oblCompact[18] (1 + logn) · n O(n logn)

pSelect (p1 + p2 + 4) · n O(n)
oblSelect[18] 1

2
(4 + logn) · n O(n)

pAggr (2p1 + 2p2 + 8) · n O(n)

oblAggregate[3] (
∑log s

i=1 i+ log s+ logn+ 3) · n O(n log2 n)

pJoin (3p1 + 3p2 + 9 + d) · n O(dn)

oblJoin[4] (
∑log s

i=1 i+ log s+ 2 logn+ 5 + d) · n O(n log2 n)

Appendix D I/O complexity of STC algorithms

Table 5 details the numbers of I/O and cryptographic operations. StC algo-
rithms require O(n) I/Os with a small constant factor, whereas all data-oblivious
algorithms, except for oblSelect, have super-linear I/O complexity. I/O com-
plexity of the join algorithm depends on d, the average record degree in the
join graph. For uniformly distributed datasets, d can be considered as a con-
stant (we assumed d = 3 in our experiments). The number of re-encryptions
of StC algorithms depends on the number of re-encryptions per scrambling
step: n(p1 + p2). In our experiments, we find that for the datasets under con-
sideration, with p1 = p2 = 2, the scrambler achieves optimal performance. On
the other hand, the numbers of re-encryptions required by data-oblivious algo-
rithms depend only on the size of the secure memory. With secure memory of
size m = c

√
n (where c is a small constant larger than one), the data-oblivious

algorithms perform a few times more re-encryptions than StC algorithms, which
directly translates to considerable performance overheads.


