
Proceedings on Privacy Enhancing Technologies 2017

Privacy-preserving computation with trusted
computing via Scramble-then-Compute
Abstract: We consider privacy-preserving computation
of big data using trusted computing primitives with
limited private memory. Simply ensuring that the data
remains encrypted outside the trusted computing en-
vironment is insufficient to preserve data privacy, for
data movement observed during computation could leak
information. While it is possible to thwart such leak-
age using generic solution such as ORAM [43], design-
ing efficient privacy-preserving algorithms is challeng-
ing. Besides computation efficiency, it is critical to keep
trusted code bases lean, for large ones are unwieldy
to vet and verify. In this paper, we advocate a sim-
ple approach wherein many basic algorithms (e.g., sort-
ing) can be made privacy-preserving by adding a step
that securely scrambles the data before feeding it to
the original algorithms. We call this approach Scramble-
then-Compute (StC), and give a sufficient condition
whereby existing external memory algorithms can be
made privacy-preserving via StC. This approach fa-
cilitates code-reuse, and its simplicity contributes to
a smaller trusted code base. It is also general, allow-
ing algorithm designers to leverage an extensive body
of known efficient algorithms for better performance.
Our experiments show that StC could offer up to 4.1×
speedups over known, application-specific alternatives.

1 Introduction
Big data is a main driving force behind online data stor-
age model offered by incumbent cloud service providers.
While these services are cost-effective and scalable, secu-
rity in terms of data privacy remains a concern, for the
data is being handled by untrustworthy parties. Even
if the providers were trusted, other factors like multi-
tenancy, complexity of software stacks, and distributed
computing models would continue to enlarge the attack
surface [18, 21]. In addition, there is a tight constraint on
the performance overhead since most computations on
the data, especially data analytics tasks, consume vast
numbers of CPU cycles which are directly billable [19].

The first step towards securing the data is to pro-
tect it using encryption. Semantically secure encryp-
tion schemes ensure high level of security, but only
protect data at rest [34]. Fully homomorphic encryp-
tion schemes allow for computations over encrypted
data, but suffer from prohibitive overheads [16, 23].
Partially homomorphic encryption schemes [22, 42] are
more practical, but limited in the range of supported
operations [44, 47].

A line of recent works have advocated an approach
of combining encryption with trusted computing primi-
tives that offer a confidentiality and integrity protected
execution environment [9, 12, 45]. This trusted envi-
ronment can be provisioned by either hardware (e.g.,
IBM 4767 PCIeCC2 [3], Intel SGX [4]) or hardware-
software combination [35, 36]. Under this approach,
data is stored in untrusted external memory/storage
and protected by semantically secure encryption. Con-
fidentiality is protected since the data is only decrypted
and processed in the trusted execution environment,
and the outputs are encrypted before being written back
to the storage.

Nevertheless, the trusted environment has a limit
on the amount of data it can process at any time. This
means a communication channel between the trusted
and the untrusted environments is necessary to com-
plete the computation. Unfortunately, such a channel
could leak information about the data [18, 21, 46]. For
instance, by observing I/O access patterns during merge
sort, an attacker can infer the order of the input records,
i.e., their ranks in the output. This leakage could be
eliminated by using generic oblivious-RAM (ORAM),
but with high performance overheads [43]. Due to these
overheads, ORAM are more suitable for applications
which make few accesses in a large dataset, but not
necessarily being so for other applications that require
accessing the entire dataset multiple times. For those
applications, customised data-oblivious algorithms of-
ten perform better [40]. However, designing these algo-
rithms are challenging, and existing constructions are
complex, which indirectly leads to larger trusted code
bases (TCB) that are difficult to vet and verify.

Our goal is to design algorithms that are privacy-
preserving and practical while keeping the TCB lean. To

Privacy-preserving computation with trusted computing via Scramble-then-Compute 2

this end, we observe that for a large class of algorithms
(e.g., sorting), randomly permuting (or scrambling) the
input before feeding it to the original algorithms is suf-
ficient to prevent leakage from access patterns. For ex-
ample, consider a merge sort algorithm in which the
original input is first randomly permuted. During the
execution, the adversary observing access patterns will,
at best, be able to infer only sensitive information on
the scrambled input. If the scrambling is done securely,
such information cannot be linked back to that of the
original input.

Based on such observation, we advocate an ap-
proach for designing privacy-preserving algorithms
which we call Scramble-then-Compute (StC). This ap-
proach essentially scrambles the input before executing
the original algorithm on the scrambled data. StC not
only is applicable to a large number of algorithms, but
also incurs only an additive overhead factor (as op-
posed to a (amortized) multiplicative factor when using
ORAM). Its generality facilitates code reuse, i.e., it al-
lows us to harvest an extensive body of existing works
on efficient algorithms to achieve desirable performance.
For example, built on top of the external merge sort
algorithm, the privacy-preserving sorting algorithm im-
plemented under StC outperforms the data-oblivious
sorting algorithm specially designed for external mem-
ory setting [27] by upto 4.1×. Furthermore, the scram-
bling step in StC is easily distributed, enabling the algo-
rithms constructed under StC to scale. Of equal impor-
tance is the simplicity of our solution, which promises
an ease of implementation and vetting.

We note that not all algorithms can be made
privacy-preserving by scrambling the input beforehand.
Hence, we give a sufficient condition for algorithms
derived by StC to be privacy-preserving (Section 3).
While it may appear that StC has limited use case, we
remark that it is capable of supporting an expressive
class of privacy-preserving computations. In particular,
StC is inherently applicable to various algorithms in-
volving data movement such as merge-sort, quicksort or
compaction1. Moreover, it is also compatible with Spark
- a general computing framework for large-scale data
processing [1]. To demonstrate its practicality, we de-
scribe privacy-preserving implementations of five popu-
lar algorithms: sort, compaction, selection, aggregation
and join, which are the core to various data manage-
ment applications (Section 4). The first three algorithms

1 There is a subtle issue with non-unique elements. We shall
discuss techniques to address it in Section 3.5

can be made privacy-preserving by directly applying
StC, and the other two by stitching together privacy-
preserving sub-steps. We benchmark their performance
against baseline implementations that are not privacy-
preserving, showing that StC offers a stronger privacy
protection at a cost of 3.5× overhead on average. We
also compare them with state-of-the-art data-oblivious
algorithms that are tailor-made for the above mentioned
applications [9, 10, 25, 27]. Experimental results man-
ifest that algorithms combined with StC can achieve
speedups as high as 4.1× over the data-oblivious al-
ternatives. Furthermore, these algorithms are arguably
easier to parallelise. The improvement on performance
is probably gained by harvesting known and extensively
studied external memory algorithms. In summary, we
make the following contributions:
1. We present StC – an approach for implementing

privacy-preserving algorithms. We give a condition
on algorithms whereby scrambling the input be-
forehand is sufficient to preserve privacy (Theorem
1 & 2). Multiple privacy-preserving sub-steps can
be stitched together to realize more complex algo-
rithms. StC’s simplicity and generality help reduce
the performance overhead and keep the TCB lean.

2. We demonstrate the utility of StC by applying it
to five data management algorithms (including sort,
compaction, selection, aggregation and join), all of
which achieve asymptotically optimal runtime (Sec-
tion 4). In particular, our privacy-preserving com-
paction runs in O(n), and sorting in O(n logn)
using O(

√
n) trusted memory. We also show that

StC is applicable to Spark – a general computing
framework [1], enabling developers to build complex
privacy-preserving applications at ease.

3. We conduct extensive experiments to evaluate the
privacy-preserving algorithms constructed under
StC. The results indicate relatively low overheads
over the baseline system that is less secure, and run-
ning time speedup of up to 4.1× over data-oblivious
alternatives with a similar level of privacy protec-
tion. The results also show that StC fits well in
distributed settings, allowing for further speedups
of up to 7× when running on eight nodes.

The rest of the paper is structured as follows. The next
section defines the problem and related challenges. Sec-
tion 3 presents StC and the rationale behind the ap-
proach. Section 4 demonstrates its utility. The experi-
mental evaluation is reported in Section 5. Related work
is discussed in Section 6 before we conclude.

Privacy-preserving computation with trusted computing via Scramble-then-Compute 3

30Input 50 10 60 20 40 90 70 80

S1

3010 50
1 4 6

S4

S2

4020 60
2 5 7

S5

S3

8070 90
3 8 9

S6

10Output 20 30 40 50 60 70 80 90

S7

Fig. 1. An example of three-way external merge sort on encrypted
records. The subscripts denote the order in which the record is read
into the trusted unit during the merging step.

Trusted Unit Worker · · ·
Storage

Fig. 2. The system model consists of a trusted unit which can
process a limited number of records at a time. The storage and
worker are untrusted. Only the trusted unit can see the content of
the encrypted records (denoted by hatched squares).

2 Problem Definition
In this section, we discuss the problem and challenges of
enabling privacy-preserving computation using trusted
computing primitives. We also give formal definitions of
privacy-preserving algorithms.

We shall use the following running example to il-
lustrate the problem and its related concepts. Let us
consider a user outsourcing her data comprising integer-
value records to the cloud. The outsourced data is pro-
tected by semantically secure encryption. When the user
wishes to sort the data, perhaps as a pre-processing step
for other tasks such as ranking, she relies on a trusted
unit which processes and re-encrypts the records in its
private memory. Since the private memory is limited in
size, a k-way external memory merge sort algorithm is
employed. Figure 1 depicts a simple example of three-
way merge sort in which the private memory can hold
only three records at a time. The input consists of nine
records, and sorting involves one merging step.

2.1 Computation and Adversary Model

Computation model. Let X = 〈x1, x2, . . . , xn〉 be the
input data of n equal-sized key-value records. Let key(x)
and val(x) denote the key and value component of a
record x, respectively. An algorithm P, given X, com-
putes an output sequence Y = P(X) = 〈y1, y2, .., yn′〉 of

n′ key-value records. Unlike input records, the output
records need not be of the same size.

We focus on a class of algorithms that are
permutation-invariant. An algorithm P is permutation-
invariant if P(X) = P(π(X)) for any input X and per-
mutation π(·) over records in X. In our running exam-
ple, P is the three-way merge sort algorithm, the input
X comprises nine records, and Y is the sorted output.

The computations are to be carried out by a trusted
unit and a worker with a storage (depicted in Figure
2). The trusted unit holds persistent secret data; e.g.,
secret key used in cryptographic operations that is es-
tablished prior to the algorithm’s execution. It has a
limited memory to hold m records. Data is persisted
in the long term storage component whose communica-
tion with the trusted unit is mediated by the worker.
The worker can also carry out computations.

Threat Model.We consider an honest-but-curious
adversary having complete control over the storage and
worker. Such adversary can be an insider who has full
access to the cloud infrastructure via misuses of priv-
ilege, or an attacker gaining access by exploiting vul-
nerabilities in the software stack. The adversary is able
to see the input, output, and access sequences made by
the trusted unit. This threat model is realistic, given
recent security breaches (e.g., NSA Target List [5]) be-
ing attributed to insider threats. A malicious adversary,
in contrast, can modify data in the storage and deviate
the worker from its execution path. Such adversaries are
considered by other works [21, 45]. Although our secu-
rity model considers only honest-but-curious adversary,
we believe that our approach remains applicable against
malicious adversary. For instance, by incorporating ad-
ditional integrity check, we can detect malicious tam-
pering. We leave it as an avenue for future work.

We assume that the trusted unit constituting the
system’s TCB is sufficiently protected, and thus the ad-
versary is unable to observe its states. For TCB based
on hardware-software combination, we assume that the
software part is free of vulnerabilities and malwares.
Furthermore, we assume that there is no side-channel
leakage (e.g., power analysis) from the trusted unit.
Physical attacks that compromise the trusted unit’s pro-
tection mechanisms, such as cold-boot attacks that sub-
vert the CPU’s hardware protections, are beyond scope.
Finally, we assume that some data (e.g., secret keys) can
be delivered securely to the trusted unit before the al-
gorithms’ execution.

Baseline system. For security and performance
analysis, we compare the algorithm in question with an
external memory algorithm (which is not necessarily se-

Privacy-preserving computation with trusted computing via Scramble-then-Compute 4

cure) that executes under a baseline system. Under this
system, records in the storage are protected by a se-
mantically secure encryption scheme with a secret key
stored in the trusted unit. Moreover, all records writ-
ten back to the storage are re-encrypted. Hence, even
if the adversary can observe the input and output of
the trusted unit, it is still unable to infer content of the
records. This baseline system serves as a fair point for
comparison. However, as we shall see below, the baseline
could leak important information.

Leakage of the baseline system. The baseline
system fails to ensure data privacy. In our running ex-
ample (Figure 1), the encrypted input is divided into
three blocks, each with three records. The trusted unit
executes the algorithm in two phases. First, it indepen-
dently sorts each block and returns three sorted, en-
crypted blocks. Next, it performs three-way merge: at
most three records are kept in the secure memory at any
time. They are pulled from the sorted blocks with help
from the worker. The adversary observes in the merging
phase that the trusted unit first takes one record from
each sorted block, writes one record out, then takes in
another record from the first block. From this, he knows
that the smallest record is from S1. Such inference may
eventually reveal the distribution of input data. For al-
gorithms taking data from different anonymous sources,
this can potentially expose their identities.

Performance Requirements. It is desirable to
keep runtime overhead low. To prevent leakage, one
could employ oblivious RAM [46] directly on the storage
backend, but this approach incurs Ω(logn) (amortized)
overhead per access, making it impractical for big data
processing. Another option is to use application-specific
data-oblivious algorithms such as oblivious sort [27],
which are both complex and limited in scope. There-
fore, offering privacy protection while enabling adoption
of state-of-the-art external memory algorithms for im-
proved performance is certainly of great interest.

For security, it is important to keep the overall
TCB small. Even though we assume the TCB to be
vulnerability-free, small TCB is preferable since verify-
ing a large code base is unwieldy. StC (presented in
Section 3) essentially adds a scrambler to existing ex-
ternal memory algorithms in order to achieve security.
Its simplicity leads to small TCB and low performance
overhead. Furthermore, its ability to parallelize enables
privacy-preserving computation at scale.

2.2 Security Definition

First, let us formalize the information that the ad-
versary can learn by observing the computation. Let
Qm
P (X) = 〈q1, q2, . . . , qz〉 be the access (read/write or

I/O) sequence the adversary observes during the exe-
cution of P on X, where m is the maximum number
of records that the trusted unit can hold at any time.
Hereafter, unless stated otherwise, we assume m >

√
n

where n is the number of input records, and omit the
superscript m in the notation. Each qi is an I/O re-
quest made by the trusted unit to the worker. It is a
3-value tuple 〈op, addr, info〉 where op ∈ {r, w} is the
type of the request (“read” or “write”), addr is the ad-
dress accessed by op, and info is metadata (⊥ if not
applicable) revealed to the worker (the record content
is not included in the request because it is encrypted).
The metadata is useful when the trusted unit wishes
to offload parts of the computation to the worker. For
example, if an algorithm sorts records by non-secret
indices, the indices can be revealed to the worker via
info, allowing the latter to complete the sorting. In our
running example (Figure 1), the first eight observed
accesses that the trusted unit made on the external
storage during the merging phase of the merge sort is:〈
〈r, S4,⊥〉, 〈r, S5,⊥〉, 〈r, S6,⊥〉, 〈w, S7,⊥〉, 〈r, S4+1,⊥〉,
〈w, S7 + 1,⊥〉, 〈r, S5 + 1,⊥〉, 〈w, S7 + 2〉

〉
, in which Si de-

notes the address of the block Si (this is also the address
of the first record in the block), and Si + j denotes the
address of the jth record in that block. The first five ob-
served accesses have already revealed the fact that the
smallest record is from S4, which in turns implies that
it originated from S1.

Our security definition requires that QP(X) leaks
no information onX (except for its size, i.e., the number
of records).

Definition 1 (Privacy-Preserving Algorithm). An al-
gorithm P is privacy-preserving if for any two datasets
X1, X2 with the same number of records, QP(X1) is
computationally indistinguishable from QP(X2).

Note that the asymptotic notion of indistinguishability
implicitly requires a security parameter κ. In the defini-
tion, the number of records in the dataset is a polyno-
mial of κ (hence the size of the private memory is also
a polynomial of κ).

Relationship to data obliviousness. A related
security notion is data obliviousness [25], in which P is
data-oblivious if QP(X1) = QP(X2) for any X1 and X2

having the same number of records. This definition is

Privacy-preserving computation with trusted computing via Scramble-then-Compute 5

stronger than ours in the sense that it implies perfect
zero leakage via access patterns. However, in practice,
since encryption is involved, we argue that the security
of data-oblivious algorithms essentially still relies on in-
distinguishability.

Permissible leakage. Some applications permit
certain leakage of information. For example, consider
the problem of grouping records by their keys, the num-
ber of unique keys may be considered non-sensitive, and
revealing it is permissible. We formulate such leakage by
a deterministic function Ψ, and call Ψ(X) the permis-
sible leakage on input X. In the group-by-key example
above, Ψ(X) is the number of unique keys in X. We say
that an algorithm is Ψ-privacy-preserving if it leaks no
information on X beyond Ψ(X).

Definition 2 (Ψ-Privacy-Preserving). An algorithm P
is Ψ-privacy-preserving if for any two datasets X1, X2

with the same number of records and permissible leak-
age (i.e., Ψ(X1) = Ψ(X2)), QP(X1) is computationally
indistinguishable from QP(X2).

Clearly, when Ψ(X) is the same for any X, then a Ψ-
privacy-preserving algorithm is also privacy-preserving.

3 Scramble Then Compute

3.1 Overview

In this section, we present StC – an approach for imple-
menting privacy-preserving external memory algorithms
that follow the computation model described earlier in
Section 2. Given an algorithm P that is not necessar-
ily privacy-preserving, StC derives AP . We give con-
ditions for P under which AP is privacy-preserving.
For those algorithms that are not inherently privacy-
preserving, StC employs a component called scrambler
which randomly permutes the input without revealing
any information of the permutation during its execu-
tion. Some algorithms, such as sort, compaction and
selection, can be made privacy-preserving immediately
via this approach. Others such as join and aggregation
are made privacy-preserving by exploiting the composi-
tion property, i.e., restructuring the original algorithms
to be composed of only privacy-preserving sub-steps.

The privacy protection that AP offers can also be
achieved by executing the original algorithm P on an
ORAM protocol [43, 46]. In fact, one can derive a
privacy-preserving execution of any algorithm using an

ORAM protocol, but with a (amortized) multiplicative
overhead factor of Ω(logn) where n is the input size [46].
In other words, for every real access that P incurs, the
ORAM execution will require accessing Ω(logn) records
to hide its access pattern. Recall that records are to be
re-encrypted every time they are accessed, this overhead
translates to 10 − 100× slowdown when processing gi-
gabytes of data [21].

StC, on the other hand, adds only an additive over-
head of O(n) to the execution. Thus, for computations
that process the entire dataset, such as sort, aggre-
gation, join and other data management algorithms,
StC clearly offers better performance, both in terms
of asymptotic complexity and practical running time.

One drawback of StC is that it is not applicable to
all algorithms. Nevertheless, we would like to remark
that the class of permutation-invariant computations
that StC covers is expressive and especially relevant in
the context of big data management. In fact, StC can
support all computations that are available in Spark.
We further elaborate on this in Section 4.

3.2 The Scrambler

We base the scrambler S on the recently proposed data-
oblivious Melbourne shuffle algorithm by Goodrich et
al. [39]. We first describe the Melbourne shuffle algo-
rithm before discussing construction of S.

3.2.1 Building block: Melbourne Shuffle algorithm
The Melbourne shuffle algorithm [39] follows a compu-
tation model described in Section 2. In particular, it as-
sumes a trusted unit with private memory of size O(

√
n)

where n is the input size, and records are only decrypted
inside the trusted unit and re-encrypted before being
written back to the storage.

The algorithm takes as input a data set X com-
prising n items and a randomly chosen permutation
π, and obliviously arranges the n items to their final
position in X̃ according to π. The permutation π can
be generated using a pseudo random permutation [30],
and represented by a short secret seed. The algorithm is
data-oblivious in a sense that it incurs the same access
sequence for all X of the same size.

The shuffling requires two intermediate arrays T1

and T2 which are of size p1n and p2n, respectively (p1

and p2 are constants larger than one and p2 ≥ p1).
Records in X, T1, T2 and X̃ are grouped into buckets.
Each bucket of T1 and T2 can hold upto p1

√
n and p2

√
n

records, respectively. The buckets are further grouped

Privacy-preserving computation with trusted computing via Scramble-then-Compute 6

into chunk. Each chunk consists of exactly 4
√
n buckets,

hence there are 4
√
n chunks in total.

The algorithm proceeds in three phases: two distri-
bution phases and a single clean-up phase. In the first
distribution phase, the trusted unit reads batches of

√
n

records from X, splits records into 4
√
n segments accord-

ing to their final positions indicated by π, and writes
the ith segment to the ith chunk in T1. If a segment
contains less than p1 4

√
n records (i.e., half-full), dum-

mies are added to ensure data-obliviousness. On the
other hand, if some segment contains more than p1 4

√
n

records, the algorithm fails. At the end of this phase,
records are placed in correct chunk, but not the cor-
rect bucket within the chunk. In the second distribution
phase, the trusted unit reads buckets of p1

√
n records

in each chunk of T1, ignores dummies, divides the real
records into 4

√
n segments according to their final posi-

tions, and writes the jth segment to the jth bucket of
the same chunk in T2. If a segment has less than p2 4

√
n

records, it is padded with dummies. If some segment
contains more than p2 4

√
n records, the algorithm fails.

At the end of this phase, records are placed in the cor-
rect bucket, but not necessarily at the correct positions
within that bucket. Finally, the clean-up phase removes
dummies and arranges real records to correct positions
within their own bucket.

The Melbourne shuffle algorithm runs in O(n) time,
failing with negligible probability:

Prfail ≤ 2n3/4(ep1

p
p1 4√n
1

+ ep2

p
p2 4√n
2

) = negl(n)

where negl(n) is a negligible function.

3.2.2 The Scrambler Construction
The scrambler S is a probabilistic algorithm that takes
as input a dataset X and outputs a permuted sequence
X̃ = π(X) where π is a random permutation2. We rea-
son about the security of S using a notion of indistin-
guishability.

Recall that in our computation model, input and
output records are always encrypted. Let us denote by
S̃ a variant of S with one additional step that decrypts
all records in the output X̃ at the end. Intuitively, we
would like S to transform X to X̃ = π(X) without re-
vealing any information on X and π. More formally, we
say that S is secure if (1) it is privacy-preserving, and
(2) S̃ is Ψ-privacy-preserving with respect to a deter-
ministic function Ψ that outputs the sorted sequence of

2 It is not necessary that every permutation is equally likely

the input X. Condition (1) ensures that no information
on X is leaked, while condition (2) guarantees that the
permutation π is not revealed.

We construct S based on the Melbourne shuf-
fle algorithm. Another (arguably simpler) construction
of S could be based on Chaum’s mix-network [17],
which achieves statistical indistinguishability, but re-
quires large trusted memory [31].

The Melbourne shuffle algorithm may fail with a
negligible probability, requiring repeating the shuffling
with another random seed. This leads to a probabilistic
running time. Fortunately, the probability of failure is
negligible and thus it is still computationally infeasible
for an adversary to distinguish the access patterns of
the algorithm on different inputs of the same size via
timing attack. Nevertheless, since it is not straightfor-
ward to reason about the complexity of combined StC
algorithms should S has probabilistic running time, we
implement S using a variant of the Melbourne shuffle
whose running time is deterministic.

S first generates a permutation πo using a secure
pseudo-random permutation [30]. Next, it executes the
Melbourne shuffle algorithm with πo and X as input.
If the underlying Melbourne shuffle completes without
failure, S outputs X̃ = πo(X). In case there is a segment
contains more than an expected number of records (i.e.,
p1 4
√
n in the first distribution phase, and p2 4

√
n in the

second distribution phase), instead of failing as in the
original algorithm, S distributes the overflowing records
(called outliers) among other half-full segment(s). Once
the outliers are consumed, segments that are still half-
full will be padded with dummies. In the clean-up phase,
the trusted unit scans through the intermediate array
T2, removing the dummies and outputting X̃ = π(X)
where π is some secret permutation.

The two distribution phases of S are data-oblivious,
while its clean-up phase is privacy-preserving. The ac-
cess patterns of the clean-up phase (and thus S) are
different only if there is a bucket of T2 containing more
than

√
n records. Fortunately, such event happens with

negligible probability (upper bounded by the probabil-
ity wherein the Melbourne shuffle fails). It can be proven
that S is secure according to the definition put forth ear-
lier.

Similar to the Melbourne shuffle, S runs in O(n)
time. It is invoked in every run of a privacy-preserving
algorithm constructed under StC. If an algorithm com-
prises privacy-preserving sub-steps, S is invoked sepa-
rately in each sub-step. Without loss of generality, we
can consider the number of such sub-steps a constant.

Privacy-preserving computation with trusted computing via Scramble-then-Compute 7

Hence, S adds an additive overhead of O(n) to the exe-
cution of StC algorithms.

3.3 Deriving Privacy-Preserving Solutions

Recall that P is permutation-invariant if it always out-
puts the same result on different input permutations.
Examples include sort and group-by-key algorithms.
However, hash table lookup or binary search algorithm,
which assumes certain structure or order of the input,
is not permutation-invariant.

Scramble-then-compute. Given a permutation-
invariant algorithm P, StC derives an algorithm AP
by first scrambling its input X, then forwarding the
scrambled data to P. Specifically, AP(X) = P(S(X)).
Clearly, by the definition of permutation-invariant, AP
preserves the correctness of the original P, in the sense
that AP(X) = P(X) for any X. Let us call AP the
combined StC algorithm.

Before stating our theorem, let us first introduce the
following two definitions.

Definition 3 (Tagging Algorithm). A deterministic
algorithm T operating on X is a tagging algorithm if
it is permutation-invariant, and the output T (X) is a
permuted sequence of 〈1, 2, . . . , n〉, where n is the num-
ber of records in X.

Let us call the output T (X) the tags. A tagging
algorithm can, on input of a sequence of integers
〈50, 10, 30, 1〉, output tags 〈4, 2, 3, 1〉 representing the
record ranks in the input according to ascending order.

Definition 4 (Imitator). Given an algorithm P, the
pair of two algorithms 〈P∗, T 〉 in which T is a tag-
ging algorithm operating on X is an imitator of P if
for any input X and permutation π, the access sequence
QP(π(X)) = QP∗(π(T (X))).

The algorithm P∗, when operating on the tags, essen-
tially incurs the same observable behaviour as P does
on X. We now give a sufficient condition for combined
StC algorithm AP to be privacy-preserving.

Theorem 1. Given a permutation-invariant algorithm
P, if there exists an imitator 〈P∗, T 〉 of P, then AP is
privacy-preserving.

Proof. [Main idea] The proof consists of two parts. The
first part shows that an algorithm AP∗ constructed un-
der StC which scrambles the tags before feeding them

to P∗ is privacy-preserving. This is to manifest that
AP∗ leaks no information on the tags. The second part
extends the result to the original input X, i.e., showing
that if AP∗ is privacy-preserving, then so is AP . This
is not surprising, for the tags do not reveal content of
X, and P∗ incurs the same access pattern as P does.

Part 1. Let us denote by AP∗ the algorithm that exe-
cutes the scrambler S follows by P∗, and by T input tags
of AP∗ . Under AP∗ , T are first scrambled by S, and then
the scrambled tags R = S(T) are fed to P∗. We note
that T and R always remain encrypted outside of the
trusted unit. To prove that AP∗ is privacy-preserving,
intuitively, we want to show that even if R are revealed
(i.e., by decrypting and revealing the plaintexts to the
adversary), and P∗ is not privacy-preserving, the adver-
sary is still unable to obtain sensitive information on T .
We formally reason such intuition in the following.

Let S̃ be a variant of S with an additional final step:
after scrambling T , S̃ intentionally decrypts and reveals
plain-text of R via the meta data info in the read/write
requests. Let ÃP∗ be an algorithm that applies S̃ on its
input before feeding the output of S̃ to P∗. Clearly, if
ÃP∗ is privacy-preserving, then so is AP∗ .

Let us denote by T1 and T2 two sequences
π1(〈1, 2, . . . , n〉) and π2(〈1, 2, . . . , n〉) where π1 and π2

are any two permutations. Let us also denote by R1 and
R2 scrambled tags S̃(T1) and S̃(T2). By the security of
the scrambler, the distribution of the access sequence
and revealed tags 〈QS̃(T1), R1〉 is indistinguishable from
that of 〈QS̃(T2), R2〉, and hence R1 and R2 are indis-
tinguishable. Accordingly, it follows that the access se-
quences generated by P∗ (i.e., QP∗(R1), QP∗(R2)) are
indistinguishable from each other. Overall, QÃP∗ (T1)
is indistinguishable from QÃP∗

(T2). Therefore ÃP∗ is
privacy-preserving, and so is AP∗ .

Part 2. We next show by contradiction that AP
is privacy-preserving. Suppose AP is not privacy-
preserving, i.e., there existX1, X2 having the same num-
ber of records and an algorithmAdv that can distinguish
QAP (X1) and QAP (X2). Let T1 = T (X1) and T2 =
T (X2) be the corresponding tags. We can construct
a distinguisher D that differentiates QAP∗ (T1) and
QAP∗ (T2) by imitating Adv. Recall that QP(π(X)) =
QP∗(π(T (X))) for any permutation π, it shall follow
that QAP (X) = QAP∗ (T (X)). When given access se-
quences generated by AP∗ , D can transform them to the
corresponding access sequences generated by AP . By
imitating Adv on the transformed sequences, it is able

Privacy-preserving computation with trusted computing via Scramble-then-Compute 8

to distinguish QAP∗ (T1) and QAP∗ (T2), contradicting
the fact that AP∗ is privacy-preserving proven above.
Therefore, AP must be privacy-preserving.

The theorem provides an easy mean to determine
whether an existing external memory algorithm P can
be made privacy-preserving via StC: it suffices to define
an imitator of P. If P is a comparison-based algorithm,
the tagging algorithm T is the one that outputs the
record ranks, and P∗ is a comparison-based algorithm
similar to P but operates on the record ranks. If the
records are unique, then 〈P∗, T 〉 is an imitator of P.

The above theorem does not consider the case of
permissible leakage. Intuitively, when permissible leak-
age is acceptable, the imitator should have access to
such leakage. Hence, given P and a permissible leak-
age Ψ, we say that 〈P∗, T 〉 is an Ψ-imitator of P if the
access sequence QP(π(X)) = QP∗(π(T (X)),Ψ(X)) for
any X and permutation π.

Theorem 2. Given a permutation-invariant algorithm
P and a permissible leakage Ψ, if there exists an Ψ-
imitator of P, then AP is Ψ-privacy-preserving.

The proof for this theorem is similar to that of Theorem
1 and is omitted.

Composition. By hybrid argument [30], it is feasi-
ble to derive a privacy-preserving algorithm via a com-
position of other privacy-preserving algorithms. In spe-
cific, if algorithms P1 and P2 are privacy-preserving,
their composition, i.e., executing one after another
wherein the output of P1 is the input of P2, is also
privacy-preserving. We note subtly that only a poly-
nomial number of compositions (with respect to κ)
are allowed. In another words, the number of com-
bined privacy-preserving algorithms cannot be arbitrar-
ily large. Interested readers can refer to [30] for a de-
tailed discussion. Nevertheless, this restriction does not
affect the utilization of StC in practice, for practical
algorithms do not contain a very large number of sub-
steps. We demonstrate the composition property using
two examples of aggregation and join algorithms in Sec-
tion 4.4 and 4.5.

3.4 Handling Duplicates
The permutation-invariant condition is strict, for it
requires the output of the algorithm operating on
the scrambled data to be exactly the same as that
when it operates on the original input. For exam-
ple, a merge sort algorithm operating on duplicate

records does not meet this condition. Consider X =
〈00, 01, 02, 03, 04, 05〉 where the subscripts denote the
original positions in the input, it may be the case
that P(X) = 〈00, 03, 01, 04, 02, 05〉 while AP(X) =
〈00, 02, 01, 05, 03, 04〉 for a certain permutation generated
by S. This problem can be resolved by adding meta-
data (e.g., address of the record) to the keys so that the
input contains no duplicate. Without loss of general-
ity, some algorithms that are not permutation-invariant
can be made so by introducing a pre-processing step
that appends metadata to the input, then reversing the
effect via a corresponding post-processing step. We use
this technique in deriving privacy-preserving implemen-
tations of sort and selection algorithms (Section 4).

3.5 Discussion
We stress the simplicity StC offers in deriving privacy-
preserving algorithms from existing algorithms. One im-
mediate benefit is code reuse. For example, there are ex-
tensive studies on sorting algorithms, each catered for
a specific system configuration and application. With
StC, especially with its ability to support parallelism,
we can easily adopt the most suitable algorithm with
the most well-tuned parameters. Another benefit is the
small TCB, as we can choose an algorithm with small
codebase. This is as opposed to implementing convo-
luted algorithms like existing data-oblivious ones. Fur-
thermore, our approach offers an arguably simpler way
of implementing data-oblivious algorithms; the compo-
sition property allows us to replace the complex data-
oblivious sub-steps with more efficient StC alternatives.
We demonstrate this advantage in Section 4.5.

Finally, although the algorithms considered so far
are deterministic, StC also generalizes to probabilistic
instances such as quick sort. Specifically, they can be
modified to take the random choices as additional input,
making them deterministic and to which our theorems
can be applied.

4 Privacy-Preserving
Computations with StC

We demonstrate the utility of StC by showing privacy-
preserving implementations of five algorithms: sort,
compaction, selection, aggregation and join. These al-
gorithms are the core to various data management ap-
plications. Sort is fundamental to any database systems.
Compaction is vital in many distributed key-value stores
where updates are directly appended to disk and com-

Privacy-preserving computation with trusted computing via Scramble-then-Compute 9

Table 1. Comparison of time complexity of different algorithms. For join algorithm, l is the size of the result

Algorithm Baseline StC Oblivious Algorithms
Sort O(n logn) O(n logn) O(n log2 n)

Compaction O(n) O(n) O(n logn)
Selection O(n) O(n) O(n)

Aggregation O(n logn) O(n logn) O(n logn)

Join O(n1 logn1 + n2 logn2) O(n1 logn1 + n2 logn2 +
l log l)

O(n1 logn1 + n2 logn2 +
l log l)

paction is frequently scheduled to improve query perfor-
mance [7, 8, 33]. Selection is essential in order statistic.
Aggregation is widely used in decision support systems
to summarize data, making it an integral part of data
warehouse systems. Join is arguably one of the most im-
portant operations in data management, and commonly
used for data integration that is becoming more impor-
tant given the variety of data sources [29]. By showing
that StC is applicable to these algorithms, we would
like to remark that it can be generalised to support a
wide range of data management applications.

Among the five algorithms under consideration, the
first three are realized directly through StC, and the
other two by stitching together privacy-preserving sub-
steps. We provide performance analysis for each algo-
rithm and compare it with the baseline implementation
as well as the data-oblivious alternative. Our algorithms
offer better privacy protection than the baseline imple-
mentations, and similar to the data-oblivious alterna-
tives but with better performance. We summarize in
Table 1 the time complexities of the StC algorithms in
comparison with the baseline algorithms that are not
privacy-preserving and the corresponding oblivious al-
gorithms offering similar level of privacy protection.

We further illustrate how StC can be generalized
to support generic privacy-preserving computations at
scale by applying it on basic operations in Spark [1]
(Section 4.6). Owing to the facts that Spark is a general
computing framework for scalable data processing and
that it witnesses a steady adoption in various applica-
tion domains [37, 50], supporting Spark computations in
StC promises a capability of building complex and gen-
eral privacy-preserving applications with ease of design
and implementation.

4.1 Sort

The algorithm sorts the input according to a cer-
tain order of the record keys. We consider the

ExternalMergeSort algorithm [32], in which the in-
put is divided into s = n/m blocks (s < m) and
the sorted blocks are combined in one merging step
using s-way merge. This algorithm has optimal I/O
performance, but leaks the input order when imple-
mented in the baseline system. In StC, we first adds
a pre-processing step (i.e., MakeKeyDistinct()) that
appends the address of each record to its key, i.e.,
key(x′i) = key(xi)||i. The result is then forwarded to S,
whose output is used as the input to the original algo-
rithm (the comparison function breaks ties using the ad-
dress attached to the key). Finally, the post-processing
step (i.e., RevertKey()) scans through the output and
removes the address information.

This derived algorithm, called pSort, is detailed in
Algorithm 1. pSort runs in O(n logn) time. The pre-
processing and post-processing steps make the original
algorithm permutation-invariant. We can construct its
imitator by specifying the two algorithm P∗ and T .
The tagging algorithm T on input X outputs the se-
quence of record ranks, and P∗ is essentially the ex-
ternal merge sort algorithm operating on the record
ranks. For example, if X = 〈50, 30, 10, 1〉, then T (X) =
〈4, 3, 2, 1〉; and P∗ is executed on T (X). It is triv-
ial to see that QP(π(X)) = QP∗(π(T (X))) for any
permutation π and input X, where P is the underly-
ing ExternalMergeSort algorithm. Thus, by Theo-
rem 1, pSort is privacy-preserving. To the best of our
knowledge, the most efficient data-oblivious sorting al-
gorithms run in O(n log2 n) [27]. We note that there
also exists a randomized oblivious sort algorithm that
runs in O(n logn) time [25]. However, it features a large
constant factor and is not necessarily faster than the
O(n log2 n) version.

We emphasize the efficiency of the pSort algorithm.
Given a number of privacy-preserving solutions relying
on the sorting primitive [40, 43], having an efficient im-
plementation of a privacy-preserving sorting algorithm
is certainly of significant interest.

Privacy-preserving computation with trusted computing via Scramble-then-Compute 10

procedure pSort(X)
X ′ ←MakeKeyDistinct(X);
X̃ ← S(X ′);
Y ′ ← ExternalMergeSort(X̃);
Y ← RevertKey(Y ′);
return Y ;

end procedure

4.2 Compaction

The algorithm removes (n−n′) marked records from the
input of n records, while preserving the original order
of the remaining n′ records. The baseline algorithm –
Filer() – sequentially reads the input records into the
trusted unit and writes back those unmarked records
(re-encrypted). This solution is efficient but reveals the
distribution of the marked records. In StC, the algo-
rithm pCompact consists of four steps. In the first step
(i.e., Mark(X)), the trusted unit initializes two coun-
ters, C1 = 0, C2 = n. While scanning through X, it
labels each record with C1 or C2 if the record is un-
marked (to be retained) or marked (to be removed),
respectively. C1 is incremented while C2 is decremented
after each labelling. The next two steps involve running
the labelled input through S and then the baseline al-
gorithm. Finally, the trusted unit reveals the labels to
the worker so that the latter can move records to their
final positions (i.e., Arrange()).

pCompact runs in O(n), while the data-oblivious
alternative [25] runs in O(n logn). The sub-procedure
Mark() and Arrange() make the original algo-
rithm permutation-invariant. We show the security
of pCompact by considering the following imitator
〈P∗, T 〉. The tagging algorithm T associate with each
record xi in X a counter ti according to the follow-
ing two rules. First, if xi is unmarked, then ti ≤ n′;
otherwise, ti > n′. Second, for any i < j, ti < tj
if both xi and xj are unmarked; or ti > tj if both
xi and xj are marked. The algorithm P∗ is essentially
the same baseline algorithm operating on T (X). Here,
the permissible leakage Ψ(X) is the number of marked
records in X (the data-oblivious algorithm [25] also re-
veals this information), which is accessible to P∗. Since
QP(π(X)) = QP∗(π(T (X)),Ψ(X)) for any X and π,
where P is the underlying filter algorithm, by theorem 2,
pCompact is Ψ-privacy-preserving, where Ψ(X) reveals
the output size.

1: procedure pCompact(X)
2: X ′ ←Mark(X)
3: X̃ ← S(X ′)
4: Ỹ ← Filter(X̃)
5: Y ← Arrange(Ỹ)

. Arrange() is offloaded to the worker
6: return Y

7: end procedure

4.3 Selection

The algorithm outputs the kth smallest element of the
input according to a certain order of the record keys.
A straightforward algorithm is to first sort the input
data in ascending order and then output the kth record,
but its complexity is O(n logn). Instead, we consider
the MedianOfMedians algorithm [14] that has O(n)
runtime complexity even in the worst-case. The baseline
implementation of this algorithm, however, partially re-
veals the distribution of the input records. The algo-
rithm in StC, called pSelect, is the same as pSort,
except that merge sort is replaced by the median of me-
dians algorithm. Unlike pSort, pSelect outputs one
record instead of a sorted sequence of n records.

1: procedure pSelect(X, k)
2: X ′ ←MakeKeyDistinct(X);
3: X̃ ← S(X ′)
4: Y ′ ←MedianOfMedians(X̃);
5: Y ← RevertKey(Y ′);
6: return Y ;
7: end procedure

pSelect runs in O(n) time, having the same
complexity as the existing data-oblivious alterna-
tive [25]. We show in the next section, however, that
in practice pSelect outperforms its data-oblivious
counterpart by a few times. The original algorithm
is made permutation-invariant because of the pre-
processing and post-processing steps. Its imitator com-
prises the tagging algorithm T that outputs the se-
quence of record ranks, and P∗ which is essentially
the MedianOfMedians algorithm being executed on
the record ranks. It is straightforward to observe that
QP(π(X)) = QP∗(π(T (X))) for any permutation π and
input X, where P is the underlying median of medians
algorithm. Thus, pSelect is privacy-preserving accord-
ing to Theorem 1.

Privacy-preserving computation with trusted computing via Scramble-then-Compute 11

4.4 Aggregation

The algorithm first groups records based on their keys,
then applies an aggregation function, such as summing
or averaging, over the group members. We consider a
baseline algorithm that first sorts the input, then scans
the sorted records, accumulates the values and writes
out an output record immediately after passing the last
record of each group. Because of this last step, the over-
all execution reveals number of records in each group
even if a privacy-preserving sorting algorithm is used.

It can be shown that the baseline algorithm does
not satisfy the condition in Theorem 1. Thus, we design
a new privacy-preserving aggregation algorithm, called
pAggr, and exploit the composition property to derive
its security. First, it sorts X using pSort, obtaining G
in which records of the same key are next to each other.
Second, it scans through G to compute the aggregate,
outputting one record for every record it encounters in
G. Some of these records are real output records, while
other are dummies and therefore marked so that they
can be removed later. Finally, it uses pCompact to re-
move the dummies. Because these 3 steps are privacy-
preserving, so is pAggr (i.e., it does not reveals num-
ber of records in each group). The algorithm invokes the
scrambler S twice. The overall running time is O(n logn)
— having the same complexity as that of the data-
oblivious alternative [9].

1: procedure pAggr(X)
2: G← pSort(X)
3: k = k1

. k1 is first element in the the set of distinct keys
K.

4: v = 0
5: for each g in G do
6: if key(g) = k then
7: v ← v + value(g)
8: Add 〈dummy〉 to V

. output dummy
9: else

10: Add 〈k, v〉 to V
11: k ← key(g)
12: v ← value(g)
13: end if
14: end for
15: Y ← pCompact(V)

. Remove all dummies from V

16: return Y

17: end procedure

4.5 Join

The algorithm performs the inner join on two datasets
X1 and X2. We consider the sort-merge join (generaliz-
ing to other join algorithms is straightforward), which
first sorts X1 and X2, then performs interleaved linear
scans on two sorted sequences to pair matching records.
Implemented in the baseline system, the sorting and
matching steps reveal the entire join graph.

Similar to the aggregation algorithm, the baseline
join algorithm cannot be transformed using StC. We de-
sign a new privacy-preserving algorithm, pJoin, based
on the data-oblivious version proposed by Arasu et
al. [10]. The data-oblivious algorithm consists of two
stages: the first stage computes the degree of each
record in the join graph, and the second stage dupli-
cates each record a number of times indicated by its
degree. The output is generated by “stitching” corre-
sponding (duplicated) records with each other. In the
nutshell, pJoin follows the workflow of Arasu et al. data-
oblivious join algorithm [10], but improves its overhead
by implementing the first stage using one pSort, two
linear-scan and two pCompact steps (line 2-7), while
reimplementing the data-oblivious expansion step with-
out change for the second stage. (line 8-9).

1: procedure pJoin(X1, X2)
2: X ← X1||X2

3: S ← pSort(X)
. tie is broken such that X1 records always come

before X2 records
4: V2 ← FRSum(S)
5: V1 ← RRSum(S)
6: W1 ← pCompact(V1)
7: W2 ← pCompact(V2)
8: X1exp ← OExpand(W1)
9: X2exp ← OExpand(W2)

10: Y ← X1exp ·X2exp

. stitch expansion of X1 and X2 to get the join
output

11: return Y

12: end procedure

In the first stage, pJoin first combines X1 and X2

into one big dataset X of size n = n1 + n2, then pri-
vately sorts X using pSort, ensuring that for those
records having the same key, tie is broken by placing
X1’s records before X2’s. Next, it scans the entire X in
two passes. The first pass, FRSum(), assumes that each
X1 record has a weight value of 1 while X2 record has

Privacy-preserving computation with trusted computing via Scramble-then-Compute 12

Table 2. List of Spark’s functions supported in StC.

Scramble-then-compute Composition

Privacy-preserving

map, filter, mapPartition, sample,
distinct, sortByKey, cartesian,

repartition, count, first,
takeOrdered

union, intersection, reduceByKey,
aggregateByKey, join, cogroup,

reduce, takeSample, countByKey

Ψ-privacy-
preserving

flatMap, groupByKey,
repartitionAndSortWithinPartitions

a weight value of 0. It traverses X in forward direction
(i.e., from left to right), associating with each record
the running sum of weights in its group. At the end of
this pass, each record in X2 is associated with a weight
representing its degree in the join graph. Similarly, the
second pass, RRSum(), assumes weight values of 0 for
X1 records and 1 for X2 records, scans X backwards
(i.e., from right to left) and associates with each record
the running sum of weights in its group. At the end of
this pass,X1 records are associated with theirs degree in
the join graph. After these two passes, pCompact is in-
voked twice to privately remove X2 and X1 records from
V1 and V2, respectively, giving two weight sequencesW1

and W2.
In the second stage, pJoin duplicates each record

in X1 and X2 a number of times indicated by its asso-
ciated weight. It directly uses the oblivious expansion
algorithm OExpand() presented in [10] for this step.
Finally, it performs a linear scan to stitch records to-
gether and generate the final output Y. Appendix B
gives a detailed example for pJoin.

pJoin runs with the same complexity as the data-
oblivious version does, i.e., O(n logn + l log l) where l
is the output size. Nevertheless, we show later in Sec-
tion 5 that pJoin has a lower running time in practice,
because pSort and pCompact are more efficient than
the corresponding data-oblivious steps. Each and every
step in pJoin is privacy-preserving, so is pJoin.

4.6 Supporting Spark Operations

Spark [1] is a general computing framework that has
been widely adopted in various application domains in-
cluding machine learning and data analysis [51]. Thus,
by supporting Spark functions in StC, our solution en-
ables developers to build complex privacy-preserving
applications. While StC covers only a certain class of
computations (e.g., those that are invariant to input
permutation), its compatibility with Spark has proved
that such a class is expressive enough to enable a wide

range of privacy-preserving computations. We remark
that most, if not all, of functions in Spark require ac-
cessing the entire dataset during their execution, render-
ing ORAM protocols’ amortized multiplicative overhead
significantly prohibitive when processing a large volume
of data (e.g., translating to 10− 100× slowdown).

We summarize our effort in Table 2. Some
functions benefit immediately from StC, simi-
lar to pSort and pSelect, while other func-
tions require rewriting the original algorithms
to be composed of other privacy-preserving
steps. Almost all of these functions are privacy-
preserving, except for flatMap, groupByKey, and
repartitionAndSortWithinPartitions which are
Ψ-privacy-preserving. The permissible leakage Ψ of
these three algorithms is output records’ distribution,
which conveys a certain information about the distri-
bution of the input records with respect to their key
or partition. For example, the groupByKey function
reveals how many input records sharing the same key.

5 Performance Evaluation
We evaluate StC by benchmarking the five algo-
rithms discussed in the last section. We first quan-
tify the cost of security that StC incurs, by com-
paring the running time of our algorithms with those
implemented in the baseline system. In addition, we
compare this cost with that of the state-of-the-art
data-oblivious alternatives: oblSort for sorting [27],
oblCompact for compaction [25], oblSelect for
selection [25], oblAggr for aggregation [9] and
oblJoin for join [10]. Next, we evaluate our ap-
proach’s scalability by measuring the algorithm perfor-
mance when running on a network of multiple nodes.

We generate the input data using the Yahoo! Tera-
Sort benchmark [41]: each record comprises a 10-byte
key and a 90-byte value. We encrypted each record
with AES-GCM using a 256-bit key, generating a 132-
byte ciphertext. We vary the input size from 8GB to

Privacy-preserving computation with trusted computing via Scramble-then-Compute 13

64GB (i.e., 226 to 229 records). Our implementations
use Crypto++ library for cryptographic operations. For
the distributed implementations, we use HDFS as the
backend storage and Zookeeper to synchronize the pro-
cesses. We run our experiments on an eight-node cluster
of commodity servers, each node has an Intel Xeon E5-
2603 CPU, 8GB of RAM, two 500GB hard drives and
two 1GB Ethernet cards. In order to simulate a trusted
hardware (e.g., IBM 4767-002 PCIeCC2 [3]), we limit
the CPU clock to 233MHz and use 64MB of RAM to
represent its private memory (i.e., m = 219). We repeat
each experiment 10 times and report the average results.

5.1 Cost of Security

Table 3 compares the running time for various algo-
rithms with 32GB inputs (or n = 228 records) on one
node. While StC algorithms can run on multiple nodes,
we are not aware of any distributed versions of the five
data-oblivious algorithms under consideration. Thus, to
make the comparison fair, we ran StC algorithms on
a single node. It can be seen that StC algorithms in-
cur overheads between 1.79× to 4.91× over the baseline
system. To better understand the factors contributing
to the overheads, we measured the time taken by the
scrambler, by the worker (if any) and by other opera-
tions in the trusted unit. The last factor includes the
time spent on pre-processing, post-processing steps and
on the main algorithm logic. Figure 3 depicts the break-
down, showing consistently across all algorithms that
the cost of scrambling is significant: from 27.4% (pJoin)
to 64.1% (pSelect). The time taken by the untrusted
worker accounts for small portions of the total running
time, from 0.6% (pSort) to 5.4% (pCompact). This
is because the worker does not perform cryptographic
operations which are computationally expensive.

5.2 Comparison with data-oblivious
algorithms

The overheads of data-oblivious algorithms are between
5.99× to 16.65× in comparison to the baseline system.
Thus, we remark that StC algorithms incur relatively
low overhead and therefore are practical. Figure 4 fur-
ther illustrates that compared to their data-oblivious
alternatives, they are consistently more efficient across
all input sizes while offering similar privacy protection.
More specifically, the privacy-preserving sorting algo-
rithm under StC is up to 4.1× faster than the data
oblivious one, compaction is up to 3.4×, selection is up

Table 3. Overall running time (in seconds) of StC’s algorithms
in comparison with: (1) implementations in the baseline system
with weaker security and (2) data-oblivious algorithms offering the
similar level of privacy protection.

ObliviousAlgorithm Baseline StC Algorithms

Sorting 7961 14330 59628
(1.79×) (7.49×)

Compaction 1678 8253 25012
(4.91×) (14.89×)

Select 2758 9451 29365
(3.42×) (16.65×)

Aggregation 10593 24578 63477
(2.32×) (5.99×)

Join 12400 59610 105235
(4.81×) (8.49×)

pSort pCompact pSelect pAggr pJoin
0

0.2

0.4

0.6

0.8

1
no

rm
al

iz
ed

ru
nn

in
g

ti
m

e

scrambler worker other operations of trusted unit

14330 8253 9451 24578 59610

Fig. 3. Normalized running time breakdowns for StC’s algorithms.
The total running time (in seconds and displayed on top of each
bar) comprises of the time taken by the scrambler, by the worker,
by the pre-processing and post-processing steps, and by the main
algorithm logic.

to 3.8×, aggregation is up to 3.1×, and join is 1.8×. We
note that the speedup for join is smaller than for the
others because the data-oblivious expansion algorithm,
which pJoin inherits directly from [10], contributes the
most to the total running time. It is also worth noting
that the speedup becomes more evident with larger in-
puts: from 1.3−2.7× for 8GB datasets to 1.8−4.1× for
64GB datasets.

5.3 I/O complexity of STC algorithms

Table 4 details the numbers of I/O and cryptographic
operations required by StC algorithms and their data-
oblivious counterpart. StC algorithms require O(n)

Privacy-preserving computation with trusted computing via Scramble-then-Compute 14

8 16 32 64

104

105

Input size (GB)

ru
nn

in
g

ti
m

e(
s) pSort

oblSort[27]

(a) Sort

8 16 32 64

103.5

104

104.5

Input size (GB)

ru
nn

in
g

ti
m

e(
s) pCompact

oblCompact[25]

(b) Compaction

8 16 32 64

103.5

104

104.5

Input size (GB)

ru
nn

in
g

ti
m

e(
s) pSelect

oblSelect[25]

(c) Selection

8 16 32 64

104

105

Input size (GB)

ru
nn

in
g

ti
m

e(
s) pAggr

oblAggr[9]

(d) Aggregation

8 16 32 64

104.5

105

Input size (GB)

ru
nn

in
g

ti
m

e(
s) pJoin

oblJoin[10]

(e) Join

Fig. 4. Performance comparison between our algorithms and the corresponding data-oblivious alternatives. Running time (s) is shown in
log-scale.

Table 4. Number of re-encryptions and I/O complexity required by StC’s algorithms and relevant data-oblivious algorithms. n is the
input size, p1 and p2 are constant parameters in the scrambler’s configuration. In our experiments, p1 = p2 = 2. s = n/m and d is the
average degree of records in the join graph.

Algorithm # Re-Encryptions I/O Complexity
pSort (p1 + p2 + 5) · n O(n)

oblSort[27] (
∑log s

i=1 i+ log s+ 1) · n O(n log2 n)
pCompact (p1 + p2 + 2) · n O(n)

oblCompact[25] (1 + logn) · n O(n logn)
pSelect (p1 + p2 + 4) · n O(n)

oblSelect[25] 1
2 (4 + logn) · n O(n)

pAggr (2p1 + 2p2 + 8) · n O(n)
oblAggregate[9] (

∑log s

i=1 i+ log s+ logn+ 3) · n O(n log2 n)
pJoin (3p1 + 3p2 + 9 + d) · n O(dn)

oblJoin[10] (
∑log s

i=1 i+ log s+ 2 logn+ 5 + d) · n O(n log2 n)

I/Os with a small constant factor, whereas all data-
oblivious algorithms, except for oblSelect, have super-
linear I/O complexity. I/O complexity of the join algo-
rithm depends on d, the average record degree in the
join graph. For uniformly distributed datasets, d can
be considered as a constant (we assumed d = 3 in our
experiments). The number of re-encryptions of StC al-
gorithms depends on the number of re-encryptions per
scrambling step: n(p1 +p2). In our experiments, we find
that for the datasets under consideration, with p1 =
p2 = 2, the scrambler achieves optimal performance.
On the other hand, the numbers of re-encryptions re-
quired by data-oblivious algorithms depend only on the
size of the secure memory. With secure memory of size
m = c

√
n (where c is a small constant larger than

one), the data-oblivious algorithms perform a few times
more re-encryptions than StC algorithms, which di-
rectly translates to considerable performance overheads.

5.4 Scalability

Figure 5 reports the running time of StC algorithms
on multiple nodes. It demonstrates that StC can lever-

age resources in distributed environment to achieve sig-
nificant speedups. In particular, increasing the number
of nodes from one to eight results in 4× speedup for
sort and up to 7× for compaction, selection and ag-
gregation. This is over an order-of-magnitude better
than single-node data-oblivious algorithms. However,
pJoin achieves only 2× speedup, because we cannot
parallelize the oblivious expansion algorithm. We note
that the speedup comes from the distribution of both
the scrambler and of the original algorithm itself. Al-
though our current implementations may not be the
most efficient, their simplicity and speedup gained when
scaling out are compelling evidence of StC’s advantages
over existing data-oblivious algorithms.

6 Related Work
Secure Computation using Trusted Hardware.
Several systems have used trusted computing hardware
such as IBM 4764 PCI-X[2] or Intel SGX [4] to enable
secure computations, especially focusing on query pro-
cessing. TrustedDB [11] presents a secure outsourced
database prototype that leverages IBM 4764 secure

Privacy-preserving computation with trusted computing via Scramble-then-Compute 15

1 2 4 8

103

104

nodes

ru
nn

in
g

ti
m

e(
s)

(a) 8GB

1 2 4 8

103

104

nodes
ru

nn
in

g
ti

m
e(

s)

pSort pCompact pSelect pAggr pJoin

(b) 16GB

1 2 4 8
103

104

nodes

ru
nn

in
g

ti
m

e(
s)

(c) 32GB

1 2 4 8

104

105

nodes

ru
nn

in
g

ti
m

e(
s)

(d) 64GB

Fig. 5. StC algorithms performance on multiple nodes with different input sizes. Running time (s) is shown in log-scale.

CPU (SCPU) for privacy-preserving SQL queries. Ci-
pherbase [9] extends TrustedDB’s idea to offer a full-
fledged SQL database system with data confidential-
ity. V C3 [45] employs Intel SGX processors to build
a general-purposed data analytics system. In particu-
lar, it supports MapReduce computations, and protects
both data and the code inside SGX’s enclaves. However,
these systems do not meet our security definition; i.e.,
they offer a weaker security guarantee.

Recent systems [21, 38] adopt a similar approach
to this paper’s to support privacy-preserving computa-
tion. However, they focus on the MapReduce compu-
tation model, and specifically use scrambling to ensure
security for the shuffling phase (which is essentially a
sorting algorithm). StC is a more general solution that
supports many other algorithms.

Ohrimenko et al. presented a system for oblivious
multi-party machine learning, supporting various train-
ing and prediction methods [40]. StC, on the other
hand, focuses on data management operations.

Secure Computation by Data-Oblivious
Technique. Oblivious-RAM [24] enables secure and
oblivious computation by hiding data access patterns
during program execution. ORAM techniques [15, 27,
43] trust a CPU with limited internal memory, while
storing user programs and data encrypted on the un-
trusted server. A non-oblivious algorithm can be made
data-oblivious by adopting ORAM directly, incurring
performance overhead of Ω(logn) per each access.
StC offers a similar level of security with O(n) addi-
tive overhead.

Goodrich et al. proposed several data-oblivious al-
gorithms [25–27] which we used for benchmarking StC.
The authors also presented approaches to simulate
ORAM using data-oblivious algorithms [27]. Other in-
teresting data-oblivious algorithms have also been pro-
posed for graph drawing [28] and graph-related compu-

tations such as maximum flow, minimum spanning tree,
single-source single-destination (SSSD) shortest path,
or breadth-first search [13]. However, these algorithms
are application-specific and less efficient than StC al-
gorithms.

Access Confidentiality via shuffling. The use
of scrambling process in hiding data access patterns has
been discussed in the literature [20, 43, 48, 49]. While
these works are ideal for applications that make few ac-
cesses in a large dataset, they may not necessarily be so
for other applications that potentially require accessing
the entire dataset multiple times, for example data man-
agement tasks. For such applications, customized algo-
rithms are likely to perform better (e.g., [38]). StC of-
fers a simple way for implementing those algorithms.

7 Conclusion
We have described StC, an approach for implementing
practical privacy-preserving algorithms using trusted
computing with limited secure memory. We showed
that many algorithms can be made privacy-preserving
by directly applying StC, and others can be imple-
mented efficiently by rewriting them using only privacy-
preserving sub-steps. We demonstrated StC’s utility by
implementing five algorithms, all of which are not only
privacy-preserving but also asymptotically optimal. We
showed experimentally that these algorithms are effi-
cient and scalable, outperforming the data-oblivious al-
ternatives with similar privacy protection. StC algo-
rithms can be distributed and therefore able to support
privacy-preserving computation at scale.

Privacy-preserving computation with trusted computing via Scramble-then-Compute 16

References
[1] Apache Spark. http://spark.apache.org/.
[2] IBM 4764 PCI-X Cryptographic Coprocessor. http://www-

03.ibm.com/security/cryptocards/pcixcc/overview.shtml.
[3] IBM PCIe Cryptographic Coprocessor Version 2 (PCIeCC2).

http://www-03.ibm.com/security/cryptocards/pciecc2/
overview.shtml.

[4] Software Guard Extensions Programming Reference. https:
//software.intel.com/sites/default/files/managed/48/88/
329298-002.pdf.

[5] WikiLeaks Publishes NSA Target List. https://www.
schneier.com/blog/archives/2016/03/wikileaks_publi.html.

[6] Agrawal, Rakesh, Kiernan, Jerry, Srikant, Ramakrishnan,
and Xu, Yirong 2004. Order preserving encryption for
numeric data. In: ACM SIGMOD.

[7] Ahmad, Muhammad Yousuf, and Kemme, Bettina 2015.
Compaction management in distributed key-value datas-
tores. In: PVLDB.

[8] Aiyer, Amitanand, Bautin, Mikhail, Chen, Guoqiang Jerry,
Damania, Pritam, Khemani, Prakash, Muthukkaruppan,
Kannan, Ranganathan, Karthik, Spiegelberg, Nicolas, Tang,
Liyin, and Vaidya, Madhuwanti 2012. Storage infrastruc-
ture behind facebook messages using hbase at scale. Data
Engineering Bulletin.

[9] Arasu, Arvind, Blanas, Spyros, Eguro, Ken, Kaushik,
Raghav, Kossmann, Donald, Ramamurthy, Ravi, and
Venkatesan, Ramaratnam 2013. Orthogonal Security
With Cipherbase. In: CIDR.

[10] Arasu, Arvind, and Kaushik, Raghav 2013. Oblivious
query processing. arXiv preprint arXiv:1312.4012.

[11] Bajaj, Sumeet, and Sion, Radu 2014. TrustedDB: A
Trusted Hardware-Based Database with Privacy and Data
Confidentiality. In: TKDE.

[12] Baumann, Andrew, Peinado, Marcus, and Hunt, Galen
2014. Shielding applications from an untrusted cloud with
haven. In: OSDI.

[13] Blanton, Marina, Steele, Aaron, and Alisagari, Mehrdad
2013. Data-oblivious graph algorithms for secure computa-
tion and outsourcing. In: ASIACCS.

[14] Blum, Manuel, Floyd, Robert W, Pratt, Vaughan, Rivest,
Ronald L, and Tarjan, Robert E 1973. Time bounds for
selection. Journal of computer and system sciences.

[15] Boneh, Dan, Mazieres, David, and Popa, Raluca Ada
2011. Remote oblivious storage: Making oblivious RAM
practical. MIT-CSAIL-TR-2011-018.

[16] Brakerski, Zvika, and Brakerski, Zvika 2011. Efficient
Fully Homomorphic Encryption from (Standard) LWE. In:
FOCS.

[17] Chaum, David L 1981. Untraceable electronic mail, return
addresses, and digital pseudonyms. Communications of the
ACM.

[18] Chen, Shuo, Wang, Rui, Wang, XiaoFeng, and Zhang, Ke-
huan 2010. Side-Channel Leaks in Web Applications: A
Reality Today, a Challenge Tomorrow. In: IEEE S&P (Oak-
land).

[19] Chen, Yao, and Sion, Radu 2012. On securing untrusted
clouds with cryptography. Data Engineering Bulletin.

[20] di Vimercati, Sabrina De Capitani, Foresti, Sara, Paraboschi,
Stefano, Pelosi, Gerardo, and Samarati, Pierangela 2013.
Distributed shuffling for preserving access confidentiality. In:
ESORICS.

[21] Dinh, Tien Tuan Anh, Saxena, Prateek, Chang, Ee-Chien,
Ooi, Beng Chin, and Zhang, Chunwang 2015. M2R:
Enabling Stronger Privacy in MapReduce Computation. In:
USENIX Security.

[22] ElGamal, Taher 1984. A public key cryptosystem and
a signature scheme based on discrete logarithms. In:
CRYPTO.

[23] Gentry, Craig, et al. 2009. Fully homomorphic encryption
using ideal lattices. In: STOC.

[24] Goldreich, Oded, and Ostrovsky, Rafail 1996. Software
protection and simulation on oblivious RAMs. Journal of the
ACM.

[25] Goodrich, Michael T. 2011. Data-oblivious External-
memory Algorithms for the Compaction, Selection, and Sort-
ing of Outsourced Data. In: SPAA.

[26] Goodrich, Michael T 2014. Zig-zag sort: A simple deter-
ministic data-oblivious sorting algorithm running in o (n log
n) time. In: STOC.

[27] Goodrich, Michael T., and Mitzenmacher, Michael 2010.
Privacy-preserving access of outsourced data via oblivious
RAM simulation. CoRR, abs/1007.1259.

[28] Goodrich, Michael T, Ohrimenko, Olga, and Tamassia,
Roberto 2012. Data-oblivious graph drawing model and
algorithms. arXiv preprint arXiv:1209.0756.

[29] Halevy, Alon, Rajaraman, Anand, and Ordille, Joann
2006. Data Integration: The Teenage Years. In: VLDB.

[30] Katz, Jonathan, and Lindell, Yehuda 2014. Introduction
to modern cryptography. CRC Press.

[31] Klonowski, Marek, and Kutyłowski, Mirosław 2005. Prov-
able anonymity for networks of mixes. In: Information Hid-
ing.

[32] Knuth, Donald Ervin 1998. The art of computer program-
ming: sorting and searching, Vol. 3. Pearson Education.

[33] Lakshman, Avinash, and Malik, Prashant 2010. Cassan-
dra: a decentralized structured storage system. Operating
Systems Review, 44.

[34] Li, Feifei, Hadjieleftheriou, Marios, Kollios, George, and
Reyzin, Leonid 2006. Dynamic authenticated index struc-
ture for outsourced databases. In: ACM SIGMOD.

[35] McCun, Jonathan M., Parno, Bryan, Perrig, Adrian, Reiter,
Michael K., and Isozaki, Hiroshi 2008. Flicker: An Execu-
tion Infrastructure for TCB Minimization. In: EuroSys.

[36] McCune, J.M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor,
V., and Perrig, A. 2010. TrustVisor: Efficient TCB Reduc-
tion and Attestation. In: IEEE S&P (Oakland).

[37] Meng, Xiangrui, Bradley, Joseph, Yuvaz, B, Sparks, Evan,
Venkataraman, Shivaram, Liu, Davies, Freeman, Jeremy,
Tsai, D, Amde, Manish, Owen, Sean, et al. 2016. Mllib:
Machine learning in apache spark. JMLR.

[38] Ohrimenko, Olga, Costa, Manuel, Fournet, Cedric, Gkant-
sidis, Christos, Kohlweiss, Markulf, and Sharma, Divya
2015. Observing and Preventing Leakage in MapReduce.
In: CCS.

[39] Ohrimenko, Olga, Goodrich, Michael T, Tamassia, Roberto,
and Upfal, Eli 2014. The Melbourne shuffle: Improving
oblivious storage in the cloud. In: ICALP.

http://spark.apache.org/
http://www-03.ibm.com/security/cryptocards/pcixcc/overview.shtml
http://www-03.ibm.com/security/cryptocards/pcixcc/overview.shtml
http://www-03.ibm.com/security/cryptocards/pciecc2/overview.shtml
http://www-03.ibm.com/security/cryptocards/pciecc2/overview.shtml
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://www.schneier.com/blog/archives/2016/03/wikileaks_publi.html
https://www.schneier.com/blog/archives/2016/03/wikileaks_publi.html

Privacy-preserving computation with trusted computing via Scramble-then-Compute 17

[40] Ohrimenko, Olga, Schuster, Felix, Fournet, Cédric, Mehta,
Aastha, Nowozin, Sebastian, Vaswani, Kapil, and Costa,
Manuel 2016. Oblivious Multi-Party Machine Learning on
Trusted Processors. In: USENIX Security.

[41] O’Malley, Owen, and Murthy, Arun C 2009. Winning a 60
second dash with a yellow elephant. Tech. rep., Yahoo.

[42] Paillier, Pascal 1999. Public-key cryptosystems based on
composite degree residuosity classes. In: EUROCRYPT.

[43] Pinkas, Benny, and Reinman, Tzachy 2010. Oblivious
RAM revisited. In: CRYPTO.

[44] Popa, Raluca Ada, Redfield, Catherine, Zeldovich, Nicko-
lai, and Balakrishnan, Hari 2011. CryptDB: Protecting
confidentiality with encrypted query processing. In: SOSP.

[45] Schuster, Felix, Costa, Manuel, Fournet, Cédric, Gkantsidis,
Christos, Peinado, Marcus, Mainar-Ruiz, Gloria, and Russi-
novich, Mark 2014. VC3: Trustworthy DATA analytics in
the cloud. In: IEEE S&P (Oakland).

[46] Stefanov, Emil, Van Dijk, Marten, Shi, Elaine, Fletcher,
Christopher, Ren, Ling, Yu, Xiangyao, and Devadas, Srinivas
2013. Path ORAM: An extremely simple oblivious RAM
protocol. In: CCS.

[47] Tu, Stephen, Kaashoek, M Frans, Madden, Samuel, and
Zeldovich, Nickolai 2013. Processing analytical queries
over encrypted data. In: PVLDB.

[48] Vimercati, Sabrina De Capitani Di, Foresti, Sara, Para-
boschi, Stefano, Pelosi, Gerardo, and Samarati, Pierangela
2015. Shuffle index: efficient and private access to out-
sourced data. TOS.

[49] Wang, Shuhong, Ding, Xuhua, Deng, Robert H, and Bao,
Feng 2006. Private information retrieval using trusted
hardware. In: ESORICS.

[50] Xin, Reynold S, Gonzalez, Joseph E, Franklin, Michael J,
and Stoica, Ion 2013. Graphx: A resilient distributed
graph system on spark. In: GRADES.

[51] Zaharia, Matei, Chowdhury, Mosharaf, Franklin, Michael J,
Shenker, Scott, and Stoica, Ion 2010. Spark: Cluster
computing with working sets. HotCloud.

A Notation Table
Common notations are summarized in Table 5.

Table 5. Summary of Notations

Notation Description
X Input data
X̃ Scrambled input
Y Output data
π Random permutation
S The Scrambler
n Input size
m Trusted memory’s size
T Tagging algorithm

QP (X) Access sequence of algorithm P on input X
Ψ Leakage function

AP
Privacy-preserving algorithm derived from a

permutation-invariant algorithm P

p1, p2
Configurable parameters of the Melbourn

shuffle algorithm

B Detailed example for pJoin
Table 6 gives a detailed example for pJoinwith two in-
put sequences X1 = {〈a, fde〉, 〈a, tol〉, 〈b, lxv〉, 〈b, xdj〉}
and X2 = {〈a,maj〉, 〈b,med〉, 〈c, tfn〉, 〈d, kbs〉}.

Privacy-preserving computation with trusted computing via Scramble-then-Compute 18

Table 6. Example of pJoin for inputs X1 = {〈a, fde〉, 〈a, tol〉, 〈b, lxv〉, 〈b, xdj〉} and X2 = {〈a,maj〉, 〈b,med〉, 〈c, tfn〉, 〈d, kbs〉}. Values
in parentheses appeared in columns W1 and W2 represent records’ degree in the join graph while those in columns V1 and V2 are running
sum of weights in each group.

X V2 V1 W1 W2 X1exp X2exp Y
〈a, fde〉X1

〈a, fde〉X1
(1) 〈d, kbs〉X2

(1)
〈b, xdj〉(1) 〈a,maj〉(2) 〈b, xdj〉 〈b,med〉 〈b, xdjmed〉

〈a, tol〉X1
〈a, tol〉X1

(2) 〈c, tfn〉X2
(1)

〈a,maj〉X2
〈a,maj〉X2

(2) 〈b,med〉X2
(1)

〈b, lxv〉(1) 〈b,med〉(2) 〈b, lxv〉 〈b,med〉 〈b, lxvmed〉
〈b, lxv〉X1

〈b, lxv〉X1
(1) 〈b, xdj〉X1

(1)
〈b, xdj〉X1

〈b, xdj〉X1
(2) 〈b, lxv〉X1

(1)
〈a, tol〉(1) 〈c, tfn〉(0) 〈a, tol〉 〈a,maj〉 〈a, tolmaj〉

〈b,med〉X2
〈b,med〉X2

(2) 〈a,maj〉X2
(1)

〈c, tfn〉X2
〈c, tfn〉X2

(0) 〈a, tol〉X1
(1)

〈a, fde〉(1) 〈d, kbs〉(0) 〈a, fde〉 〈a,maj〉 〈a, fdemaj〉
〈d, kbs〉X2

〈d, kbs〉X2
(0) 〈a, fde〉X1

(1)

	Privacy-preserving computation with trusted computing via Scramble-then-Compute
	1 Introduction
	2 Problem Definition
	2.1 Computation and Adversary Model
	2.2 Security Definition

	3 Scramble Then Compute
	3.1 Overview
	3.2 The Scrambler
	3.2.1 Building block: Melbourne Shuffle algorithm
	3.2.2 The Scrambler Construction

	3.3 Deriving Privacy-Preserving Solutions
	3.4 Handling Duplicates
	3.5 Discussion

	4 Privacy-Preserving Computations with StC
	4.1 Sort
	4.2 Compaction
	4.3 Selection
	4.4 Aggregation
	4.5 Join
	4.6 Supporting Spark Operations

	5 Performance Evaluation
	5.1 Cost of Security
	5.2 Comparison with data-oblivious algorithms
	5.3 I/O complexity of STC algorithms
	5.4 Scalability

	6 Related Work
	7 Conclusion
	A Notation Table
	B Detailed example for pJoin

