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Abstract. Horizontal collision correlation analysis (HCCA) imposes a serious threat to sim-
ple power analysis resistant elliptic curve cryptosystems involving unified algorithms, for e.g.
Edward curve unified formula. This attack can be mounted even in presence of differential
power analysis resistant randomization schemes. In this paper we have designed an effective
countermeasure for HCCA protection, where the dependency of side-channel leakage from a
school-book multiplication with the underling multiplier operands is investigated. We have
shown how changing the sequence in which the operands are passed to the multiplication al-
gorithm introduces dissimilarity in the information leakage. This disparity has been utilized
in constructing a zero-cost countermeasure against HCCA. This countermeasure integrated
with an effective randomization method has been shown to successfully thwart HCCA. Ad-
ditionally we provide experimental validation for our proposed countermeasure technique on
a SASEBO platform. To the best of our knowledge, this is the first time that asymmetry in
information leakage has been utilized in designing a side channel countermeasure.
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1 Introduction

Elliptic curve cryptosystems are emerging as a primary choice for securing light-weight embedded
devices as it incorporates more security per key bit with respect to RSA [1], thus qualifying as a less
resource hungry alternative. Also with the recent explosion of internet of things (IOT), applications
using light-weight hardware devices are increasing exponentially which in turn make the security of
the underlying devices imperative. However the hardware implementations of cryptographic appli-
cations imposes an inevitable insecurity in terms of side-channel leakage, even though the system is
theoretically protected. Side channel leakage of information through power consumption [2], elec-
tromagnetic dissipation, acoustic channel [3], etc makes the system weakly protected and may lead
to complete secret key recovery. A náıve implementation of an elliptic curve (EC) scalar multipli-
cation algorithm (Algorithm 2 in Appendix A), associated with two different formulae for addition
and doubling, using a Weierstrass form of elliptic curve (equation 9 in Appendix A), can be bro-
ken through simple power analysis (SPA) [4] with only a single trace of execution. This motivates
researchers to construct cryptosystems which are inherently secure against SPA. Atomic scheme
algorithms has been introduced in [5], [6] which transforms the doubling and addition operation
into a uniform structure, such that it becomes infeasible to distinguish an addition operation from
a doubling from a single power trace. However these atomic scheme algorithms still involve different
formulae for addition and doubling. In [7] a unified addition formula is designed for a Weierstrass
form of elliptic curve, which involves the same formula for addition and doubling. While in [8]
a new form of curve, named Edward curve has been built involving a complete addition formula
which gives a valid elliptic curve point as output for any two curve points taken as input, thus
taking care of both addition and doubling. Recently extensive research involving use of Edward
curve in cryptosystems reveals its implementation-friendliness [9], [10], [11], [12]. Also it is being
considered as a safe curve with respect to a number of important factors (ladder security, twist
security). The reader may refer to [13] for details on the defined safe curve criteria. Indeed because
of the presence of single formula for both point addition and point doubling, an Edward curve
implementation (similarly Brier-Joye unified formula) is SPA resistant. We note here that there



exists advanced attacks such as differential power analysis (DPA) attack [4] which can exploit a
SPA-resistant implementation, thus considered as a serious threat to elliptic curve cryptography
(ECC) designs. However it requires access to a significantly large number of power traces of EC
scalar multiplication executions, with a fixed secret key, hence this scenario is not directly applica-
ble to ECDSA, where a secret scalar is used only once. However, recently a powerful single-trace
attack named horizontal collision correlation analysis (HCCA) is introduced in [14] which breaks
an atomic scheme ECC algorithm or a unified ECC algorithm equipped with SPA-resistance. Even
when the design is protected against advanced attacks such as DPA, refined power analysis [15],
adrress-bit differential attack [16] with effective randomization schemes suggested in [17], [18],
HCCA can be launched, thus introducing genuine vulnerability in the implementation. It exploits
the relation of the secret key value with a property pertaining to the underlying field multiplica-
tions involved in a point doubling and point addition operation. It is a unique property based on
the sharing of operands between two field multiplications which holds irrespective of any random-
ization used at each iteration of the scalar multiplication. As can be noted in [14] HCCA can be
mounted in two phases: 1st phase aims at distinguishing between point doubling and point addition
operation, based on this property of field multiplications related to sharing of multiplier operands.
In the situation when this property does not hold, 2nd phase of HCCA is launched which intends
to correlate two point additions, based on the fact that it always share common base point. It is
quite evident that preventing HCCA is extremely essential, since otherwise the implementation
becomes exposed to be broken even with a single trace.
Our contribution Our main contribution in this paper is to design a cost-effective yet adequate
countermeasure that resists HCCA. Our contribution in this paper can be summarized as follows

– We coin a term order of operands to define the sequence in which two operands are passed
as parameters to a long integer multiplication routine. We show how the information leakage
from a multiplication varies when the order of operands in a multiplication is changed. We also
derive that the correlation between two multiplications sharing one/ two common operand is
dependent on the order of operands passed to the individual multiplications.

– We propose a countermeasure that can be applied to the existing unified algorithms to defeat
the first phase of HCCA. Our countermeasure involves no randomization, instead it converts
the unified algorithm into a safer form, such that the relation between multiplications based on
property of operand sharing cannot be exploited. Our countermeasure requires a single instance
of precomputation phase for designing the safe algorithm. As a result, our countermeasure
imposes zero cost of timing or area overhead on the implementation.

– We also design a second countermeasure based on a randomization technique that is able to
counter the second phase of HCCA, by using minimal overhead. We show how the implemen-
tation integrated with our proposed countermeasures becomes resistant against HCCA.

– Finally we provide practical results of HCCA along with our countermeasure on an FPGA
board.

Paper organization The organization of the paper is as follows. In Section 2, we give a review on
HCCA. Section 3 provides a theoretical validation of our countermeasure idea, followed by descrip-
tion of our proposed countermeasures. Section 4 includes actual experimental results of HCCA.
Finally we conclude in Section 5. Other relevant details have been provided in the Appendix.

2 Preliminaries

In this section we introduce the horizontal collision correlation analysis. Background on elliptic
curve cryptography with an emphasis on unified addition rule has been given in the Appendix A
section. We note here that for efficiency reason, often the ECC curve equation is homogenized
into projective coordinates. The entire computation of elliptic scalar multiplication is performed in



projective coordinate system and finally the result is transformed to affine coordinate. Throughout
the paper, the ECC algorithms considered will be in the standard projective coordinate system,
where an ECC point is presented by the form P = (X,Y, Z). Also the underlying Fp is considered
to be a prime field with underlying prime p, as hardware implementations of ECC on prime fields
give best efficiency results and has been recommended vastly in the literature [19].

2.1 Horizontal Collision Correlation Analysis

In this section we discuss the ideology behind horizontal collision correlation analysis (HCCA).
First we proceed to explain the attack methodology with the help of an illustration, followed by a
summarization of the attack. Before moving to the example describing HCCA, a closer look is given
to the field operations underlying ECC doubling and addition operations. It is evident that, ECC
point addition and point doubling operations are associated with a number of field multiplication
and field addition operations. The underlying field multiplications play an important role in HCCA.
The attack is based on the assumption: The adversary can detect when two field multiplications
have at least one operand in common [14]. Without loss of generality we consider distinct field
elements as A, B, C, D to be used as operands to field multiplications. Then the possible field
multiplication pairs will take one of the following forms: 1) A × B, C × D sharing no common
operand, 2) A×B, C×B sharing one common operand, 3) A×B, A×B where both the operands
are same. Based on the above class of multiplication pairs, we define the following properties of
field multiplication pairs:

– property 1: when a pair of multiplications (mi, mj) share one/two common operand/s among
themselves.
• property 1a: when a pair of multiplications (mi, mj) share exactly one common operand

among themselves. For e.g., the pair (A×B, C ×B) satisfies property 1a.
• property 1b: when a pair of multiplications (mi, mj) share exactly two operands, i.e. they

denote the same multiplications. For e.g., the pair (A×B, A×B) satisfies property 1b.
– property 2: when a pair of multiplications (mi, mj) share no common operand among them-

selves. For e.g., the pair (A×B, C ×D) having independent operands satisfies property 2.

Such relation between field multiplication operations is exploited to identify the doubling and addi-
tion operations computed during an ECC scalar multiplication, which in turn is directly dependent
on the secret key. Hence identification of doubling and addition operations leads to the recovery of
the underlying unknown key. Now we proceed to illustrate the possible scenarios of HCCA. Figure.
1(a) illustrates an occurrence of first phase of HCCA. Without loss of generality, a key sequence
has been considered as 10110 . . . which can be expanded as DBL, DBL, ADD, DBL, ADD, DBL,
DBL,. . ., where DBL represents a point doubling operation, while ADD denotes a point addition
operation as shown in Figure 1(a). Each of the ADD/ DBL operations consist of underlying field
additions (FA in Figure 1(a)) and field multiplications (FM in Figure 1a). For an instance, it can
be observed in Figure 1(a), that there exists a multiplication pair (X1Y2, X2Y1) within the addition
operation, satisfying property 2 of sharing operands. While a pair (X1Y1, X1Y1) can be found in
case of doubling satisfying the property 1b of sharing operands. Now if we consider the correlation
between the power traces of two concerned multiplication pairs, the multiplication pair (X1Y2,
X2Y1) should give low correlation value, with respect to the correlation value obtained from the
multiplication pair (X1Y1, X1Y1) as shown in [14]. If significant difference between the correlation
values is obtained, then the doubling and addition operations can be successfully identified, leading
to the complete secret key recovery.

When the addition and doubling operations do not contain two such favorable multiplication
pairs which will lead to distinguishable values of correlation coefficient, the scenario 1 of HCCA is
unable to retrieve any information regarding the secret key. We investigate the various possibilities
when the above situation may arise. It may happen that none of the addition or doubling operations



(a) HCCA scenario 1

  DBL DBL ADD DBL ADD DBL DBL

Correlation is low Correlation is high

10110.........

X1Y2 X2Y1 X1Y1 X1Y1

(b) HCCA scenario 2

Correlation is high

10110.............

DBL DBL ADD DBL ADD DBL DBL

XpXb XqXb

Fig. 1: Horizontal Collision Correlation Analysis (HCCA)

has any such multiplication pair that help in the distinction. Or, it is also possible that both of
the addition and doubling possess one such pair. An illustrative example of a situation where the
scenario 1 of HCCA fails has been provided in Table 3 (in Appendix E).

Alternatively adversary proceeds to mount second version of HCCA or scenario 2. From a
standard right-to-left double-and-add algorithm (Algorithm 2 in Appendix A) it can be observed
that doubling operation DBL involves a single parameter which changes at every iteration. On
the other hand, the addition routine ADD takes two parameters as input, one of which is always
the base point of the curve (Bp in Algorithm 2). Based on this fact, we proceed to describe the
attack methodology with the help of Figure 1(b). The base point Bp is denoted by the projective
coordinates as (Xb, Yb, Zb), the other two points P , Q concerned with the two additions are given
as (Xp, Yp, Zp) and (Xq, Yq, Zq) respectively. When Algorithm 2 is run with an underlying Edward
curve equation (shown in Table 1 in Appendix A) the two additions will be performed as ADD(P ,
Bp) and ADD(Q, Bp). There will exist two field multiplications (XpXb) and (XqXb) underlying in
the corresponding addition operations sharing operand Xb, thus satisfying property 1a. However in
case of doubling, due to the variation of the input point with every iteration such a scenario will not
arise. Evidently all the additions and doublings can be identified following the above correlating
mechanism which will lead to the recovery of the secret key. The details on the intermediate steps
involved in case of addition and doubling for the Edward curve considered above has been provided
in Appendix E to illustrate the scenario 2 of HCCA.

We summarize below the above illustrated HCCA scenarios. An ECC point doubling operation
can be decomposed into a sequence of nd multiplications given as: {d1, d2, . . . , dnd

}, denoted by
the setd. Equivalently, an addition operation consists of a sequence of na multiplications given as:
{a1, a2, . . . , ana

}, denoted by seta. Now we define property 3 for the above developed sets as: S be
a set of n multiplications denoted by { m1,m2, . . . ,mn }, such that ∃ at least one pair (mi,mj),
where mi and mj ∈ S, i 6= j, which satisfies property 1 of sharing operands, then the set S is said
to satisfy the property 3. First phase of HCCA or scenario 1 is based on the following condition
1: {Only one of the sets setd and seta should satisfy the set property 3}. If condition 1 holds,
the adversary aims at differentiating between an addition and doubling operation. Consequently
the adversary can recognize all the doubling and addition operations in a sequential manner by
launching HCCA. If condition 1 does not hold, adversary may mount the scenario 2 of HCCA.
Note that the basis of scenario 2 of HCCA is based on the fact: one of the addition parameters
is always the base point, which holds independent of the underlying curve equation or the unified
algorithm steps involved in the scalar multiplication.



3 Our Proposed Countermeasure

We propose here a two-fold countermeasure technique which ensures the resistance of an unified
ECC algorithm against horizontal collision correlation attack (HCCA). Our proposed countermea-
sure 1 centers around the concept of reordering of field operands underlying a field multiplication.
It involves transforming the ECC point doubling and point addition operations into a secure form,
such that even if condition 1 holds, it is not revealed to the adversary. In other words, the in-
formation of one of the operations satisfying property 3 is hidden through our implementation.
The resultant implementation is thus resistant against scenario 1 of HCCA. However still the de-
sign is vulnerable to the scenario 2. We incorporate our countermeasure 2 to the existing design,
by introducing an effective randomization scheme. Our ECC implementation integrated with our
proposed countermeasures becomes resistant against both scenarios of HCCA. Our textitcounter-
measure 1 requires zero overhead of resources in case of the Edward curves unified formula as well
as Brier-Joye unified formula. The countermeasure 1 is based on an observation that the leakage
from the power consumption is dependent on the ordering of operands in a field multiplication.
This discrepancy in leakage occurs as the ordering of the operands brings in asymmetry in the
leakage, which we exploit to develop our countermeasure. We note that although the concept of
asymmetric leakage has been addressed in [20] in case of multipliers, however authors of [20] don’t
exploit its applicability. To the best of our knowledge, this is the first countermeasure design which
utilizes asymmetry in information leakage of multiplier operands.

3.1 Asymmetric Leakage of Field Multiplication

In this section we explain our theoretical rationale behind the asymmetric leakage of field multi-
plications, which contribute in constructing our countermeasure scheme. We begin our discussion
with an introduction to Long Integer Multiplication (LIM) shown in Algorithm 5. The long integer
multiplication routine is called to compute underlying field multiplications involved in the ECC
point addition, doubling operations. The LIM takes two field operands X, Y as input and outputs
their product XY . Each of the field operands passed as parameter in the LIM routine consists of
underlying t words, each of size w. The result can be of size 2t, and is stored in a register R[2t].
The algorithm is run O(t2) times.

To establish the reasoning behind asymmetry in leakage of field multiplications, we introduce
here an information leakage model which will guide us towards the theoretical background of our
countermeasure. Generally, in case of an iterative algorithm, a calculation Ci is identified, which
is operated at each iteration of the algorithm execution. The output Oi of the calculation Ci is
updated at every iteration to a specific register location. The value of the output Oi computed and
stored at each iteration leaks an information. This information leakage is denoted as l(Oi), which
can be approximated using a function of Oi i.e f(Oi). The information leakage at each iteration
gets augmented iteratively to result in a vector < f(Oi) >. In case of Algorithm 5, we consider an
instance of the long integer multiplication run with input field operands A = (at, at−1, . . . , a2, a1),
B = (bt, bt−1, . . . , b2, b1) which results in the output A×B. At (i, j)th iteration we can associate the
calculation Ci,j with the partial product computation ai × bj . The output of the partial product
Oi,j = aibj is stored in every iteration, which leaks an information l(Oi,j). We assume that the
information leakage l(Oi,j) follows Hamming weight power model. As a result the function f(Oi,j)
is approximated with the help of the Hamming weight of the output value Oi,j . So we consider
f(Oi,j) = H(Oi,j), where H(x) implies the Hamming weight of the value x. Based on the leakage
model considered, the information leakage of long integer multiplication can be represented by an
augmented vector, denoted as < H(Oi) >, or < H(aibj) >. Considering underlying field operands
as: A, B, A′, B′, the correlation between two long integer multiplications LIM(A, B) and LIM(A′,
B′) can be approximated with the Pearson correlation coefficient computed between two vectors
< H(aibj) >, < H(a′ib

′
j) > (following similar notation as above). Let us denote the two vectors as



H(AB) and H(A′B′) respectively. The correlation is obtained as follows

ρ =
Covariance(H(AB), H(A′B′))√

V ariance(H(AB))
√
V ariance(H(A′B′))

(1)

It is evident from Algorithm 5 that the sequence of partial products changes when the order
of the operands passed as parameter to the LIM routine is swapped. We consider the information
leakage l(ai, bj) at each iteration, corresponding to partial product ai × bj computed during an
instance of LIM(A,B) execution. It is observed that the vector is formed as < l(a0,b0), l(a0,b1),. . .,
l(a0,bt−1),. . ., l(at−1,bt−1) >. While the one obtained during computation of LIM(B, A) can be
presented as < l(b0,a0), l(b0,a1),. . ., l(b0,at−1),. . ., l(bt−1,at−1) >. This asymmetry in the sequence
of the two vectors contribute in the variation of the correlation coefficient value between two
multiplications.

The standard deviation from the information leakage of a long integer multiplication LIM(A,
B) is denoted as std(AB). It is obtained as below

std(AB) = std(< H(AB) >) =

√√√√√√
t−1∑

i=0,j=0

H(aibj)
2

t2
−
( t−1∑

i=0,j=0

H(aibj)

t2

)2

(2)

We define four correlations based on following long integer multiplications LIM(A, B), LIM(B,
C), LIM(C, B), LIM(C, D). The following correlation is obtained from LIM(A, B) and LIM(C,
B)

ρ1 =

( t−1∑
i=0,j=0

H(aibj)H(cibj)

t2

)
−
( t−1∑

i=0,j=0
H(aibj)

t2

)( t−1∑
i=0,j=0

H(cibj)

t2

)
std(AB)std(CB)

(3)

where we denote
t−1∑

i=0,j=0

H(aibj)H(cibj) as α, where α can be expanded as

α =(H(a0b0)H(c0b0) +H(a0b1)H(c0b1) + . . .+H(a0bt−1)(c0bt−1)

+H(a1b0)H(c1b0) + . . .+H(at−1bt−1)H(ct−1bt−1))
(4)

The following correlation is obtained from LIM(A, B) and LIM(B, C)

ρ2 =

( t−1∑
i=0,j=0

H(aibj)H(bicj)

t2

)
−
( t−1∑

i=0,j=0
H(aibj)

t2

)( t−1∑
i=0,j=0

H(bicj)

t2

)
std(AB)std(BC)

(5)

where
t−1∑

i=0,j=0

H(aibj)H(bicj) can be expressed as β, which takes the form

β =(H(a0b0)H(b0c0) +H(a0b1)H(b0c1) + . . .+H(a0bt−1)h(b0ct−1)

+H(a1b0)h(b1c0) + . . .+H(at−1bt−1)H(bt−1ct−1)).
(6)

Here we consider the correlation coefficient between a multiplication pair with property 2,
computed from LIM(A, B) and LIM(C, D).

ρ3 =

( t−1∑
i=0,j=0

H(aibj)H(cidj)

t2

)
−
( t−1∑

i=0,j=0
H(aibj)

t2

)( t−1∑
i=0,j=0

H(cidj)

t2

)
std(AB)std(CD)

(7)



where
t−1∑

i=0,j=0

H(aibj)H(cidj) is coined as γ, represented as

γ =(H(a0b0)H(c0d0) +H(a0b1)H(c0d1) + . . .+H(a0bt−1)H(c0dt−1)

+H(a1b0)H(c1d0) + . . .+H(at−1bt−1)H(ct−1dt−1)).
(8)

We develop here few Lemmas which will be required consequently to support the theoretical
foundation of our countermeasure. Few terms which will be used in the following Lemma are
introduced here. Four mutually distinctive word multipliers are considered as m, n, p, q which will
be used as operands to word level multiplications such as mn, pn, and pq. As defined above, A and
B denote two field multiplications operands which will be used as parameters in the LIM routine.
Now we proceed to the Lemmas.

Lemma 1. The probability of collision of a pair (mn, pn) is more than the probability of collision
of the pair (mn, pq).

Lemma 2. The standard deviation of a Hamming weight vector obtained from LIM(A, B) is same
as that obtained as LIM(B, A), i.e std(AB) = std(BA).

If we denote mean(X) as the mean value of a vector X, on the basis of a similar argument we can
also show that mean(AB) = mean(BA).

Lemma 3. Covariance(H(AB), H(CB)) 6= Covariance(H(AB), H(BC)). When C = A, Covar-
iance(H(AB), H(AB)) 6= Covariance(H(AB), H(BA)).

Lemma 4. ρ1 > ρ2 for the case: A = C.

The proof of the above lemmas have been provided in Appendix B. With the help of the lemmas
discussed above, we make the following observations:
Observation 1: ρ1 6= ρ2 From equations 3, 5, we can recollect the mathematical forms of ρ1 and
ρ2. From Lemma 2, we can conclude that std(AB) = std(BA). As a result, the denominators in
case of both the correlations are equal. From Lemma 3 we have the result that

Covariance(H(AB), H(CB)) 6= Covariance(H(AB), H(BC)).

Consequently numerators of the two correlations are unequal. Also, since From Lemma 2,mean(AB)
= mean(BA), the difference in value arises from the unequal values of α and β. We give a closer
look at the forms of α and β to observe that: 1) each term in α takes the form H(aibj)H(cibj)
where the word multiplications share operand bj . 2) each term in β is of the form H(aibj)H(bicj),
where the word multiplications have no common operand. Utilizing Lemma 1, we can conclude
that each term in α has a higher probability of collision with respect to each term in β.
Observation 2: ρ2 ≈ ρ3 To make a comparison between the values of ρ2 and ρ3, we look at the
form of each of the terms present in the two equations take: 1) each term in β is of the form
H(aibj)H(bicj), where the word multiplications have no common operand. 2) each term in γ is
of the form H(aibj)H(cidj), where the word multiplications are devoid of any common term. We
conclude from our observation that, the two correlation coefficients take similar form.
Observation 3: ρ1 > ρ2 for a multiplication pair with property 1b A multiplication pair
satisfying property 1b, implies same multiplications are being computed. From Lemma 4, we obtain
that in such a case ρ1 will always be greater than ρ2 irrespective of the underlying field element
values involved. Hence ρ1 > ρ2 occurs with high probability in such a case.

From the above observations, the importance of ordering of operands in underlying field multi-
plications can be inferred. Based on our inference, we suggest that the information leakage due to
sharing of operands can be hidden by operand reordering. This fact has been exploited in designing
our countermeasure 1 which will be explained in the following subsection.



3.2 Countermeasure 1
Countermeasure 1 is designed on the basis of the idea of reordering of operands discussed in the
previous subsection. It attempts to transform the series of field multiplications underlying ECC
point doubling and point addition operation into a HCCA - resistant form. In other words, it makes
the implementation secure against scenario 1 of HCCA. As can be noted in section 2.1, an ECC
implementation becomes vulnerable to scenario 1 of HCCA if only one of the addition or doubling
operation satisfies property 3. Our countermeasure 1 alters the operation containing property 3,
into a form where information regarding operand sharing between field multiplications is hidden.
Consequently it is not revealed to the adversary whether any doubling or addition operation con-
tains property 3 or not. Hence the basis of distinction between doubling and addition operation
is concealed. It should be noted that the transformation technique mainly involves rearrangement
of multiplication operands. This countermeasure does not incorporate any randomization or any
extra operation. Therefore the cost of this countermeasure is zero in terms of area as well as tim-
ing overhead. Moreover, the order of operands are decided beforehand and can be precomputed
before implementing the design, requiring only one time effort from the designer’s point of view.
We design an algorithm, named safe sequence converter routine presented in Algorithm 1 which
takes care of the transformation process of countermeasure 1. We proceed to portray our transfor-
mation mechanism through an illustration, which will be followed by a description of our designed
Algorithm 1.
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S6 = T1 × T2;

S1 = X1 × Y2;
S2 = X1 ×X2;
S3 = Y1 × Y2;
S4 = X2 × Y1;

S7 = T1 × T3;

Z3 = T5 × T7;

T5 = (S5 − dT4);X3 = T5 × T6;
T7 = (S5 + dT4);Y3 = T7 × T8;

T4 = S2 × S3;T6 = S6;T8 = S7;

S5 = T1 × T1;T3 = S3 − S2;
T1 = Z1 × Z2;T2 = S1 + S4;

Fig. 2: Safe sequence transformation of Edward curve formula

We have considered the Edward curve unified formula shown in Table 1 (in Appendix A) for
explaining our conversion scheme. It can be noted that the Edward curve unified formula involves
a single formula which is used for both addition and doubling. It underlies a series of field multipli-
cation operations which have been listed in Figure 2. We note that the multiplications are written
with respect to the addition operation, i.e when two distinct points (X1, Y1, Z1), and (X2, Y2, Z2)
are taken as input. To construct a safe sequence we need to find out which are the multiplications
which share operands among themselves. To do so, we construct an undirected graph with the
individual multiplications as the graph vertices, whereas an edge is constructed between two graph
vertices if the two underlying multiplications satisfy property 1 of sharing operands (edge property).
We observe in the Figure 2 how edges are formed between (X1X2, X1Y2), (X1X2, X2Y1), (Y1Y2,
X1Y2) and so on. Furthermore, we witness that the graph is not completely connected, instead



it is composed of a number of islands. One may argue that, multiplications such as T5T6 involve
operand T5 which is of the form T1T2, so it is sharing a common operand T1. This is actually not
true because, the multiplication output of (T1T2) mod Fp, where Fp is the underlying field prime,
is stored in the location T5, and hence it is statistically independent from T1. Now we make a
crucial observation that, the operand sharing obtained from the graph considered reveals all the
operand sharing multiplications which will be present in the addition operation. But if we consider
the graph corresponding to the doubling operation where points (X1, Y1, Z1), and (X2, Y2, Z2)
are the same, it can be observed that the previous operand sharing will still be present along with
some possible extra operand sharing vertices. So the operand sharing edges obtained from the
doubling operation graph illustrated above are the edges common to both addition and doubling
operations. As a result, they don’t qualify in distinguishing between addition and doubling opera-
tions. Evidently, the operand sharing edges which are found only in case of doubling operation may
contribute in the distinction. To get a closer look we consider the complements of the islands of
our previously constructed graph. Note that we are not interested in the edges between islands in
the complement graph because they don’t share operands among themselves. We also replace the
vertex values with the respective forms of doubling operation. For e.g. X1Y2 will be replaced with
X1Y1. The complement of the islands are considered here to concentrate on those edges which
will be formed only in case of doubling operation. However the complement of the islands will
include both essential edges (for e.g edge between two vertices each containing value X1Y1) as well
as redundant edges (for e.g. edge between two vertices with values X1X1 and Y1Y1 respectively
which do not satisfy the edge property). We remove the redundant edges, and look only at the
essential edges because they are the ones which will help in distinguishing and addition operation
from a doubling operation. In this case, doubling operation involves X1Y1, X1Y1 operated twice,
which are satisfying property 1b. On the other hand, addition operation consists of two underly-
ing multiplications X2Y1, X1Y2 satisfying property 2 of sharing operands. Thus they successfully
depict scenario 1 of HCCA. Based on our observation 2 and observation 3, we rearrange the
multiplications as X1Y1 and Y1X1, so that the their operand sharing property remains hidden.
As was observed in subsection 1, the information leakage for the pair LIM(X1, Y1), LIM(Y1, X1)
will be similar to that of the pair LIM(X2, Y1), LIM(Y1, X2). (here we refer to the long integer
multiplication routine LIM in Appendix G). So we suggest to swap the order of operands of the
second multiplication. From lemma 5 we get that the problem of swapping operands of field multi-
plications can be solved by the problem of two-colorability of a graph. So if the final reduced graph
with the islands containing essential edges be two-colorable, then we proceed to color the graph
with two colors, and eventually swap the operands of those vertices which belong to the class of
one particular color.

In a similar fashion, we transform the Brier-Joye unified formula shown in Table 1 (in Ap-
pendix A) into a secure structure. The transformation steps corresponding to the Brier-Joye for-
mula is portrayed in Figure 4 (in Appendix F).

Lemma 5. The problem of swapping of vertex operands (multiplication operands) in an undirected
graph is polynomial time reducible to the problem of two-colorability of a graph.

3.3 Countermeasure Scenario 2

Once the adversary fails to launch the scenario 1, she may exploit the possibility of scenario 2 of
HCCA. As was discussed in section 2.1, it is based on the observation that an addition operation
involves two elliptic curve points, out of which one is always the base point. Let us consider two sets
of field multiplications, S1 as {mi | mi ∈ additioni },while S2 denoted as {mj | mj ∈ additionj }.
It can be directly observed that since there is a common elliptic curve point, passed as parameter
to both the addition operations, there will exist a multiplication pair (m1, m2), such that m1 ∈
additioni, m2 ∈ additionj and (m1, m2) shares one multiplication operand satisfying property 1a.



Algorithm 1: Safe sequence converter() : Algorithm to determine safe operand ordering of
multiplication pairs

Data: : Set S = { mi | i ∈ {1, n}, where n is the number of multiplications}
Result: : Set S’ = { m′i | i ∈ {1, n}, where n is the number of multiplications}
begin

// Step 1
Create Graph()
Find GraphComponents()
// Step 2

Find Safeseq Ĝ()

end

Create Graph():
begin

Initialize Graph G
for i← 1 to n do

AddV ertex(G,S[i])
// create vertices of graph G

end
for i← S[0] to S[n− 1] do

for j ← S[0] to S[n− 1] do
if i 6= j and share operand(S[i], S[j]) == TRUE then

AddEdge(G,S[i], S[j])
// create edges of graph G

end

end

end

end

Find GraphComponents(): // find Islands of the Graph
begin

for v ← 0 to G→ V − 1 do
V isited[v] = FALSE

end
seg count = 1
for v ← 0 to G→ V − 1 do

if V isited[v] == FALSE then
Island[seg count] = Clone Graph(G, v)
// 1)clone the graph island containing vertex v
// 2)set the visited vertices
Seg array[seg count].ele = v // keep track of starting node of the island
seg count = seg count + 1 // keep track of the number of islands formed

end

end

end

Find Safeseq Ĝ(): // find safe sequences
begin

for i← 0 to seg count− 1 do
G1 = Construct ComplementGraph(Island[i])
Remove redundant edges(G1)
// remove the edges not satisfying the edge property
if Colorable 2(G1) == TRUE then

Color Graph(G1, RED,BLACK)
end
Swap Order(G1)
for v ← 0 to (G1 → V − 1) do

S′.add(G1− > array[v].data)
end

end

end

With this observation the attacker can launch HCCA on a single trace and identify all the addition
operations, subsequently also the doubling operations.

We propose here a countermeasure design based on a randomization scheme which aims at
thwarting the scenario 2 of HCCA with minimal timing or area overhead. The technique is based
on the idea of randomizing the base point at every execution of addition operation so that any
two multiplications chosen from two addition operations become free from the operand sharing



property. Based on standard projective coordinate system, the equivalence between two elliptic
curve points can be defined as (X1, Y1, Z1) ∼ (X2, Y2, Z2) if X2 = λX1, Y2 = λY1 and Z2 =
λZ1, where λ ∈ F ∗p . Any point (X, Y , Z) can be randomized by using a random λ ∈ F ∗p into
the form Rp as (λX, λY , λZ). We use this randomized base point as input to every addition
operation. Our randomization method is based on execution of a random permutation for every
scalar multiplication run. The set of numbers used in the permutation process can be represented
by the set perm as {i | i ∈ [1, |A|]}, where |A| denotes the maximum number of addition operation
possible for a key ∈ [1,order(E)], order(E) is the order of the underlying elliptic curve. Every
execution of the scalar multiplication algorithm involves one random permutation of the set perm.
The λ value chosen for consecutive addition operations are chosen from the consecutive elements
of the set perm. The addition operation once achieved by using the random point Rp requires
derandomization such that the final result is same as that obtained from the fixed base point
Bp. The derandmization involves three field multiplications of the form (λk)−1×X3, (λk)−1× Y3,
(λk)−1×Z3 per addition operation, where (X3, Y3, Z3) represents the intermediate output by using
Rp, k is a constant (for e.g k = 8 for the Edward curve equation in Table 1). The computation
involving λX, λY , λZ and (λk)−1 for varied λ ∈ perm can be stored before implementing the design.
Note that this precomputation step is curve-specific, and is fixed for a base point. Consequently
the precomputed values can be used during each addition operation based on the value of λ
chosen. Thus the only extra cost involved in incorporating this countermeasure includes three
field multiplications per addition operation. The countermeasure 2 is presented in Algorithm 4 (in
Appendix D).

4 Experimental Results

In earlier sections, we have established the basis of horizontal collision correlation attack along
with the strategies to thwart this attack methodology. It is evident from [14] and our previous
discussions that ECC scalar multiplication in both Edward curve and NIST curve is vulnerable
to HCCA. Specifically for the Edwards curve implementation incorporating unified formula is
extremely vulnerable to HCCA as there exist a pair of multiplication which share both the operand
during execution of point doubling. Hence an adversary is expected to get a very high correlation
when he/she compares the aforementioned multiplications, sharing both the operands. In all the
previous work focussing on HCCA, the authors have provided experimental validation of HCCA
through simulation results. However, the scenario in actual hardware may differ significantly as
the power traces are contaminated with system noise along with algorithmic noise. In this paper,
we experimentally validate HCCA and our countermeasure against HCCA on actual FPGA. The
hardware platform is SASEBO-GII [21], where we have implemented a hardware for long integer
multiplication. The implemented 256-bit long integer multiplier requires 605 LUTs and 602 registers
and requires 260 clock cycles to execute one multiplication.

The experimentation steps are as follows:

– From software implementation of Edward curve scalar multiplication, we find out two operands
which are shared by the multiplication pairs during point doubling execution. Let these operands
be denoted as A and B. We also select four operands which are input to the field multiplication
during point addition. It must be noted that in case of Edward curve, point addition does not
have any multiplication pair which shares both the operands. We denote these operands as C,
D, E and F .

– We collect 100 power traces for the following set of multiplications
1. A×B -denoting the first multiplication of the multiplication pair of point doubling oper-

ation. We denote this set of power traces as Double− Set1.
2. A × B -denoting the second multiplication of the multiplication pair of point doubling

operation. We denote this set of power traces as Double− Set2.



3. C ×D -denoting the first multiplication of the corresponding multiplication pair of point
addition operation.We denote this set of power traces as Addition− Set1.

4. E×F -denoting the second multiplication of the corresponding multiplication pair of point
addition operation. We denote this set of power traces as Addition− Set2.

5. B × A -denoting the second multiplication of the multiplication pair of point doubling
operation with the operands position swapped. We denote this set of power traces as
DoubleReverse− Set1.

– Finally we compute mean of each set of power traces and calculate following correlation values
1. Corr −DD: correlation between the mean of Double− Set1 and Double− Set2
2. Corr −AA: correlation between the mean of Addition− Set1 and Addition− Set2
3. Corr −DR: correlation between the mean of Double− Set1 and DoubleReverse− Set1

Figure 3(a) shows the corresponding plot of correlation values at each clock cycle. To compute
the correlation, we have extracted 100 points from each clock cycle of the power traces where
register update occurs and have computed the correlation value between the extracted power
traces. Figure 3(a) shows the correlation plot of 200 such clock cycles. From the result it is evident
that multiplication pair having both the operands shared is easily distinguishable from the mul-
tiplication pair having no common operands, which validates the HCCA premises on the actual
hardware. Moreover when we change the operands sequence, we can no longer distinguish between
multiplication pair having shared operands and multiplication pair without any shared operands,
which in turn validates the effectiveness of the proposed countermeasure. We have also validated
our countermeasure on actual Edward curve scalar multiplier implemented on SASEBO G-II. The
corresponding result is shown in Figure 3(b), where we show how changing the multiplier input
operand sequence affects the leakage of the underlying field multiplier.

(a) Multiplier implementation on hardware
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(b) Result on Edward curve

0 50 100 150 200
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Clock Cycles

C
o

rr
el

at
io

n
 V

al
u

e

 

 

Both Operands Are Shared
Operands Are Shared but
  Sequence is Swapped

Fig. 3: HCCA and countermeasure validation on SASEBO-GII

5 Conclusion

We have shown how the property of asymmetric leakage of field multipliers can be utilized to
construct a simple countermeasure which is able to defeat the powerful HCCA. Since our coun-
termeasure 1 requires one time effort of designing the safe sequence before implementing the ECC
algorithm design, which can be taken care of with the help of a compiler, so it is basically free of
cost. Our proposed countermeasure 2 also requires minimal cost of precomputation, and additional
field multiplications. We argue such overhead is extremely low as compared to another popular
countermeasure, the Montgomery Ladder [22] which bears the overhead of dummy point addition
operations. We have shown a comparison of our countermeasure effectiveness with respect to the
alternatives presented in [14] in appendix C. This motivates us in exploiting the possibility of our
countermeasure applicability in wider range of elliptic curve algorithms.
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A Elliptic curve cryptography

An elliptic curve E defined over a field F (P ), where the underlying prime is P and the characteristic
of the field F (P ) 6= 2, 3, is of the following form, called as short Weierstrass form:

y2 = x3 + ax+ b (9)

where a, b are curve constants which ∈ F (P ), and the discriminant ∆ = (4a2 + 27b2) 6= 0. The
group of points (x, y) satisfying equation 9 together with a special point point at infinity O form an
abelian group G. The underlying group operation o is defined by elliptic curve addition operation
’+’. It should be noted that the elliptic curve addition rule as proposed in [23], [24] for an underlying
Weierstrass form of elliptic curve based on equation 9 is not complete. It involves two separate
formulas for elliptic curve point doubling and point addition operations. On the contrary, if the
underlying addition formula involves a unified addition rule it can applied for both addition and
doubling computation.

Algorithm 2: Left-to-Right Scalar Multiplication Algorithm
Data: Point P , scalar k = {km−1, km−2, km−3...k2, k1, k0}, where km−1 = 1
Result: kP
Q = P
for i = m− 2 to 0 do

Q = DBL(Q)
if ki == 1 then

Q = ADD(Q,Bp)
end

end
Return Q

Designing unified formulas for ECC is an interesting area of research in the context of elliptic
curve cryptography, as well as side channel security. This is because, firstly it provides a single
addition formula which completely defines the group addition rule, secondly use of same formula
for both addition and doubling inherently incorporates security against simple power analysis. In



Table 1: Unified formula with addition rule
Edward curve formula Edward curve addition rule [25]

(X2 + Y 2)Z2 = c2(Z2 + dX2Y 2) X3 = Z1Z2(X1Y2 + X2Y1)((Z1Z2)2 − dX1X2Y1Y2)

c 6= 0,
√
d /∈ Fp Y3 = Z1Z2(Y1Y2 −X1X2)((Z1Z2)2 + dX1X2Y1Y2)

Z3 = ((Z1Z2)2 − dX1X2Y1Y2)((Z1Z2)2 + dX1X2Y1Y2)

Elliptic curve formula Brier-Joye unified addition rule [7]
(in projective coordinates)

Y 2Z = X3 + aXZ2 + bZ2 X3 = 2FW
Y3 = R(G− 2W )− L2

Z3 = 2F 3

where, U1 = X1Z2, U2 = X2Z1,
S1 = Y1Z2, S2 = Y2Z1,
Z = Z1Z2, T = S1 + S2,
M = S1 + S2, R = T 2 − U1U2 + aZ2,
F = ZM , L = MF , G = TL,
W = R2 −G.

Table 1, we present unified formulas along with the addition rules for Edward curve [26], as well
as the Brier-Joye addition formula [7].

Given a scalar k, scalar multiplication of an ECC point P i.e kP is obtained through a sequence
of doubling and addition operations. The hardness of ECC cryptosystems is based on the elliptic
curve discrete logarithm problem (ECDLP), which states that given a point P , and its scalar
product kP , it is computationally difficult to retrieve the secret key k. A scalar multiplication
algorithm is shown in Algorithm 2 which works as follows. It iteratively processes the secret key k
from right to left, computes a doubling, and a conditional addition operation based on the ith key
bit ki. Note that the addition routine ADD in Algorithm 2 takes two ECC points as input, one of
which is always the base point (Bp) of the curve. While the doubling routine DBL in Algorithm 2
takes single ECC point as input, which changes at every iteration. Also it should be noted that
the scalar multiplication algorithm with an underlying unified addition formula will be similar
to Algorithm 2 only with the difference that, it requires a single function for both doubling and
addition. In case of doubling the same point is passed as both the input parameters. Similarly,
here also addition involves a fixed base point as one of the input parameters, while for doubling
the input point changes every iteration.

Algorithm 3: Left-to-Right Scalar Multiplication Algorithm for unified addition formula
Data: Point P , scalar k = {km−1, km−2, km−3...k2, k1, k0}, where km−1 = 1
Result: kP
Q = P
for i = m− 2 to 0 do

Q = ADD(Q,Q)
if ki == 1 then

Q = ADD(Q,Bp)
end

end
Return Q

B Proofs of the stated lemmas

The proofs of lemma 1-4 which support the theoretical validation of our countermeasure has been
provided below. Additionally we include lemma 5 which guides us in the formation of the safe
sequence form for countermeasure 1.



B.1 Proof of lemma 1

Proof. Let Y = (y1, y2) be the event that the Hamming weight of the output of two multiplications
y1 and y2 collide. Let X be a random variable such that (X = a) denotes the colliding Hamming
weight of the event (Y = (y1, y2)) is a. If each operand are of size w bits, then the number of all
possible values of one operand is 2w.
Case 1: The probability of collision of the pair (mn, pn) is computed as P1 = P (Y = (mn, pn)) =
{P (X = 0) ∪ P (X = 1) ∪ P (X = 2) ∪ . . . ∪ P (X = w)} = P (X = 0) + P (X = 1) + P (X = 2)
+ . . . + P (X = w). Now, P (X = a) = na

(2w)3 , where na is the number of cases when the two

multiplications collide with a Hamming weight value a. Since we have three distinct operands in
the two multiplications the total number of multiplication pairs formed is (2w)3. Thus P1 = n0

(2w)3

+ n1

(2w)3 + . . . + nw

(2w)3 = n0+n1+...+nw

(2w)3 .

Case 2: The probability of collision of the pair (mn, pq) is computed as P2 = P (Y = (mn, pq)) =
{P (X = 0) ∪ P (X = 1) ∪ P (X = 2) ∪ . . . ∪ P (X = w)} = P (X = 0) + P (X = 1) + P (X = 2)
+ . . . + P (X = w). Now, P (X = a) = na

(2w)4 , where na is the number of cases when the two

multiplications collide with a Hamming weight value a. Since we have four distinct operands in
the two multiplications the total number of multiplication pairs formed is (2w)4. Thus P2 = n0

(2w)4

+ n1

(2w)4 + . . . + nw

(2w)4 = n0+n1+...+nw

(2w)4 .

From the probability values of P1 and P2, we observe that P1 > P2. Hence Proved.

B.2 Proof of lemma 2

Proof. The vector composed from leakage information of LIM(A, B) can be expanded as <
H(a0, b0), H(a0, b1),. . ., H(a0, bt−1),. . ., H(at−1, bt−1) >. While the vector obtained from leakage
information of LIM(B,A) is represented as< H(b0, a0),H(b0, a1),. . .,H(b0, at−1),. . .,H(bt−1, at−1) >.
It can be observed that the two vectors are two different arrangements of same underlying elements.
As a result std(AB) = std(BA). Hence proved.

B.3 Proof of lemma 3

Proof. The two covariances Covariance(H(AB), H(CB)) and Covariance(H(AB), H(BC)), can
be represented as

Covariance(H(AB), H(CB)) =
α

t
−mean(AB)mean(CB) (10)

Covariance(H(AB), H(BC)) =
β

t
−mean(AB)mean(BC)

=
β

t
−mean(AB)mean(CB)

(11)

Since, from Lemma 2. mean(BC) = mean(CB), the second term in both the covariances are
mean(AB)mean(CB). Also, from equations 4 and 6, α 6= β, as a result we can conclude

Covariance(H(AB), H(CB)) 6= Covariance(H(AB), H(BC)).

When C = A: from equation 4 and 6, we show that still α 6= β. The value of α can be expressed as

α =(H(a0b0)H(a0b0) +H(a0b1)(a0b1) + . . .+H(a0bt−1)H(a0bt−1)

+H(a1b0)H(a1b0) + . . .+H(at−1bt−1)H(at−1bt−1))

=(H(a0b0)2 +H(a0b1)2 + . . .+H(a0bt−1)2

+H(a1b0)2 + . . .+H(at−1bt−1)2)

(12)



While β can be reduced as

β =(H(a0b0)H(b0a0) +H(a0b1)H(b0a1) + . . .+H(a0bt−1)H(b0at−1)

+H(a1b0)H(b1a0) + . . .+H(at−1bt−1)H(bt−1at−1))

=(H(a0b0)2 +H(a0b1)(b0a1) + . . .+H(a0bt−1)H(b0at−1)

+H(a1b0)h(b1a0) + . . .+H(at−1bt−1)2).

(13)

From equations 12 and 13, we can observe that α 6= β. As a result when C = A, we can conclude
similarly that

Covariance(H(AB), H(AB)) 6= Covariance(H(AB), H(BA)).

B.4 Proof of lemma 4

Proof. When A = C, precisely the two multiplications pairs considered are: (LIM(A, B), LIM(A,
B)) and (LIM(A, B), LIM(B, A)). The correlation ρ1 between (LIM(A, B), LIM(A, B)) can be
computed as

ρ1 =
Covariance(H(AB), H(AB))√

V ariance(H(AB))
√
V ariance(H(AB))

=
V ariance(H(AB))

V ariance(H(AB))
, since Covariance(X,X) = V ariance(X)

=1

While, the correlation ρ2 between (LIM(A, B), LIM(B, A)) can be computed as

ρ2 =
Covariance(H(AB), H(BA))√

V ariance(H(AB))
√
V ariance(H(BA))

=
Covariance(H(AB), H(BA))

V ariance(H(AB))

<1

Since from Lemma 3,

Covariance(H(AB), H(AB)) 6= Covariance(H(AB), H(BA)).

Hence it is proved that ρ1 > ρ2, when C = A.

B.5 Lemma 5, discussion and proof

Before proceeding to state the following lemma 5, we give here a rationale behind the operand
swapping problem formulation. In our operand swapping problem, we need to identify a set of
vertices which need to go through operand swapping, keeping other vertices intact as before so
that the overall set reaches a secure form. So it is depictable that the vertex set needs to be
partitioned into two sets. The set of vertices which requires operand swapping is called the swap
set, while the other set is named as uninterrupted set. Also it can be perceived that in any edge,
since the edge has been created due to operand sharing of two vertices, one of the vertex of the
edge should be swapped, thus should belong to swap set. While the other vertex should belong
to the uninterrupted set. Furthermore, there does not exist an edge such that both of their end
vertices belong to the swap set, or the uninterrupted set. Suppose there exists one such edge, then



if both vertices belong to the swap set then then it implies in case of both the vertices, the vertex
operands have been swapped. But this is equivalent to the state before swapping. For e.g. it means
a vertex pair (X1Y1, X1Y1) has been swapped to (Y1X1, Y1X1), which does not solve our aim
of information masking through operand swapping. This is because the correlation between both
the mentioned pairs will be higher with respect to the pair (X1Y1, Y1X1), as has been proved in
lemma 4. From this it directly follows why must the vertex ends of any edge belonging to the set E
should not belong to the same set (swap set or uninterrupted set). Naturally, it is also understood
why the vertices belonging to either swap set or uninterrupted set do not contain any edge between
themselves. Now we define the operand swapping problem more formally followed by stating the
Two-colorability problem of graph.
Operand swapping problem or problem a: Given an undirected graph G denoted by the set {V ,
E}, whether there exists a partition of V as (V1, V2) with following conditions: 1) V1 or swap set,
consists of elements as {v | operands of v should be swapped} 2) V2 or uninterrupted set, can be
presented as {v | operands of v should not be disturbed} 3) the edge set E is of the form {e |
e = (vi, vj), where (vi ∈ V1, vj ∈ V2) or (vi ∈ V2, vj ∈ V1)}.
Two-colorability problem of graph or problem b: Given a graph G as set {V , E}, whether the ver-
tices of the graph can be colored with two colors, such that no two vertices sharing the same edge
contain the same color i,e in other words to check whether the graph is a bipartite graph.

Lemma 5 The problem of swapping of vertex operands (multiplication operands) in an undirected
graph is polynomial time reducible to the problem of two-colorability of a graph.

Proof. An instance of graph G is fed to the problem b, which returns the decision in polynomial
time whether the input graph is two-colorable or not. If the answer is yes, then the graph is passed
to a graph coloring algorithm that returns the resultant graph colored with two colors. Without
loss of generality the two colors can be named as color1 and color2. We define the set of vertices
colored with color1 as swap set, while the set of vertices colored with color2 as uninterrupted set.
Thus we have determined a solution for the instance of problem a. Hence proved.

Now we give a closer look at the correctness of the polynomial reduction of problem a into
problem b. As was mentioned in the above proof, the solution for the instance of the graph con-
sidered corresponding to problem b gives back the graph instance colored with two colors, based
on the graph coloring algorithm. The vertices having color1 form set1, while the vertices colored
with color2 form a set2. The vertices within set1 do not contain any edge between them, similarly
in set2, no two vertices are connected by an edge. For every edge in E, two vertices are colored
with two distinct colors, which implies the two vertices belong to two different vertex sets. We can
consider set1 as the swap set, on the other hand the set2 can be considered as the uninterrupted set
required for the solution of problem a. The sets obtained from solution to problem b also satisfies
the condition for the edge set that every edge should contain vertices belonging to the two different
sets, so that for every edge the vertex belonging to the swap set should undergo operand swapping,
while the other vertex from uninterrupted set should remain unaltered. That is why the solution
obtained from problem b qualify as a solution for problem a.

C A note on other countermeasures
In [14] authors have made a discussion on possibilities of potential countermeasures inside the field
multiplication operation. The countermeasures mentioned are mainly based on randomization and
shuffling schemes. The countermeasures proposed are: 1) shuffling rows and columns 2) shuffling
and blinding 3 global shuffling. Out of the techniques mentioned, operand blinding fails to counter
HCCA, shuffling rows and columns scheme adds a t! search factor to HCCA, which can be broken
for smaller values of t. The shuffling and blinding method prevents HCCA but is prone to other
attacks like zero-value attack [27]. The global shuffling technique presented in [28] utilizes the idea of



shuffling simultaneously across rows and columns of the long integer multiplication partial product
matrix, thus increasing the search factor to t2!. This method is resistant against HCCA due to
the sufficiently large search space introduced. However it involves incorporating the randomization
technique to every field multiplication which includes generation of a random permutation, and
execution of an additional loop to take care of the carry propagation of the partial products.
The execution of the additional loop and generation of random permutation increases clock cycle
requirement of the long integer multiplication which in turn increases the timing overhead of the
design.

D Countermeasure 2 algorithm
The countermeasure 2 that was introduced in Section 3 has been given in Algorithm 4. Note that the
precomputation step is curve-specific, the one mentioned in Algorithm 4 includes precomputation
for Edward curve formula (in Appendix A).

Algorithm 4: Countermeasure 2
Data: secret key k = {km, . . . , k2, k1}, Base point P
Result: scalar product kP
// Precomputation Phase
for r ← 1 to |A| do

store[r].point→ x = Xr

store[r].point→ y = Yr

store[r].point→ z = Zr

store[r].inv = inv lambda

end
// generate a random permutation RP of the set perm = {i | i ∈ [1, |A|]}
index = 1
// scalar multiplication
for i = m− 1 to 1 do

Doubling(P)
if ki == 1 then

Addition(P , store[RP [index]].point)
index = index + 1

end

end

Addition(P1, P2)
// Addition steps
// derandmization steps
result.x = (store[RP [index]].inv) ∗ result.x
result.y = (store[RP [index]].inv) ∗ result.y
result.z = (store[RP [index]].inv) ∗ result.z
copy point(P1, result)

E Illustration of HCCA

Table 2: Edward curve unified addition or doubling [26]
Edward curve formula Addition steps

(X2 + Y 2)Z2 = c2(Z2 + dX2Y 2) R1 = Z1Z2, R2 = R2
1,

c 6= 0,
√
d /∈ Fp R3 = X1X2, R4 = Y1Y2

R5 = dR3R4, R6 = R2 −R5

R7 = R2 + R5

X3 = R1R6((X1 + Y1)(X2 + Y2)−R3 −R4)
Y3 = R1R7(R4 −R3)
Z3 = R6R7

In this section we portray two situations: 1) when scenario 1 of HCCA does not work. 2)
the attack basis of scenario 2 of HCCA. We have utilized following elliptic curve points for our



illustration: P = (Xp, Yp, Zp), Q = (Xq, Yq, Zq), base point Bp = (Xb, Yb, Zb), P1 = (X1, Y1, Z1),
P ′1 = (X ′1, Y

′
1 , Z

′
1). We proceed with the illustration of a situation to describe when scenario 2

will not succeed. When the Edward curve addition is computed through the steps mentioned in
Table 2, then both the doubling and addition operation contains multiplication pair satisfying
property 3 as can be noted in the Table 3. For an instance there exists a multiplication pair in case
of addition as (R1×R6, R1×R7) which actually have the value ((Z1Z2)×((Z1Z2)

2−dX1X2Y1Y2),

Z1Z2×((Z1Z2)
2
+dX1X2Y1Y2)), sharing the operand R1 or (Z1Z2). While in case of doubling one

multiplication pair can be found as (R1 ×R6, R1 ×R7), with the value as ((Z2
1)× (Z4

1 − dX2
1Y

2
1 ),

(Z2
1) × (Z4

1 + dX2
1Y

2
1 )) having the common operand R1 as Z2

1. Hence distinction cannot be done
between the two operations on the basis of the correlation values of the corresponding multiplication
pairs.

Table 3: Illustrating the situation when scenario 1 does not work
ADD(P , P ) ADD(P , Bp)

Zp × Zp Zp × Zb

Zp
2 × Zp

2 ZpZb × ZpZb

Xp ×Xp Xp ×Xb

Yp × Yp Yp × Yb

. . . . . .

. . . . . .

. . . . . .

Zp
2 × (Zp

4 − dXp
2Yp

2) ZpZb × ((ZpZb)
2 − dXpXbYpYb)

. . . . . .

Zp
2 × (Zp

4 + dXp
2Yp

2) ZpZb × ((ZpZb)
2 + dXpXbYpYb)

. . . . . .

(Zp
4 − dXp

2Yp
2)× (Zp

4 + dXp
2Yp

2) ((ZpZb)
2 − dXpXbYpYb)× ((ZpZb)

2 + dXpXbYpYb)
. . . . . .

Table 4 illustrates the basis of attack methodology in case of scenario 2 of HCCA where, there
always exists a multiplication pair satisfying property 1(a) in between any two additions, for an
instance (Zp×Zb. Zq ×Zb). On the contrary such pair can not be found in case of two doublings.

Any two doubling operations computation

ADD(P1, P1) ADD(P ′
1, P ′

1)

Z1 × Z1 Z′
1 × Z′

1

Z1
2 × Z1

2 Z′
1
2 × Z′

1
2

X1 ×X1 X ′
1 ×X ′

1

Y1 × Y1 Y ′
1 × Y ′

1

. . . . . .

. . . . . .

. . . . . .

Z1
2 × (Z1

2 − dX1
2Y1

2) Z′
1
2 × (Z′

1
2 − dX ′

1
2
Y ′
1
2
)

. . . . . .

Z1
2 × (Z1

2 + dX1
2Y1

2) Z′
1
2 × (Z′

1
2

+ dX ′
1
2
Y ′
1
2
)

. . . . . .

(Z1
2 − dX1

2Y1
2)× (Z1

2 + dX1
2Y1

2) (Z′
1
2 − dX ′

1
2
Y ′
1
2
)× (Z′

1
2

+ dX ′
1
2
Y ′
1
2
)

. . . . . .

Any two addition operations computation

ADD(P , Bp) ADD(Q, Bp)

Zp × Zb Zq × Zb

ZpZb × ZpZb ZqZb × ZqZb

Xp ×Xb Xq ×Xb

Yp ×Yb Yq ×Yb

. . . . . .

. . . . . .

. . . . . .

ZpZb × ((ZpZb)
2 − dXpXbYpYb) ZqZb × ((ZqZb)

2 − dXqXbYqYb)
. . . . . .

ZpZb × ((ZpZb)
2 + dXpXbYpYb) ZqZb × ((ZqZb)

2 + dXqXbYqYb)
. . . . . .

((ZpZb)
2 − dXpXbYpYb)× ((ZpZb)

2 + dXpXbYpYb) ((ZqZb)
2 − dXqXbYqYb)× ((ZqZb)

2 + dXqXbYqYb)
. . . . . .

Table 4: Illustration of the scenario 2 of HCCA



F Brier-Joye safe sequence conversion

We show below how the Brier-Joye unified formula given in Table 1 (in Appendix A) can be
transformed in the safe sequence form using our Algorithm 1. Note that we have considered here
only the islands containing edges, i.e multiplications sharing at least one operand.

Z1X1 X1Z1

Z1Z1

FM

ZM

Y1Z1Z1Y1

X1Z2

Y1Z2

Z1Z2

Y1Z1

X2Z1 ZM

FM
Y1Z1

X1Z1 X1Z1

Y1Z1

Z1Z1

FM

ZM

Fig. 4: Safe sequence transformation of Brier-Joye unified formula

G Long integer multiplication (LIM)

The long integer multiplication algorithm presents the school-book multiplication algorithm which
has been used to compute the underlying field multiplications involved in point doubling and point
addition operations.

Algorithm 5: Long Integer Multiplication algorithm(LIM)

Data: : {X = (X[t], X[t− 1], ...., X[1])2w} , {Y = (Y [t], Y [t− 1], ...., Y [1])2w}
Result: : {X.Y }
begin

for i← 1 to 2t do
R[i] = 0

end
for i← 1 to t do

C = 0
for j ← 1 to t do

(U, V )2w = (U, V )2w + C
(U, V )2w = (U, V )2w + R[i + j − 1]
R[i + j − 1] = V
C = U
R[i + t] = C

end

end
return R

end


