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Exploiting the Order of Multiplier Operands: a
Low-Cost Approach for HCCA Resistance

Poulami Das, Debapriya Basu Roy, and Debdeep Mukhopadhyay

Abstract—Horizontal collision correlation analysis (HCCA)
imposes a serious threat to simple power analysis resistant elliptic
curve cryptosystems involving unified algorithms, for e.g. Edward
curve unified formula. This attack can be mounted even in
presence of differential power analysis resistant randomization
schemes. In this paper we have designed an effective countermea-
sure for HCCA protection, where the dependency of side-channel
leakage from a school-book multiplication with the underling
multiplier operands is investigated. We have shown how changing
the sequence in which the operands are passed to the multi-
plication algorithm introduces dissimilarity in the information
leakage. This disparity has been utilized in constructing a zero-
cost countermeasure against HCCA. This countermeasure inte-
grated with an effective randomization method has been shown to
successfully thwart HCCA. Additionally we provide experimental
validation for our proposed countermeasure technique on a
SAKURA-G platform. To the best of our knowledge, this is the
first time that asymmetry in information leakage has been utilized
in designing a side channel countermeasure.

I. INTRODUCTION

Elliptic curve cryptosystems are emerging as a primary
choice for securing light-weight embedded devices as it in-
corporates more security per key bit compared to RSA [1],
thus qualifying as a less resource hungry alternative. Also with
the recent explosion of internet of things (IoT), applications
using light-weight hardware devices are increasing exponen-
tially which in turn make the security of the underlying
devices imperative. However the hardware implementations
of cryptographic applications suffer an inevitable insecurity
in terms of side-channel leakage, even though the system is
theoretically protected. Side channel leakage of information
through power consumption [2], electromagnetic (EM) dis-
sipation, acoustic channel [3], etc makes the system weakly
protected and may lead to complete secret key recovery. A
naı́ve implementation of an elliptic curve (EC) scalar mul-
tiplication algorithm, consisting of sequential doubling and
addition operations, can be broken through simple power
analysis (SPA) [4] with only a single trace of execution.
This motivates researchers to construct cryptosystems which
are inherently secure against SPA. Atomic scheme algorithms
have been introduced in [5], [6] which transform the doubling
and addition operation into a uniform structure, such that
it becomes infeasible to distinguish an addition operation
from a doubling from a single power trace. However these
atomic scheme algorithms still involve different formulae
for addition and doubling, which has motivated researchers
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for further unification. In [7] a unified addition formula is
designed for a Weierstrass form of elliptic curve, for both
addition and doubling. While in [8] a new form of curve,
named Edward curve has been built involving a complete
addition formula which gives a valid elliptic curve point as
output for any two curve points taken as input, thus taking
care of both addition and doubling. Recent extensive research
involving use of Edward curve in cryptosystems reveals its
implementation-friendliness [9], [10], [11], [12]. Also it is
being considered as a safe curve with respect to a number of
important factors (ladder security, twist security). [13] contain
details on the defined safe curve criteria. Indeed because of
the presence of single formula for both point addition and
point doubling, an Edward curve implementation, similarly
Brier-Joye unified formula [7] is SPA resistant. We note here
that there exists advanced attacks such as differential power
analysis (DPA) attack [4] which can exploit a SPA-resistant
implementation, thus considered as a serious threat to elliptic
curve cryptography (ECC) designs. However it requires access
to a significantly large number of power or EM traces of
EC scalar multiplication executions, with a fixed secret key,
hence this scenario is not directly applicable to ECDSA, where
a secret scalar is used only once. However, the Big Mac
attack by [14] introduces an advanced form of single trace
attacks later termed as horizontal attacks which exposes even
an SPA protected implementation. Several horizontal attack
approaches followed the Big Mac analysis in [15], [16], [17]
which were mainly focused on RSA based exponentiation
algorithms. Authors in [18] have put forward the idea of
horizontal attack in case of elliptic curve cryptography. The
attack combines methodologies from the well established hor-
izontal attack [14] and the idea of collision attack (introduced
in [19]), hence termed as horizontal collision correlation analy-
sis (HCCA) which breaks an atomic scheme ECC algorithm or
a unified ECC algorithm equipped with SPA-resistance. Even
when the design is protected against advanced attacks such
as DPA, refined power analysis [20], address-bit differential
attack [21] with effective randomization schemes suggested
in [22], [23], HCCA can be launched, thus introducing genuine
vulnerability in the implementation. It exploits the relation
of the secret key value with a property pertaining to the
underlying field multiplications involved in a point doubling
and point addition operation. It is a unique property based
on the sharing of operands between two field multiplications
which holds irrespective of any randomization used at each
iteration of the scalar multiplication.
Our contribution Our main contribution in this paper is to
design a cost-effective yet adequate countermeasure that resists
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HCCA. Our contribution in this paper can be summarized as
follows
• We coin a term order of operands to define the sequence

in which two operands are passed as parameters to a
long integer multiplication routine. We show how the
information leakage from a multiplication varies when the
order of operands in a multiplication is changed. We also
derive that the relation between side-channel leakage of
two multiplications sharing one (two) common operand
(s) is dependent on the order of operands passed to the
individual multiplications. We have used two distinguish-
ers - Pearson Correlation metric, and Euclidean Distance
metric for our analysis.

• Based on this observation, we propose a countermeasure,
that can be applied to the existing unified algorithms of
ECC to defeat HCCA. The countermeasure involves two
steps: step 1 prevents the first scenario of HCCA, while
step 2 is required to resist the second scenario. Step 1 of
our countermeasure involves no randomization, instead
it converts the unified algorithm into a safer form, such
that the relation between side-channel leakage of multi-
plications based on property of operand sharing cannot
be exploited. The countermeasure requires determination
of the safe sequence through our proposed algorithm. As
a result, there is no additional timing and area overhead
on the implementation. The step 2 is based on a ran-
domization technique that is able to counter the second
phase of HCCA, by using minimal overhead. We show
how the implementation integrated with our proposed
countermeasure becomes resistant against HCCA.

• Finally we provide extensive results of mounting HCCA
on the proposed countermeasure. The results have been
validated on SAKURA-G with Electromagnetic (EM)
traces.

Paper organization The organization of the paper is as
follows. In Section 2 we recall related works in horizontal
side channel analysis. In Section 3, we provide a brief review
on HCCA. Section 4 provides a theoretical validation of our
countermeasure idea, followed by description of our proposed
countermeasure. Section 5 includes actual experimental results
of HCCA and our countermeasure. Section 6 provides a
justification of our countermeasure resistivity against other
horizontal attacks. In Section 7 we include a comparison note
with other countermeasures. Finally we conclude in Section
8.

II. RELATED WORK

Big Mac analysis [14] introduced the idea of applying
differential power analysis along the length of a single ex-
ponentiation trace of RSA. It shows how the data dependency
during the pre-computation phase can be exploited to identify
exponent digits involved in a long integer multiplication during
an m-ary RSA exponentiation. The vulnerability is shown to
increase if the length of the key increases exposing more mul-
tiplication traces to compare with. Authors in [24] applies a
novel technique of distinguishing multiplication from squaring
operations based on the difference in their expected Hamming

weight distribution. However its a vertical attack gathering
information from several traces along the same region of a
long integer multiplication. In [25] the idea of horizontal
attack on an RSA exponentiation has been strengthened by
exploiting a significant number of potential collision pairs
obtained within a long integer multiplication, if the underlying
operation is a squaring operation. Multiplication operations
are expected to result in less collisions compared to squaring
due to the presence of different input operands. In [15] a
practical vulnerability of using scalar blinding as a DPA
countermeasure has been demonstrated. Due to the sparse form
of NIST prime, a portion of the secret key remains unblinded
and get exposed to vertical collision analysis, the rest part
of the key is recovered using horizontal attack techniques.
In [17] a generic approach is introduced to break an ECC
implementation with the help of one template trace per scalar
bit. In [16] the vulnerability of regularized algorithms such as
Montgomary Ladder [26], Joye’s Add-Only scalar multiplica-
tion [27] is highlighted, based on collisions of intermediate
results obtained from consecutive iterations. In later section
we demonstrate the resistance of our countermeasure from the
above mentioned horizontal attacks.

III. PRELIMINARIES

A. Horizontal Collision Correlation Analysis

In this section we discuss the ideology behind horizontal
collision correlation analysis (HCCA). First we proceed to
explain the attack methodology with the help of an illustration,
followed by a summarization of the attack. Before moving
to the example describing HCCA, a closer look is given to
the field operations underlying ECC doubling and addition
operations. It is evident that, ECC point addition and point
doubling operations are associated with a number of field
multiplication and field addition operations. The underlying
field multiplications play an important role in HCCA. The
attack is based on the assumption: The adversary can detect
when two field multiplications have at least one operand in
common [18]. Without loss of generality we consider distinct
field elements as A, B, C, D to be used as operands to field
multiplications. Then the possible field multiplication pairs
will take one of the following forms: 1) A×B, C×D sharing
no common operand, 2) A×B, C ×B sharing one common
operand, 3) A×B, A×B where both the operands are same.
Based on the above class of multiplication pairs, we define the
following properties of field multiplication pairs:
• property 1: when a pair of multiplications (mi, mj) share

one (two) common operand (s) among themselves.
– property 1a: when a pair of multiplications (mi,
mj) share exactly one common operand among
themselves. For e.g., the pair (A×B, C×B) satisfies
property 1a.

– property 1b: when a pair of multiplications (mi, mj)
share exactly two operands, i.e. they denote the same
multiplications. For e.g., the pair (A × B, A × B)
satisfies property 1b.

• property 2: when a pair of multiplications (mi, mj) share
no common operand among themselves. For e.g., the pair
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(a) HCCA scenario 1

  DBL DBL ADD DBL ADD DBL DBL

Correlation is low Correlation is high

10110.........

X1Y2 X2Y1 X1Y1 X1Y1

(b) HCCA scenario 2

Correlation is high

10110.............

DBL DBL ADD DBL ADD DBL DBL

XpXb XqXb

Fig. 1: Horizontal Collision Correlation Analysis (HCCA)

(A × B, C × D) having independent operands satisfies
property 2.

Such relation between field multiplication operations is ex-
ploited to identify the doubling and addition operations com-
puted during an ECC scalar multiplication, which in turn is
directly dependent on the secret key. Hence identification of
doubling and addition operations leads to the recovery of
the underlying unknown key. Now we proceed to illustrate
the possible scenarios of HCCA. Figure. 1(a) illustrates an
occurrence of first phase of HCCA. Without loss of generality,
a key sequence has been considered as 10110 . . . which can
be expanded as DBL, DBL, ADD, DBL, ADD, DBL,
DBL,. . ., where DBL represents a point doubling operation,
while ADD denotes a point addition operation as shown in
Figure 1(a). Each of the ADD/ DBL operations consist
of underlying field additions and field multiplications. For
an instance, it can be observed in Figure 1(a), that there
exists a multiplication pair (X1Y2, X2Y1) within the addition
operation, satisfying property 2 of sharing operands. While a
pair (X1Y1, X1Y1) can be found in case of doubling satisfying
the property 1b of sharing operands. Now, according to [18] if
the correlation between the power traces of two concerned
multiplication pairs be considered, the multiplication pair
(X1Y2, X2Y1) should give low correlation value, with respect
to the correlation value obtained from the multiplication pair
(X1Y1, X1Y1) as shown in [18]. If significant difference
between the correlation values is obtained, then the doubling
and addition operations can be successfully identified, leading
to the complete secret key recovery.

It can be observed that for scenario 1 to hold we require
property 1 to hold for a multiplication pair in case of doubling
operation, and property 2 to hold for a multiplication pair
within addition operation, or vice versa. In absence of such
favourable situation, HCCA scenario 1 cannot be applied.

In case of the Edward curve unified formula written in
the form given in table I we observe that both the doubling
and addition operation contains multiplication pair satisfying
property 1, hence distinction cannot be done between the two
operations on the basis of operand sharing property of field
multiplications. For an instance there exists a multiplication
pair in case of addition as (R1 × R6, R1 × R7) which
actually have the value ((Z1Z2) × (Z1Z2 − dX1X2Y1Y2),
Z1Z2 × (Z1Z2 + dX1X2Y1Y2)), sharing the operand R1 or
Z1Z2. While in case of doubling one multiplication pair
can be found as (R1 × R6, R1 × R7), with the value as

((Z2
1 ) × (Z2

1 − dX2
1Y

2
1 ), (Z

2
1 ) × (Z2

1 + dX2
1Y

2
1 )) having the

common operand R1 as Z2
1 .

Edward curve formula with Intermediate steps in Addition operation
(X2 + Y 2)Z2 = c2(Z2 + dX2Y 2) R1 = Z1Z2, R2 = R2

1,
c 6= 0,

√
d /∈ Fp R3 = X1X2, R4 = Y1Y2

R5 = dR3R4, R6 = R2 −R5

R7 = R2 +R5

X3 = R1R6((X1 + Y1)(X2 + Y2)−R3 −R4)
Y3 = R1R7(R4 −R3)
Z3 = R6R7

Addition steps (called with two different points) Doubling steps (called with same point)
Z1 × Z2 Z1 × Z1

Z1Z2 × Z1Z2 Z2
1 × Z2

1
X1 ×X2 X1 ×X1

Y1 × Y2 Y1 × Y1
. .
. .
R1 ×R6 = (Z1Z2)× (Z1Z2 − dX1X2Y1Y2) R1 ×R6 = (Z2

1 )× (Z2
1 − dX2

1Y
2
1 )

R1 ×R7 = (Z1Z2)× (Z1Z2 + dX1X2Y1Y2) R1 ×R7 = (Z2
1 )× (Z2

1 + dX2
1Y

2
1 )

. .

. .

TABLE I: Comparison of operand sharing between addition
and doubling in Edward curve equation [28]

Alternatively adversary proceeds to mount second version of
HCCA or scenario 2. From a standard left-to-right double-and-
add algorithm (Algorithm 1) it can be observed that doubling
operation DBL involves a single parameter which changes at
every iteration. On the other hand, the addition routine ADD
takes two parameters as input, one of which is always the
base point of the curve (Bp in Algorithm 1). Based on this
fact, we proceed to describe the attack methodology with the
help of Figure 1(b). The base point Bp is denoted by the
projective coordinates as (Xb, Yb, Zb), the other two points
P , Q concerned with the two additions are given as (Xp,
Yp, Zp) and (Xq , Yq , Zq) respectively. When Algorithm 1
is run with an underlying Edward curve equation the two
additions will be performed as ADD(P , Bp) and ADD(Q,
Bp). There will exist two field multiplications (XpXb) and
(XqXb) underlying in the corresponding addition operations
sharing operand Xb, thus satisfying property 1a. However in
case of doubling, due to the variation of the input point with
every iteration such a scenario will not arise. Evidently all the
additions and doublings can be identified following the above
correlating mechanism which will lead to the recovery of the
secret key.

Algorithm 1: Left-to-Right Scalar Multiplication Algo-
rithm using Edward curve

Data: Point P , scalar k = {km−1, km−2, km−3...k2, k1, k0}, where
km−1 = 1

Result: kP
Q = P
for i = m− 2 to 0 do

Q = ADD(Q,Q)
// in general, doubling is called as: Q = DBL(Q)
if ki == 1 then

Q = ADD(Q,Bp)
end

end
Return Q

We summarize below the above illustrated HCCA scenarios.
An ECC point doubling operation can be decomposed into a
sequence of nd multiplications given as: {d1, d2, . . . , dnd

},
denoted by the setd. Equivalently, an addition operation
consists of a sequence of na multiplications given as:
{a1, a2, . . . , ana}, denoted by seta. Now we define property 3
for the above developed sets as: S be a set of n multiplications
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denoted by { m1,m2, . . . ,mn }, such that ∃ at least one pair
(mi,mj), where mi and mj ∈ S, i 6= j, which satisfies
property 1 of sharing operands, then the set S is said to satisfy
the property 3. First phase of HCCA or scenario 1 is based
on the following condition 1: {Only one of the sets setd and
seta should satisfy the set property 3}. If condition 1 holds,
the adversary aims at differentiating between an addition and
doubling operation. Consequently the adversary can recognize
all the doubling and addition operations in a sequential manner
by launching HCCA. If condition 1 does not hold, adversary
may mount the scenario 2 of HCCA. Note that the basis of
scenario 2 of HCCA is based on the fact: one of the addition
parameters is always the base point, which holds independent
of the underlying curve equation or the unified algorithm
steps involved in the scalar multiplication. The method of
correlating between a pair traces has been taken in [18] as
the Pearson Correlation Distinguisher. However we show in
later sections that better results of HCCA and validation of
our proposed countermeasure can obtained from Euclidean
Distance Distinguisher.

IV. OUR PROPOSED COUNTERMEASURE

We propose here a two-fold countermeasure technique
which ensures the resistance of an unified ECC algorithm
against horizontal collision correlation attack (HCCA). The
step 1 of our proposed countermeasure centers around the
concept of reordering of field operands underlying a field mul-
tiplication. It involves transforming the ECC point doubling
and point addition operations into a secure form, such that
even if condition 1 holds, it is not revealed to the adversary.
In other words, the information of one of the operations
satisfying property 3 is hidden through our implementation.
The resultant implementation is thus resistant against scenario
1 of HCCA. However still the design is vulnerable to the
scenario 2. We incorporate step 2 to the existing design,
by introducing an effective randomization scheme. Our ECC
implementation integrated with our proposed countermeasures
becomes resistant against both scenarios of HCCA. Our step
1 requires zero overhead of resources in case of the Edward
curves unified formula as well as Brier-Joye unified formula.
It is based on an observation that the leakage from the power
consumption is dependent on the ordering of operands in a
field multiplication. This discrepancy in leakage occurs as
the ordering of the operands brings in asymmetry in the
leakage, which we exploit to develop our countermeasure.
We note that although the concept of asymmetric leakage
has been addressed in [29] in case of multipliers, however
authors of [29] don’t exploit its applicability. To the best
of our knowledge, this is the first countermeasure design
which utilizes asymmetry in information leakage of multiplier
operands.

A. Asymmetric Leakage of Field Multiplication

In this section we explain our theoretical rationale be-
hind the asymmetric leakage of field multiplications, which
contribute in constructing our countermeasure scheme. We
begin our discussion with an introduction to Long Integer

Multiplication (LIM) shown in Algorithm 2. The long integer
multiplication routine is called to compute underlying field
multiplications involved in the ECC point addition, doubling
operations. The LIM takes two field operands X , Y as input
and outputs their product XY . Each of the field operands
passed as parameter in the LIM routine consists of underlying
t words, each of size w. The result can be of size 2t, and is
stored in a register of length 2t words. The algorithm is run
O(t2) times.

Algorithm 2: Long Integer Multiplication algorithm(LIM)
Data: : {X = (X[t], X[t− 1], ...., X[1])2w} , {Y =

(Y [t], Y [t− 1], ...., Y [1])2w}
Result: : {X.Y }
begin

for i← 1 to 2t do
R[i] = 0

end
for i← 1 to t do

C = 0 ;
for j ← 1 to t do

(U, V )2w = (U, V )2w + C ;
(U, V )2w = (U, V )2w + R[i+ j − 1] ;
R[i+ j − 1] = V ;
C = U ;

end
R[i+ t] = C ;

end
return R ;

end

To establish the reasoning behind asymmetry in leakage of
field multiplications, we introduce here an information leakage
model which will guide us towards the theoretical basis of our
countermeasure. Generally, in case of an iterative algorithm, a
calculation Ci is identified, which is operated at each iteration
of the algorithm execution. The output Oi of the calculation
Ci is updated at every iteration to a specific register location.
The value of the output Oi computed and stored at each
iteration leaks an information. This information leakage is
denoted as l(Oi), which can be approximated using a function
of Oi i.e f(Oi). The information leakage at each iteration
gets augmented iteratively to result in a vector < f(Oi) >.
In case of Algorithm 2, we consider an instance of the long
integer multiplication run with input field operands A =
(at, at−1, . . . , a2, a1), B = (bt, bt−1, . . . , b2, b1) which results
in the output A×B. At (i, j)th iteration we can associate the
calculation Ci,j with the partial product computation ai × bj .
The output of the partial product Oi,j = aibj is stored in
every iteration, which leaks an information l(Oi,j). We assume
that the information leakage l(Oi,j) follows Hamming weight
power model. As a result the function f(Oi,j) is approximated
with the help of the Hamming weight of the output value Oi,j .
So we consider f(Oi,j) = H(Oi,j), where H(x) implies the
Hamming weight of the value x. Based on the leakage model
considered, the information leakage of long integer multipli-
cation can be represented by an augmented vector, denoted as
< H(Oi) >, or < H(aibj) >. It is evident from Algorithm 2
that the sequence of partial products changes when the order
of the operands passed as parameter to the LIM routine is
swapped. We consider the information leakage l(ai, bj) at each
iteration, corresponding to partial product ai × bj computed
during an instance of LIM(A,B) execution. It is observed that
the vector is formed as < l(a0,b0), l(a0,b1),. . ., l(a0,bt−1),. . .,
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l(at−1,bt−1) >. While the one obtained during computation
of LIM(B, A) can be presented as < l(b0,a0), l(b0,a1),. . .,
l(b0,at−1),. . ., l(bt−1,at−1) >. This asymmetry in the sequence
of the two vectors contribute as a distinguisher between two
multiplications. The following lemma has been introduced to
emphasize the dependence of information leakage from the
intermediate partial products l(ai, bj) on the input operands
A, B during the computation of LIM(A, B).

Lemma IV.1. The probability of collision of Hamming weight
of a pair (mn, pn) is more than the probability of collision of
the pair (mn, pq).

Proof. Let Y = (y1, y2) be the event that the Hamming weight
of the output of two multiplications y1 and y2 collide. Let X
be a random variable such that (X = a) denotes the colliding
Hamming weight of the event (Y = (y1, y2)) is a. If each
operand are of size w bits, then the number of all possible
values of one operand is 2w.
Case 1: The probability of collision of the pair (mn, pn) is
computed as P1 = P (Y = (mn, pn)) = {P (X = 0) ∪ P (X =
1) ∪ P (X = 2) ∪ . . . ∪ P (X = w)} = P (X = 0) +
P (X = 1) + P (X = 2) + . . . + P (X = w). Now, P (X =
a) = na

(2w)3 , where na is the number of cases when the two
multiplications collide with a Hamming weight value a. Since
we have three distinct operands in the two multiplications the
total number of multiplication pairs formed is (2w)3. Thus P1

= n0

(2w)3 + n1

(2w)3 + . . . + nw

(2w)3 = n0+n1+...+nw

(2w)3 .
Case 2: The probability of collision of the pair (mn, pq) is
computed as P2 = P (Y = (mn, pq)) = {P (X = 0) ∪ P (X =
1) ∪ P (X = 2) ∪ . . . ∪ P (X = w)} = P (X = 0) +
P (X = 1) + P (X = 2) + . . . + P (X = w). Now, P (X =
a) = na

(2w)4 , where na is the number of cases when the two
multiplications collide with a Hamming weight value a. Since
we have four distinct operands in the two multiplications the
total number of multiplication pairs formed is (2w)4. Thus P2

= n0

(2w)4 + n1

(2w)4 + . . . + nw

(2w)4 = n0+n1+...+nw

(2w)4 .
From the probability values of P1 and P2, we observe that

P1 > P2. Hence Proved.

To calculate the relationship between information leakage
of two long integer multiplications we have considered the
following metrics

1) Pearson Correlation Metric: : Considering underlying
field operands as: A, B, A′, B′, the correlation between
two long integer multiplications LIM(A, B) and LIM(A′, B′)
can be approximated with the Pearson correlation coefficient
computed between two vectors < H(aibj) >, < H(a′ib

′
j) >

(following similar notation as above). Let us denote the two
vectors as H(AB) and H(A′B′) respectively. The correlation
is obtained as follows

ρ =
Covariance(H(AB), H(A′B′))√

V ariance(H(AB))
√
V ariance(H(A′B′))

(1)

We now onwards denote the covariance between two vec-
tors as cov(H(AB), H(A′B′), variance as var(H(AB)). The
standard deviation from the information leakage of a long
integer multiplication LIM(A, B) is denoted as std(AB). It
is obtained as below

std(AB)=std(<H(AB)>)=

√√√√√√
t−1∑

i=0,j=0
H(aibj)

2

t2
−

(
t−1∑

i=0,j=0
H(aibj)

t2

)2

(2)
We define four correlations based on following long integer

multiplications LIM(A, B), LIM(B, C), LIM(C, B), LIM(C,
D). The following correlation is obtained from LIM(A, B)
and LIM(C, B)

ρ1=

(
t−1∑

i=0,j=0
H(aibj)H(cibj)

t2

)
−

(
t−1∑

i=0,j=0
H(aibj)

t2

)(
t−1∑

i=0,j=0
H(cibj)

t2

)
std(AB)std(CB)

(3)

where we denote
t−1∑

i=0,j=0

H(aibj)H(cibj) as α, where α can

be expanded as

α =(H(a0b0)H(c0b0) +H(a0b1)H(c0b1) + . . .+H(a0bt−1)(c0bt−1)

+H(a1b0)H(c1b0) + . . .+H(at−1bt−1)H(ct−1bt−1))
(4)

The following correlation is obtained from LIM(A, B) and
LIM(B, C)

ρ2=

(
t−1∑

i=0,j=0
H(aibj)H(bicj)

t2

)
−

(
t−1∑

i=0,j=0
H(aibj)

t2

)(
t−1∑

i=0,j=0
H(bicj)

t2

)
std(AB)std(BC)

(5)

where
t−1∑

i=0,j=0

H(aibj)H(bicj) can be expressed as β, which

takes the form

β =(H(a0b0)H(b0c0) +H(a0b1)H(b0c1) + . . .+H(a0bt−1)h(b0ct−1)

+H(a1b0)h(b1c0) + . . .+H(at−1bt−1)H(bt−1ct−1)).
(6)

Here we consider the correlation coefficient between a mul-
tiplication pair with property 2, computed from LIM(A, B)
and LIM(C, D).

ρ3=

(
t−1∑

i=0,j=0
H(aibj)H(cidj)

t2

)
−

(
t−1∑

i=0,j=0
H(aibj)

t2

)(
t−1∑

i=0,j=0
H(cidj)

t2

)
std(AB)std(CD)

(7)

where
t−1∑

i=0,j=0

H(aibj)H(cidj) is coined as γ, represented as

γ =(H(a0b0)H(c0d0) +H(a0b1)H(c0d1) + . . .+H(a0bt−1)H(c0dt−1)

+H(a1b0)H(c1d0) + . . .+H(at−1bt−1)H(ct−1dt−1)).
(8)

We develop here few Lemmas which will be required con-
sequently to support the theoretical foundation of our coun-
termeasure. Few terms which will be used in the following
Lemma are introduced here. Four mutually distinctive word
multipliers are considered as m, n, p, q which will be used as
operands to word level multiplications such as mn, pn, and pq.
As defined above, A and B denote two field multiplications
operands which will be used as parameters in the LIM routine.
Now we proceed to the Lemmas.

Lemma IV.2. The standard deviation of a Hamming weight
vector obtained from LIM(A, B) is same as that obtained as
LIM(B, A), i.e std(AB) = std(BA).
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Proof. The vector composed from leakage information of
LIM(A, B) can be expanded as < H(a0, b0), H(a0, b1),. . .,
H(a0, bt−1),. . ., H(at−1, bt−1) >. While the vector obtained
from leakage information of LIM(B, A) is represented as <
H(b0, a0), H(b0, a1),. . ., H(b0, at−1),. . ., H(bt−1, at−1) >.
It can be observed that the two vectors are two different ar-
rangements of same underlying elements. As a result std(AB)
= std(BA). Hence proved.

If we denote mean(X) as the mean value of a vector X ,
on the basis of a similar argument we can also show that
mean(AB) = mean(BA).

Lemma IV.3. cov(H(AB), H(CB)) 6= cov(H(AB),
H(BC)). When C = A, cov(H(AB), H(AB)) 6=
cov(H(AB), H(BA)).

Proof. The two covariances cov(H(AB), H(CB)) and
cov(H(AB), H(BC)), can be represented as

cov(H(AB), H(CB)) = α−mean(AB)mean(CB) (9)

cov(H(AB), H(BC)) =β −mean(AB)mean(BC)

=β −mean(AB)mean(CB)
(10)

Since, from Lemma 2. mean(BC) = mean(CB), the sec-
ond term in both the covariances are mean(AB)mean(CB).
Also, from equations 4 and 6, α 6= β, as a result we can
conclude

cov(H(AB), H(CB)) 6= cov(H(AB), H(BC)).

When C = A: from equation 4 and 6, we show that still α
6= β. The value of α can be expressed as

α =(H(a0b0)H(a0b0) +H(a0b1)(a0b1) + . . .+H(a0bt−1)H(a0bt−1)

+H(a1b0)H(a1b0) + . . .+H(at−1bt−1)H(at−1bt−1))

=(H(a0b0)
2 +H(a0b1)

2 + . . .+H(a0bt−1)
2

+H(a1b0)
2 + . . .+H(at−1bt−1)

2)
(11)

While β can be reduced as

β =(H(a0b0)H(b0a0) +H(a0b1)H(b0a1) + . . .+H(a0bt−1)H(b0at−1)

+H(a1b0)H(b1a0) + . . .+H(at−1bt−1)H(bt−1at−1))

=(H(a0b0)
2 +H(a0b1)(b0a1) + . . .+H(a0bt−1)H(b0at−1)

+H(a1b0)h(b1a0) + . . .+H(at−1bt−1)
2).

(12)
From equations 11 and 12, we can observe that α 6= β. As a

result when C = A, we can conclude similarly that

cov(H(AB), H(AB)) 6= cov(H(AB), H(BA)).

Lemma IV.4. ρ1 > ρ2 for the case: A = C.

Proof. When A = C, precisely the two multiplications pairs
considered are: (LIM(A, B), LIM(A, B)) and (LIM(A, B),
LIM(B, A)). The correlation ρ1 between (LIM(A, B), LIM(A,
B)) can be computed as

ρ1 =
cov(H(AB), H(AB))√

var(H(AB))
√
var(H(AB))

=
var(H(AB))

var(H(AB))
, since cov(X,X) = var(X)

=1

While, the correlation ρ2 between (LIM(A, B), LIM(B, A))
can be computed as

ρ2 =
cov(H(AB), H(BA))√

var(H(AB))
√
var(H(BA))

=
cov(H(AB), H(BA))

var(H(AB))

<1

Since from Lemma 3,

cov(H(AB), H(AB)) 6= cov(H(AB), H(BA)).

Hence it is proved that ρ1 > ρ2, when C = A.

With the help of the lemmas discussed above, we make
the following observations:

Observation 1: ρ1 6= ρ2 From equations 3, 5, we can
recollect the mathematical forms of ρ1 and ρ2. From Lemma
2, we can conclude that std(AB) = std(BA). As a result, the
denominators in case of both the correlations are equal. From
Lemma 3 we have the result that

Cov(H(AB), H(CB)) 6= Cov(H(AB), H(BC)).

Consequently numerators of the two correlations are unequal.
Also, since From Lemma 2, mean(AB) = mean(BA), the
difference in value arises from the unequal values of α and β.
We give a closer look at the forms of α and β to observe
that: 1) each term in α takes the form H(aibj)H(cibj)
where the word multiplications share operand bj . 2) each
term in β is of the form H(aibj)H(bicj), where the word
multiplications have no common operand. Utilizing Lemma 1,
we can conclude that each term in α has a higher probability
of collision with respect to each term in β.
Observation 2: ρ2 ≈ ρ3 To make a comparison between the
values of ρ2 and ρ3, we look at the form of each of the
terms present in the two equations take: 1) each term in β is
of the form H(aibj)H(bicj), where the word multiplications
have no common operand. 2) each term in γ is of the form
H(aibj)H(cidj), where the word multiplications are devoid
of any common term. We conclude from our observation that,
the two correlation coefficients take similar form.
Observation 3: ρ1 > ρ2 for a multiplication pair with prop-
erty 1b A multiplication pair satisfying property 1b, implies
same multiplications are being computed. From Lemma 4, we
obtain that in such a case ρ1 will always be greater than ρ2
irrespective of the underlying field element values involved.
Hence ρ1 > ρ2 occurs with high probability in such a case.

From the above observations, the importance of ordering of
operands in underlying field multiplications can be inferred.
Based on our inference, we suggest that the information
leakage due to sharing of operands can be hidden by operand
reordering. This fact has been exploited in designing step 1 of
our countermeasure which will be explained in the following
subsection. We introduce next the Euclidean distance metric
for evaluation of our leakage analysis.

2) Euclidean Distance Metric: Euclidean distance metric
has been advantageous in implementing the Big Mac attack
in [14], also it has been utilized in a subsequent horizontal
attack introduced in [25]. We also consider evaluation of our
leakage analysis with Euclidean distance metric. For a pair
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of long integer multiplications LIM(A, B) and LIM(A′, B′),
the Euclidean distance between the two information leakage
vector H(AB) and H(A′B′) can be represented as vector d,
where

dij =
√

(H(aibj)−H(a′ib
′
j))

2 (13)

The mean Euclidean distance obtained accumulating the
individual information leakage values can be obtained as

dmean =
1

l2

l2∑
n=1

dij (14)

We note here that our theoretical observation made, based
on the Pearson correlation metric will be valid under Eu-
clidean metric also, as both have been defined on same
underlying leakage model. However in later section we show
that practical results reflect better validation of the HCCA
attack implementation and our proposed countermeasure in
case of Euclidean metric than the previously discussed Pearson
correlation metric. We have deduced the reason behind such
findings in the Experimental section (Section V). We move on
to discuss our countermeasure idea in the following subsection.

B. Preventing scenario 1 by choosing safe sequence

Step 1 is designed on the basis of the idea of reordering of
operands discussed in the previous subsection. It attempts to
transform the series of field multiplications underlying ECC
point doubling and point addition operation into a HCCA -
resistant form. In other words, it makes the implementation
secure against scenario 1 of HCCA. As can be noted in
section III-A, an ECC implementation becomes vulnerable to
scenario 1 of HCCA if only one of the addition or doubling
operation satisfies property 3. The idea is to alter the operation
containing property 3, into a form where information regard-
ing operand sharing between field multiplications is hidden.
Consequently it is not revealed to the adversary whether
any doubling or addition operation contains property 3 or
not. Hence the basis of distinction between doubling and
addition operation is concealed. It should be noted that the
transformation technique mainly involves rearrangement of
multiplication operands. This process does not incorporate any
randomization or any extra operation. Therefore the cost of
this countermeasure step is zero in terms of area as well
as timing overhead. Moreover, the order of operands are
decided beforehand and can be precomputed before imple-
menting the design, requiring only one time effort from the
designer’s point of view. We design an algorithm, named
safe sequence converter routine presented in Algorithm 3
which takes care of the transformation process of step 1. We
proceed to portray our transformation mechanism through an
illustration, which will be followed by a description of our
designed Algorithm 3.

We have considered the Edward curve unified formula
shown in [28] for explaining our conversion scheme. It can
be noted that the Edward curve unified formula involves a
single formula which is used for both addition and doubling.

 

T1T3

X1Y2 Y1Y2

X2Y1X1X2 T1T2

T1T1

T5T7T7T8

T5T6

T1T1

T1T3
T1T2X1Y1

Y1Y1X1Y1

X1X1

T5T6

T5T8
T7T8

T7T8 T5T7

T5T6

X1X1
Y1X1

Y1Y1 T1T1

T1T3T1T2

X1Y1

S6 = T1 × T2;

S1 = X1 × Y2;
S2 = X1 ×X2;
S3 = Y1 × Y2;
S4 = X2 × Y1;

S7 = T1 × T3;

Z3 = T5 × T7;

T5 = (S5 − dT4);X3 = T5 × T6;
T7 = (S5 + dT4);Y3 = T7 × T8;

T4 = S2 × S3;T6 = S6;T8 = S7;

S5 = T1 × T1;T3 = S3 − S2;
T1 = Z1 × Z2;T2 = S1 + S4;

Fig. 2: Safe sequence transformation of Edward curve formula

It underlies a series of field multiplication operations which
have been listed in Figure 2. We note that the multiplications
are written with respect to the addition operation, i.e when
two distinct points (X1, Y1, Z1), and (X2, Y2, Z2) are taken
as input. To construct a safe sequence we need to find out
which are the multiplications which share operands among
themselves. To do so, we construct an undirected graph with
the individual multiplications as the graph vertices, whereas
an edge is constructed between two graph vertices if the
two underlying multiplications satisfy property 1 of sharing
operands (edge property). We observe in the Figure 2 how
edges are formed between (X1X2, X1Y2), (X1X2, X2Y1),
(Y1Y2, X1Y2) and so on. Furthermore, we witness that the
graph is not completely connected, instead it is composed of
a number of islands. One may argue that, multiplications such
as T5T6 involve operand T5 which is of the form T1T2, so
it is sharing a common operand T1. This is actually not true
because, the multiplication output of (T1T2) mod Fp, where
Fp is the underlying field prime, is stored in the location T5,
and hence it is statistically independent from T1. Now we
make a crucial observation that, the operand sharing obtained
from the graph considered reveals all the operand sharing
multiplications which will be present in the addition operation.
But if we consider the graph corresponding to the doubling
operation where points (X1, Y1, Z1), and (X2, Y2, Z2) are the
same, it can be observed that the previous operand sharing
will still be present along with some possible extra operand
sharing vertices. So the operand sharing edges obtained from
the addition operation graph illustrated above are the edges
common to both addition and doubling operations. As a result,
they don’t qualify in distinguishing between addition and
doubling operations. Evidently, the operand sharing edges
which are found only in case of doubling operation may
contribute in the distinction. To get a closer look we consider
the complements of the islands of our previously constructed
graph. Note that we are not interested in the edges between
islands in the complement graph because they don’t share
operands among themselves. We also replace the vertex values
with the respective forms of doubling operation. For e.g. X1Y2
will be replaced with X1Y1. The complement of the islands
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are considered here to concentrate on those edges which will
be formed only in case of doubling operation. However the
complement of the islands will include both essential edges
(for e.g edge between two vertices each containing value
X1Y1) as well as redundant edges (for e.g. edge between two
vertices with values X1X1 and Y1Y1 respectively which do not
satisfy the edge property). We remove the redundant edges,
and look only at the essential edges because they are the ones
which will help in distinguishing and addition operation from
a doubling operation. In this case, doubling operation involves
X1Y1, X1Y1 operated twice, which are satisfying property
1b. On the other hand, addition operation consists of two
underlying multiplications X2Y1, X1Y2 satisfying property 2
of sharing operands. Thus they successfully depict scenario
1 of HCCA. Based on our observation 2 and observation
3, we rearrange the multiplications as X1Y1 and Y1X1, so
that the their operand sharing property remains hidden. As
was observed in subsection 3, the information leakage for the
pair LIM(X1, Y1), LIM(Y1, X1) will be similar to that of
the pair LIM(X2, Y1), LIM(Y1, X2). (here we refer to the
long integer multiplication routine LIM). So we suggest to
swap the order of operands of the second multiplication. From
lemma IV.5 we get that the problem of swapping operands of
field multiplications can be solved by the problem of two-
colorability of a graph. So if the final reduced graph with the
islands containing essential edges be two-colorable, then we
proceed to color the graph with two colors, and eventually
swap the operands of those vertices which belong to the class
of one particular color.

In a similar fashion, we transform the Brier-Joye unified for-
mula shown in [7] into a secure structure. The transformation
steps corresponding to the Brier-Joye formula is portrayed in
Figure 3.

Z1X1 X1Z1

Z1Z1

FM

ZM

Y1Z1Z1Y1

X1Z2

Y1Z2

Z1Z2

Y1Z1

X2Z1 ZM

FM
Y1Z1

X1Z1 X1Z1

Y1Z1

Z1Z1

FM

ZM

Fig. 3: Safe sequence transformation of Brier-Joye unified
formula

Before proceeding to state the following lemma IV.5, we
give here a rationale behind the operand swapping problem
formulation. In our operand swapping problem, we need to
identify a set of vertices which need to go through operand
swapping, keeping other vertices intact as before so that the
overall set reaches a secure form. So it is depictable that the
vertex set needs to be partitioned into two sets. The set of
vertices which requires operand swapping is called the swap
set. while the other set is named as uninterrupted set. Also
it can be perceived that in any edge, since the edge has
been created due to operand sharing of two vertices, one
of the vertex of the edge should be swapped, thus should
belong to swap set. While the other vertex should belong to
the uninterrupted set. Furthermore, there does not exist an

edge such that both of their end vertices belong to the swap
set, or the uninterrupted set. Suppose there exists one such
edge, then if both vertices belong to the swap set then then
it implies in case of both the vertices, the vertex operands
have been swapped. But this is equivalent to the state before
swapping. For e.g. it means a vertex pair (X1Y1, X1Y1)
has been swapped to (Y1X1, Y1X1), which does not solve
our aim of information masking through operand swapping.
This is because the correlation between both the mentioned
pairs will be higher with respect to the pair (X1Y1, Y1X1),
as has been proved in lemma IV.4. From this it directly
follows why must the vertex ends of any edge belonging to
the set E should not belong to the same set (swap set or
uninterrupted set). Naturally, it is alos understood why the
vertices belonging to either swap set or uninterrupted set do
not contain any edge between themselves. Now we define the
operand swapping problem more formally followed by stating
the Two-colorability problem of graph.
Operand swapping problem or problem a: Given an undirected
graph G denoted by the set {V , E} , whether there exists a
partition of V as (V1, V2) with following conditions: 1) V1 or
swap set, consists of elements as {v | operands of v should
be swapped}. 2) V2 or uninterrupted set, can be presented as
{v | operands of v should not be disturbed}. 3) the edge set
E is of the form {e | e = (vi, vj), where (vi ∈ V1, vj ∈ V2)
or (vi ∈ V2, vj ∈ V1)}.
Two-colorability problem of graph or problem b: Given a
graph G as set {V , E}, whether the vertices of the graph can
be colored with two colors, such that no two vertices sharing
the same edge contain the same color i,e in other words to
check whether the graph is a bipartite graph. Now we are
ready to state the lemma IV.5.

Lemma IV.5. The problem of swapping of vertex operands
(multiplication operands) in an undirected graph is polynomial
time reducible to the problem of two-colorability of a graph.

Proof. An instance of graph G is fed to the problem b, which
returns the decision in polynomial time whether the input
graph is two-colorable or not. If the answer is yes, then the
graph is passed to a graph coloring algorithm that returns
the resultant graph colored with two colors. Without loss of
generality the two colors can be named as color1 and color2.
We define the set of vertices colored with color1 as swap set,
while the set of vertices colored with color2 as uninterrupted
set. Thus we have determined a solution for the instance of
problem a. Hence proved.

Now we give a closer look at the correctness of the
polynomial reduction of problem a into problem b. As was
mentioned in the above proof, the solution for the instance
of the graph considered corresponding to problem b gives
back the graph instance colored with two colors, based on
the graph coloring algorithm. The vertices having color1 form
set1, while the vertices colored with color2 form a set2. The
vertices within set1 do not contain any edge between them,
similarly in set2, no two vertices are connected by an edge.
For every edge in E, two vertices are colored with two distinct
colors, which implies the two vertices belong to two different
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vertex sets. We can consider set1 as the swap set, on the
other hand the set2 can be considered as the uninterrupted set
required for the solution of problem a. The sets obtained from
solution to problem b also satisfies the condition for the edge
set that every edge should contain vertices belonging to the
two different sets, so that for every edge the vertex belonging
to the swap set should undergo operand swapping, while the
other vertex from uninterrupted set should remain unaltered.
That is why the solution obtained from problem b qualify as
a solution for problem a.

Algorithm 3: Safe sequence converter() : Algorithm to
determine safe operand ordering of multiplication pairs

Data: : Set S = { mi | i ∈ {1, n}, where n is the number of multiplications}
Result: : Set S’ = { m′i | i ∈ {1, n}, where n is the number of multiplications}
begin

// Step 1
Create Graph() ;
Find GraphComponents() ;
// Step 2

Find Safeseq Ĝ() ;
end
Create Graph(): ;
begin

Initialize Graph G ;
for i← 1 to n do

AddV ertex(G,S[i]) ;
// create vertices of graph G

end
for i← S[0] to S[n− 1] do

for j ← S[0] to S[n− 1] do
if i 6= j and share operand(S[i], S[j]) == TRUE then

AddEdge(G,S[i], S[j]) ;
// create edges of graph G

end
end

end
end
Find GraphComponents(): // find Islands of the Graph
begin

for v ← 0 to G→ V − 1 do
V isited[v] = FALSE

end
seg count = 1 ;
for v ← 0 to G→ V − 1 do

if V isited[v] == FALSE then
Island[seg count] = Clone Graph(G, v) ;
// 1)clone the graph island containing vertex

v
// 2)set the visited vertices
Seg array[seg count].ele = v ; // keep track of
starting node of the island
seg count = seg count+ 1 ; // keep track of the
number of islands formed

end
end

end

Find Safeseq Ĝ(): // find safe sequences
begin

for i← 0 to seg count− 1 do
G1 = Construct ComplementGraph(Island[i]) ;
Remove redundant edges(G1) ;
// remove the edges not satisfying the edge

property
if Colorable 2(G1) == TRUE then

Color Graph(G1, RED,BLACK) ;
end
Swap Order(G1) ;
for v ← 0 to (G1 → V − 1) do

S′.add(G1− > array[v].data) ;
end

end
end

C. Preventing scenario 2 by randomizing the Base point

Once the adversary fails to launch the scenario 1, she
may exploit the possibility of scenario 2 of HCCA. As was
discussed in section III-A, it is based on the observation that
an addition operation involves two elliptic curve points, out
of which one is always the base point. Let us consider two
sets of field multiplications, S1 as {mi | mi ∈ additioni
},while S2 denoted as {mj | mj ∈ additionj }. It can be
directly observed that since there is a common elliptic curve
point, passed as parameter to both the addition operations,
there will exist a multiplication pair (m1, m2), such that
m1 ∈ additioni, m2 ∈ additionj and (m1, m2) shares
one multiplication operand satisfying property 1a. With this
observation the attacker can launch HCCA on a single trace
and identify all the addition operations, subsequently also the
doubling operations.

We propose here a method based on a randomization
scheme which aims at thwarting the scenario 2 of HCCA with
minimal timing or area overhead. The technique is based on
the idea of randomizing the base point at every execution of
addition operation so that any two multiplications chosen from
two addition operations become free from the operand sharing
property. Based on standard projective coordinate system, the
equivalence between two elliptic curve points can be defined
as (X1, Y1, Z1) ∼ (X2, Y2, Z2) if X2 = λX1, Y2 = λY1
and Z2 = λZ1, where λ ∈ F ∗p . Any point (X , Y , Z) can
be randomized by using a random λ ∈ F ∗p into the form
Rp as (λX , λY , λZ). We use this randomized base point as
input to every addition operation. Our randomization method
is based on execution of a random permutation for every scalar
multiplication run. The set of numbers used in the permutation
process can be represented by the set perm as {i | i ∈ [1, |A|]},
where |A| denotes the maximum number of addition operation
possible for a key ∈ [1,order(E)], order(E) is the order of
the underlying elliptic curve. Every execution of the scalar
multiplication algorithm involves one random permutation of
the set perm. The λ value chosen for consecutive addition
operations are chosen from the consecutive elements of the
set perm. The addition operation once achieved by using the
random point Rp requires derandomization such that the final
result is same as that obtained from the fixed base point Bp.
The derandomization involves three field multiplications of the
form (λk)−1×X3, (λk)−1×Y3, (λk)−1×Z3 per addition op-
eration, where (X3, Y3, Z3) represents the intermediate output
by using Rp (k is a constant). The computation involving λX ,
λY , λZ and (λk)−1 for varied λ ∈ perm can be stored before
implementing the design. Note that this precomputation step
is curve-specific, and is fixed for a base point. Consequently
the precomputed values can be used during each addition
operation based on the value of λ chosen. Thus the only
extra cost involved in incorporating this countermeasure step
includes three field multiplications per addition operation.
It should be noted that only step 2 cannot prevent HCCA,
since the scenario 1 of HCCA can be exploited within an
addition and a doubling operation, although the base point
randomization is present. Hence to prevent HCCA completely
we require to integrate our countermeasure to the ECC design
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containing both the steps.

D. Overhead analysis of our countermeasure

In table II we give the overhead analysis of our coun-
termeasure. As has been discussed in the previous section,
step 1 involves a precomputation phase of constructing the
safe sequence of an unified addition (doubling) operation, but
requires no runtime overhead of time and area, once the safe
form is obtained. Step 2 contains a precomputation step for
randomization of the base point. We precompute randomized
Base point values (λX , λY , λZ) for several values of λ ∈
{1, . . . , L}, where L = log(#E(orderoftheEC)). During
runtime, each addition step requires a derandomization step
at the end of the computation which involves three field
multiplications.

TABLE II: Overhead analysis of our countermeasure
countermeasure step 1 countermeasure step 2

Precomputation Algorithm 1 with O(n2)
time and O(n2) space,
where n is number of
verteces in the graph

computation of (λX ,
λY , λZ), where λ ∈
{1,. . .,L}. This process
requires O(L) time and
O(L) space

Runtime zero timing and area over-
head

timing overhead of three
field multiplications per
addition, zero area over-
head

V. EXPERIMENTAL RESULTS

In earlier sections, we have established the basis of hori-
zontal collision correlation attack along with the strategies to
thwart this attack methodology. It is evident from [18] and
our previous discussions that ECC scalar multiplication in
both Edward curve and NIST curve is vulnerable to HCCA.
Specifically, the Edwards curve implementation incorporating
unified formula is extremely vulnerable to HCCA as there
exists a pair of multiplication which shares both the operand
during execution of point doubling. Hence an adversary is
expected to observe extremely high similarities when he/she
compares the power trace of aforementioned multiplications,
sharing both the operands. The previous work on HCCA [18]
uses Pearson’s correlation coefficient as the measure of simi-
larity between the power traces. The paper shows that power
traces of multiplications having both of their operand shared
exhibit high correlation value between them whereas power
traces of multiplications having no operand shared show low
correlation value between them. However, the experimental
validation of HCCA has been provided through simulated
side channel traces, but not on actual side channel (power
or electromagnetic) traces which have been obtained from
hardware. The scenario in actual hardware may differ sig-
nificantly as the actual side channel traces (power or elec-
tromagnetic) are contaminated with system noise along with
algorithmic noise. In this paper, we experimentally validate
HCCA and our countermeasure against HCCA on actual
FPGA. We have already introduced Euclidean distance as an
alternative distinguisher for HCCA in previous discussions. In
this section, we will first provide experimental validation of
the fact that Euclidean distance serves as a better distinguisher
than Pearson’s correlation coefficient in HCCA context. Then
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0 0.5 1 1.5 2 2.5

x 10
4

0

20

40

60

80

100

120

140

Time Samples

E
.M

. T
ra

ce
 V

al
u

e

Posittive Edges of
         Clock

(b) Region of Interest

3600 3650 3700 3750 3800 3850 3900 3950
0

50

100

Time Samples

E
.M

. T
ra

ce
 V

al
u

e

Region
of
Interest

Fig. 4: Multiplication EM Trace

we will provide experimental validation of the effectiveness of
step 1 of our proposed countermeasure in preventing HCCA.

We have used SASEBO-GII as the hardware platform for
evaluating HCCA and countermeasure step 1. All the algo-
rithms are implemented on cryptographic FPGA of SASEBO-
GII (XC5VLX50). As the first step of experimental validation,
we have implemented a long integer multiplier of bit-width
255 bits. The implemented multiplier has similar architecture
of [30] and requires 18 clock cycles to complete one single
multiplication (without modular reduction). The architecture
has an area overhead of 800 slices with 11 DSP blocks. Using
this multiplier, we have acquired around 1000 EM traces
where each trace consist of four multiplications involving 4
different operands. Let us term these operands as A,B,C,D.
The multiplication operation within a single EM trace can be
listed as 1) A×B, 2) C ×D, 3) B ×A, 4) A×B.

Now, for the HCCA to be successful on ECC scalar mul-
tiplication in Edward curve, an adversary should be able to
understand that whether a pair of multiplication have both
of their operand shared or not. More specifically adversary
must have a distinguisher which should distinguish between
pair of multiplications like {A × B, A × B} and {A × B,
C × D}. The EM trace of a single multiplication is shown
in figure 4(a) where we have pointed the positive edge of the
clock cycles. To calculate Euclidean distance (and Pearson’s
correlation coefficient) between the EM traces of a pair of
multiplication, we have identified a region of interest around
each positive edge of the clock cycle as shown in figure 4(b)
as all switching activity of the underlying multiplier happens
at the positive edge of the clock cycle. We calculate the
Euclidean distance between two EM traces, denoting a pair
of multiplication, for each region of interest by measuring the
distance between each point of the region of interest for each
clock cycle and calculating mean of that.

Thus Euclidean distance between two region of interest T1R
and T2R of two EM traces T1 and T2 is calculated as follows:

d =
1

n

i=n−1∑
i=0

|T1R,i
− T2R,i

| (15)

where n is the length of the region of interest. So for each
region of interest we calculate a single Euclidean distance
value.

Similarly to compare Pearson’s correlation coefficient with
Euclidean distance as a distinguisher, we have computed Pear-
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(a) Evaluation of HCCA on a Stand-
alone Field Multiplier with Euclidean
Distance
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(b) Evaluation of step 1 on a Stand-
alone Field Multiplier with Euclidean
Distance
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Fig. 5: Evaluation of HCCA and Countermeasure step 1 on a
Stand-alone Field Multiplier with Euclidean Distance

son’s correlation coefficient between each region of interest for
every clock cycle between a pair of EM trace, where each EM
trace denotes a multiplication operation. Thus in this case also
for each region of interest we get a single correlation value.

We will first show our evaluation of a stand alone field
multiplication operations. As we have already mentioned we
have collected around 1000 EM traces for each multiplication
operation indicating three different scenario: 1. A pair of
multiplication having both of their operand shared 2. A pair of
multiplication having none of their operand shared and 3. A
pair of multiplication having both operand shared but operand
sequence is swapped. Analysis of HCCA and countermeasure
step 1 using Euclidean distance and Pearson correlation coeffi-
cient distinguisher are presented in figure 5 and 6. Figure 5(a)
clearly shows that using Euclidean distinguisher, the adversary
can easily distinguish whether between pair of multiplication
having shared operand and pair of multiplication having no
operand shared. However, this decision can not be taken
by using correlation as shown in figure 6(a). The reason
behind this disparity is as follows: correlation is a measure of
similarity between two vectors. So if two regions of interest
are of same nature but are separated by some distance, they
will highly correlate with each other. Now, due to switching
activity of the circuit, the circuit draws power from the supply
and that is indicated on the EM trace by the dip from the
reference level. A high switching activity will induce more
dip from the reference level and low switching activity will
induce less dip in the EM trace. Hence two regions of interest
corresponding to two different Hamming weights will have
different dip from the reference level, but will be of same
nature. Hence they can be better distinguished by Euclidean
distance rather than correlation.

The validation of the countermeasure step 1 is shown in
figure 5(b). The figure clearly exhibit the effectiveness of
the countermeasure as it is now not possible to distinguish
between pair of multiplication having shared operand and pair
of multiplication having no operand shared. We have repeated
this experiment with multiple traces. A combined surface plot
of all the traces for both HCCA and countermeasure step 1
is shown in figure 7. This result again proves the efficiency
of Euclidean distance countermeasure for HCCA and the
effectiveness of countermeasure step 1 in preventing HCCA.

(a) Evaluation of HCCA on a Stand-
alone Field Multiplier with Correlation
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(b) Evaluation of step 1 on a Stand-
alone Field Multiplier with Correlation
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Fig. 6: Evaluation of HCCA and Countermeasure step 1 on a
Stand-alone Field Multiplier with Correlation

(a) Evaluation of HCCA Through Sur-
face Plot of Multiple EM traces of a
Stand-alone Field Multiplier
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(b) Evaluation of step 1 Through Sur-
face Plot of Multiple EM traces of a
Stand-alone Field Multiplier
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Fig. 7: Evaluation of HCCA and step 1 with multiple traces
of Stand-alone Field Multiplier

Next, we will show results on EM traces of actual ECC
scalar multiplication in Edward curve. We have implemented
Curve1174 on SASEBO-GII evaluation board and has col-
lected around 400 EM traces of scalar multiplication. As
we have already mentioned in the previous sections that in
Edward curve unified formula, point doubling involves a pair
of field multiplication having both of their operands shared
whereas point addition does not have any field multiplication
which share both of the operand. Success of HCCA depends
upon whether an adversary can distinguish between a pair of
field multiplication having both of their operand shared and
a pair of field multiplication having no common operand. If
the adversary can do this, he can distinguish between point
doubling and point addition operation which will directly give
him the knowledge about secret scalar value. By using step
1 of the countermeasure, we aim to remove the threat of
HCCA. The objective is to make the job of distinguishability
between pair of multiplication having no operand shared and
pair of multiplication having both of their operand shared
difficult. Figure 8 shows that the result on Edward curve scalar
multiplier is consistent with the observation that we made on
figure 5. The step 1 of our countermeasure again act as an
efficient protector of the implementation against HCCA. The
ineffectiveness of correlation is shown in figure 9. Finally
result through surface plot on multiple traces is shown in
figure 10 which again supports the effectiveness of counter-
measure step 1.
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(a) Evaluation of HCCA on Ed-
ward Curve Scalar Multiplier with Eu-
clidean Distance

0 5 10 15 20
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time Samples

E
u

cl
id

ea
n

 D
is

ta
n

ce
 V

al
u

e

 

 

Both Operands are Shared
No Sharing of Operands

(b) Evaluation of step 1 on Ed-
ward Curve Scalar Multiplier with Eu-
clidean Distance
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Fig. 8: Evaluation of HCCA and step 1 on Edward Curve
Scalar Multiplier with Euclidean Distance

(a) Evaluation of HCCA on Edward
Curve Scalar Multiplier with Correla-
tion
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(b) Evaluation of step 1 on Edward
Curve Scalar Multiplier with Correla-
tion
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Fig. 9: Evaluation of HCCA and step 1 on Edward Curve
Scalar Multiplier with Correlation

VI. RESISTANCE AGAINST RELATED HORIZONTAL
ATTACKS

A. Resistance against [16], [17]

The attack demonstrated in [16] is applicable in case of
regular algorithms, where both doubling and addition oper-
ation are computed during each iteration. Two registers are
considered to store the intermediate results of each iteration.
The values of the two registers observed over consecutive
iterations are dependent on the key, hence lead to retrieval
of the secret key. This attack cannot be directly applied to
non-regular algorithms. In [17] an incremental key retrieval
process has been proposed for an ECC algorithm, where

(a) Evaluation of HCCA Through Sur-
face Plot of Multiple EM traces of
Edward Curve Scalar Multiplier
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(b) Evaluation of step 1 Through Sur-
face Plot of Multiple EM traces of
Edward Curve Scalar Multiplier
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Fig. 10: Evaluation of HCCA and step 1 with multiple traces
of Edward Curve Scalar Multiplier

template trace is being created for the i-th iteration based on
the already retrieved portion of the secret and the guessed key
bit for the current iteration. However in our implementation,
countermeasure step 2 uses a different random value for each
addition (doubling) operation within a scalar multiplication,
thus data dependency based on the previously determined key
bit value cannot be exploited.

B. Resistance against [25]

In [25] an attack on RSA is demonstrated, where long inte-
ger multiplication computation has been exploited. In case of a
squaring operation, the long integer multiplication on operands
of length l words involves (l2−l)/2 potential collision pairs of
single precision multiplications, which makes the long integer
operation vulnerable. However in case of field multiplications
of ECC, the number of collision pairs present are less, because
of lower bit length of field multiplier operands, hence lower
number of collision pairs on the same architecture model.
Also the paper does not present any practical results of this
collision based attacks. Applicability of [25] in ECC is yet to
be exploited.

VII. A NOTE ON OTHER COUNTERMEASURES

In [18] authors have made a discussion on possibilities
of potential countermeasures inside the field multiplication
operation. Note that a long integer multiplication according
to algorithm 2 may be represented as two-dimensional matrix.
The countermeasures mentioned are mainly based on random-
ization and shuffling of the rows and the columns of the matrix
thus obtained. The countermeasures proposed are: 1) shuffling
rows and columns 2) shuffling and blinding 3) global shuffling.
Out of the techniques mentioned, shuffling rows and columns
scheme uses a random permutation of the rows or the columns
during each long integer multiplication. It adds a t! search
factor to HCCA, which can be broken for smaller values of
t. Here t is the underlying architecture word length, thus can
take a maximum value of 64 bit. The shuffling and blinding
method prevents HCCA but is prone to other attacks like zero-
value attack [31]. The global shuffling technique presented
in [32] utilizes the idea of shuffling simultaneously across
rows and columns of the long integer multiplication partial
product matrix, thus increasing the search factor to t2!. This
method is resistant against HCCA due to the sufficiently large
search space introduced. However it involves incorporating the
randomization technique to every field multiplication which
includes generation of a random permutation, and execution
of an additional loop to take care of the carry propagation
of the partial products. The execution of the additional loop
and generation of random permutation increases clock cycle
requirement of the long integer multiplication which in turn
increases the timing overhead of the design. On the contrary
it should be noted from table II, our countermeasure step 1
requires zero timing and area overhead at runtime, and the
step 2 bears minimal overhead due to randomization. In our
implementation randomization is applied for each addition
(doubling) operation during the scalar multiplication, thus
involves far less overhead than applying randomization for
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every long integer multiplication as suggested in the above
countermeasure in [32].

VIII. CONCLUSION

We have shown how the property of asymmetric leakage
of field multipliers can be utilized to construct a low-cost
countermeasure which is able to defeat the powerful HCCA.
We show how a unified addition (doubling) formula can
be converted into a safe sequence where, the information
leakage from sharing of operands among field multipliers have
been hidden. The process of conversion to the desired safe
sequence is achieved through our proposed Algorithm 1, once
the sequence have been determined through our algorithm
there is no runtime overhead requirement for the step 1 of
our countermeasure. We have incorporated a randomization
technique at the level of each addition operation to tackle
another possibility of HCCA vulnerability. We have shown
how our countermeasure methodology is able to resist HCCA
altogether. We have validated HCCA and our proposed coun-
termeasure scheme on a SAKURA-G platform. Our analysis
has been done considering the left-to-right scalar multiplica-
tion algorithm, we intend to investigate the cases of various
right-to-left scalar multiplication algorithms. Additionally we
want to explore applicability of our countermeasure in case
of NIST curve atomicity formulae which are still HCCA
vulnerable.
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