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Abstract

Many deployments of secure multi-party computation (MPC) in practice have used information-
theoretic three-party protocols that tolerate a single, semi-honest corrupt party, since these protocols
enjoy very high efficiency.

We propose a new approach for secure three-party computation (3PC) that improves security while
maintaining practical efficiency that is competitive with traditional information-theoretic protocols. Our
protocol is based on garbled circuits and provides security against a single, malicious corrupt party.
Unlike information-theoretic 3PC protocols, ours uses a constant number of rounds. Our protocol only
uses inexpensive symmetric-key cryptography: hash functions, block ciphers, pseudorandom generators
(in particular, no oblivious transfers) and has performance that is comparable to that of Yao’s (semi-
honest) 2PC protocol.

We demonstrate the practicality of our protocol with an implementation based on the JustGarble
framework of Bellare et al. (S&P 2013). The implementation incorporates various optimizations including
the most recent techniques for efficient circuit garbling. We perform experiments on several benchmarking
circuits, in different setups. Our experiments confirm that, despite providing a more demanding security
guarantee, our protocol has performance comparable to existing information-theoretic 3PC.

1 Introduction

Secure multi-party computation (MPC) allows a set of parties to compute a function of their joint inputs
without revealing any information beyond the output of the function they compute. MPC has found nu-
merous applications not only enabling various privacy-preserving tasks on sensitive data, but also removing
a single point of attack by allowing for distribution of secrets and trust while maintaining the original func-
tionality. Since the seminal work of [Yao86, GMW87] showing its feasibility in the two-party and multi-party
settings, MPC has been the subject of extensive research, focusing on bettering security and efficiency.

The case of three-party computation (3PC) where the adversary corrupts at most one party (honest
majority) is an important special case that has received particular attention. It has been the subject of
active research, implementation and optimization in frameworks such as VIFF [Gei07], Sharemind [BLW08],
ShareMonad [LDDAM12, LADM14] and MEVAL [CMF+14]. These protocols have been used in a wide range
of applications such as statistical data analysis [BTW12], and email filtering [LADM14]. They have also been
deployed in practice for online beet auctions [BCD+09] and for financial data analysis [BTW12]. A main
reason for popularity of 3PC with-one-corruption is the simplicity and efficiency of the resulting protocols.
In particular, protocols designed in this setting can be significantly more efficient than their two-party
counterparts (or dishonest majority protocols in general) since they are commonly based on secret-sharing
schemes and hence only require arithmetic operations that are considered faster than cryptographic ones.

However, the secret-sharing-based solutions have several drawbacks. In particular, the round complexity
of these protocols is proportional to the circuit-depth of the computation being performed, which can be high
in practice. Also, to the best of our knowledge, With the exception of [IKHC14], existing implementations
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are only secure against semi-honest adversaries. Traditionally, one may be willing to settle for semi-honest
security given that security against active cheating (malicious adversaries) has a reputation of requiring
significant overhead. Our work shows that this impression need not be true, and that malicious security can
in fact be obtained with little to no overhead over semi-honest security in the 3-party setting.

1.1 Our Contributions

We design a new protocol for 3PC with one corruption based on Garbled Circuits (GC) [Yao82, LP09,
BHR12b]. Our protocol is constant-round and secure against a malicious adversary that corrupts one party.
Unlike the standard approach of applying cut-and-choose techniques for compiling GC-based protocols into
malicious 2PC, we show that in the setting of 3PC with one corruption one can avoid the cut-and-choose
paradigm and achieve malicious security at a cost similar to semi-honest two-party constructions. We also
avoid the use of public-key operations such as Oblivious Transfer.

We prove our protocol secure in the Universal Composability (UC) model, but avoid the use of expensive
UC-secure primitives due to the honest-majority setting. The only cryptographic tools we require are a
secure garbling scheme and a non-interactive (standalone-secure) commitment scheme, both of which can be
instantiated using symmetric key primitives.

Our protocol does not achieve fairness, and we leave it open to design a protocol with similar level of
efficiency that also achieves fairness (a feasible goal in the honest majority setting).

We implement our protocol by enhancing the implementation of JustGarble [BHKR13] in various ways
and incorporating the state-of-the-art “half-gates” garbling scheme of [ZRE15]. We further reduce commu-
nication (which our experiments show to be the bottleneck), by a factor of two using a hashing technique de-
scribed in Section 3.4. We run experiments evaluating benchmarking circuits such as AES/MD5/SHA1/SHA256,
and with different communication techniques turned on/off. Our experimental results confirm that our con-
struction is competitive with prior work in the same setting while achieving the stronger malicious security.
They also confirm that communication remains the major bottleneck in GC-based constructions even in
the three-party setting. We also explore a motivating application we call distributed credential encryption
service, that naturally lends itself to an offline pre-processing stage. Our experiments show that the online
phase can be very fast.

1.2 Related Work

The most relevant line of work to ours are MPC constructions with an honest majority. Starting with
seminal work of [BOGW88, CCD88] a large body of work has studied round and communication complexity
of such protocols. A main building block for achieving security against a malicious adversarie in these
constructions is verifiable secret sharing (VSS) [BOGW88, RBO89]. While these constructions are quite
efficient and avoid cryptographic operations, their practical efficiency and the constant factors are not fully
examined. The one implementation of 3PC with malicious security we know of is [IKHC14]. Their work
proposes an approach for compiling a semi-honest 3PC into a malicious one with a small overhead (we discuss
the overhead in more detail in the experiment section). The other existing implementations we know of are
based on customized 3PC frameworks provided in [BLW08, LDDAM12, ZSB13, CMF+14] which only provide
security against semi-honest adversaries. We provide a more detailed comparison with this line of work in the
experiment section. Another customized 3PC based on garbled circuits, using the cut-and-choose paradigm
and distributed garbling, was introduced in [CKMZ14]. Their protocol considers the stronger two-corruption
setting and is naturally more expensive.

The more general multiparty and constant-round variant of Yao’s garbled circuit was also studied in
both the semi-honest setting [BMR90], and the malicious setting [DI05, IKP10]. An implementation exists
[BDNP08] for the semi-honest case. These protocols are conceptually based on garbled circuits but require
a particular instantiation of garbled circuits that expands the wire-labels through secret-sharing. We leave
it as interesting open work to investigate whether recent optimizations to standard garbled circuits can be
similarly applied to these protocols, and to compare the practical efficiency of malicious-secure variants.

In concurrent and independent work, Ishai et al. [IKKPC15] describe efficient, constant-round secure
computation protocols for 3 and 4 parties, tolerating 1 malicious corruption. Both their protocol and ours
use as a starting point the protocol of Feige et al. [FKN94] in the private simultaneous messages (PSM)
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setting, which is in turn based on Yao’s garbled circuit construction. The two protocols ([IKKPC15] and
ours) use incomparable techniques to strengthen the PSM protocol against one malicious participant, and
achieve a different mix of properties. In the 3-party setting, [IKKPC15] achieve a 2-round protocol whose
cost is essentially that of 3 garbled circuits, whereas our protocol requires 3 rounds (in its random oracle
instantiation) and has cost of 1 garbled circuit. In the 4-party setting, [IKKPC15] achieve guaranteed output
delivery as well.

Fast implementation of malicious 2PC and MPC in the dishonest majority setting include cut-and-choose
solutions based on garbled circuits [LPS08, KS12, FN13, AMPR14], OT-based solutions [NNOB12, LOS14],
and implementations in the pre-processing models [DKL+12, DKL+13]. These protocols resists a larger
fraction of coalition of corrupted parties than ours, but are significantly less efficient.

1.3 Organization

The building blocks used in our protocols such as a garbling scheme, commitment schemes and coin-tossing
are all defined and described in Section 2. Our main construction and its security proof are described in
Section 3. Our implementation, experimental results, and comparison with other implementations can be
found in Section 4. We discuss the distributed encryption service application in Section 5.

2 Preliminaries

2.1 Secure MPC: UC Framework

We define security of multi-party computation using the framework of Universal Composition (UC) [Can01].
We give a very brief overview here, and refer the reader to [Can01] for all of the details.

An execution in the UC framework involves a collection of (non-uniform) interactive Turing machines.
In this work we consider an adversary that can statically (i.e., at the beginning of the interaction) corrupt
at most one party. We consider security against active adversaries, meaning that a corrupt party is under
complete control of the adversary and may deviate arbitrarily from the prescribed protocol. The parties
exchange messages according to a protocol. Protocol inputs of uncorrupted parties are chosen by an envi-
ronment machine. Uncorrupted parties also report their protocol outputs to the environment. At the end
of the interaction, the environment outputs a single bit. The adversary can also interact arbitrarily with
the environment — without loss of generality the adversary is a dummy adversary which simply forwards all
received protocol messages to the environment and acts in the protocol as instructed by the environment.

Security is defined by comparing a real and ideal interaction. Let real[Z,A, π, k] denote the final (single-
bit) output of the environment Z when interacting with adversary A and honest parties who execute protocol
π on security parameter k. This interaction is referred to as the real interaction involving protocol π.

In the ideal interaction, parties run a “dummy protocol” in which they simply forward the inputs
they receive to an uncorruptable functionality machine and forward the functionality’s response to the
environment. Hence, the trusted functionality performs the entire computation on behalf of the parties. Let
ideal[Z,S,F , k] denote the output of the environment Z when interacting with adversary S and honest
parties who run the dummy protocol in presence of functionality F on security parameter k.

We say that a protocol π securely realizes a functionality F if for every adversary A attacking the real
interaction (without loss of generality, we can take A to be the dummy adversary), there exists an adversary
S (called a simulator) attacking the ideal interaction, such that for all environments Z, the following quantity
is negligible (in k): ∣∣∣Pr

[
real[Z,A, π, k] = 1

]
− Pr

[
ideal[Z,S,F , k] = 1

]∣∣∣.
Intuitively, the simulator must achieve the same effect (on the environment) in the ideal interaction that
the adversary achieves in the real interaction. Note that the environment’s view includes (without loss of
generality) all of the messages that honest parties sent to the adversary as well as the outputs of the honest
parties. Thus the definition captures both the information that an adversary can learn about honest parties’
inputs as well as the effect that an adversary can have on the honest parties’ outputs. In a secure protocol
these capabilities cannot exceed what is possible in the ideal interaction.
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Target functionality The code of the functionality F implicitly defines all of the properties that comprise
the security required of a protocol π. In Figure 1 we define the ideal functionality Ff for secure 3-party
computation of a function f .

Input collection. On message (input, xi) from a party Pi (i ∈ {1, 2, 3}), do the following: if
a previous (input, ·) message was received from Pi, then ignore. Otherwise record xi internally
and send (inputfrom, Pi) to the adversary.

Computation. After all 3 parties have given input, compute y = f(x1, x2, x3). If any party is
corrupt, then send (output, y) to the adversary; otherwise send (output, y) to all parties.

Unfair output. On message deliver from the adversary, if an identical message was received
before, then ignore. Otherwise send (output, y) to all honest parties.

Figure 1: Ideal functionality Ff for secure 3-party computation of a function f .

In particular, Ff provides “security with abort” (i.e., unfair output) in which the adversary is allowed to
learn its output from the functionality before deciding whether the uncorrupted parties should also receive
their output.

Contrasting active and semi-honest security When one party (say, P1) is actively corrupt, it may
send unexpected messages to an honest party (say, P3). This may have the effect that P3’s view leaks extra
information about the other honest party P2. We note that this situation is indeed possible in our protocol
(for example, P1 can send to P3 the seed used to generate the garbled circuit, which allows everyone’s inputs
to be computable from P3’s view). However, we emphasize that this is not a violation of security in the
1-out-of-3 corruption case.

A protocol with malicious security must let the honest parties handle “unexpected” messages appro-
priately. The security definition only considers what effect such “unexpected” messages have on the final
output of an honest party, but not the effect they have on the view of an honest party. More precisely, if P3

is honest, then only his final protocol output is given to the environment, while his entire view is not. A
participant who hands its entire view over to the environment must be at least semi-honest corrupt, but in
our case only one party (P1 in our example) is assumed to be corrupt at all. We leave as an open problem to
achieve security in the presence of one active and one semi-honest party (simultaneously), with comparable
efficiency to our protocol.

We also emphasize that our primary point of comparison is against existing 3PC protocols that tolerate
1 semi-honest corruption. In these protocols, a single, actively corrupt participant can violate privacy of
others’ inputs and integrity of others’ final outputs, often completely undetectably. So while 1-out-of-3
active security has some limitations, it is a significantly stronger guarantee than 1-out-of-3 semi-honest
security.

2.2 Garbling Scheme

We employ the abstraction of garbling schemes [BHR12b] introduced by Bellare et al. Below is a summary
of garbling scheme syntax and security:

A garbling scheme is a four-tuple of algorithms G = (Gb,En,De,Ev) where: Gb is a randomized garbling
algorithm that transforms function f into a triplet (F, e, d), where F is the garbled circuit, e is encoding
information, and d is decoding information. En is an encoding algorithm that maps input x into garbled
input via X = En(e, x). De is a decoding algorithm that maps the garbled output Y into plaintext output
y = De(d, Y ). Ev is the algorithm that on garbled input X and garbled circuit F , produces garbled output
Y = Ev(F,X).

The correctness property of a garbling scheme is that, for all (F, e, d) in the support of Gb(1k, f) and
all inputs x, we have De(d,Ev(F,En(e, x))) = f(x), where k denotes the security parameter.
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We require a projective scheme, meaning that e is an n × 2 matrix of wire labels, and the encoding
algorithm En has the structure En(e, x) = (e[1, x1], e[2, x2], . . . , e[n, xn]).

A scheme satisfies privacy if there exists a simulator S for which following two processes induce indis-
tinguishable output distributions:

M1(1k, f, x):

(F, e, d)← Gb(1k, f)
X ← En(e, x)
return (F,X, d)

M2(1k, f, x):

(F,X, d)← S(1k, f, f(x))
return (F,X, d)

In other words, the tuple (F,X, d) contains no information beyond f(x).
A scheme satisfies authenticity if the following property holds. Given (F,X) as in the output of M1

above, it is with only negligible probability that a poly-time adversary can generate Ỹ 6= Ev(F,X) such that
De(d, Ỹ ) 6= ⊥. In other words, without d, it is not possible to give a valid garbled output other than Y
obtained from Ev.

Our protocol requires an additional “soft decoding” function D̃e that can decode garbled outputs without

the decoding information d. The soft-decoding function must satisfy D̃e(Ev(F,En(e, x))) = f(x) for all

(F, e, d) in the support of Gb(1k, f). Note that both D̃e and De can decode garbled outputs, but the

authenticity security property holds only with respect to De — that is, D̃e can in principle be “fooled” when
given maliciously crafted garbled outputs. However, if the garbled circuit and garbled input are honestly

generated, the output of D̃e will be correct. In our protocol, we will let the evaluator of the garbled circuit

obtain input using D̃e, while the generators of the garbled circuit will use De (to protect against a corrupt
party who tries to falsify the garbled outputs). In practice, we can achieve soft decoding in typical garbling
schemes by simply appending the truth value to each output wire label. The true decoding function De will
still verify the entire wire labels to guarantee authenticity.

2.3 Non-Interactive Commitment

We require a non-interactive commitment scheme (in the common random string model). Let crs denote the
common random string and let (Comcrs,Chkcrs) be a non-interactive commitment scheme for n-bit messages.
The Comcrs algorithm takes an n-bit message x and random coins r as input, and outputs a commitment
C and the corresponding opening σ. We write Comcrs(x) as shorthand for the distribution Comcrs(x; r)
induced by uniform choice of r. We require the following properties of the scheme:

• Correctness: for all crs, if (C, σ)← Comcrs(x) then Chkcrs(C, σ) = x.

• Binding: For all poly-time adversaries A, it is with negligible probability (over uniform choice of crs)
that A(crs) outputs (C, σ, σ′) such that Chkcrs(C, σ) 6=
Chkcrs(C, σ

′) and ⊥ 6∈ {Chkcrs(C, σ),Chkcrs(C, σ
′)}.

• Hiding: For all poly-time adversaries A, all crs, and all x, x′ ∈ {0, 1}n, the following difference is
negligible: ∣∣∣ Pr

(C,σ)←Comcrs(x)
[A(C) = 1]− Pr

(C,σ)←Comcrs(x′)
[A(C) = 1]

∣∣∣.
Since we quantify over all crs and A together (not just a random crs), it is not necessary to give crs
to A in this definition. The definition also implies that the crs can be used for many commitments.

Instantations In the random oracle model, commitment is simple via (C, σ) = (H(x‖r), x‖r) = Comcrs(x; r).
The crs can in fact be empty.

In the standard model, we can use a multi-bit variant of Naor’s commitment [Nao91]. For n-bit strings,
we need a crs ∈ {0, 1}4n. Let G : {0, 1}n → {0, 1}4n be a pseudorandom generator, and let pad : {0, 1}n →
{0, 1}4n be the function that prepends 3n zeroes to its argument. Then the commitment scheme is:

• Comcrs(x; r): set C = G(r) + crs · pad(x), with arithmetic in GF (24n); set σ = (r, x).

• Chkcrs(C, σ = (r, x)): return x if C = G(r) + crs · pad(x); otherwise return ⊥.
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Security of this construction closely follows the original proof of Naor’s construction, but is provided for
completeness in Appendix A.

3 Our Protocol

In this section we present a new and efficient 3PC protocol that is secure against 1 malicious corruption. Its
complexity is essentially the same as that of (semi-honest-secure) two-party Yao’s protocol.

3.1 High Level Overview

Our starting point is Yao’s protocol based on garbled circuits. In that protocol, one party generates a garbled
circuit and the other evaluates it. The two parties use oblivious transfer to allow the evaluator to receive
the garbled encoding of his input.

Yao’s protocol is secure against a malicious evaluator, but secure against only a semi-honest garbler. Our
3-party protocol can be thought of as splitting the role of the garbler between two parties (while keeping
the evaluator a single party). When only one party is corrupt, then at least one of the garbling parties is
honest, and we can leverage that fact to protect against one malicious garbler.

In more detail, we let P1 and P2 agree on a random tape r and run Yao’s protocol as garbler with P3 as
evaluator, with both instances using random tape r. By using the same random tape in Yao’s protocol, P1

and P2 are expected to send identical messages to P3 in every step, and P3 can abort if this is not the case.
Then, security against a malicious P3 follows from the security of Yao’s protocol — it is really P3 attacking
a single instance of 2-party Yao’s protocol in this case. Security against a malicious P1 or P2 follows from
the fact that Yao’s protocol is secure against a garbler who runs the protocol honestly (even on adversarially
chosen random tape). In our protocol, the only options for malicious P1 or P2 are to run Yao’s 2-party
protocol honestly or else cause P3 to abort (by disagreeing with the honest garbler).

Obtaining Garbled Inputs This overview captures the main intuition, but it does not address the issue
of garbled inputs. Indeed, P1 and P2 have their own private inputs and so must at some point send different
messages in order to affect the final output. To address this, we have P1 and P2 commit to all of the input
wire labels for the circuit. For each wire, the two commitments are randomly permuted. P1 and P2 will
generate these commitments using the same randomness, so their correctness is guaranteed using the same
reasoning as above. Then P1 and P2 can simply open the appropriate commitments corresponding to their
input bits (note that the position of the commitments does not leak their inputs).

P3’s garbled input is handled using an oblivious transfer in Yao’s protocol, but we are able to avoid OT
altogether in our 3-party setting. We garble the circuit f ′(x1, x2, x3, x4) = f(x1, x2, x3 ⊕ x4), so that x3, x4
are an additive secret sharing of P3’s logical input. We have P3 send x3 to P1 and x4 to P2, so that P1/P2

can open the corresponding commitments to garbled inputs. Since at most one of {P1, P2} is corrupt, an
adversary can learn nothing about P3’s logical input. To ensure that P1/P2 open the correct commitments
in this step (i.e., they do not flip bits in P3’s input), we have them both reveal the random ordering of the
relevant commitments (which can be checked against each other by P3).

Other Optimizations To make the commitment non-interactive, we can either assume a random oracle
commitment scheme, or else a common random string (CRS). In the latter case, P3 can choose the CRS
himself (we use a commitment scheme that is hiding for all CRS values, not just for a uniformly chosen one).

Both P1 and P2 use a common random tape r to run Yao’s protocol as garbler. We can actually have P1

choose r himself; surprisingly there is no problem in a corrupt P1 choosing r arbitrarily. In the case that P1

is corrupt, the security proof needs to apply the binding security of the commitment scheme and correctness
property of garbled circuits. Binding holds with respect to malicious senders (in particular, senders who
choose r arbitrarily and use PRF(r, ·) to derive randomness to run the Comcrs(·) algorithm). Correctness of
garbled circuits holds with probability 1, i.e., for all (F, e, d) in the support of Gb(1k, f ′). The fact that P2

must be honest if P1 is corrupt guarantees that the (F, e, d) used in the protocol is indeed in the support of
Gb, so we can apply the correctness of the garbling scheme.
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3.2 Detailed Protocol Description

We denote the three parties in the protocol by P1, P2 and P3, and their respective inputs by x1, x2, and
x∗3. Their goal is to securely compute the function y = f(x1, x2, x

∗
3). For convenience we define the related

function
f ′(x1, x2, x3, x4) = f(x1, x2, x3 ⊕ x4).

For simplicity we assume that |xi| = |y| = m. The protocol is as follows. All communication between parties
is on private point-to-point channels.

In what follows we assume that all parties learn the same output y, but it is easy to modify the protocol
such that each party learns a different output (i.e., a 3-output function). In particular, P3 can return to each
of P1 and P2 the garbled values for the portion of the output wires corresponding to their own output, while
the “soft-decoding” procedure is constrained to work only for P3’s output wires (concretely, the cleartext
truth values are appended only to the output wires for P3’s outputs).1

1. P3 samples a random crs for the commitment scheme and randomly secret-shares his input x∗3 as
x∗3 = x3 ⊕ x4. He sends x3 to P1 and x4 to P2 and broadcasts crs to both parties.

2. P1 chooses random PRF seed r ← {0, 1}k and sends it to P2 (see the discussion in the previous section).

3. Both P1 and P2 do the following, independently, and obtaining all required randomness via PRF (r, ·):

(a) Garble the circuit f ′ via Gb(1λ, f ′)→ (F, e, d).

(b) Commit to all 4m input wire labels in the following way. Sample b ← {0, 1}4m. Then for all
j ∈ [4m] and a ∈ {0, 1}, generate the following commitment:

(Caj , σ
a
j )← Comcrs(e[j, b[j]⊕ a])

Both P1 and P2 send the following values to P3:2

(b[2m+ 1 · · · 4m], F, {Caj }j,a).

P3 will abort if P1 and P2 report different values for these items.

4. P1 and P2 additionally reveal garbled inputs to P3 in the following way (now P1 and P2 are sending
different messages). For j ∈ [m]:

(a) P1 sends decommitment σ
x1[j]⊕b[j]
j to P3.

(b) P2 sends decommitment σ
x2[j]⊕b[m+j]
m+j to P3.

(c) P1 sends decommitment σ
x3[j]⊕b[2m+j]
2m+j to P3.

(d) P2 sends decommitment σ
x4[j]⊕b[3m+j]
3m+j to P3.

5. P3 assembles the garbled input as follows. For j ∈ [4m], P3 computes X[j] = Chkcrs(C
o[j]
j , σ

o[j]
j ), for

the appropriate o[j]. If any call to Chk returns ⊥, then P3 aborts. Similarly, P3 knows the values

b[2m+ 1 · · · 4m], and aborts if P1 or P2 did not open the “expected” commitments C
x3[j]⊕b[2m+j]
2m+j and

C
x4[j]⊕b[3m+j]
3m+j corresponding to the garbled encodings of x3 and x4.

P3 runs Y ← Ev(F,X) and broadcasts Y to all parties.

6. At this point, P1 and P2 can compute y = De(d, Y ). If y 6= ⊥, then they output y, otherwise they

abort. Also, P3 can compute and output y = D̃e(Y ), where D̃e is the “soft decoding” function described
in Section 2.2.

1The resulting protocol will achieve a slightly weaker notion of security, since a corrupt P3 can choose to make only one of
{P1, P2} abort. This notion is known as security with selective abort. [GL05]

2Since b[2m + 1 · · · 4m] are given to P3, we can actually take them to be all zeroes and eliminate them altogether. Still, to
keep the treatment of all garbled inputs consistent in the notation, we continue with b ∈ {0, 1}4m.
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3.3 Security Proof

Theorem 1. The protocol in Section 3.2 securely realizes the Ff functionality against adversaries who
actively corrupt at most one of the parties.

Proof. First consider the case where P1 is corrupted (the case of P2 is essentially symmetric). We show that
the real and ideal interactions are indistinguishable to all environments, in a sequence of hybrid interactions.
The required simulator is built up implicitly in the hybrid sequence below. Recall that the environment’s
view consists of messages sent from honest parties to the adversary in the protocol, as well as the final
outputs of the honest parties.

H0: This hybrid is identical to the real interaction, except that we repackage the various components of
the interaction. A simulator plays the role of honest P2 and P3, receiving their inputs x2 and x∗3 from
the environment and running the protocol on their behalf.

H1: In the previous hybrid, the simulator runs the protocol on behalf of P2 and hence knows the value b
chosen in step (3b). Assuming P3 does not abort in step (5), then P1 must have succesfully opened

commitments C
o[j]
j for some string o ∈ {0, 1}m. At this point in H1 we have the simulator compute

x1 = o⊕ b[1 · · ·m]. The simulator also simulates an instance of the Ff functionality. It sends x1, x2, x
∗
3

to the simulated Ff (recall that at this point in the sequence of hybrids the simulator is receiving the
other parties’ inputs x2 and x∗3). As the simulator does nothing with anything computed by Ff , there
is no difference in the environment’s view. Note that the simulator is still using x2 and x∗3 at this point
to run the protocol on behalf of P2 and P3.

H2: In the previous hybrid, the simulator runs the protocol on behalf of P2 and hence knows what was
committed in all of the Caj commitments.

We modify the simulator to abort if the simulated P3 accepts the opening of any commitment (in
step 5) to a value other than what was originally committed. The crs is chosen uniformly by P3, so
the commitment scheme’s binding property guarantees that the probability of this abort occurring is
negligible, so the hybrids are indistinguishable.3

Conditioned on this additional abort not happening, we can see that the garbled input X used by P3

has been computed as:

X = En(e, x1‖x2‖x3‖x4),

where x1 was the value extracted by the simulator in step (5) as explained above.

Further note that, as long as P3 doesn’t abort in step (3), we have that the values (F, e, d) are in the
support of Gb(1k, f ′). The garbling scheme’s correctness property holds for all such (F, e, d), and it
does not matter that the random coins used in Gb were influenced by P1’s selection of r in step (2).

H3: Same as above, except that in step (6), when the honest parties hand their output to the environment,
the simulator instead hands the environment the value y computed by the simulated Ff . By the
correctness condition mentioned above, we have that if the simulator doesn’t abort on behalf of P3 in

step (5) then De(d,Ev(F,X)) = D̃e(Ev(F,X)) = f(x1, x2, x
∗
3), where the first two expressions are what

the simulated P2 and P3 would have output, and the final expression is what Ff computes. Hence
hybrids H2 and H3 induce identical views on the environment.

H4: Same as above, except that instead of computing Y via Ev(F,X) in step (5), the simulator computes
Y such that De(d, Y ) = y, where y is the output obtained from Ff (this is easy in all practical garbling
schemes, when the simulator knows all the randomness used to generate the garbled circuit). By the
correctness of the garbling scheme, this is an equivalent way to compute the same value, so the change
has no effect on the environment’s view.

3Note that we still need binding to hold against malicious senders. The commitments are not necessarily generated honestly;
instead they are generated by having P1 (maliciously) choose r which is expanded via PRF(r, ·) to provide randomness to call
Comcrs.
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H5: Note that in hybrid H4, the garbled circuit does not have to be evaluated during the simulation, hence
the garbled input X is not used. But generating X was the only place x4 (the secret share of x∗3) was
used. The other share x3 of x∗3 is sent to P1. In H5 we modify the simulator to send a random x3 to
P1 in step (1). The change has no effect on the environment’s view.

The final hybrid implicitly defines our protocol’s simulator. It sends a random share x3 to P1 in step
(1); it aborts in step (5) if P1 has violated the binding property of any commitment; otherwise it extracts
x1 = o ⊕ b[1 · · ·m] and sends it to the ideal functionality Ff . It receives y, and in step (5) sends Y to P1

such that De(d, Y ) = y. The effect on the environment in this ideal interaction is indistinguishable from the
real interaction, by the arguments in the above sequence of hybrids.

Next, we consider a corrupt P3:

H0: As before, we consider a simulator playing the role of honest P1 and P2 running on their inputs. The
environment receives the final outputs of the simulated P1 and P2.

H1: Same as above, except for the following change. The simulator will run an instance of Ff . In step (1)
of the protocol, the simulator will receive x3, x4 from P3, set x∗3 = x3⊕ x4, then send x1, x2, and x∗3 to
the instance of Ff . This is merely an internal change, since in this hybrid the simulator does not yet
use the outputs of Ff in any way. Hence, the two hybrids induce identical views for the environment.

H2: Same as above, except that the simulated P1 and P2 use uniform randomness rather than pseudoran-
domness in step (2). The hybrids are indistinguishable by the security of the PRF and the fact that
the PRF seed r is chosen uniformly by P1 and P2 in step (2).

H3: Same as above, except for the following change. In step (3), when the simulator is generating the Caj

commitments, it knows in advance which ones will be opened. These are the commitment C
o[j]
j where

o = b⊕ x1‖ · · · ‖x4.

We modify the simulator to first choose random o← {0, 1}4m which index the commitments that will
be opened, and then solve for b = o ⊕ x1‖ · · · ‖x4 in step (3b). Note that the simulator indeed has
all of the xi values at this time. Then the simulator commits to dummy values for the commitments
which will not be opened. The hybrids are indistinguishable by the hiding property of the commitment
scheme (which holds with respect to all values of crs). Note that the simulation now does not use all
of the garbled input encoding information e; rather, it only uses X = En(e, x1‖ · · ·x4).

H4: In step (6) in the previous hybrid, the simulated P1 and P2 will abort if De(d, Ỹ ) = ⊥, where Ỹ is the
message sent by P3 in step (5). We modify the simulator so that it aborts if Ỹ 6= Ev(F,X), which is
what P3 is supposed to send. Note that the simulator indeed knows F and all of X at this point.

By the authenticity property of the garbling scheme, it is only with negligible probability that P3 (who
is not given decoding information d) would produce Ỹ 6= Ev(F,X) such that De(d, Ỹ ) 6= ⊥. Hence, the
two hybrids are indistinguishable.

H5: Conditioned on the simulator not aborting in step (6), the correctness of the garbling scheme guarantees
that simulated P1 and P2 will output y = f(x1, x2, x

∗
3). Hence, instead of handing the environment the

outputs of these simulated P1/P2, we have the simulator instruct Ff to release output to honest parties
if the simulator hasn’t aborted in step (6), and give the outputs from Ff directly to the environment.
Again, this has no effect on the environment’s view.

H6: Same as above, except for the following change. Note that throughout the simulation in H5, the
simulator uses F , d, but only X = En(e, x1‖ · · · ‖x4) due to the previous hybrids. In particular, it does
not use the other parts of e. We modify the simulator to generate (F,X, d) using the simulator of the
garbling scheme, rather than the standard Gb,En. The simulator requires y which the simulator knows
already in step (1). The hybrids are indistinguishable by the security of the garbling scheme.

The simulator implicit in hybrid H6 defines our final simulator. It extracts x∗3 = x3⊕x4 in step (1) and sends
it to Ff , receiving output y in return. It then generates a simulated garbled circuit/input (F,X) using y. In
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step (3) it chooses random string o and commits to the entries of X as C
o[j]
j , while committing to dummy

values in the other commitments. In step (4) it opens the commitments indexed by o. After receiving Ỹ
from P3 in step (5), it checks whether Ỹ = Ev(F,X); if so, then it instructs Ff to deliver output to the
honest parties.

3.4 Reducing Communication

We can reduce the total communication by essentially half, as follows: Instead of both P1 and P2 sending
the very long (identical) message to P3 in step 3, we can have only P1 send this message while P2 simply
sends the hash of this message, under a collision-resistant hash function. P3 can then simply check the hash
received from P2 against the message received from P1. While this reduces total communication size, it
does not reduce total communication latency of the protocol in the most common scenario where P1 and P2

communicate with P3, simultaneously.
To improve on this, we have P1 and P2 treat the message they send to P3 as a string S, divided into

equal halves S = S1||S2. We then have P1 send S1 and H(S2) and P2 send H(S1) and S2 to P3. This still
enables P3 to retrieve S and also check that P1 and P2 agree on a common S. This variant not only reduces
total communication by half, but also the communication latency in the scenario that P1 and P2 run at the
same time.

4 Implementation and Experimental Validation

4.1 Implementation

Our implementation is written in C++11 with STL support. For an efficient implementation of a circuit
garbling scheme, we used as a starting point the JustGarble library [BHKR13], an open-source library licensed
under GNU GPL v3 license. We also used the MsgPack 0.5.8 library to serialize/deserialize data and used
the openssl lib (version 1.0.1e-fips) for our implementation of SHA-256. We implement the commitment
scheme needed for our protocol using SHA-256 as a random oracle.

In our implementation, P3 initializes itself by first reading the circuit description file from the disk. The
description file is in JustGarble’s SCD format. Then, P3 listens on a port via a socket. When Pi (i = 1, 2)
connect to the port, P3 creates a new thread for this connection. The rest of communication/interaction
between P3 and Pi will be within this thread.

Then, P1 and P2 connect with each other to negotiate a shared seed and use it to generate a garbled
circuit. We modify JustGarble to support a shared seed for the randomness needed in the garbling. As a
result, the garbled circuits generated by P1 and P2 are identical.4

Communication Reduction Techniques. To reduce communication/serialization costs, we add sev-
eral optimizations to JustGarble. First, we enable the free-XOR support [KS08] in JustGarble and also
modify its code to make NOT gates free (no communication and computation) since the original JustGarble
implementation treats NOT gates like other non-XOR gates. Additionally, we incorporated support for
the recent half-gate garbling technique of [ZRE15] which reduces sizes of garbled non-XOR gates to two
ciphertexts (a 33% reduction compared to the best previous technique).

Instead of sending each garbled gate ciphertext individually over a socket, which would significantly slow
down communication due to overheads, we serialize multiple gates into a larger buffer with a size below the
max socket size, and send it to the server who deserializes the received data. To further reduce communication
size, we have P1 send the first half of the serialized garbled circuit as usual, but only send a hash of the
second half, and have P2 do the reverse. P3 can put together the two unhashed halves to construct the whole
garbled circuits, and uses the hashed halves to check equality of the two garbled circuits. This technique
reduces communication by a factor of two but requires more work by all parties in form of hashing the garbled

4While doing so, we identified a small bug in JustGarbled. Specifically, in the garble() function, the encryption key
garblingContext .dkCipherContext .K .rd key is used without initialization which resulted in different garbled circuits even when
using the same seed.
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circuits. Note that hashing operation increases computation cost. In fact, hashing the garbled circuit using
SHA256 is more expensive than garbling the circuit itself which uses AES-NI instructions.5 Nevertheless the
reduction in communication cost (which is the bottleneck) makes this a net win as our experiments show.

4.2 Experiments

The experiments were conducted on Amazon EC2 Cloud Computing instances. The instances are of type
t2.micro with 1GB memory, and Intel Xeon E5-2670 2.5Ghz CPU with AES NI and SSE4.2 instruction
sets enabled. The instances are interconnected using Amazon’s network. We also use the iperf v3.1b3
tool to measure the maximum achievable bandwidth of t2.micro instances. The bandwidth is 1Gbits/s.
The operating system was Red Hat Enterprise Linux 7.0 (kernel 3.10.0-123.8.1.el7.x86 64). We run each
experiment 20 times and report the average and standard deviation for our measurements.

We used 4 different circuits for benchmarking our implementation: AES-128 (with key expansion), SHA-1,
MD-5 and SHA-256. Besides the circuit for AES-128 which was provided with JustGarble, the description file
for the other circuits were obtained from http://www.cs.bris.ac.uk/Research/CryptographySecurity/

MPC/. We converted these files into JustGarble’s SCD format using the code provided in [AMPR14].
The AES-128 circuit takes a 128-bit key and a 128-bit message as input. In our experiments, P1 and P2

independently choose 128-bit keys K1 and K2 and set K = K1 ⊕K2 to be the encryption key; P3 provides
the 128-bit message as input. Hence, the total input length to the AES-128 circuit is 384 and the output
length is 128. The input/output sizes for all other circuits and the number of AND/XOR/NOT gates in
each is presented in Table 1. Note that none of the circuits we used contains OR gates and since XOR gates
and NOT gates are free in our implementation, the ultimate cost driver is the number of AND gates.

Circuit AND NOT XOR Input size Output size

AES-128 7200 0 37638 384 128

MD-5 29084 34627 14150 512 128

SHA-1 37300 45135 24166 512 160

SHA-256 90825 103258 42029 512 256

Table 1: Number of AND/OR/NOT gates , and input/output sizes for each circuit. Input/output sizes are
in bits.

In our first experiment, the client and server communicate via sockets whose max size is set to 10KB.
The results are shown in Table 2. The computation time for P1/P2 measures the time that P1/P2 need to
generate the garbled circuit, compute the commitments, serialize the data and hash half of the data. The
computation time for P3 measures the time P3 needs to deserialize the data, compare and verify the garbled
circuits, and evaluate them. The network time measures the time spent by P1, P2 and P3 to send/receive
data over socket.

Circuit Network P3 Comp. P1/P2 Comp.
AES-128 13.30± 0.97 2.30± 0.46 1.60± 0.59

MD-5 29.05± 1.12 9.05± 0.38 5.85± 0.66
SHA-1 36.60± 2.63 11.50± 0.80 7.65± 0.89

SHA-256 78.46± 2.62 31.18± 0.57 21.09± 1.90

Table 2: Half-gates and hashing technique enabled; times in milliseconds.

Table 3 shows the size of parties’ communication during the same experiment.
Next, to examine the effect of the half-gate technique on the performance, we disable it (i.e. only the

single row-reduction is enabled) and run the same experiments. The results are shown in Tables 4 and 5. As
expected, the half-gate technique has a major effect on reducing the total running time as well the bandwidth
of the protocol. The size of communication increases by 50% which is expected since garbled tabled sizes
increase from 2 two 3.

5AES-NI provides high performance in the case where our usage of AES does not involve re-keying. One might be tempted
to use AES (perhaps modeled as an ideal cipher) to construct a collision-resistant hash function in a way that avoids frequent
re-keying. Unfortunately, negative results of [BCS05] show such a construction to be impossible.
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Circuit P3 (KB) P1/P2 (KB)
AES-128 1.19 752.37

MD-5 2.05 1276.16
SHA-1 2.78 1732.75

SHA-256 6.11 3752.25

Table 3: Communication sizes for experiments of Table 2.

Circuit Network P3 Comp. P1/P2 Comp.
AES-128 17.80± 1.45 3.10± 0.30 2.20± 0.41

% diff +34.57% +34.78% +37.50%
MD-5 41.19± 2.20 15.45± 0.80 12.93± 0.53
% diff +65.66% +70.71% +121.02%
SHA-1 51.74± 3.04 19.85± 0.79 16.48± 1.13
% diff +64.90% +72.61% +115.42%

SHA-256 116.10± 4.00 50.10± 1.22 44.40± 2.01
% diff +67.96% +60.68% +110.53%

Table 4: Half-gates disabled; times in milliseconds. Percentages show difference from Table 2.

Circuit P3 (KB) P1/P2 (KB)
AES-128 1.77 1104.74

% diff +48.74% +46.83%
MD-5 3.05 1885.66
% diff +48.78% +47.76%
SHA-1 4.16 2561.82
% diff +49.64% +47.85%

SHA-256 9.17 5618.85
% diff +50.08% +49.75%

Table 5: Communication sizes for experiments of Table 4. Percentages show difference from Table 2

Next, we turn the half-gate technique back on and turn-off the hash technique and re-run the experiments.
Results are shown in Tables 6 and 7. Again, this reconfirms the significant effect of the hashing technique
on both the total running time and the communication size. Note that the computation times reduces when
we turn off the hash technique which is natural since we avoid the extra hashing by all parties. But given
that serializing and sending/receiving messages is the bottleneck, the net effect of the hashing optimization
is positive.

Circuit Network P3 Comp. P1/P2 Comp.
AES-128 20.89± 1.24 1.30± 0.46 0.88± 0.40

% diff +27.39% -43.48% -45%
MD-5 45.15± 0.97 4.20± 0.40 3.35± 0.58
% diff +12.55% -53.59% -42.74%
SHA-1 57.50± 1.68 5.50± 0.59 4.65± 0.70
% diff +14.03% -52.17% -39.22%

SHA-256 125.93± 2.35 15.72± 0.75 12.90± 0.68
% diff +10.30% -49.58% -38.83%

Table 6: Hash technique disable. times in milliseconds. Percentages show difference from Table 2
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Circuit P3 (KB) P1/P2 (KB)
AES-128 2.33 1447.58

% diff +95.80% +92.40%
MD-5 4.03 2485.63
% diff +96.59% +94.77%
SHA-1 5.50 3380.84
% diff +97.84% +95.11%

SHA-256 12.15 7437.82
% diff +98.85% +98.22%

Table 7: Communication size for experiments of Table 6. Percentages show difference from Table 2

4.3 Comparison

3PC with one corruption As mentioned earlier, the most relevant protocols to ours are those designed
in the same setting of 3PC with one corruption, or honest majority in general. The MPC constructions
based on verifiable secret sharing [BOGW88, RBO89] achieve the same security as our construction (mali-
cious security), and are asymptotically very efficient, as they require O(poly(n)) bits of communication per
multiplication gate where n is number of parties, and the polynomial is relatively small, and these protocols
also avoid cryptographic operations. However, to the best of our knowledge, no implementation of these
constructions exists, so it is hard to provide a concrete comparison. It is a very valuable direction to explore
practical efficiency of these constructions even in the three-party setting, and compare their efficiency and
scalability with our construction in various scenarios.

The 3PC constructions with experimental results reported include VIFF [Gei07], Sharemind [BLW08],
PICCO [ZSB13], ShareMonad [LDDAM12, LADM14], and [IKHC14]. With the exception of [IKHC14],
these protocols only provide security against semi-honest adversaries. In contrast, our protocol is secure
against malicious adversaries in the same setting, but demonstrates efficiency that is comparable to these
semi-honest counterparts.

Admittedly, an accurate/fair comparison is not possible, given that each implementation runs in a differ-
ent environment, using different language/libraries and networking, memory, and CPU specifications. For
example, our machines’ memory/CPU specifications seems fairly modest compared to the prior work and we
do not take advantage of any parallelism. But to demonstrate that efficiency of our construction (for boolean
circuits) is comparable to other implemented constructions with only semi-honest security, a single execution
of an AES block requires 232 ms in Sharemind [LTW13], 14.3 ms in ShareMonad [LDDAM12], and 18 ms in
our implementation (See Table 2). The construction of [IKHC14] which achieves malicious security (similar
to ours) did not include an implementation of any boolean circuits circuit but based on the provided experi-
mental numbers, their construction requires a factor of k (the security parameter) more communication and
a factor of 3 more computation compared to secret-sharing-based semi-honest 3PC implementations.

Protocols with Dishonest Majority The bulk of other existing implementations with malicious security
are focused on the dishonest majority setting. For example, there is large body of work on making Yao’s two-
party protocol secure against malicious adversaries with several implementations available [LPS08, KS12,
FN13, AMPR14]. When considering a single execution, these protocols are at least a multiplicative factor of
security parameter (80) more expensive than semi-honest Yao’s protocol. But as seen earlier, our protocol has
complexity that is fairly comparable to a single run of semi-honest and hence outperforms single-execution
malicious 2PC protocols by a wide margin.

Note that when running many instances of malicious 2PC for the same function, there are recent results
[LR14, HKK+14] that noticeably reduce the amortized multiplicative factor. In general, our comparisons
are only for a single execution of the constructions. It is interesting to compare efficiency of the existing
implementations in batch execution of the same of different setting, and to introduce new techniques for
better batch 3PC.

We also emphasize that the above comparison is only fair for Boolean circuits, as secret-sharing-based
protocols are often superior to garbled-circuit based ones for arithmetic circuits given that they directly
implement multiplication/addition gates.
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Another line of work [DKL+12, DKL+13] consider multi-party computation with dishonest majority in
the pre-processing model where the goal is to implement a very fast online phase after a relatively expensive
pre-prceossing stage for generating authenticated triplets. Similar to malicious 2PC, the total cost (offline
+ online) of these protocols significantly higher than ours (several seconds), but a direct comparison is not
warranted give the difference in security guarantees and their focus on a fast online phase. We discuss
this line of work again when considering the credential encryption service application where online/offline
separation is natural.

5 Application: Distributed Credential Encryption Service

An interesting application of our work and an initial motivation for it was the design of a distributed credential
encryption service. The goal of this service is to keep credentials such as hashed passwords encrypted at rest,
in order to prevent offline dictionary attacks when user databases are compromised. At the same time, the
service should be easily retrofitted into existing authentication systems, in which an authentication server
computes or receives a hashed password in the clear. Hence, the goal is not to use crypto to protect the
computation of a hashed password, but to simply protect the static database of hashed passwords.

A (non-distributed) credential encryption service receives a hashed password from the authentication
server as input, which it encrypts to return a ciphertext that is stored in a database. To authenticate a user,
the authentication server sends to the encryption service the hash of the purported password along with the
correct ciphertext obtained from the database. The encryption service authenticates the user by decrypting
the ciphertext and checking whether the result matches the hashed password that is given. Overall, the
encryption service stores a secret encryption key and provides encryption/decryption functionality. The
authentication server’s database remains encrypted; authenticating a user requires interaction with the
encryption service and hence cannot be done offline in a dictionary attack in the event that the authentication
database is compromised.

In order to distribute trust and avoid a single point of attack we replace the encryption service by three
servers running our 3PC protocol. P1 and P2 each hold a 128-bit random strings K1 and K2, while P3 receives
h(passwd) from a log-in service to encrypt using the key K = K1⊕K2, i.e. to compute AESK(h(passwd)).
Our 3PC construction guarantees that even if the encrypted database is compromised, and one of the servers
is compromised and even controlled by the adversary, the encryption key is not compromised and user
credentials are not susceptible to offline dictionary attacks.

Note that unlike the general 3PC scenario, in the credential encryption service we can consider further
optimizations. For example, since the computation involves the same circuit (e.g., AES) each time, we can
in an offline phase (i.e. in the background or through a different channel without a latency restriction)
have P1 and P2 garble many circuits separately using randomness they agree on and transmit them to P3.
Furthermore, given that P1, P2’s inputs remain the same across multiple executions, they can also incorporate
their garbled inputs to those circuits. A subtle issue is that for this approach to work, we have to assume
that the garbling scheme is adaptively secure [BHR12a], a stronger assumption than we need for our main
protocol.

The online phase then consists of P3 obtaining the labels for his input h(passwd), taking a pair of garbled
circuits/commitments that are the same from a pile computed earlier and evaluating it. Our experiments
show that the online running time of the protocol is on average 1.34± 0.47 ms, making the protocol feasible
for real-world deployment.

The SPDZ protocols and followup works [DKL+12, DKL+13], also focus on optimizing the online case
at the cost of the offline phase, and achieve fast online performance in the order of milliseconds for AES
circuit (though higher than ours), but have a much slower offline phase compared to us. Given than the
offline phase is not reusable in either ours or SPDZ construction and has to repeated on a regular basis,
our protocol seems more suitable for this application given the faster offline phase. On the other hand, the
SPDZ protocols achieve stronger security by handling two corruptions.

14



Acknowledgements

We wish to thank Yan Huang and several anonymous reviewers for many helpful suggestions to improve the
writeup. We are also appreciative of Yuval Ishai and Ranjit Kumaresan for bringing some related work to
our attention.

References

[AMPR14] Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva. Non-interactive secure compu-
tation based on cut-and-choose. In Advances in Cryptology–EUROCRYPT 2014, pages 387–404.
Springer, 2014.

[BCD+09] Peter Bogetoft, Dan Lund Christensen, Ivan Damg̊ard, Martin Geisler, Thomas Jakobsen,
Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt Nielsen, Jakob Pagter, et al.
Secure multiparty computation goes live. In Financial Cryptography and Data Security, pages
325–343. Springer, 2009.

[BCS05] John Black, Martin Cochran, and Thomas Shrimpton. On the impossibility of highly-efficient
blockcipher-based hash functions. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494
of LNCS, pages 526–541. Springer, May 2005.

[BDNP08] Assaf Ben-David, Noam Nisan, and Benny Pinkas. FairplayMP: a system for secure multi-party
computation. In Peng Ning, Paul F. Syverson, and Somesh Jha, editors, ACM CCS 08, pages
257–266. ACM Press, October 2008.

[BHKR13] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. Efficient garbling
from a fixed-key blockcipher. In Security and Privacy (SP), 2013 IEEE Symposium on, pages
478–492. IEEE, 2013.

[BHR12a] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adaptively secure garbling with ap-
plications to one-time programs and secure outsourcing. In Xiaoyun Wang and Kazue Sako,
editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 134–153. Springer, December 2012.

[BHR12b] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In Ting
Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS 12, pages 784–796. ACM Press,
October 2012.

[BLW08] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for fast privacy-
preserving computations. In Sushil Jajodia and Javier López, editors, ESORICS 2008, volume
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A Security Proof For Naor Commitment Variant

In Section 2.3 we defined a multi-bit variant of Naor’s commitment in the CRS model. For n-bit strings,
we need a crs ∈ {0, 1}4n. Let G : {0, 1}n → {0, 1}4n be a pseudorandom generator, and let pad : {0, 1}n →
{0, 1}4n be the function that prepends 3n zeroes to the front of its argument. Then the commitment scheme
is:

• Comcrs(x; r): set C = G(r) + crs · pad(x), with arithmetic in GF (24n); set σ = (r, x).

• Chkcrs(C, σ = (r, x)): return x if C = G(r) + crs · pad(x); otherwise return ⊥.

Theorem 2. This commitment scheme satisfies the properties of binding and hiding given in Section 2.3.

Proof. Hiding follows easily from the security of PRG G. In particular, for all crs and x, a commitment is
generated as C = G(r) + crs · pad(x). Since r is chosen uniformly, the result is pseudorandom.

Binding follows from the following argument. An adversary succeeds in equivocating if and only if it can
produce C, r, x, r′, x′ with x 6= x′ and:

C = G(r) + crs · pad(x) = G(r′) + crs · pad(x′)

⇐⇒ crs = [G(r)−G(r′)](pad(x′)− pad(x))−1

Since x 6= x′ and pad is injective, pad(x′)− pad(x) 6= 0 indeed has a multiplicative inverse in the field.
Let us call a crs “bad” if there exists r, r′, x 6= x′ satisfying the above property. Clearly an adversary’s

success probability in equivocation is bounded by Pr[crs is bad].
There are at most 22n values of G(r) − G(r′) and at most 2n values of pad(x′) − pad(x) (under the

standard encoding of GF (2k) into {0, 1}k, we have pad(x′) − pad(x) = pad(x′ ⊕ x)). Hence there are at
most 23n bad values of crs. It follows that the probability of a random crs ∈ {0, 1}4n being bad is at most
1/2n.
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