Cryptanalysis of the New CLT Multilinear Maps

Jung Hee Cheon, Changmin Lee, Hansol Ryu
Seoul National University (SNU), Republic of Korea

Abstract

Multilinear maps have many cryptographic applications. The first candidate construction of multilinear maps was proposed by Garg, Gentry, and Halevi (GGH13) in 2013, and a bit later another candidate was suggested by Coron, Lepoint, and Tibouchi (CLT13) over the integers. However, both of them turned out to be insecure from so-called zeroizing attack (HJ15, CHL ${ }^{+}$15). As a fix of CLT13, Coron, Lepoint, and Tibouchi proposed another candidate of new multilinear maps over the integers (CLT15). In this paper, we describe an attack against CLT15. Our attack shares the essence of cryptanalysis of CLT13 and exploits low level encodings of zero as well as other public parameters. As in the $\mathrm{CHL}^{+} 15$, this leads to find all the secret parameters of κ-multiliear maps in polynomial time of security parameter.

Keywords: Multilinear maps, graded encoding schemes, zeroizing attack.

1 Introduction

Multilinear maps. Cryptographic multilinear map has plenty of applications including non-interactive key exchange, general program obfuscation and efficient broadcast encryption. After the first candidate construction of Garg, Gentry and Halevi [GGH13] (GGH13, for short), it received enormous attentions. Shortly afterwards, Coron, Lepoint and Tibouch proposed another candidate of multilinear maps [CLT13](CLT13, for short). It is constructed over the integers and gives the first implementation of multilinear maps [CLT13]. The last candidate is suggested by Gentry, Gorbunov and Halevi using a directed acyclic graph GGH15.

Attack and revisions of CLT13. In CLT13, it was claimed to resist against zeroizing attack. Hence CLT13 supports the Graded Decisional Diffie-Helman assumption (GDDH) and the subgroup membership (SubM) and decisional linear (DLIN) problems are hard in it, while GGH13 supports only the GDDH. However, Cheon, Han, Lee, Ryu and Stehlé proposed an attack on the scheme [CHL ${ }^{+} 15$], which runs in polynomial time and recovers all secrets. As in the zeroizing attack of GGH13, the attack utilizes public low level encodings of zero which enables to generate an encoding without knowing secret values. The core of the attack is to compute several zero-testing values related to one another. Then one can construct a matrix whose eigenvalues consists of CRT component of x, which is $x\left(\bmod p_{i}\right)$ for some encoding x where p_{1}, \cdots, p_{n} are secret values of the scheme. Then it reveals all the secrets of the scheme.

In response, there are two attempts to make CLT13 secure against CHLRS attack [GGHZ14]BWZ14]. However, both are shown to be insecure in [CGH ${ }^{+} 15$]. At the same time, another fix of CLT13 is proposed at Crypto15 by Coron, Lepoint and Tibouch CLT15(CLT15, for short). It is almost the same as the original scheme, except in zero-testing parameter and procedure. To prevent obtaining zero-testing values in

CLT13, they do not publish the modulus x_{0} and do zero-testing in independent modulus N. They claim that it is secure against CHLRS attack, because a zero-testing value of an encoding x depends on the CRT components of x in a non-linear way.

New multilinear maps over the integers. We briefly introduce CLT15 scheme. It is a graded encoding scheme and its level- t encoding c is an integer satisfying $c \equiv$ $\frac{r_{i t} g_{i}+m_{i}}{z^{t}}\left(\bmod p_{i}\right)$ for $1 \leq i \leq n$, where p_{1}, \cdots, p_{n} are secret primes, $\left(m_{1}, \cdots, m_{n}\right) \in$ $\mathbb{Z}_{g_{1}} \times \cdots \times \mathbb{Z}_{g_{n}}$ is a plaintext for secret moduli g_{1}, \cdots, g_{n}, and $r_{1 t}, \cdots, r_{n t}$ are random noises. Then it can be written as $\sum_{i=1}^{n}\left[r_{i t}+m_{i} / g_{i}\right]_{p_{i}} u_{i t}+a_{t} x_{0}$ for some integer a_{t}, where $u_{i t}=\left[\frac{g_{i}}{z^{t}}\left(\frac{x_{0}}{p_{i}}\right)^{-1}\right]_{p_{i}} \frac{x_{0}}{p_{i}}$ for $1 \leq i \leq n$. The zero-testing of level- κ encoding works as follows: For a zero-testing parameter $p_{z t}$ and a level- κ encoding $x=\sum_{i=1}^{n}\left[r_{i}+m_{i} / g_{i}\right]_{p_{i}} u_{i \kappa}+a x_{0}$, which is smaller than x_{0},

$$
p_{z t} \cdot x \equiv \sum_{i=1}^{n}\left[r_{i}+m_{i} / g_{i}\right]_{N} \cdot v_{i}+a v_{0} \quad(\bmod N)
$$

where $v_{i}=\left[p_{z t} \cdot u_{i \kappa}\right]_{N}$ and $v_{0}=\left[p_{z t} \cdot x_{0}\right]_{N}$. The right hand side is small if all m_{i} 's are zero, and so it is used to determine whether it is an encoding of zero or not.

Note that the zero-testing works only when the encoding x is small. However, the size of encodings almost doubled up through multiplication and is too large to get a correct zero-testing value. CLT15 publishes encodings of zero of various size (called, ladder) to reduce the size of encodings.

Proposed attack. Let x be a level- κ encoding of zero which is a product of two lower level encodings. Then it can be written as $\sum_{i=1}^{n} r_{i 1} r_{i 2} u_{i \kappa}+a x_{0}$ for some integers $a, r_{i 1}, r_{i 2}, 1 \leq i \leq n$ and its bit size is roughly 2γ. Let x^{\prime} be an encoding of the same plaintext with x, whose size is reduced using ladder, then it is of the form $\sum_{i=1}^{n}\left(r_{i 1} r_{i 2}+s_{i}\right) u_{i \kappa}+a^{\prime} x_{0}$, for some integer s_{1}, \cdots, s_{n} and another integer a^{\prime}. In that case, the zero-testing value gives the following:

$$
\sum_{i=1}^{n}\left(r_{i 1} r_{i 2}+s_{i}\right) v_{i}+a^{\prime} v_{0}
$$

It has additional terms s_{1}, \cdots, s_{n} and a^{\prime} from the zero-testing value $\sum_{i=1}^{n} r_{i 1} r_{i 2} \hat{v}_{i}$ of CLT13, where \hat{v}_{i} is common to all the encoding we use in the attack. Since s_{1}, \cdots, s_{n} and a^{\prime} are heavily depending on the input encoding, we can not related it to constitute a quadratic form and adapt CHLRS attack.

To detour this obstacles, we define a function ψ from the integers to the integers, which is identical to a zero-testing value when the input is a level- κ encoding of zero of small size, and compute the ψ-values of an encoding (even larger than N) using ladder. First, we compute ψ-values of ladder from the smallest one to the largest one, inductively. Then, we show how to get ψ-values of level- κ encodings of large size. Finally, we prepare $(n+1)^{2}$ encodings of zero from from $(n+1)$ level- 1 encodings and $(n+1)$ level- κ encodings of zero, and constitute matrix equations only consists of a product of matrices. As similar in [CHL $\left.{ }^{+} 15\right]$, we can have a matrix whose eigenvalues consists of CRT components of an encoding. From those, we can recover all secret parameters of CLT15] scheme. Our attack only needs ladders and 2 level-0 encodings and runs in polynomial time.

Organization. In section 2, we introduce CLT15 and briefly explain the CHLRS attack. In Section 3, we examine the zero-testing process of CLT15 and give a description of our attack by splitting into three steps. We conclude in Section 4

2 Multilinear Maps over the Integers

Notations. We use \mathbb{Z}_{q} to denote the ring $\mathbb{Z} / q \mathbb{Z}$. For $a, b, N \in \mathbb{Z}, a \equiv b(\bmod N)$ or $a \equiv_{N} b$ means that a is congruent to b modulo N. Additionally we use the notation a $(\bmod N)$ or $[a]_{N}$ to denote the reduction of a modulo N into the interval $(-N / 2, N / 2]$. We denote $\mathrm{CRT}_{\left(p_{1}, p_{2}, \ldots, p_{n}\right)}\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ as the unique integer in $\left[0, \prod_{i=1}^{n} p_{i}\right)$ which is congruent to $r_{i}\left(\bmod p_{i}\right)$ for all $i=1, \cdots, n$. For short, we denote it as $\operatorname{CRT}_{\left(p_{i}\right)}\left(r_{i}\right)$.

For a finite set S, we use $s \leftarrow S$ to denote the operation of uniformly choosing an element s from S.

For an $n \times n$ square matrix \boldsymbol{H}, we use $\left(h_{i j}\right)$ to represent a matrix \boldsymbol{H}, whose (i, j) component is $h_{i j}$. Similarly, for a vector $\boldsymbol{v} \in \mathbb{R}^{n}$, we define $(\boldsymbol{v})_{j}$ as the j-th component of \boldsymbol{v}. Let \boldsymbol{H}^{T} be the transpose of \boldsymbol{H} and $\|\boldsymbol{H}\|_{\infty}$ be the $\max _{i} \sum_{j=1}^{n}\left|h_{i j}\right|$. We denote by $\operatorname{diag}\left(d_{1}, \cdots, d_{n}\right)$ the diagonal matrix with diagonal coefficients equal to d_{1}, \cdots, d_{n}.

2.1 CLT15 Scheme

First, we briefly recall the Coron et al.'s new multilinear maps. We refer to the original paper [CLT15] for a complete description. The scheme relies on the following parameters.
λ : the security parameter
κ : the multilinearity parameter, i.e. the proposed map is κ - linear
ρ : the bit length of the initial noise used for encodings
α : the bit length of the primes g_{i}
η : the bit length of the secret primes p_{i}
n : the number of distinct secret primes
γ : the bit length of encodings ($=n \eta$)
τ : the number of level-1 encodings of zero in public parameters
ℓ : the number of level- 0 encodings in public parameters
ν : the bit length of the image of the multilinear map
β : the bit length of the entries of the zero-test matrix H
Coron et al. suggested to set the parameters according to the following conditions:

- $\rho=\Omega(\lambda)$: to avoid brute force attack on the noise.
- $\alpha=\lambda$: to prevent that the order of message ring $\mathbb{Z}_{g_{1}} \times \ldots \times \mathbb{Z}_{g_{n}}$ does not have a small prime factor.
- $n=\Omega(\eta \lambda)$: to thwart lattice reduction attacks.
- $\ell \geq n \alpha+2 \lambda$: to apply the leftover hash lemma from [CLT15].
- $\tau \geq n\left(\rho+\log _{2}(2 n)\right)+2 \lambda$: to apply the leftover hash lemma from [CLT15].
- $\beta=3 \lambda$: as a conservative security precaution.
- $\eta \geq \rho_{\kappa}+2 \alpha+2 \beta+\lambda+8$, where ρ_{κ} is the maximum bit size of the noise r_{i} of a level- κ encoding. When computing the product of κ level- 1 encodings and an additional level-0 encoding, one obtains $\rho_{\kappa}=\kappa\left(2 \alpha+2 \rho+\lambda+2 \log _{2} n+3\right)+\rho+\log _{2} \ell+1$.
- $\nu=\eta-\beta-\rho_{f}-\lambda-3$: to ensure correctness of zero-testing.

The constraints are the same as [CLT13], the only different condition is β.
Instance generation: (params, $\left.\boldsymbol{p}_{z t}\right) \leftarrow \operatorname{InstGen}\left(1^{\lambda}, 1^{\kappa}\right)$. Set the scheme parameters as explained above. For $1 \leq i \leq n$, generate η-bit odd primes p_{i}, α-bit primes g_{i}, and compute $x_{0}=\prod_{i=1}^{n} p_{i}$. Generate a random prime integer N of size $\gamma+2 \eta+1$ bits. Using LLL algorithms in dimension 2, special pairs of nonzero integers $\left(\alpha_{i}, \beta_{i}\right)_{i=1}^{n}$ are chosen to satisfy $\left|\alpha_{i}\right|<2^{\eta-1},\left|\beta_{i}\right|<2^{2-\eta} \cdot N, \beta_{i} \equiv \alpha_{i} u_{i}^{\prime} p_{i}^{-1}(\bmod N)$, where $u_{i}^{\prime}=\left[\frac{g_{i}}{z^{\kappa}}\left(\frac{x_{0}}{p_{i}}\right)^{-1}\right]_{p_{i}} \frac{x_{0}}{p_{i}}$. Finally, generate $\boldsymbol{H}=\left(h_{i j}\right) \in \mathbb{Z}^{n \times n}$ such that \boldsymbol{H} is invertible and $\left\|\boldsymbol{H}^{T}\right\|_{\infty} \leq 2^{\beta},\left\|\left(\boldsymbol{H}^{-1}\right)^{T}\right\|_{\infty} \leq 2^{\beta}$ and for $1 \leq i \leq n, 1 \leq j \leq \ell, m_{i j} \leftarrow\left[0, g_{i}\right) \cap \mathbb{Z}$. Then define:

$$
\begin{aligned}
y & =\mathrm{CRT}_{\left(p_{i}\right)}\left(\frac{r_{i} \cdot g_{i}+1}{z}\right), \\
x_{j} & =\mathrm{CRT}_{\left(p_{i}\right)}\left(\frac{r_{i j} \cdot g_{i}}{z}\right), \text { for } 1 \leq j \leq \tau, \\
x_{j}^{\prime} & =\mathrm{CRT}_{\left(p_{i}\right)}\left(r_{i j}^{\prime} g_{i}+m_{i j}\right) \text { for } 1 \leq j \leq \ell, \\
X_{j}^{(t)} & =\mathrm{CRT}_{\left(p_{i}\right)}\left(\frac{r_{i j}^{(t)} g_{i}}{z^{t}}\right)+q_{j}^{(t)} x_{0} \text { for } 0 \leq j \leq \gamma+\left\lfloor\log _{2} \ell\right\rfloor, 1 \leq t \leq \kappa, \\
\Pi_{j} & =\sum_{i=1}^{n} \varpi_{i j} g_{i}\left[z^{-1}\left(\frac{x_{0}}{p_{i}}\right)^{-1}\right]_{p_{i}} \frac{x_{0}}{p_{i}}+\varpi_{n+1, j} x_{0}, \text { and } \\
\left(\boldsymbol{p}_{z t}\right)_{j} & =\sum_{i=1}^{n} h_{i j} \alpha_{i} p_{i}^{-1} \quad(\bmod N) \text { for } 1 \leq j \leq n,
\end{aligned}
$$

where $r_{i}, r_{i j}^{\prime}, r_{i j}^{(t)} \leftarrow\left(-2^{\rho}, 2^{\rho}\right) \cap \mathbb{Z}, q_{j}^{(t)} \leftarrow\left[2^{\gamma+j-1} / x_{0}, 2^{\gamma+j} / x_{0}\right) \cap \mathbb{Z}$ and $\varpi_{i j} \leftarrow\left(-2^{\rho}, 2^{\rho}\right) \cap$ \mathbb{Z} if $i \neq j, \varpi_{i i} \leftarrow\left((n+1) 2^{\rho},(n+2) 2^{\rho}\right) \cap \mathbb{Z}$. Then output

$$
\text { params }=\left(n, \eta, \alpha, \rho, \beta, \tau, \ell, \mu, y,\left\{x_{j}\right\}_{j=1}^{\tau},\left\{x_{j}^{\prime}\right\}_{j=1}^{\ell},\left\{X_{i}^{(j)}\right\},\left\{\Pi_{j}\right\}_{j=1}^{n+1}, s\right) \text { and } \boldsymbol{p}_{z t} .
$$

In this paper we use only one zero-testing parameter. Hence, from now on, we use a notation $p_{z t}=\sum_{i=1}^{n} h_{i} \alpha_{i} p_{i}^{-1}(\bmod N)$ instead of a vector $\left(\boldsymbol{p}_{z t}\right)_{j}$, if there is no confusion. Multiplying encodings: For two encodings, its multiplication is done in \mathbb{Z}. To do a zero-testing, its size must be reduced until γ bits. However, we can not reduce its size because x_{0} is secret. For that reason CLT15 provides a ladder of level- t encodings of zero $X_{j}^{(t)}$. Since the size of $X_{j}^{(t)}$ is $(\gamma+j)$-bit, we can progressively reduce the size down to γ bits.
Zero-testing: isZero(params, $\left.\boldsymbol{p}_{z t}, x\right) \stackrel{?}{=} 0 / 1$. Given a level- κ encoding x, return 1 if $\left\|\boldsymbol{p}_{z t} \cdot x(\bmod N)\right\|_{\infty}<N \cdot 2^{-\nu}$, and return 0 otherwise.

We omit description of some procedures such as sampling level-zero encodings, encoding at higher levels, re-randomization and extraction which is not required in this paper.

2.2 CHLRS Attack

In this section, we briefly present Coron et al. original multilinear maps CLT13] (for short, CLT13) and its cryptanalysis [CHL ${ }^{+}$15]. CLT13 is almost the same as the new multilinear map. The main difference between two schemes are two parts: One is that CLT13 makes public $x_{0}=\prod_{i=1}^{n} p_{i}$. Instead of x_{0}, CLT15 publishes a ladder of encodings of zero at each level. The other is that CLT13 uses a different zero-testing vector. The zero-testing value of a level- κ encoding is a linear sum of secret value. Namely, original zero-testing vector $\boldsymbol{p}_{z t}^{\prime}$ is defined as $\sum_{i=1}^{n} h_{i}\left[z^{\kappa} g_{i}^{-1}\right] p_{p_{i}} \cdot \frac{x_{0}}{p_{i}}\left(\bmod x_{0}\right)$ for some small integer h_{i}. When x is a level- κ encoding, it is denoted by $\mathrm{CRT}_{\left(p_{i}\right)}\left(\frac{r_{i} g_{i}+m_{i}}{z^{\kappa}}\right)=\left[\frac{r_{i} g_{i}+m_{i}}{z^{\kappa}}\right]_{p_{i}}+q_{i} p_{i}$ for some small integer r_{i} and integer q_{i}. Hence, $\left[\boldsymbol{p}_{z t}^{\prime} \cdot x\right]_{x_{0}}$ has the following form:

$$
\left[\sum_{i=1}^{n} h_{i}\left(r_{i}+m_{i}\left[g_{i}^{-1}\right]_{p_{i}}\right) \frac{x_{0}}{p_{i}}\right]_{x_{0}} .
$$

If $m_{i}=0$ for $1 \leq i \leq n$, its value is a linear sum of $h_{i}, r_{i}, x_{0} / p_{i}$ over \mathbb{Z} not modulo x_{0}. Hence it is a small integer compared to x_{0}. From this property, one can check whether x is an encoding of zero or not.

The original CLT scheme is broken by CHLRS attack. Its idea is following that: If $c_{j l}$ is a multiplication of three encodings X_{j}, c and Y_{l} such that

$$
\begin{aligned}
X_{j} & =\mathrm{CRT}_{\left(p_{i}\right)}\left(\frac{r_{i j}}{z}\right) \\
c & =\mathrm{CRT}_{\left(p_{i}\right)}\left(c_{i}\right) \\
Y_{l} & =\mathrm{CRT}_{\left(p_{i}\right)}\left(\frac{r_{i l}^{\prime \prime} g_{i}}{z^{\kappa-1}}\right)
\end{aligned}
$$

then its zero-testing value is denoted by $\sum_{i=1}^{n} h_{i}\left(r_{i j} c_{i} r_{i l}^{\prime \prime}\right) \frac{x_{0}}{p_{i}}$. By spanning $1 \leq j, l \leq n$, one can construct a matrix $\boldsymbol{M}_{\boldsymbol{c}}=\boldsymbol{Y} \cdot \operatorname{diag}\left(c_{1}, \cdots, c_{n}\right) \cdot \boldsymbol{X}$, where $\boldsymbol{X}=\left(r_{i j}\right)$, and $\boldsymbol{Y}=\left(r_{i l}^{\prime \prime}\right)^{T}$. By replacing c as 1 , we can also construct a matrix $\boldsymbol{M}_{1}=\boldsymbol{Y} \cdot \boldsymbol{X}$. Then a matrix $\boldsymbol{M}_{1}^{-1} \cdot \boldsymbol{M}_{\boldsymbol{c}}=\boldsymbol{X}^{-1} \cdot \operatorname{diag}\left(c_{1}, \cdots, c_{n}\right) \cdot \boldsymbol{X}$ has an eigenvalue c_{i} and we can obtain all of that by solving the characteristic polynomial of matrix $\boldsymbol{M}_{1}^{-1} \cdot \boldsymbol{M}_{c}$. It implies that we can recover all p_{i} by computing $\operatorname{gcd}\left(x_{0}, c-c_{i}\right)$ in polynomial time.

CHLRS attack, however, is not directly adapted to new CLT scheme. It keeps x_{0} as a secret value, we cannot reduce the size of $c_{j l}=X_{j} \cdot c \cdot Y_{l}$ using x_{0}. Instead, we lower the size by using level- κ ladder $\left\{X_{j}^{(\kappa)}\right\}$. Then the size reduced $c_{j l}$ can be written as

$$
\sum_{i=1}^{n}\left(r_{i j} c_{i} r_{i l}^{\prime \prime}+s_{i j l}\right) u_{i}^{\prime}+a_{j l} x_{0},
$$

for some integers $s_{i j l}$ and $a_{j l}$. Compared to CLT13, it has additional terms $s_{i j l}$ and $a_{j l}$. Its zero-testing value in CLT15 is represented by $\sum_{i=1}^{n}\left(r_{i j} c_{i} r_{i l}^{\prime \prime}+s_{i j l}\right) v_{i}+a_{j l} v_{0}$, where $v_{i}=\left[p_{z t} \cdot u_{i}^{\prime}\right]_{N}$ and $v_{0}=\left[p_{z t} \cdot x_{0}\right]_{N}$. By spanning $1 \leq j, l \leq n$, one can deduce matrix equations like as $\boldsymbol{M}_{c}=\boldsymbol{Y} \cdot \operatorname{diag}\left(c_{1}, \cdots, c_{n}\right) \cdot \boldsymbol{X}+\boldsymbol{S}+\boldsymbol{A} \cdot v_{0}$, where $\boldsymbol{S}=\left(\sum_{i=1}^{n} v_{i} s_{i j l}\right)$
and $\boldsymbol{A}=\left(a_{j l}\right)$. Due to $\boldsymbol{S}+\boldsymbol{A} \cdot v_{0}$ part, it looks hard to extract any useful information about $\operatorname{diag}\left(c_{1}, \cdots, c_{n}\right)$.

3 A Zeroizing Attack on CLT15

3.1 Understanding of Zero-testing Procedure

Let us explain how the zero-testing works. Let $p_{z t}=\sum_{i} h_{i} \alpha_{i} p_{i}^{-1} \bmod N$, and $x=$ $\mathrm{CRT}_{\left(p_{i}\right)}\left(\frac{r_{i} g_{i}+m_{i}}{z^{\kappa}}\right)=\sum_{i}\left[r_{i}+m_{i} / g_{i}\right]_{p_{i}} u_{i}^{\prime}+a x_{0}$, where $u_{i}^{\prime}=\left[\frac{g_{i}}{z^{\kappa}}\left(\frac{x_{0}}{p_{i}}\right)^{-1}\right]_{p_{i}} \cdot \frac{x_{0}}{p_{i}}$. Then,

$$
x \cdot p_{z t} \equiv \sum_{i, j} h_{j}\left[r_{i}+m_{i} / g_{i}\right]_{p_{i}} u_{i}^{\prime} \alpha_{j} p_{j}^{-1}+a x_{0} p_{z t} \quad(\bmod N) .
$$

The zero-testing asks whether $\left[p_{z t} \cdot x\right]_{N}$ is much smaller than the modulus N. To identify zero, m_{i} 's (in that case, the bit size of $\left[r_{i}+m_{i} / g_{i}\right]_{p_{i}}$ is much smaller than η), the size of $\left[u_{i}^{\prime} \alpha_{j} p_{j}^{-1}\right]_{N}$ should be close to $N / 2^{\eta}$, and $\left[p_{z t} \cdot a x_{0}\right]_{N}$ must be much smaller than N.

Let us examine the size of each term. For $i \neq j,\left[u_{i}^{\prime} \alpha_{j} p_{j}^{-1}\right]_{N}$ is equal to $\alpha_{j} \frac{x_{0}}{p_{i} p_{j}}\left[\frac{g_{i}}{z^{\kappa}}\left(\frac{x_{0}}{p_{i}}\right)^{-1}\right]_{p_{i}}$. So it is at most a γ-bit integer, if $\left|\alpha_{j}\right|<p_{j}$. Define $\beta_{i}=\left[u_{i}^{\prime} \alpha_{i} p_{i}^{-1}\right]_{N}$, which is expected to be a $(\gamma+\eta)$-bit integer. By the Euclidean Algorithm on $u_{j}^{\prime}\left[p_{j}^{-1}\right]_{N}$ and N, one can take β_{i} to be an $(\gamma+\eta)$-bit integer for a η-bit integer α_{i} [Sho09]. Note that $\left[p_{z t} \cdot a x_{0}\right]_{N}=\sum_{i} a h_{i} \alpha_{i} \frac{x_{0}}{p_{i}}$, so it is $\left(\gamma+\beta+\log _{2} a+\log _{2} n\right)$-bit. Let us state more precisely the result, so called the zero-testing lemma.
Lemma 1 (Zero testing lemma). Let x be a level- κ encoding of zero with $x=$ $\sum_{i=1}^{n} r_{i} u_{i}^{\prime}+a x_{0},\left(r_{1}, \cdots, r_{n}, a \in \mathbb{Z}\right)$. Then the following equation holds over the integers:

$$
\left[p_{z t} \cdot x\right]_{N}=\sum_{i=1}^{n} r_{i} v_{i}+a v_{0}
$$

if $|a|<2^{2 \eta-\beta-\log _{2} n-1}$ and $\left|r_{i}\right|<2^{\eta-\beta-\log _{2} n-6}$ for $1 \leq i \leq n$.
Proof. By the construction of zero-testing element, we have $p_{z t} \cdot x \equiv \sum_{i=1}^{n} r_{i} v_{i}+a v_{0}$ $(\bmod N)$. It is enough to show that the right hand side is smaller than $N / 2$. For $1 \leq i \leq n$,

$$
v_{i} \equiv \sum_{j=1}^{n} h_{j} \alpha_{j} p_{j}^{-1} u_{i}^{\prime} \equiv h_{i} \beta_{i}+\sum_{j \neq i} h_{j} \alpha_{j}\left[\frac{g_{i}}{z^{\kappa}}\left(\frac{x_{0}}{p_{i}}\right)^{-1}\right]_{p_{i}} \frac{x_{0}}{p_{i} p_{j}} \quad(\bmod N),
$$

and so $\left|v_{i}\right|<2^{\gamma+\eta+\beta+4}$ for $1 \leq i \leq n$. Moreover $v_{0}=\sum_{j=1}^{n} h_{j} \alpha_{j} \frac{x_{0}}{p_{j}}$ and $\left|v_{0}\right|<n 2^{\gamma+\beta-1}$.

3.2 Idea of the Attack

We define a function ψ as follows:

$$
\begin{aligned}
\psi: \mathbb{Z} & \rightarrow \mathbb{Z} \\
x & \mapsto \sum_{i=1}^{n}\left[x \cdot \frac{z^{\kappa}}{g_{i}}\right]_{p_{i}} v_{i}+\frac{x-\sum_{i=1}^{n}\left[x \cdot \frac{z^{\kappa}}{g_{i}}\right]_{p_{i}} u_{i}^{\prime}}{x_{0}} v_{0},
\end{aligned}
$$

where $v_{i}=\left[p_{z t} \cdot u_{i}^{\prime}\right]_{N}(1 \leq i \leq n)$ and $v_{0}=\left[p_{z t} \cdot x_{0}\right]_{N}$. Note that, $x \equiv \sum_{i=1}^{n}\left[x \cdot \frac{z^{\kappa}}{g_{i}}\right]_{p_{i}} u_{i}^{\prime}$ $\left(\bmod p_{j}\right)$ for $1 \leq j \leq n$. Hence the constant multiplied by v_{0} is an integer and the function is well-defined.

Proposition 1. Let x be an integer such that $x \equiv \frac{r_{i} \cdot g_{i}}{z^{k}}\left(\bmod p_{i}\right)$ for $1 \leq i \leq n$. If $\left|r_{i}\right|<p_{i} / 2$ for each i, then x can be uniquely expressed as $\sum_{i=1}^{n} r_{i} u_{i}^{\prime}+a x_{0}$ for some integer a, and $\psi(x)=\sum_{i=1}^{n} r_{i} v_{i}+a v_{0}$.

Proof. We can see that $x \equiv \sum_{i=1}^{n} r_{i} u_{i}^{\prime}\left(\bmod p_{i}\right)$ for each i and so there exists an integer a such that $x=\sum_{i=1}^{n} r_{i} u_{i}^{\prime}+a x_{0}$. For uniqueness, suppose x can be written as $x=$ $\sum_{i=1}^{n} r_{i}^{\prime} u_{i}^{\prime}+a^{\prime} x_{0}$ for integers $r_{1}^{\prime}, \cdots, r_{n}^{\prime}, a^{\prime}$ with $\left|r_{i}^{\prime}\right|<p_{i} / 2$. Then $x \equiv r_{i}^{\prime}\left[\frac{g_{i}}{z^{\kappa}}\left(\frac{x_{0}}{p_{i}}\right)^{-1}\right]_{p_{i}} \equiv$ $\frac{r_{i}^{\prime} g_{i}}{z^{\kappa}}\left(\bmod p_{i}\right)$, which implies $r_{i} \equiv r_{i}^{\prime}\left(\bmod p_{i}\right)$. Since $\left|r_{i}-r_{i}^{\prime}\right|<p_{i}$, we have $r_{i}^{\prime}=r_{i}$ for each i and so $a^{\prime}=a$, which proves the uniqueness.

Proposition 2. Let x_{1}, \cdots, x_{m} be level- κ encodings of zero such that $x_{j} \equiv \frac{r_{i j} g_{i}}{z^{\kappa}}$ $\left(\bmod p_{i}\right)$ and $\left|r_{i j}\right|<p_{i} / 2$ for all $1 \leq i \leq n, 1 \leq j \leq m$. Then the following equality holds

$$
\psi\left(\sum_{j=1}^{m} x_{j}\right)=\sum_{j=1}^{m} \psi\left(x_{j}\right)
$$

if $\left|\sum_{j=1}^{m} r_{i j}\right|<\frac{p_{i}}{2}$, for all $1 \leq i \leq n$.
Proof. From Proposition 1 , each x_{j} can be uniquely written as $x_{j}=\sum_{i=1}^{n} r_{i j} u_{i}^{\prime}+a_{j} x_{0}$ for some integer a_{j}, and $\psi\left(x_{j}\right)=\sum_{i=1}^{n} r_{i j} v_{i}+a_{j} v_{0}$. Then

$$
\begin{aligned}
\sum_{j=1}^{m} \psi\left(x_{j}\right) & =\sum_{i=1}^{n}\left(\sum_{j=1}^{m} r_{i j}\right) \cdot v_{i}+\left(\sum_{j=1}^{m} a_{j}\right) \cdot v_{0} \\
& =\psi\left(\left(\sum_{j=1}^{m} r_{i j}\right) \cdot u_{i}^{\prime}+\left(\sum_{j=1}^{m} a_{j}\right) \cdot x_{0}\right)=\psi\left(\sum_{j=1}^{m} x_{j}\right)
\end{aligned}
$$

where the second equality comes from Proposition 11 since $\left|\sum_{j=1}^{m} r_{i j}\right|<p_{i} / 2$.
Our strategy to attack CLT 15 is similar to $\mathrm{CHL}^{+} 15$. We multiply a level- κ encoding of zero and a zero-testing parameter $p_{z t}$ to derive a linear combination of $v_{0}, v_{1}, \cdots, v_{n}$ over \mathbb{Z}. It is only possible when the size of an encoding is smaller than γ. However, we can extend the range by using a ladder in the scheme.

The goal is to construct a matrix equation over \mathbb{Q} by applying zero-testing to several products of level- 0,1 , and $(\kappa-1)$ encodings, fixed on level- 0 encoding. Due to its size, original zero-testing cannot be applied directly. We try to compute their ψ values instead of their zero-testing values and proceed in the following three steps.
(Step 1) Compute the ψ-value of level- κ ladder.
(Step 2) Compute the ψ-value of level- κ encodings of large size.
(Step 3) Construct matrix equations over \mathbb{Q}
Using matrix equations in Step 3, we have a matrix whose eigenvalues are residue modulo p_{i} of level-0 encoding. From this, we deduce a secret modulus p_{i}.

3.3 Computing the ψ-value of $X_{j}^{(\kappa)}$

To apply the zero-testing lemma to an encoding, its size of r_{i} and a has to be bounded by some fixed values. By the parameter setting, η is larger than the maximum bit size of the noise r_{i} of a level- κ encoding obtained from multiplication of lower level encodings. Hence what we need is to reduce the size of x so that a satisfy the zero testing lemma.

Let us consider a ladder of level- κ encodings of zero $\left\{X_{j}^{(\kappa)}\right\}$. It is provided to reduce the size of encodings down to the size of x_{0}. More precisely, given a level- κ encoding x of size less than $2^{2 \gamma+\left\lfloor\log _{2} \ell\right\rfloor}$, one can compute $x^{\prime}=x-\sum_{j=0}^{\gamma^{\prime}} b_{j} X_{j}^{(\kappa)}$ for $\gamma^{\prime}=\gamma+\left\lfloor\log _{2} \ell\right\rfloor$, which is an encoding of the same plaintext and its size is less than $2 x_{0}$. As noted in CLT15, the sizes of consequent moduli in the latter differ only a bit and so $b_{j} \in\{0,1\}$, which implies the noise grows additively. We can reduce a to an integer much less than $2^{2 \eta-\beta-1} / n$ so that the zero testing lemma can be applied. We denote such x^{\prime} as $[x]_{\boldsymbol{X}^{(k)}}$. More generally, we use the following notation:

Note that, if x satisfies the condition in the Lemma 1, i.e., it is an encoding of zero of small size, then $\psi(x)$ is exactly the same as $\left[p_{z t} \cdot x\right]_{N}$. However, if the size of x is large, it is only congruent to $\left[p_{z t} \cdot x\right]_{N}$ modulo N. Now we will show we can compute the integer value $\psi(x)$ for an encoding x of zero, even though x does not satisfy the condition in the Lemma 1 .

At first, we adapt the size reduction process to level- κ ladder itself. We can compute binary $b_{i j}$ for each i, j satisfying

$$
\begin{aligned}
{\left[X_{0}^{(\kappa)}\right]_{\boldsymbol{X}^{(\kappa)}} } & =X_{0}^{(\kappa)} \\
{\left[X_{1}^{(\kappa)}\right]_{\boldsymbol{X}^{(\kappa)}} } & =X_{1}^{(\kappa)}-b_{10} \cdot X_{0}^{(\kappa)} \\
{\left[X_{2}^{(\kappa)}\right]_{\boldsymbol{X}^{(\kappa)}} } & =X_{2}^{(\kappa)}-\sum_{k=0}^{1} b_{2 k} \cdot X_{k}^{(\kappa)} \\
& \vdots \\
{\left[X_{j}^{(\kappa)}\right]_{\boldsymbol{X}^{(\kappa)}} } & =X_{j}^{(\kappa)}-\sum_{k=0}^{j-1} b_{j k} \cdot X_{k}^{(\kappa)} .
\end{aligned}
$$

Each $\left[X_{j}^{(\kappa)}\right]_{\boldsymbol{X}^{(\kappa)}}$ is an encoding of zero at level κ and so can be written as $\left[X_{j}^{(\kappa)}\right]_{\boldsymbol{X}^{(\kappa)}}=$ $\sum_{i=1}^{n} r_{i j}^{\prime} u_{i}^{\prime}+a_{j}^{\prime} x_{0}$ for some integer $r_{i j}^{\prime}$ and a_{j}^{\prime}. Moreover, its bit size is at most γ and so a_{j}^{\prime} are small enough to satisfy the condition in the Lemma 1. Therefore

$$
\psi\left(\left[X_{j}^{(\kappa)}\right]_{\boldsymbol{X}^{(\kappa)}}\right)=\left[p_{z t} \cdot\left[X_{j}^{(\kappa)}\right]_{\boldsymbol{X}^{(\kappa)}}\right]_{N}=\sum_{i=1}^{n} r_{i j}^{\prime} v_{i}+a_{j}^{\prime} v_{0}
$$

If we write $X_{j}^{(\kappa)}=\sum_{i=1}^{n} r_{i j} u_{i}^{\prime}+a_{j} x_{0}$ for some integer $r_{1 j}, \ldots, r_{n j}, a_{j}$, we have $r_{i j}^{\prime}=r_{i j}-\sum_{k=0}^{j-1} b_{j k} r_{i k}$ for each i and $a_{j}^{\prime}=a_{j}-\sum_{k=0}^{j-1} b_{j k} a_{k}$ since all the coefficients
of u_{i}^{\prime} are small enough than p_{i} for each i. So the following equation holds over the integers:

$$
\sum_{i=1}^{n} r_{i j}^{\prime} v_{i}+a_{j}^{\prime} v_{0}=\sum_{i=1}^{n} r_{i j} v_{i}+a_{j} v_{0}-\sum_{k=0}^{j-1} b_{j k}\left(\sum_{i=1}^{n} r_{i k} v_{i}+a_{k} v_{0}\right)
$$

Hence we have the following inductive equations for $0 \leq j \leq \gamma^{\prime}$

$$
\psi\left(X_{j}^{(\kappa)}\right)=\left[p_{z t} \cdot\left[X_{j}^{(\kappa)}\right]_{\boldsymbol{X}^{(\kappa)}}\right]_{N}+\sum_{k=0}^{j-1} b_{j k} \cdot \psi\left(X_{k}^{(\kappa)}\right)
$$

which gives all $\psi\left(X_{0}^{(\kappa)}\right), \psi\left(X_{1}^{(\kappa)}\right), \ldots, \psi\left(X_{\gamma^{\prime}}^{(\kappa)}\right)$, inductively. The computation consists of $\left(\gamma^{\prime}+1\right)$ zero testing and $O\left(\gamma^{2}\right)$-times comparisons and subtractions of $\left(\gamma+\gamma^{\prime}\right)$-bit integers, and so the total computation cost is $\widetilde{O}\left(\gamma^{2}\right)$ by using fast Fourier transform. Hence we obtain the following lemma:

Lemma 2. Given the public parameters of CLT15 scheme, one can compute

$$
\psi\left(X_{j}^{(\kappa)}\right)=\left[p_{z t} \cdot\left[X_{j}^{(\kappa)}\right]_{\boldsymbol{X}^{(\kappa)}}\right]_{N}+\sum_{k=0}^{j-1} b_{j k} \cdot \psi\left(X_{k}^{(\kappa)}\right)
$$

in $\widetilde{O}\left(\gamma^{2}\right)$ bit computations.

3.4 Computing the ψ-value of Level- κ Encodings of Large Size

Using the ψ values of the κ-level ladder, we can compute the ψ value of any κ-level encoding of zero whose bit size is between γ and $\gamma+\gamma^{\prime}$.

Lemma 3. Let x be a level- κ encoding of zero, $x=\mathrm{CRT}_{\left(p_{i}\right)}\left(\frac{r_{i} g_{i}}{z^{\kappa}}\right)+q x_{0}=\sum_{i=1}^{n} r_{i} u_{i}^{\prime}+$ ax x_{0} for some integer r_{1}, \ldots, r_{n}, a satisfying $\left|r_{i}\right|<2^{\eta-\beta-\log _{2} n-7}$ for each i and $|a|<2^{\gamma^{\prime}}$. Given the public parameters of CLT15 scheme, one can compute the value $\psi(x)=$ $\sum_{i=1}^{n} r_{i} v_{i}+a v_{0}$ in $\widetilde{O}\left(\gamma^{2}\right)$ bit computations.

Proof. Let x be a level- κ encoding of zero satisfying the above conditions. As in Section 3.3. we can find binary b_{j} 's satisfying $[x]_{\boldsymbol{X}^{(\kappa)}}=x-\sum_{j=0}^{\gamma^{\prime}} b_{j} \cdot X_{j}^{(\kappa)}$. Then we have

$$
\psi(x)=\psi\left([x]_{\left.\boldsymbol{X}^{(} \kappa\right)}\right)+\sum_{j=0}^{\gamma^{\prime}} b_{j} \cdot \psi\left(X_{j}^{(\kappa)}\right)
$$

Since $[x]_{\boldsymbol{X}^{(\kappa)}}$ is a κ-level encoding of zero of at most γ-bit and the size of noise is bounded by $\left(\eta-\beta-\log _{2} n-6\right)$-bit, we can compute the value $\psi\left([x]_{\boldsymbol{X}^{(\kappa)}}\right)$ via the zero testing procedure. Finally, the ψ value of the κ-level ladder gives the value $\psi(x)$. The complexity comes from Lemma 2 .

We apply Lemma 3 to obtain the ψ value of a κ-level encoding of zero that is a product of two encodings of $\left(\gamma+\gamma^{\prime}\right)$-bit size.
Lemma 4. Let X be a level-1 encoding and Y a level- $(\kappa-1)$ encoding of zero of bit size at most $\gamma+\gamma^{\prime}$. Then one can compute $\psi(X Y)$ in $\widetilde{O}\left(\gamma^{3}\right)$ bit computations.

Proof. We apply Lemma 3 to a product of two γ-bit encodings. From $\left[X_{1}^{(1)}\right]_{\boldsymbol{X}^{(1)}}=$ $X_{1}^{(1)}-b \cdot X_{0}^{(1)}$ for some $b \in\{0,1\}$, we find $\psi\left(X_{1}^{(1)} \cdot X_{0}^{(\kappa-1)}\right)=\psi\left(\left[X_{1}^{(1)}\right]_{\boldsymbol{X}^{(1)}} \cdot X_{0}^{(\kappa-1)}\right)+$ $b \cdot \psi\left(X_{0}^{(1)} \cdot X_{0}^{(\kappa-1)}\right)$, since $\left[X_{1}^{(1)}\right]_{X^{(1)}}$ is γ-bit. In this way, we can get all $\psi\left(X_{j}^{(1)} \cdot X_{k}^{(\kappa-1)}\right)$ for each j, k from inductively $\psi\left(X_{l_{j}}^{(1)} \cdot X_{l_{k}}^{(\kappa-1)}\right), 0 \leq l_{j} \leq j, 0 \leq l_{k} \leq k,\left(l_{j}, l_{k}\right) \neq(j, k)$.

Let $[X]_{\boldsymbol{X}^{(1)}}=X-\sum_{j=0}^{\gamma^{\prime}} b_{j} \cdot X_{j}^{(1)}$ and $[Y]_{\boldsymbol{X}^{(\kappa-1)}}=Y-\sum_{j=0}^{\gamma^{\prime}} b_{j}^{\prime} \cdot X_{j}^{(\kappa-1)}$. Then,

$$
\begin{aligned}
{[X]_{\boldsymbol{X}^{(1)}} \cdot[Y]_{\boldsymbol{X}^{(\kappa-1)}}=} & X Y-\sum_{j} b_{j} \cdot X_{j}^{(1)} \cdot Y \\
& -\sum_{j} b_{j}^{\prime} \cdot X_{j}^{(\kappa-1)} \cdot X+\sum_{j, k} b_{j} b_{k}^{\prime} \cdot X_{j}^{(1)} \cdot X_{k}^{(\kappa-1)} .
\end{aligned}
$$

Note that the noise of $\left[[X]_{\boldsymbol{X}^{(1)}} \cdot[Y]_{\boldsymbol{X}^{(k-1)}}\right]_{\boldsymbol{X}^{(k)}}$ is bounded by $2 \rho+\alpha+2 \log _{2}\left(\gamma^{\prime}\right)+2$ and $\eta>\kappa\left(2 \alpha+2 \rho+\lambda+2 \log _{2} n+3\right)$, so we can adapt Proposition 2 . Therefore if we know ψ-value of each term, we can compute the ψ-value of $X Y$. Finally Lemma 3 enables to compute $\psi\left([X]_{\boldsymbol{X}^{(1)}} \cdot[Y]_{\boldsymbol{X}^{(k-1)}}\right)$. The second and third terms of the right hand side can be computed using $\left[X_{j}^{(1)}\right]_{\boldsymbol{X}^{(1)}},\left[X_{j}^{(\kappa-1)}\right]_{\boldsymbol{X}^{(\kappa-1)}}$, and we know the ψ-value of the last one. Since we perform zero testings for $O\left(\gamma^{2}\right)$ encodings of zero, the complexity becomes $\widetilde{O}\left(\gamma^{3}\right)$.
Note that the above Lemma can be applied to a level- t encoding X and a level- $(\kappa-t)$ encoding of zero Y. The proof is exactly the same except the indexes.

3.5 Constructing Matrix Equations over \mathbb{Q}

We reach the last stage. The following theorem is the our result.
Theorem 1. Given the CLT15)'s public instances and $p_{z t}$, sampled from $\operatorname{InstGen}\left(1^{\lambda}, 1^{\kappa}\right)$, one can find all the secret parameters of [CLT15] in $\widetilde{O}\left(\kappa^{\omega+4} \lambda^{2 \omega+6}\right)$ bit computations with $\omega \leq 2.38$.

Proof. We construct a matrix equation by collecting several ψ-values of product of level- 0,1 and ($\kappa-1$) encodings. Let c, X, Y be a level- $0,1,(\kappa-1)$ encoding, respectively, and additionally we assume Y is an encoding of zero. Let us express them as follows:

$$
\begin{aligned}
c & =\mathrm{CRT}_{\left(p_{i}\right)}\left(c_{i}\right), \\
X & =\mathrm{CRT}_{\left(p_{i}\right)}\left(\frac{x_{i}}{z}\right)=x_{i}\left[z^{-1}\right]_{p_{i}}+q_{i} p_{i}, \\
Y & =\mathrm{CRT}_{\left(p_{i}\right)}\left(\frac{y_{i} g_{i}}{z^{\kappa-1}}\right)=\sum_{i=1}^{n} y_{i}\left[\frac{g_{i}}{z^{\kappa-1}}\left(\frac{x_{0}}{p_{i}}\right)^{-1}\right]_{p_{i}} \cdot \frac{x_{0}}{p_{i}}+a x_{0} .
\end{aligned}
$$

Assume that each of its size is less than $2 x_{0}$. The product of c and X can be written as $c X=c_{i} x_{i}\left[z^{-1}\right]_{p_{i}}+q_{i}^{\prime} p_{i}$ for some integer q_{i}^{\prime}.

By multiplying $c X$ and Y, we have the following:

$$
\begin{aligned}
& c X Y \\
= & \sum_{i=1}^{n}\left(c_{i} x_{i} y_{i}\left[z^{-1}\right]_{p_{i}}\left[\frac{g_{i}}{z^{\kappa-1}}\left(\frac{x_{0}}{p_{i}}\right)^{-1}\right]_{p_{i}} \cdot \frac{x_{0}}{p_{i}}+y_{i}\left[\frac{g_{i}}{z^{\kappa-1}}\left(\frac{x_{0}}{p_{i}}\right)^{-1}\right]_{p_{i}} q_{i}^{\prime} x_{0}\right)+(c X)\left(a x_{0}\right) \\
= & \sum_{i=1}^{n} c_{i} x_{i} y_{i} u_{i}^{\prime}+\sum_{i=1}^{n}\left(c_{i} x_{i} y_{i} s_{i}+y_{i} \theta_{i} q_{i}^{\prime}\right) x_{0}+a c X x_{0}
\end{aligned}
$$

where $\theta_{i}=\left[\frac{g_{i}}{z^{\kappa-1}}\left(\frac{x_{0}}{p_{i}}\right)^{-1}\right]_{p_{i}}, \theta_{i}\left[z^{-1}\right]_{p_{i}} \frac{x_{0}}{p_{i}}=u_{i}^{\prime}+s_{i} x_{0}$ for some integer $s_{i} \in \mathbb{Z}$. Then we can get $\psi(c X Y)=\sum_{i=1}^{n} c_{i} x_{i} y_{i} v_{i}+\sum_{i=1}^{n}\left(c_{i} x_{i} y_{i} s_{i}+y_{i} \theta_{i} q_{i}^{\prime}\right) v_{0}+a c X v_{0}$ by Lemma 4 .

By plugging $q_{i}^{\prime}=\frac{1}{p_{i}}\left(c X-c_{i} x_{i}\left[z^{-1}\right]_{p_{i}}\right)$ into the equation, we obtain

$$
\begin{aligned}
\psi(c X Y) & =\sum_{i=1}^{n} y_{i}\left(v_{i}+s_{i} v_{0}-\frac{\theta_{i} v_{0}}{p_{i}}\left[z^{-1}\right]_{p_{i}}\right) c_{i} x_{i}+\sum_{i=1}^{n} y_{i} \frac{\theta_{i} v_{0}}{p_{i}} c X+a v_{0} c X \\
& =\sum_{i=1}^{n} y_{i} w_{i} c_{i} x_{i}+\sum_{i=1}^{n} y_{i} w_{i}^{\prime} c X+a v_{0} c X
\end{aligned}
$$

where $w_{i}=v_{i}+s_{i} v_{0}-\frac{\theta_{i}}{p_{i}}\left[z^{-1}\right]_{p_{i}} v_{0}$ and $w_{i}^{\prime}=\frac{\theta_{i} v_{0}}{p_{i}}$. It can be written (over $\left.\mathbb{Q}\right)$ as follows:

Since $p_{i} w_{i}=p_{i}\left(v_{i}+s_{i} v_{0}\right)-\theta_{i}\left[z^{-1}\right]_{p_{i}} v_{0} \equiv-\theta_{i}\left[z^{-1}\right]_{p_{i}} v_{0} \not \equiv 0\left(\bmod p_{i}\right) w_{i}$ is not equal to zero. Therefore $v_{0} \prod_{i=1}^{n} w_{i} \neq 0$ and so the matrix in Equation (1) is non singular. By applying Equation (1) to various X, Y :taking for $0 \leq j, k \leq n$,

$$
\begin{aligned}
& X=\left[X_{j}^{(1)}\right]_{\boldsymbol{X}^{(1)}}=\mathrm{CRT}_{\left(p_{i}\right)}\left(\frac{x_{i j}}{z}\right), \\
& Y=\left[X_{k}^{(\kappa-1)}\right]_{\boldsymbol{X}^{(\kappa-1)}}=\sum_{i=1}^{n} y_{i k} \theta_{i} \frac{x_{0}}{p_{i}}+a_{k} x_{0},
\end{aligned}
$$

we obtain the following matrix equation, finally:

We perform the same computation on $c=1$, which is a level-0 encoding of $\mathbf{1}=$ $(1,1, \cdots, 1)$, then it implies

$$
\boldsymbol{W}_{1}=\boldsymbol{Y} \cdot \boldsymbol{W} \cdot \boldsymbol{I} \cdot \boldsymbol{X}
$$

From \boldsymbol{W}_{c} and \boldsymbol{W}_{1}, we have a matrix which is $\operatorname{similar}$ to $\operatorname{diag}\left(c_{1}, \cdots, c_{n}, c\right)$:

$$
\boldsymbol{W}_{1}^{-1} \cdot \boldsymbol{W}_{c}=\boldsymbol{X}^{-1} \cdot \operatorname{diag}\left(c_{1}, \cdots, c_{n}, c\right) \cdot \boldsymbol{X}
$$

Then by computing the eigenvalues of $\boldsymbol{W}_{1}^{-1} \cdot \boldsymbol{W}_{c}$, we have c_{1}, \cdots, c_{n} satisfying $p_{i} \mid\left(c-c_{i}\right)$ for each i. Using another level-0 encoding c^{\prime}, we get $\boldsymbol{W}_{1}^{-1} \cdot \boldsymbol{W}_{c^{\prime}}$, and so $c_{1}^{\prime}, \cdots, c_{n}^{\prime}$ with $p_{i} \mid\left(c^{\prime} c_{i}^{\prime}\right)$ for each i. Computing $\operatorname{gcd}\left(c-c_{i}, c^{\prime}-c_{i}^{\prime}\right)$ gives the secret prime p_{i}.

Using p_{1}, \cdots, p_{n}, we can recover all the other parameters. By definition of y and $X_{j}^{(1)}$, the following equations are satisfied: $y /\left[X_{j}^{(1)}\right]_{x_{0}} \equiv\left(r_{i} g_{i}+1\right) /\left(r_{i j}^{(1)} g_{i}\right)\left(\bmod p_{i}\right)$. Since $r_{i} g_{i}+1$ and $r_{i j}^{(1)} g_{i}$ are smaller than $\sqrt{p_{i}}$ and are co-prime, one can recover them by rational reconstruction up to sign. Therefore we can obtain g_{i} by computing the gcd of $r_{i 0}^{(1)} g_{i}, \cdots, r_{i m}^{(1)} g_{i}$. Moreover, using $r_{i j}^{(1)} g_{i}$ and $\left[X_{j}^{(1)}\right]_{x_{0}}$, we can compute $[z]_{p_{i}}$ for each i and so z. Any other parameters are computed by using z, g_{i}, and p_{i}.

Our attack consists of following arithmetics: computing $\psi\left(X_{j}^{(\kappa)}\right), \psi\left(X_{j}^{(1)} \cdot X_{k}^{(\kappa-1)}\right)$, constructing a matrix \boldsymbol{W}_{c} and \boldsymbol{W}_{1}, matrix inversing and multiplying, computing eigenvalues and greatest common divisor. All of them is bounded by $\widetilde{O}\left(\gamma^{3}+n^{\omega} \gamma\right)=\widetilde{O}\left(\kappa^{6} \lambda^{9}\right)$ bit computations with $\omega \leq 2.38$.. To success this algorithm, we need a property that \boldsymbol{W}_{1} is non-singular. If we use the fact that the rank of a matrix $\boldsymbol{A} \in \mathbb{Z}^{(n+1) \times(n+1)}$ can be computed in time $\widetilde{\mathcal{O}}\left((n+1)^{\omega} \log \|\boldsymbol{A}\|_{\infty}\right)$ (see [Sto09]), we can find that $\boldsymbol{X}, \boldsymbol{Y} \cdot \boldsymbol{W} \in$ $\mathbb{Q}^{(n+1) \times(n+1)}$ are non-singular in $\widetilde{\mathcal{O}}\left(2(\gamma+\log \ell)\left(n^{\omega} \log N\right)\right)=\widetilde{\mathcal{O}}\left(\kappa^{\omega+4} \lambda^{2 \omega+6}\right)$ by considering another $(n+1)$ subsets of $X_{0}^{(1)}, \cdots, X_{\gamma^{\prime}}^{(1)}$ for X and also for Y. Therefore the total complexity of our attack is $\widetilde{\mathcal{O}}\left(\kappa^{\omega+4} \lambda^{2 \omega+6}\right)$.

4 Conclusion

In this paper, we cryptanalysis the new multilinear maps over the integers CLT15. It was modified to prevent a zeroizing attack [CHL $\left.{ }^{+} 15\right]$ on its original scheme [CLT13]. The zero-testing element is defined over the independent modulus N so that the resulting value is expressed non-linear way. They did not publish $x_{0}=\prod_{i=1}^{n} p_{i}$ for security reason, but we can compute all the secret primes p_{i} in polynomial time. Therefore the modified scheme is vulnerable to zeroizing attack also.

As other analysis of multilinear maps $\left[\mathrm{CGH}^{+} 15 \mathrm{CHL}^{+} 15 \mathrm{HJ} 15\right.$, our analysis is based on zeroizing attack. To construct a matrix equation, we need encodings of zero. It is worth to consider analyzing multilinear maps without encodings of zero. To construct a graded encoding scheme which the subgroup membership and decision linear problems are hard for is another open problem.

References

BWZ14. Dan Boneh, David J Wu, and Joe Zimmerman. Immunizing multilinear maps against zeroizing attacks. IACR Cryptology ePrint Archive, 2014:930, 2014.
CGH^{+}15. Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrede Lepoint, Hemanta K Maji, Eric Miles, Mariana Raykova, Amit Sahai, and Mehdi Tibouchi. Zeroizing without low-level zeroes: New mmap attacks and their limitations. In Advances in Cryptology-CRYPTO 2015, pages 247-266. Springer, 2015.
CHL^{+}15. Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé. Cryptanalysis of the multilinear map over the integers. In Advances in Cryptology-EUROCRYPT 2015, pages 3-12. Springer, 2015.
CLT13. Jean-Sébastien Coron, Tancrede Lepoint, and Mehdi Tibouchi. Practical multilinear maps over the integers. In Advances in Cryptology-CRYPTO 2013, pages 476-493. Springer, 2013.

CLT15. Jean-Sebastien Coron, Tancrede Lepoint, and Mehdi Tibouchi. New multilinear maps over the integers. In Advances in Cryptology-CRYPTO 2015, pages 267-286. Springer, 2015.

GGH13. Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices. In Eurocrypt, volume 7881, pages 1-17. Springer, 2013.
GGH15. Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps from lattices. In Theory of Cryptography, pages 498-527. Springer, 2015.
GGHZ14. Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Fully secure functional encryption without obfuscation. Technical report, Cryptology ePrint Archive, Report 2014/666, 2014.

HJ15. Yupu Hu and Huiwen Jia. Cryptanalysis of GGH map. Technical report, Cryptology ePrint Archive, Report 2015/301, 2015.
Sho09. Victor Shoup. A computational introduction to number theory and algebra. Cambridge university press, 2009.
Sto09. Arne Storjohann. Integer matrix rank certification. In Proceedings of the 2009 international symposium on Symbolic and algebraic computation, pages 333-340. ACM, 2009.

