Cryptanalysis of the New CLT Multilinear Maps

Jung Hee Cheon, Changmin Lee, Hansol Ryu
Seoul National University (SNU), Republic of Korea

Abstract

Multilinear maps have many cryptographic applications. The first candidate construction of multilinear maps was proposed by Garg, Gentry, and Halevi (GGH13) in 2013, and soon afterwards, another candidate was suggested by Coron, Lepoint, and Tibouchi (CLT13) that works over the integers. However, both of these were found to be insecure in the face of a so-called zeroizing attack (HJ15, CHL ${ }^{+}$15). To improve on CLT13, Coron, Lepoint, and Tibouchi proposed another candidate of new multilinear maps over the integers (CLT15). In this paper, we describe an attack against CLT15. Our attack shares the essence of the cryptanalysis of CLT13 and exploits low level encodings of zero, as well as other public parameters. As in $\mathrm{CHL}^{+} 15$, this leads to finding all the secret parameters of κ multilinear maps in polynomial time of the security parameter.

Keywords: Multilinear maps, graded encoding schemes, zeroizing attack.

1 Introduction

Multilinear maps. The cryptographic multilinear map has many applications, including non-interactive key exchange, general program obfuscation, and efficient broadcast encryption. After the first candidate construction of Garg, Gentry, and Halevi(GGH13, for short) [G(GH13], it received a considerable amount of attention. Shortly afterwards, Coron, Lepoint, and Tibouchi proposed another candidate of multilinear maps (CLT13, for short) [CLT13]. It is constructed over the integers and gives the first implementation of multilinear maps [CLT13]. The most recent candidate, called GGH15, was suggested by Gentry, Gorbunov, and Halevi using a directed acyclic graph [GGH15].

Attack and revisions of CLT13. In [CLT]3], it was claimed that CLT13 is robust against a zeroizing attack. Hence, CLT13 supports the Graded Decisional DiffieHelman assumption (GDDH), subgroup membership (SubM), and decisional linear (DLIN) problems are hard in it, while GGH13 supports only the GDDH. However, Cheon, Han, Lee, Ryu, and Stehlé proposed an attack, called CHLRS, on the scheme $\left[\mathrm{CHL}^{+} 15\right]$, which runs in polynomial time and recovers all secrets. As in the zeroizing attack of GGH13, the attack utilizes public low level encodings of zero, which allows an encoding to be generated without the secret values being known. The core of the attack is to compute several zero-testing values related to one another. Then, one can construct a matrix, the eigenvalues of which consist of the CRT component of x, which is $x\left(\bmod p_{i}\right)$ for some encoding x, where p_{1}, \cdots, p_{n} are secret values of the scheme. Then, it reveals all the secrets of the scheme.

In response, two attempts have been made to make CLT13 secure against the CHLRS attack [G(GHZ14,BWZ14]. However, both are shown to be insecure in [CGH $\left.{ }^{+} 15\right]$. At the same time, another fix of CLT13 was proposed at Crypto15 by Coron, Lepoint, and Tibouch (CLT15, for short) [CLT15]. CLT15 is almost the same as the original scheme, except in the zero-testing parameter and procedure. To prevent zero-testing
values from being obtained in CLT13, the authors did not publish the modulus x_{0} and performed zero-testing in independent modulus N. They claimed that it is secure against a CHLRS attack, because a zero-testing value of an encoding x depends on the CRT components of x non-linearly.

New multilinear maps over the integers. We briefly introduce the CLT15 scheme. It is a graded encoding scheme and its level- t encoding c is an integer satisfying $c \equiv$ $\frac{r_{i t} g_{i}+m_{i}}{z^{t}}\left(\bmod p_{i}\right)$ for $1 \leq i \leq n$, where p_{1}, \cdots, p_{n} are secret primes, $\left(m_{1}, \cdots, m_{n}\right) \in$ $\mathbb{Z}_{g_{1}} \times \cdots \times \mathbb{Z}_{g_{n}}$ is a plaintext for secret moduli g_{1}, \cdots, g_{n}, and $r_{1 t}, \cdots, r_{n t}$ are random noises. Then, it can be written as $\sum_{i=1}^{n}\left[r_{i t}+m_{i} / g_{i}\right]_{p_{i}} u_{i t}+a_{t} x_{0}$ for some integer a_{t}, where $u_{i t}=\left[\frac{g_{i}}{z^{t}}\left(\frac{x_{0}}{p_{i}}\right)^{-1}\right]_{p_{i}} \frac{x_{0}}{p_{i}}$ for $1 \leq i \leq n$.

The zero-testing of level- κ encoding operates as follows. For a zero-testing parameter $p_{z t}$ and a level- κ encoding $x=\sum_{i=1}^{n}\left[r_{i}+m_{i} / g_{i}\right]_{p_{i}} u_{i \kappa}+a x_{0}$, which is smaller than x_{0},

$$
p_{z t} \cdot x \equiv \sum_{i=1}^{n}\left[r_{i}+m_{i} / g_{i}\right]_{p_{i}} \cdot v_{i}+a v_{0} \quad(\bmod N)
$$

where $v_{i}=\left[p_{z t} \cdot u_{i \kappa}\right]_{N}$ and $v_{0}=\left[p_{z t} \cdot x_{0}\right]_{N}$. Note that v_{i} 's are small as compared to N for all $0 \leq i \leq n$ and the size of a depends on that of x. Hence, the right hand side is small when all m_{i} 's are zero. Therefore, it is used to determine whether it constitutes an encoding of zero or not.

Since $a v_{0}$ exceeds N for a large x, the zero-testing is effective only when the size of x is small. However, the size of the encodings is almost doubled through multiplication and is too large to allow one to obtain a correct zero-testing value. Accordingly, CLT15 publishes encodings of zero of various sizes (called ladders) to reduce the size of the encodings. The ladders are of the form $X_{j}=\sum_{i=1}^{n} s_{i j} u_{i \kappa}+q_{j} x_{0}$, where $0 \leq j \leq M$ for some integers q_{j}, and for small integers $s_{i j}, 1 \leq i \leq n, 0 \leq j \leq M$, and the size of X_{j} is about $2^{j} x_{0}$. For an encoding x larger than x_{0}, one can obtain x^{\prime}, an encoding of the same plaintext, the size of which is reduced using a ladder. Then, it can be written as $x^{\prime}=x-\sum_{j=0}^{M} b_{j} X_{j}$, for some $b_{0}, \cdots, b_{M} \in\{0,1\}$.

Proposed attack. The points of a CHLRS attack can be divided into two parts. The first is that, for a level- κ encoding of zero $x=\sum_{i=1}^{n}\left[\frac{r_{i} g_{i}}{z^{\kappa}}\left(\frac{x_{0}}{p_{i}}\right)^{-1}\right]_{p_{i}} \frac{x_{0}}{p_{i}}+a x_{0}$,

$$
\left[p_{z t} \cdot x\right]_{x_{0}}=\sum_{i=1}^{n} r_{i} \hat{v}_{i}
$$

where \hat{v}_{i} is common to all the encodings in CLT13, holds over the integers. The second point is that the zero-testing value of a product of two encodings is a quadratic form of some values related to each encoding. More precisely, for two encodings $x_{1}=$ $\sum_{i=1}^{n}\left[\frac{r_{i 1} g_{i}}{z^{t}}\left(\frac{x_{0}}{p_{i}}\right)^{-1}\right]_{p_{i}} \frac{x_{0}}{p_{i}}+a_{1} x_{0}$ and $x_{2}=\sum_{i=1}^{n}\left[\frac{r_{i 2}}{z^{\kappa-t}}\left(\frac{x_{0}}{p_{i}}\right)^{-1}\right] p_{p_{i}} \frac{x_{0}}{p_{i}}+a_{2} x_{0}$, the product is $x_{1} x_{2} \equiv \sum_{i=1}^{n}\left[\frac{r_{i 1} r_{i 2} g_{i}}{z^{\kappa}}\left(\frac{x_{0}}{p_{i}}\right)^{-1}\right]_{p_{i}} \frac{x_{0}}{p_{i}}\left(\bmod x_{0}\right)$. Therefore, the zero-testing value of $x_{1} x_{2}$ is

$$
\left[p_{z t} \cdot x_{1} x_{2}\right]_{x_{0}}=\sum_{i=1}^{n} r_{i 1} r_{i 2} \hat{v_{i}} .
$$

Let us look at CLT15 in these aspects. For a level- κ encoding of zero $x=\sum_{i=1}^{n} r_{i} u_{i \kappa}+$ $a x_{0}$, the zero-testing value of x is written as

$$
\left[p_{z t} \cdot x\right]_{N}=\sum_{i=1}^{n} r_{i} v_{i}+a v_{0}
$$

for common v_{i} 's, similar to CLT13. Let x_{1} be a level- t encoding of zero, x_{2} be a level-$(\kappa-t)$ encoding, and x be a product of x_{1} and x_{2}. Then, these can be written as $x_{1}=$ $\sum_{i=1}^{n} r_{i 1} u_{i t}+a_{1} x_{0}, x_{2}=\sum_{i=1}^{n} r_{i 2} u_{i \kappa-t}+a_{2} x_{0}$, and $x=\sum_{i=1}^{n} r_{i 1} r_{i 2} u_{i \kappa}+a x_{0}$, for some integers $a, a_{1}, a_{2}, r_{i 1}, r_{i 2}, 1 \leq i \leq n$, where a is a quadratic form of $a_{1}, a_{2}, r_{i 1}, r_{i 2}, 1 \leq$ $i \leq n$. Since the size of x is larger than that of x_{0}, we need to reduce the size of x to perform zero-testing. Let x^{\prime} be a size-reduced encoding of x; then, it is of the form $x^{\prime}=x-\sum_{j=0}^{M} b_{j} X_{j}=\sum_{i=1}^{n}\left(r_{i 1} r_{i 2}-\sum_{j=0}^{M} b_{j} s_{i j}\right) u_{i \kappa}+\left(a-\sum_{j=0}^{M} b_{j} q_{j}\right) x_{0}$, for some $b_{0}, \cdots, b_{M} \in\{0,1\}$. In this case, the zero-testing value gives

$$
\begin{aligned}
{\left[p_{z t} \cdot x^{\prime}\right]_{N} } & =\left[p_{z t} \cdot\left(x-\sum_{j=0}^{M} b_{j} X_{j}\right)\right]_{N} \\
& =\sum_{i=1}^{n}\left(r_{i 1} r_{i 2}-\sum_{j=0}^{M} b_{j} s_{i j}\right) v_{i}+\left(a-\sum_{j=0}^{M} b_{j} q_{j}\right) v_{0} \\
& =\sum_{i=1}^{n}\left(r_{i 1} r_{i 2}\right) v_{i}+a v_{0}-\sum_{j=0}^{M} b_{j}\left(\sum_{i=1}^{n} s_{i j} v_{i}+q_{j} v_{0}\right)
\end{aligned}
$$

Therefore, if one has $\sum_{i=1}^{n} s_{i j} v_{i}+q_{j} v_{0}$ for all j, one can compute $\sum_{i=1}^{n}\left(r_{i 1} r_{i 2}\right) v_{i}+a v_{0}$ and follow a CHLRS attack strategy. We define a function ψ such that the above equation is written as

$$
\begin{equation*}
\left[p_{z t} \cdot x^{\prime}\right]_{N}=\psi(x)-\sum_{j=0}^{M} b_{j} \cdot \psi\left(X_{j}\right) \tag{1}
\end{equation*}
$$

Note that $\psi(x)=\left[p_{z t} \cdot x\right]_{N}$, when x is a level- κ encoding of zero smaller than x_{0}. Since X_{j} 's are level- κ encodings of zero and the size of X_{0} is small, one can obtain $\psi\left(X_{0}\right)$ by the zero-testing procedure. $\psi\left(X_{j}\right)$ can be obtained inductively, because the size-reduced X_{j} is a linear summation of $X_{0}, \cdots, X_{j-1}, X_{j}$. When one has $\psi\left(X_{j}\right)$ in hand, it is easy to calculate $\psi(x)$ for a level- κ encoding of 0 of arbitrary size using Equation ($\mathbb{1}$).

By using $(n+1)$ level- t encodings of zero and $(n+1)$ level- $(\kappa-t)$ encodings, we constitute matrix equations that consist only of a product of matrices. As in [CHL $\left.{ }^{+} 15\right]$, we have a matrix, the eigenvalues of which consist of the CRT components of an encoding. From these, we can recover all the secret parameters of the CLT15 scheme [CLT15]. Our attack needs only ladders and two level-0 encodings and runs in polynomial time.

Organization. In section [\downarrow, we introduce CLT15 and briefly explain the CHLRS attack. In Section [3, we examine the zero-testing process of CLT15 and give a description of our attack, splitting it into three steps. We conclude in Section π.

2 Multilinear Maps over the Integers

Notations. We use \mathbb{Z}_{q} to denote the ring $\mathbb{Z} / q \mathbb{Z}$. For $a, b, N \in \mathbb{Z}, a \equiv b(\bmod N)$ or $a \equiv{ }_{N} b$ means that a is congruent to b modulo N. Additionally, we use the notation a $(\bmod N)$ or $[a]_{N}$ to denote the reduction of a modulo N into the interval $(-N / 2, N / 2]$. We denote $\operatorname{CRT}_{\left(p_{1}, p_{2}, \ldots, p_{n}\right)}\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ by the unique integer in $\left[0, \prod_{i=1}^{n} p_{i}\right)$, which is congruent to $r_{i}\left(\bmod p_{i}\right)$ for all $i=1, \cdots, n$. For short, we denote it by $\mathrm{CRT}_{\left(p_{i}\right)}\left(r_{i}\right)$.

For a finite set S, we use $s \leftarrow S$ to denote the operation of uniformly choosing an element s from S.

For an $n \times n$ square matrix \boldsymbol{H}, we use $\left(h_{i j}\right)$ to represent a matrix \boldsymbol{H}, the (i, j) component of which is $h_{i j}$. Similarly, for a vector $\boldsymbol{v} \in \mathbb{R}^{n}$, we define $(\boldsymbol{v})_{j}$ as the j-th component of \boldsymbol{v}. Let \boldsymbol{H}^{T} be the transpose of \boldsymbol{H} and $\|\boldsymbol{H}\|_{\infty}$ be the $\max _{i} \sum_{j=1}^{n}\left|h_{i j}\right|$. We denote by $\operatorname{diag}\left(d_{1}, \cdots, d_{n}\right)$ the diagonal matrix with diagonal coefficients equal to d_{1}, \cdots, d_{n}.

2.1 CLT15 Scheme

First, we recall Coron et al.'s new multilinear maps. The scheme relies on the following parameters.
λ : the security parameter
κ : the multilinearity parameter, i.e., the proposed map is κ - linear
ρ : the bit length of the initial noise used for encodings
α : the bit length of the primes g_{i}
η : the bit length of the secret primes p_{i}
n : the number of distinct secret primes
γ : the bit length of encodings $(=n \eta)$
τ : the number of level- 1 encodings of zero in public parameters
ℓ : the number of level-0 encodings in public parameters
ν : the bit length of the image of the multilinear map
β : the bit length of the entries of the zero-test matrix H
Coron et al. suggested setting the parameters according to the following conditions.

- $\rho=\Omega(\lambda)$: to avoid a brute force attack on the noise
- $\alpha=\lambda$: to prevent a situation where the order of message $\operatorname{ring} \mathbb{Z}_{g_{1}} \times \ldots \times \mathbb{Z}_{g_{n}}$ has a small prime factor
- $n=\Omega(\eta \lambda)$: to thwart lattice reduction attacks
- $\ell \geq n \alpha+2 \lambda$: to apply the leftover hash lemma from [CLTI5]
- $\tau \geq n\left(\rho+\log _{2}(2 n)\right)+2 \lambda$: to apply the leftover hash lemma from [CLTT5]
- $\beta=3 \lambda$: as a conservative security precaution
- $\eta \geq \rho_{\kappa}+2 \alpha+2 \beta+\lambda+8$, where ρ_{κ} is the maximum bit size of the noise r_{i} of a level- κ encoding. When computing the product of κ level- 1 encodings and an additional level- 0 encoding, one obtains $\rho_{\kappa}=\kappa\left(2 \alpha+2 \rho+\lambda+2 \log _{2} n+3\right)+\rho+\log _{2} \ell+1$
- $\nu=\eta-\beta-\rho_{f}-\lambda-3$: to ensure correctness of zero-testing.

The constraints are the same as in [CLT].3]; the condition that differs is β.

Instance generation: (params, $\left.\boldsymbol{p}_{z t}\right) \leftarrow \operatorname{lnstGen}\left(1^{\lambda}, 1^{\kappa}\right)$. Set the scheme parameters as explained above. For $1 \leq i \leq n$, generate η-bit odd primes p_{i} and α-bit primes g_{i}, and compute $x_{0}=\prod_{i=1}^{n} p_{i}$. Generate a random prime integer N of size $\gamma+2 \eta+1$ bits. Using LLL algorithms in dimension 2, special pairs of nonzero integers $\left(\alpha_{i}, \beta_{i}\right)_{i=1}^{n}$ are chosen to satisfy $\left|\alpha_{i}\right|<2^{\eta-1},\left|\beta_{i}\right|<2^{2-\eta} \cdot N, \beta_{i} \equiv \alpha_{i} u_{i}^{\prime} p_{i}^{-1}(\bmod N)$, where $u_{i}^{\prime}=\left[\frac{g_{i}}{z^{\kappa}}\left(\frac{x_{0}}{p_{i}}\right)^{-1}\right]_{p_{i}} \frac{x_{0}}{p_{i}}$. Finally, generate $\boldsymbol{H}=\left(h_{i j}\right) \in \mathbb{Z}^{n \times n}$ such that \boldsymbol{H} is invertible and $\left\|\boldsymbol{H}^{T}\right\|_{\infty} \leq 2^{\beta},\left\|\left(\boldsymbol{H}^{-1}\right)^{T}\right\|_{\infty} \leq 2^{\beta}$ and for $1 \leq i \leq n, 1 \leq j \leq \ell, m_{i j} \leftarrow\left[0, g_{i}\right) \cap \mathbb{Z}$. Then, define

$$
\begin{aligned}
y & =\mathrm{CRT}_{\left(p_{i}\right)}\left(\frac{r_{i} g_{i}+1}{z}\right), \\
x_{j} & =\mathrm{CRT}_{\left(p_{i}\right)}\left(\frac{r_{i j} g_{i}}{z}\right), \text { for } 1 \leq j \leq \tau, \\
x_{j}^{\prime} & =\mathrm{CRT}_{\left(p_{i}\right)}\left(r_{i j}^{\prime} g_{i}+m_{i j}\right) \text { for } 1 \leq j \leq \ell, \\
X_{j}^{(t)} & =\mathrm{CRT}_{\left(p_{i}\right)}\left(\frac{r_{i j}^{(t)} g_{i}}{z^{t}}\right)+q_{j}^{(t)} x_{0} \text { for } 0 \leq j \leq \gamma+\left\lfloor\log _{2} \ell\right\rfloor, 1 \leq t \leq \kappa, \\
\Pi_{j} & =\sum_{i=1}^{n} \varpi_{i j} g_{i}\left[z^{-1}\left(\frac{x_{0}}{p_{i}}\right)^{-1}\right]_{p_{i}} \frac{x_{0}}{p_{i}}+\varpi_{n+1, j} x_{0} \text { for } 1 \leq j \leq n+1, \text { and } \\
\left(\boldsymbol{p}_{z t}\right)_{j} & =\sum_{i=1}^{n} h_{i j} \alpha_{i} p_{i}^{-1} \quad(\bmod N) \text { for } 1 \leq j \leq n,
\end{aligned}
$$

where $r_{i}, r_{i j}^{\prime}, r_{i j}^{(t)} \leftarrow\left(-2^{\rho}, 2^{\rho}\right) \cap \mathbb{Z}, q_{j}^{(t)} \leftarrow\left[2^{\gamma+j-1} / x_{0}, 2^{\gamma+j} / x_{0}\right) \cap \mathbb{Z}$, and $\varpi_{i j} \leftarrow\left(-2^{\rho}, 2^{\rho}\right) \cap$ \mathbb{Z} if $i \neq j, \varpi_{i i} \leftarrow\left((n+1) 2^{\rho},(n+2) 2^{\rho}\right) \cap \mathbb{Z}$. Then, output

$$
\text { params }=\left(n, \eta, \alpha, \rho, \beta, \tau, \ell, \mu, y,\left\{x_{j}\right\}_{j=1}^{\tau},\left\{x_{j}^{\prime}\right\}_{j=1}^{\ell},\left\{X_{i}^{(j)}\right\},\left\{\Pi_{j}\right\}_{j=1}^{n+1}, s\right) \text { and } \boldsymbol{p}_{z t} .
$$

In this study, we used only one zero-testing parameter. Hence, hereafter, we use a notation $p_{z t}=\sum_{i=1}^{n} h_{i} \alpha_{i} p_{i}^{-1}(\bmod N)$ instead of a vector $\left(\boldsymbol{p}_{z t}\right)_{j}$, if no confusion results.

Sampling level-0 encodings: $c \leftarrow \operatorname{samp}$ (params). Since the user does not know p_{i}, one cannot encode a vector $\boldsymbol{m} \in \mathbb{Z}_{g_{1}} \times \cdots \times \mathbb{Z}_{g_{n}}$. Hence, CLT15 provides level zero encodings $\left\{x_{j}^{\prime}\right\}$ for sampling. A level zero encoding c is computed as a random subset sum of $\left\{x_{j}^{\prime}\right\}$. Namely, for $1 \leq j \leq \ell$, sample $b_{j} \leftarrow\{0,1\}$ and compute $c=\sum_{j=1}^{\ell} b_{j} \cdot x_{j}^{\prime}$.

Encodings at higher levels: $c_{k} \leftarrow \operatorname{enc}($ params $, k, c$). Given a level- 0 encoding c, to obtain a level- 1 encoding c_{1} with the same plaintext as c, compute $c_{1}=c \cdot y$. Since x_{0} is not given, a ladder of level-1 encodings of zero $X_{j}^{(1)}$ is provided. Then, iteratively reduce the size of c_{1} to that of $X_{0}^{(1)}$.

In general, to obtain a level- k encoding, compute $c_{k}=c \cdot y^{k}$ and reduce the size of c_{k} after each multiplication by y using ladders $\left\{X_{j}^{(i)}\right\}_{j=0}^{\gamma+\left[\log _{2} \ell\right\rfloor}$ for levels $i=1, \cdots, k$.

Re-randomizing level-1 encodings: ${ }^{\text {DI }} c^{\prime} \leftarrow \operatorname{reRand}$ (params, c). For $1 \leq j \leq \tau, 1 \leq$ $i \leq n+1$, sample $b_{j} \leftarrow\{0,1\}, b_{i}^{\prime} \leftarrow\left[0,2^{\mu}\right) \cap \mathbb{Z}$, with $\mu=\rho+\alpha+\lambda$. Return $c^{\prime}=$ $c+\sum_{j=1}^{\tau} b_{j} \cdot x_{j}+\sum_{i=1}^{n+1} b_{i}^{\prime} \cdot \Pi_{i}$.

Adding and multiplying encodings: For two encodings, the addition and multiplication are performed in \mathbb{Z}. After the arithmetic, reduce the size to that of $2 x_{0}$ using the ladder.

Zero-testing: isZero(params, $\left.\boldsymbol{p}_{z t}, x\right) \stackrel{?}{=} 0 / 1$. Given a level- κ encoding x, return 1 if $\left\|\boldsymbol{p}_{z t} \cdot x(\bmod N)\right\|_{\infty}<N \cdot 2^{-\nu}$, and 0 otherwise.

Extraction: $s k \leftarrow \operatorname{ext}\left(\right.$ params $\left., \boldsymbol{p}_{z t}, c\right)$. Given a level- κ encoding c, compute the most significant ν bits of $\left[\boldsymbol{p}_{z t} \cdot c\right]_{N}$.

2.2 CHLRS Attack

In this section, we briefly present Coron et al.'s original multilinear maps (for short, CLT13) [CLTT3] and its cryptanalysis [CHL ${ }^{+15] . ~ C L T 13 ~ i s ~ a l m o s t ~ t h e ~ s a m e ~ a s ~ t h e ~}$ new multilinear map. The main difference between the two schemes can be divided into two parts. One is that CLT13 makes public $x_{0}=\prod_{i=1}^{n} p_{i}$. Instead of x_{0}, in [CLT15] a ladder of encodings of zero at each level was published. The second is that CLT13 uses a different zero-testing vector. The zero-testing value of a level- κ encoding is a linear sum of secret value. Namely, the original zero-testing parameter $p_{z t}^{\prime}$ is defined as $\sum_{i=1}^{n} h_{i}\left[z^{\kappa} g_{i}^{-1}\right]_{p_{i}} \cdot \frac{x_{0}}{p_{i}}\left(\bmod x_{0}\right)$ for some small integer h_{i}. When x is a level- κ encoding, it is denoted by $\operatorname{CRT}_{\left(p_{i}\right)}\left(\frac{r_{i} g_{i}+m_{i}}{z^{\kappa}}\right)=\left[\frac{r_{i} g_{i}+m_{i}}{z^{\kappa}}\right]_{p_{i}}+q_{i} p_{i}$ for some small integer r_{i} and integer q_{i}. Hence, $\left[p_{z t}^{\prime} \cdot x\right]_{x_{0}}$ has the form

$$
\left[\sum_{i=1}^{n} h_{i}\left[r_{i}+m_{i} / g_{i}\right]_{p_{i}} \frac{x_{0}}{p_{i}}\right]_{x_{0}}
$$

If $m_{i}=0$ for $1 \leq i \leq n$, its value is a linear sum of $h_{i}, r_{i}, x_{0} / p_{i}$ over \mathbb{Z} not modulo x_{0}. Hence, it is a small integer as compared to x_{0}. Using this property, one can check whether x is an encoding of zero or not.

The original CLT scheme is broken by a CHLRS attack. Its idea is as follows. If $c_{j l}$ is a multiplication of three encodings X_{j}, c, and Y_{l} such that

$$
\begin{aligned}
X_{j} & =\operatorname{CRT}_{\left(p_{i}\right)}\left(\frac{r_{i j}}{z}\right) \\
c & =\operatorname{CRT}_{\left(p_{i}\right)}\left(c_{i}\right) \\
Y_{l} & =\operatorname{CRT}_{\left(p_{i}\right)}\left(\frac{r_{i l}^{\prime \prime} g_{i}}{z^{k-1}}\right)
\end{aligned}
$$

[^0]then its zero-testing value is denoted by $\sum_{i=1}^{n} h_{i}\left(r_{i j} c_{i} r_{i l}^{\prime \prime}\right) \frac{x_{0}}{p_{i}}$. By spanning $1 \leq j, l \leq n$, one can construct a matrix $\boldsymbol{M}_{c}=\boldsymbol{Y} \cdot \operatorname{diag}\left(\hat{v}_{1}, \cdots, \hat{v}_{n}\right) \cdot \operatorname{diag}\left(c_{1}, \cdots, c_{n}\right) \cdot \boldsymbol{X}$, where $\boldsymbol{X}=\left(r_{i j}\right)$, $\boldsymbol{Y}=\left(r_{i l}^{\prime \prime}\right)^{T}$, and $\hat{v}_{i}=h_{i} \frac{x_{0}}{p_{i}}$. By replacing c with 1 , we can also construct a matrix $\boldsymbol{M}_{1}=\boldsymbol{Y} \cdot \operatorname{diag}\left(\hat{v}_{1}, \cdots, \hat{v}_{n}\right) \cdot \boldsymbol{X}$. Then, a matrix $\boldsymbol{M}_{1}^{-1} \cdot \boldsymbol{M}_{c}=\boldsymbol{X}^{-1} \cdot \operatorname{diag}\left(c_{1}, \cdots, c_{n}\right) \cdot \boldsymbol{X}$ has an eigenvalue c_{i} and we can obtain all of them by solving the characteristic polynomial of matrix $\boldsymbol{M}_{1}^{-1} \cdot \boldsymbol{M}_{c}$. This implies that we can recover all p_{i} by computing $\operatorname{gcd}\left(x_{0}, c-c_{i}\right)$ in polynomial time.

A CHLRS attack, however, is not directly adapted to the new CLT scheme. It keeps x_{0} as a secret value, and we cannot reduce the size of $c_{j l}=X_{j} \cdot c \cdot Y_{l}$ using x_{0}. Instead, we reduce the size by using level- κ ladder $\left\{X_{j}^{(\kappa)}\right\}$. Then, the size-reduced $c_{j l}$ can be written as

$$
\sum_{i=1}^{n}\left(r_{i j} c_{i} r_{i l}^{\prime \prime}+s_{i j l}\right) u_{i}^{\prime}+a_{j l} x_{0}
$$

for some integers $s_{i j l}$ and $a_{j l}$. As compared to CLT13, this has additional terms $s_{i j l}$ and $a_{j l}$. Its zero-testing value in [CLTT5] is represented by $\sum_{i=1}^{n}\left(r_{i j} c_{i} r_{i l}^{\prime \prime}+s_{i j l}\right) v_{i}+a_{j l} v_{0}$, where $v_{i}=\left[p_{z t} \cdot u_{i}^{\prime}\right]_{N}$ and $v_{0}=\left[p_{z t} \cdot x_{0}\right]_{N}$. By spanning $1 \leq j, l \leq n$, one can deduce matrix equations such as $\boldsymbol{M}_{c}=\boldsymbol{Y} \cdot \operatorname{diag}\left(v_{1}, \cdots, v_{n}\right) \cdot \operatorname{diag}\left(c_{1}, \cdots, c_{n}\right) \cdot \boldsymbol{X}+\boldsymbol{S}+\boldsymbol{A} \cdot v_{0}$, where $\boldsymbol{S}=\left(\sum_{i=1}^{n} v_{i} s_{i j l}\right)$ and $\boldsymbol{A}=\left(a_{j l}\right)$. Because of the $\boldsymbol{S}+\boldsymbol{A} \cdot v_{0}$ part, it appears difficult to extract any useful information about $\operatorname{diag}\left(c_{1}, \cdots, c_{n}\right)$.

3 A Zeroizing Attack on CLT15

3.1 Understanding the Zero-testing Procedure

Let us explain how the zero-testing operates. Let $p_{z t}=\sum_{i} h_{i} \alpha_{i} p_{i}^{-1} \bmod N$, and $x=$ $\operatorname{CRT}_{\left(p_{i}\right)}\left(\frac{r_{i} g_{i}+m_{i}}{z^{\kappa}}\right)=\sum_{i}\left[r_{i}+m_{i} / g_{i}\right]_{p_{i}} u_{i}^{\prime}+a x_{0}$, where $u_{i}^{\prime}=\left[\frac{g_{i}}{z^{\kappa}}\left(\frac{x_{0}}{p_{i}}\right)^{-1}\right]_{p_{i}} \cdot \frac{x_{0}}{p_{i}}$. Then,

$$
p_{z t} \cdot x \equiv \sum_{i, j} h_{j}\left[r_{i}+m_{i} / g_{i}\right]_{p_{i}} u_{i}^{\prime} \alpha_{j} p_{j}^{-1}+a x_{0} p_{z t} \quad(\bmod N)
$$

The zero-testing asks whether $\left[p_{z t} \cdot x\right]_{N}$ is much smaller than the modulus N. To identify zero, m_{i} 's (in this case, the bit size of $\left[r_{i}+m_{i} / g_{i}\right]_{p_{i}}$ is much smaller than η), the size of $\left[u_{i}^{\prime} \alpha_{j} p_{j}^{-1}\right]_{N}$ should be close to $N / 2^{\eta}$ and $\left[p_{z t} \cdot a x_{0}\right]_{N}$ must be much smaller than N.

Let us examine the size of each term. For $i \neq j,\left[u_{i}^{\prime} \alpha_{j} p_{j}^{-1}\right]_{N}$ is equal to $\alpha_{j} \frac{x_{0}}{p_{i} p_{j}}\left[\frac{g_{i}}{z^{\kappa}}\left(\frac{x_{0}}{p_{i}}\right)^{-1}\right]_{p_{i}}$.
Therefore, it is at most a γ-bit integer, if $\left|\alpha_{j}\right|<p_{j}$. Define $\beta_{i}=\left[u_{i}^{\prime} \alpha_{i} p_{i}^{-1}\right]_{N}$, which is expected to be a $(\gamma+\eta)$-bit integer. By the Euclidean algorithm on $u_{j}^{\prime}\left[p_{j}^{-1}\right]_{N}$ and N, one can take β_{i} to be a $(\gamma+\eta)$-bit integer for an η-bit integer α_{i} [Sho0.9]. Note that $\left[p_{z t} \cdot a x_{0}\right]_{N}=\sum_{i} a h_{i} \alpha_{i} \frac{x_{0}}{p_{i}}$, and therefore, it is $\left(\gamma+\beta+\log _{2} a+\log _{2} n\right)$-bit. Let us state the result, the so-called the zero-testing lemma, more precisely.
Lemma 1 (Zero testing lemma). Let x be a level- κ encoding of zero with $x=$ $\sum_{i=1}^{n} r_{i} u_{i}^{\prime}+a x_{0},\left(r_{1}, \cdots, r_{n}, a \in \mathbb{Z}\right)$. Then,

$$
\left[p_{z t} \cdot x\right]_{N}=\sum_{i=1}^{n} r_{i} v_{i}+a v_{0}
$$

holds over the integers, if $|a|<2^{2 \eta-\beta-\log _{2} n-1}$ and $\left|r_{i}\right|<2^{\eta-\beta-\log _{2} n-6}$ for $1 \leq i \leq n$.
Proof. By the construction of the zero-testing element, we have $p_{z t} \cdot x \equiv \sum_{i=1}^{n} r_{i} v_{i}+a v_{0}$ $(\bmod N)$. It is sufficient to show that the right hand side is smaller than $N / 2$. For $1 \leq i \leq n$,

$$
v_{i} \equiv \sum_{j=1}^{n} h_{j} \alpha_{j} p_{j}^{-1} u_{i}^{\prime} \equiv h_{i} \beta_{i}+\sum_{j \neq i} h_{j} \alpha_{j}\left[\frac{g_{i}}{z^{\kappa}}\left(\frac{x_{0}}{p_{i}}\right)^{-1}\right]_{p_{i}} \frac{x_{0}}{p_{i} p_{j}} \quad(\bmod N)
$$

and therefore, $\left|v_{i}\right|<2^{\gamma+\eta+\beta+4}$ for $1 \leq i \leq n$. Moreover, $v_{0}=\sum_{j=1}^{n} h_{j} \alpha_{j} \frac{x_{0}}{p_{j}}$ and $\left|v_{0}\right|<$ $n 2^{\gamma+\beta-1}$.

3.2 Idea of the Attack

For a level- κ encoding of zero $x=\sum_{i=1}^{n} r_{i} u_{i}^{\prime}+a x_{0}$ of arbitrary size, if one can compute the integer value $\sum_{i=1}^{n} r_{i} v_{i}+a v_{0}$, which is not reduced modulus N, then a CHLRS attack can be applied similarly. Hence, we define the function ψ such that it represents such a value and examine how to obtain the function values for a level- κ encoding of zero of arbitrary size.

When the size of x is small, by the zero-testing lemma, $\left[p_{z t} \cdot x\right]_{N}$ gives the integer value $\sum_{i=1}^{n} r_{i} v_{i}+a v_{0}$. However, if the size of x is large, the zero-testing lemma does not hold and one cannot compute the integer value directly. To reach the goal, we use the ladder $X_{j}^{(\kappa)}=\sum_{i=1}^{n} r_{i j}^{(\kappa)} u_{i}^{\prime}+a_{j}^{(\kappa)}$. Let x be a level- κ encoding of zero. Then, we can compute the size-reduced encoding x^{\prime} using the ladder and obtain the quantity

$$
\begin{aligned}
{\left[p_{z t} \cdot x^{\prime}\right]_{N} } & =\left[p_{z t} \cdot\left(x-\sum_{j=0}^{\gamma+\left\lfloor\log _{2} \ell\right\rfloor} b_{j} X_{j}^{(\kappa)}\right)\right]_{N} \\
& =\sum_{i=1}^{n}\left(r_{i}-\sum_{j=0}^{\gamma+\left\lfloor\log _{2} \ell\right\rfloor} b_{j} r_{i j}^{(\kappa)}\right) v_{i}+\left(a-\sum_{j=0}^{\gamma+\left\lfloor\log _{2} \ell\right\rfloor} b_{j} a_{j}^{(\kappa)}\right) v_{0} \\
& =\sum_{i=1}^{n} r_{i} v_{i}+a v_{0}-\sum_{j=0}^{\gamma+\left\lfloor\log _{2} \ell\right\rfloor} b_{j}\left(\sum_{i=1}^{n} r_{i j}^{(\kappa)} v_{i}+a_{j}^{(\kappa)} v_{0}\right)
\end{aligned}
$$

Therefore, if one can compute $\sum_{i=1}^{n} r_{i j}^{(\kappa)} v_{i}+a_{j}^{(\kappa)} v_{0}$ from $X_{j}^{(\kappa)}$, one can easily obtain $\sum_{i=1}^{n} r_{i} v_{i}+a v_{0}$.

To compute $\sum_{i=1}^{n} r_{i j}^{(\kappa)} v_{i}+a_{j}^{(\kappa)} v_{0}$ for all $j \in\left\{0, \cdots, \gamma+\left\lfloor\log _{2} \ell\right\rfloor\right\}$, we use an induction on j. When $j=0,\left[p_{z t} \cdot X_{0}^{(\kappa)}\right]_{N}$ gives $\sum_{i=1}^{n} r_{i 0}^{(\kappa)} v_{i}+a_{0}^{(\kappa)} v_{0}$, by the zerotesting lemma. Suppose we have $\sum_{i=1}^{n} r_{i j}^{(\kappa)} v_{i}+a_{j}^{(\kappa)} v_{0}$ for $j \in\{0, \cdots, t-1\}$; then, $\left[p_{z t} \cdot X_{t}\right]_{N}=\sum_{i=1}^{n} r_{i t}^{(\kappa)} v_{i}+a_{t}^{(\kappa)} v_{0}-\sum_{j=0}^{t-1} b_{j}\left(\sum_{i=1}^{n} r_{i j}^{(\kappa)} v_{i}+a_{j}^{(\kappa)} v_{0}\right)$ for computable $b_{i} \in\{0,1\}$, where X_{t} is a size-reduced encoding of $X_{t}^{(\kappa)}$ using $\left\{X_{0}^{(\kappa)}, \cdots, X_{t-1}^{(\kappa)}\right\}$. Since we know the latter terms, we can also compute $\sum_{i=1}^{n} r_{i t}^{(\kappa)} v_{i}+a_{t}^{(\kappa)} v_{0}$. This idea can be extended to any level ladder.

Now, we give a precise description of function ψ.

$$
\begin{aligned}
\psi: \mathbb{Z} & \rightarrow \mathbb{Z} \\
x & \mapsto \sum_{i=1}^{n}\left[x \cdot \frac{z^{\kappa}}{g_{i}}\right]_{p_{i}} v_{i}+\frac{x-\sum_{i=1}^{n}\left[x \cdot \frac{z^{\kappa}}{g_{i}}\right]_{p_{i}} u_{i}^{\prime}}{x_{0}} v_{0}
\end{aligned}
$$

where $v_{i}=\left[p_{z t} \cdot u_{i}^{\prime}\right]_{N}(1 \leq i \leq n)$ and $v_{0}=\left[p_{z t} \cdot x_{0}\right]_{N}$. Note that $x \equiv \sum_{i=1}^{n}\left[x \cdot \frac{z^{\kappa}}{g_{i}}\right]_{p_{i}} u_{i}^{\prime}$ $\left(\bmod p_{j}\right)$ for $1 \leq j \leq n$. Hence, the value multiplied by v_{0} is an integer and the function is well-defined.
Proposition 1. Let x be an integer such that $x \equiv \frac{r_{i} \cdot g_{i}}{z^{\kappa}}\left(\bmod p_{i}\right)$ for $1 \leq i \leq n$. If $\left|r_{i}\right|<p_{i} / 2$ for each i, then x can be uniquely expressed as $\sum_{i=1}^{n} r_{i} u_{i}^{\prime}+a x_{0}$ for some integer a, and $\psi(x)=\sum_{i=1}^{n} r_{i} v_{i}+a v_{0}$.
Proof. We can see that $x \equiv \sum_{i=1}^{n} r_{i} u_{i}^{\prime}\left(\bmod p_{j}\right)$ for each j and thus there exists an integer a such that $x=\sum_{i=1}^{n} r_{i} u_{i}^{\prime}+a x_{0}$. For uniqueness, suppose x can be written as $x=\sum_{i=1}^{n} r_{i}^{\prime} u_{i}^{\prime}+a^{\prime} x_{0}$ for integers $r_{1}^{\prime}, \cdots, r_{n}^{\prime}, a^{\prime}$ with $\left|r_{i}^{\prime}\right|<p_{i} / 2$. Then, $x \equiv$
 have $r_{i}^{\prime}=r_{i}$ for each i and therefore $a^{\prime}=a$, which proves the uniqueness.
Proposition 2. Let x_{1}, \cdots, x_{m} be level- κ encodings of zero such that $x_{j} \equiv \frac{r_{i j} g_{i}}{z^{\kappa}}$ $\left(\bmod p_{i}\right)$ and $\left|r_{i j}\right|<p_{i} / 2$ for all $1 \leq i \leq n, 1 \leq j \leq m$. Then, the equality

$$
\psi\left(\sum_{j=1}^{m} x_{j}\right)=\sum_{j=1}^{m} \psi\left(x_{j}\right)
$$

holds if $\left|\sum_{j=1}^{m} r_{i j}\right|<\frac{p_{i}}{2}$, for all $1 \leq i \leq n$.
Proof. From Proposition (l) each x_{j} can be uniquely written as $x_{j}=\sum_{i=1}^{n} r_{i j} u_{i}^{\prime}+a_{j} x_{0}$ for some integer a_{j}, and $\psi\left(x_{j}\right)=\sum_{i=1}^{n} r_{i j} v_{i}+a_{j} v_{0}$. Then,

$$
\begin{aligned}
\sum_{j=1}^{m} \psi\left(x_{j}\right) & =\sum_{i=1}^{n}\left(\sum_{j=1}^{m} r_{i j}\right) \cdot v_{i}+\left(\sum_{j=1}^{m} a_{j}\right) \cdot v_{0} \\
& =\psi\left(\left(\sum_{j=1}^{m} r_{i j}\right) \cdot u_{i}^{\prime}+\left(\sum_{j=1}^{m} a_{j}\right) \cdot x_{0}\right)=\psi\left(\sum_{j=1}^{m} x_{j}\right)
\end{aligned}
$$

where the source of the second equality is Proposition \mathbb{D}, since $\left|\sum_{j=1}^{m} r_{i j}\right|<p_{i} / 2$.
Our strategy to attack CLT15 is similar to that in [$\left.\mathrm{CHL}^{+} 15\right]$. The goal is to construct a matrix equation over \mathbb{Q} by computing the ψ values of several products of level- 0,1 , and $(\kappa-1)$ encodings, fixed on level- 0 encoding. We proceed using the following three steps.
(Step 1) Compute the ψ-value of level- κ ladder
(Step 2) Compute the ψ-value of level- κ encodings of large size
(Step 3) Construct matrix equations over \mathbb{Q}.
Using the matrix equations in Step 3, we have a matrix, the eigenvalues of which are residue modulo p_{i} of level-0 encoding. From this, we deduce a secret modulus p_{i}.

3.3 Computing the ψ-value of $X_{j}^{(\kappa)}$

To apply the zero-testing lemma to a level- κ encoding of zero $x=\sum_{i=1}^{n} r_{i} u_{i}^{\prime}+a x_{0}$, the size of r_{i} and a has to be bounded by some fixed values. By the parameter setting, η is larger than the maximum bit size of the noise r_{i} of a level- κ encoding obtained from the multiplication of lower level encodings. Hence, we need to reduce the size of x so that a satisfies the zero testing lemma.

Let us consider a ladder of level- κ encodings of zero $\left\{X_{j}^{(\kappa)}\right\}$. This is provided to reduce the size of encodings to that of $2 x_{0}$. More precisely, given a level- κ encoding of zero x of size smaller than $2^{2 \gamma+\left\lfloor\log _{2} \ell\right\rfloor}$, one can compute $x^{\prime}=x-\sum_{j=0}^{\gamma^{\prime}} b_{j} X_{j}^{(\kappa)}$ for $\gamma^{\prime}=\gamma+\left\lfloor\log _{2} \ell\right\rfloor$, which is an encoding of the same plaintext; its size is smaller than $2 x_{0}$. As noted in [CLTT5], the sizes of $X_{j}^{(\kappa)}$ are increasing and differ by only one bit, and therefore, $b_{j} \in\{0,1\}$, which implies the noise grows additively. We can reduce a to an integer much smaller than $2^{2 \eta-\beta-1} / n$ so that the zero testing lemma can be applied. We denote such x^{\prime} as $[x]_{\boldsymbol{X}^{(k)}}$. More generally, we use the notation

$$
[x]_{\boldsymbol{X}^{(t)}}:=\left[\cdots\left[[x]_{X_{\gamma^{\prime}}^{(t)}}\right]_{X_{\gamma^{\prime}-1}^{(t)}} \cdots\right]_{X_{0}^{(t)}} \quad \text { for } \boldsymbol{X}^{(t)}=\left(X_{0}^{(t)}, X_{1}^{(t)}, \ldots, X_{\gamma^{\prime}}^{(t)}\right), 1 \leq t \leq \kappa \text {. }
$$

Note that, if x satisfies the condition in Lemma \mathbb{D}, i.e., it is an encoding of zero of small size, then $\psi(x)$ is exactly the same as $\left[p_{z t} \cdot x\right]_{N}$. However, if the size of x is large, it is congruent only to $\left[p_{z t} \cdot x\right]_{N}$ modulo N. Now, we show how to compute the integer value $\psi(x)$ for an encoding x of zero, although x does not satisfy the condition in Lemma 四.

First, we adapt the size reduction process to a level- κ ladder itself. We can compute binary $b_{i j}$ for each i, j, satisfying

$$
\begin{aligned}
{\left[X_{0}^{(\kappa)}\right]_{\boldsymbol{X}^{(\kappa)}} } & =X_{0}^{(\kappa)} \\
{\left[X_{1}^{(\kappa)}\right]_{\boldsymbol{X}^{(\kappa)}} } & =X_{1}^{(\kappa)}-b_{10} \cdot X_{0}^{(\kappa)} \\
{\left[X_{2}^{(\kappa)}\right]_{\boldsymbol{X}^{(\kappa)}} } & =X_{2}^{(\kappa)}-\sum_{k=0}^{1} b_{2 k} \cdot X_{k}^{(\kappa)} \\
\vdots & \\
{\left[X_{j}^{(\kappa)}\right]_{\boldsymbol{X}^{(\kappa)}} } & =X_{j}^{(\kappa)}-\sum_{k=0}^{j-1} b_{j k} \cdot X_{k}^{(\kappa)} .
\end{aligned}
$$

Each $\left[X_{j}^{(\kappa)}\right]_{\boldsymbol{X}^{(\kappa)}}$ is an encoding of zero at level κ and therefore can be written as $\left[X_{j}^{(\kappa)}\right]_{\boldsymbol{X}^{(\kappa)}}=\sum_{i=1}^{n} r_{i j}^{\prime} u_{i}^{\prime}+a_{j}^{\prime} x_{0}$ for some integers $r_{i j}^{\prime}$ and a_{j}^{\prime}. Moreover, its bit size is at most γ and therefore a_{j}^{\prime} is small enough to satisfy the condition in Lemma \mathbb{W}. Therefore,

$$
\psi\left(\left[X_{j}^{(\kappa)}\right]_{\boldsymbol{X}^{(\kappa)}}\right)=\left[p_{z t} \cdot\left[X_{j}^{(\kappa)}\right]_{\boldsymbol{X}^{(\kappa)}}\right]_{N}=\sum_{i=1}^{n} r_{i j}^{\prime} v_{i}+a_{j}^{\prime} v_{0} .
$$

If we write $X_{j}^{(\kappa)}=\sum_{i=1}^{n} r_{i j} u_{i}^{\prime}+a_{j} x_{0}$ for some integer $r_{1 j}, \ldots, r_{n j}, a_{j}$, we have $r_{i j}^{\prime}=r_{i j}-\sum_{k=0}^{j-1} b_{j k} r_{i k}$ for each i and $a_{j}^{\prime}=a_{j}-\sum_{k=0}^{j-1} b_{j k} a_{k}$, since all the coefficients
of u_{i}^{\prime} are sufficiently smaller than p_{i} for each i. Therefore,

$$
\sum_{i=1}^{n} r_{i j}^{\prime} v_{i}+a_{j}^{\prime} v_{0}=\sum_{i=1}^{n} r_{i j} v_{i}+a_{j} v_{0}-\sum_{k=0}^{j-1} b_{j k}\left(\sum_{i=1}^{n} r_{i k} v_{i}+a_{k} v_{0}\right)
$$

holds over the integers. Hence, we have the following inductive equations for $0 \leq j \leq \gamma^{\prime}$.

$$
\psi\left(X_{j}^{(\kappa)}\right)=\left[p_{z t} \cdot\left[X_{j}^{(\kappa)}\right]_{\boldsymbol{X}^{(\kappa)}}\right]_{N}+\sum_{k=0}^{j-1} b_{j k} \cdot \psi\left(X_{k}^{(\kappa)}\right)
$$

which gives all $\psi\left(X_{0}^{(\kappa)}\right), \psi\left(X_{1}^{(\kappa)}\right), \ldots, \psi\left(X_{\gamma^{\prime}}^{(\kappa)}\right)$, inductively. The computation consists of $\left(\gamma^{\prime}+1\right)$ zero testing and $O\left(\gamma^{2}\right)$-times comparisons and subtractions of $\left(\gamma+\gamma^{\prime}\right)$ bit integers, and therefore, the total computation cost is $\widetilde{O}\left(\gamma^{2}\right)$ by using fast Fourier transform. Hence, we obtain the following lemma.

Lemma 2. Given the public parameters of the CLT15 scheme, one can compute

$$
\psi\left(X_{j}^{(\kappa)}\right)=\left[p_{z t} \cdot\left[X_{j}^{(\kappa)}\right]_{\boldsymbol{X}^{(\kappa)}}\right]_{N}+\sum_{k=0}^{j-1} b_{j k} \cdot \psi\left(X_{k}^{(\kappa)}\right)
$$

in $\widetilde{O}\left(\gamma^{2}\right)$ bit computations.

3.4 Computing the ψ-value of Level- κ Encodings of Large Size

Using the ψ values of the κ-level ladder, we can compute the ψ value of any κ-level encoding of zero, the bit size of which is between γ and $\gamma+\gamma^{\prime}$.
Lemma 3. Let x be a level- κ encoding of zero, $x=\operatorname{CRT}_{\left(p_{i}\right)}\left(\frac{r_{i} g_{i}}{z^{\kappa}}\right)+q x_{0}=\sum_{i=1}^{n} r_{i} u_{i}^{\prime}+$ ax for some integer r_{1}, \ldots, r_{n}, a satisfying $\left|r_{i}\right|<2^{\eta-\beta-\log _{2} n-7}$ for each i and $|a|<$ $2^{\gamma^{\prime}}$. Given the public parameters of the CLT15 scheme, one can compute the value $\psi(x)=\sum_{i=1}^{n} r_{i} v_{i}+a v_{0}$ in $\widetilde{O}\left(\gamma^{2}\right)$ bit computations.

Proof. Let x be a level- κ encoding of zero satisfying the above conditions. As in Section [3.3, we can find binary b_{j} 's satisfying $[x]_{\boldsymbol{X}^{(\kappa)}}=x-\sum_{j=0}^{\gamma^{\prime}} b_{j} \cdot X_{j}^{(\kappa)}$. Then, we have

$$
\psi(x)=\psi\left([x]_{\boldsymbol{X}(\kappa)}\right)+\sum_{j=0}^{\gamma^{\prime}} b_{j} \cdot \psi\left(X_{j}^{(\kappa)}\right)
$$

Since $[x]_{\boldsymbol{X}^{(\kappa)}}$ is a κ-level encoding of zero of at most γ-bit and the size of noise is bounded by $\left(\eta-\beta-\log _{2} n-6\right)$-bit, we can compute the value $\psi\left([x]_{\boldsymbol{X}^{(\kappa)}}\right)$ via the zero testing procedure. Finally, the ψ values of the κ-level ladder and $\psi\left([x]_{\boldsymbol{X}^{(\kappa)}}\right)$ give the value $\psi(x)$. The source of the complexity is Lemma [】.

We apply Lemma 3 to obtain the ψ value of a κ-level encoding of zero that is a product of two encodings of $\left(\gamma+\gamma^{\prime}\right)$-bit size.

Lemma 4. Let X be a level-1 encoding and Y a level- $(\kappa-1)$ encoding of zero of bit size at most $\gamma+\gamma^{\prime}$. Then, one can compute $\psi(X Y)$ in $\widetilde{O}\left(\gamma^{3}\right)$ bit computations.

Proof. We apply Lemma 3 to a product of two γ-bit encodings. From $\left[X_{1}^{(1)}\right]_{\boldsymbol{X}^{(1)}}=$ $X_{1}^{(1)}-b \cdot X_{0}^{(1)}$ for some $b \in\{0,1\}$, we find $\psi\left(X_{1}^{(1)} \cdot X_{0}^{(\kappa-1)}\right)=\psi\left(\left[X_{1}^{(1)}\right]_{\boldsymbol{X}^{(1)}} \cdot X_{0}^{(\kappa-1)}\right)+b$. $\psi\left(X_{0}^{(1)} \cdot X_{0}^{(\kappa-1)}\right)$, since $\left[X_{1}^{(1)}\right]_{\boldsymbol{X}^{(1)}}$ is γ-bit. Thus, we can obtain inductively all $\psi\left(X_{j}^{(1)}\right.$. $\left.X_{k}^{(\kappa-1)}\right)$ for each j, k from $\psi\left(X_{l_{j}}^{(1)} \cdot X_{l_{k}}^{(\kappa-1)}\right), 0 \leq l_{j} \leq j, 0 \leq l_{k} \leq k,\left(l_{j}, l_{k}\right) \neq(j, k)$.

Let $[X]_{\boldsymbol{X}^{(1)}}=X-\sum_{j=0}^{\gamma^{\prime}} b_{j} \cdot X_{j}^{(1)}$ and $[Y]_{\boldsymbol{X}^{(\kappa-1)}}=Y-\sum_{j=0}^{\gamma^{\prime}} b_{j}^{\prime} \cdot X_{j}^{(\kappa-1)}$. Then,

$$
\begin{aligned}
{[X]_{\boldsymbol{X}^{(1)}} \cdot[Y]_{\boldsymbol{X}^{(\kappa-1)}}=} & X Y-\sum_{j} b_{j} \cdot X_{j}^{(1)} \cdot Y \\
& -\sum_{j} b_{j}^{\prime} \cdot X_{j}^{(\kappa-1)} \cdot X+\sum_{j, k} b_{j} b_{k}^{\prime} \cdot X_{j}^{(1)} \cdot X_{k}^{(\kappa-1)}
\end{aligned}
$$

Note that the noise of $\left[[X]_{\boldsymbol{X}^{(1)}} \cdot[Y]_{\boldsymbol{X}^{(\kappa-1)}}\right]_{\boldsymbol{X}^{(\kappa)}}$ is bounded by $2 \rho+\alpha+2 \log _{2}\left(\gamma^{\prime}\right)+2$ and $\eta>\kappa\left(2 \alpha+2 \rho+\lambda+2 \log _{2} n+3\right)$, and therefore, we can adapt Proposition [2. Therefore, if we know the ψ-value of each term, we can compute the ψ-value of $X Y$. Finally, Lemma 3 enables one to compute $\psi\left([X]_{\boldsymbol{X}^{(1)}} \cdot[Y]_{\boldsymbol{X}^{(\kappa-1)}}\right)$. The second and third terms of the right hand side can be computed using $\left[X_{j}^{(1)}\right]_{\boldsymbol{X}^{(1)}},\left[X_{j}^{(\kappa-1)}\right]_{\boldsymbol{X}^{(\kappa-1)}}$, and we know the ψ-value of the last one. Since we perform zero testings for $O\left(\gamma^{2}\right)$ encodings of zero, the complexity becomes $\widetilde{O}\left(\gamma^{3}\right)$.

Note that the above Lemma can be applied to a level- t encoding X and a level- $(\kappa-t)$ encoding of zero Y. The proof is exactly the same, except for the indexes.

3.5 Constructing Matrix Equations over \mathbb{Q}

We reach the final stage. The following theorem is the result.
Theorem 1. Given the public instances in [CLT75] and $p_{z t}$, sampled from $\operatorname{InstGen}\left(1^{\lambda}, 1^{\kappa}\right)$, one can find all the secret parameters given in [CLT75] in $\widetilde{O}\left(\kappa^{\omega+4} \lambda^{2 \omega+6}\right)$ bit computations with $\omega \leq 2.38$.

Proof. We construct a matrix equation by collecting several ψ-values of the product of level- 0,1 and $(\kappa-1)$ encodings. Let c, X, and Y be a level- 0,1 , and $(\kappa-1)$ encoding, respectively, and additionally we assume Y is an encoding of zero. Let us express them as

$$
\begin{aligned}
c & =\operatorname{CRT}_{\left(p_{i}\right)}\left(c_{i}\right), \\
X & =\operatorname{CRT}_{\left(p_{i}\right)}\left(\frac{x_{i}}{z}\right)=x_{i}\left[z^{-1}\right]_{p_{i}}+q_{i} p_{i}, \\
Y & =\operatorname{CRT}_{\left(p_{i}\right)}\left(\frac{y_{i} g_{i}}{z^{\kappa-1}}\right)=\sum_{i=1}^{n} y_{i}\left[\frac{g_{i}}{z^{\kappa-1}}\left(\frac{x_{0}}{p_{i}}\right)^{-1}\right]_{p_{i}} \cdot \frac{x_{0}}{p_{i}}+a x_{0} .
\end{aligned}
$$

Assume that the size of each is less than $2 x_{0}$. The product of c and X can be written as $c X=c_{i} x_{i}\left[z^{-1}\right]_{p_{i}}+q_{i}^{\prime} p_{i}$ for some integer q_{i}^{\prime}.

By multiplying $c X$ and Y, we have

$$
\begin{aligned}
& c X Y \\
= & \sum_{i=1}^{n}\left(c_{i} x_{i} y_{i}\left[z^{-1}\right]_{p_{i}}\left[\frac{g_{i}}{z^{\kappa-1}}\left(\frac{x_{0}}{p_{i}}\right)^{-1}\right]_{p_{i}} \cdot \frac{x_{0}}{p_{i}}+y_{i}\left[\frac{g_{i}}{z^{\kappa-1}}\left(\frac{x_{0}}{p_{i}}\right)^{-1}\right]_{p_{i}} q_{i}^{\prime} x_{0}\right)+(c X)\left(a x_{0}\right) \\
= & \sum_{i=1}^{n} c_{i} x_{i} y_{i} u_{i}^{\prime}+\sum_{i=1}^{n}\left(c_{i} x_{i} y_{i} s_{i}+y_{i} \theta_{i} q_{i}^{\prime}\right) x_{0}+a c X x_{0}
\end{aligned}
$$

where $\theta_{i}=\left[\frac{g_{i}}{z^{\kappa-1}}\left(\frac{x_{0}}{p_{i}}\right)^{-1}\right]_{p_{i}}, \theta_{i}\left[z^{-1}\right]_{p_{i}} \frac{x_{0}}{p_{i}}=u_{i}^{\prime}+s_{i} x_{0}$ for some integer $s_{i} \in \mathbb{Z}$. Then, we can obtain $\psi(c X Y)=\sum_{i=1}^{n} c_{i} x_{i} y_{i} v_{i}+\sum_{i=1}^{n}\left(c_{i} x_{i} y_{i} s_{i}+y_{i} \theta_{i} q_{i}^{\prime}\right) v_{0}+a c X v_{0}$ by Lemma田.

By plugging $q_{i}^{\prime}=\frac{1}{p_{i}}\left(c X-c_{i} x_{i}\left[z^{-1}\right]_{p_{i}}\right)$ into the equation, we obtain

$$
\begin{aligned}
\psi(c X Y) & =\sum_{i=1}^{n} y_{i}\left(v_{i}+s_{i} v_{0}-\frac{\theta_{i} v_{0}}{p_{i}}\left[z^{-1}\right]_{p_{i}}\right) c_{i} x_{i}+\sum_{i=1}^{n} y_{i} \frac{\theta_{i} v_{0}}{p_{i}} c X+a v_{0} c X \\
& =\sum_{i=1}^{n} y_{i} w_{i} c_{i} x_{i}+\sum_{i=1}^{n} y_{i} w_{i}^{\prime} c X+a v_{0} c X
\end{aligned}
$$

where $w_{i}=v_{i}+s_{i} v_{0}-\frac{\theta_{i}}{p_{i}}\left[z^{-1}\right]_{p_{i}} v_{0}$ and $w_{i}^{\prime}=\frac{\theta_{i} v_{0}}{p_{i}}$. It can be written (over \mathbb{Q}) as

Since $p_{i} w_{i}=p_{i}\left(v_{i}+s_{i} v_{0}\right)-\theta_{i}\left[z^{-1}\right]_{p_{i}} v_{0} \equiv-\theta_{i}\left[z^{-1}\right]_{p_{i}} v_{0} \not \equiv 0\left(\bmod p_{i}\right), w_{i}$ is not equal to zero. Therefore, $v_{0} \prod_{i=1}^{n} w_{i} \neq 0$ and thus the matrix in Equation ($\left.\mathbb{Z}\right)$ is non singular. By applying Equation (Z) to various X, Y, taking for $0 \leq j, k \leq n$

$$
\begin{aligned}
X & =\left[X_{j}^{(1)}\right]_{\boldsymbol{X}^{(1)}}=\mathrm{CRT}_{\left(p_{i}\right)}\left(\frac{x_{i j}}{z}\right) \\
Y & =\left[X_{k}^{(\kappa-1)}\right]_{\boldsymbol{X}^{(\kappa-1)}}=\sum_{i=1}^{n} y_{i k} \theta_{i} \frac{x_{0}}{p_{i}}+a_{k} x_{0}
\end{aligned}
$$

we finally obtain the matrix equation

We perform the same computation on $c=1$, which is a level-0 encoding of $\mathbf{1}=$ $(1,1, \cdots, 1)$, and then, it implies

$$
\boldsymbol{W}_{1}=\boldsymbol{Y} \cdot \boldsymbol{W} \cdot \boldsymbol{I} \cdot \boldsymbol{X}
$$

From \boldsymbol{W}_{c} and \boldsymbol{W}_{1}, we have a matrix that is similar to $\operatorname{diag}\left(c_{1}, \cdots, c_{n}, c\right)$:

$$
\boldsymbol{W}_{1}^{-1} \cdot \boldsymbol{W}_{c}=\boldsymbol{X}^{-1} \cdot \operatorname{diag}\left(c_{1}, \cdots, c_{n}, c\right) \cdot \boldsymbol{X}
$$

Then, by computing the eigenvalues of $\boldsymbol{W}_{1}^{-1} \cdot \boldsymbol{W}_{c}$, we have c_{1}, \cdots, c_{n}, satisfying $p_{i} \mid(c-$ c_{i}) for each i. Using an additional level-0 encoding c^{\prime}, we obtain $\boldsymbol{W}_{1}^{-1} \cdot \boldsymbol{W}_{c^{\prime}}$, and therefore, $c_{1}^{\prime}, \cdots, c_{n}^{\prime}$ with $p_{i} \mid\left(c^{\prime}-c_{i}^{\prime}\right)$ for each i. Computing $\operatorname{gcd}\left(c-c_{i}, c^{\prime}-c_{i}^{\prime}\right)$ gives the secret prime p_{i}.

Using p_{1}, \cdots, p_{n}, we can recover all the remaining parameters. By the definition of y and $X_{j}^{(1)}$, the equation $y /\left[X_{j}^{(1)}\right]_{x_{0}} \equiv\left(r_{i} g_{i}+1\right) /\left(r_{i j}^{(1)} g_{i}\right)\left(\bmod p_{i}\right)$ is satisfied. Since $r_{i} g_{i}+1$ and $r_{i j}^{(1)} g_{i}$ are smaller than $\sqrt{p_{i}}$ and are co-prime, one can recover them by rational reconstruction up to the sign. Therefore, we can obtain g_{i} by computing the gcd of $r_{i 0}^{(1)} g_{i}, \cdots, r_{i m}^{(1)} g_{i}$. Moreover, using $r_{i j}^{(1)} g_{i}$ and $\left[X_{j}^{(1)}\right]_{x_{0}}$, we can compute $[z]_{p_{i}}$ for each i and therefore z. Any other parameters are computed using z, g_{i}, and p_{i}.

Our attack consists of the following arithmetics: computing $\psi\left(X_{j}^{(\kappa)}\right), \psi\left(X_{j}^{(1)}\right.$. $\left.X_{k}^{(\kappa-1)}\right)$, constructing a matrix \boldsymbol{W}_{c} and \boldsymbol{W}_{1}, matrix inversing and multiplying, and computing eigenvalues and the greatest common divisor. All of these are bounded by $\widetilde{O}\left(\gamma^{3}+n^{\omega} \gamma\right)=\widetilde{O}\left(\kappa^{6} \lambda^{9}\right)$ bit computations with $\omega \leq 2.38$. For this algorithm to succeed, we need a property that \boldsymbol{W}_{1} is non-singular. If we use the fact that the rank of a matrix $\boldsymbol{A} \in \mathbb{Z}^{(n+1) \times(n+1)}$ can be computed in time $\widetilde{\mathcal{O}}\left((n+1)^{\omega} \log \|\boldsymbol{A}\|_{\infty}\right)$ (see [Sto0.9]), we can find that $\boldsymbol{X}, \boldsymbol{Y} \cdot \boldsymbol{W} \in \mathbb{Q}^{(n+1) \times(n+1)}$ are non-singular in $\widetilde{\mathcal{O}}(2(\gamma+$ $\left.\log \ell)\left(n^{\omega} \log N\right)\right)=\widetilde{\mathcal{O}}\left(\kappa^{\omega+4} \lambda^{2 \omega+6}\right)$ by considering another subset of $\left\{X_{0}^{(1)}, \cdots, X_{\gamma^{\prime}}^{(1)}\right\}$ with cardinality $(n+1)$ for X and also for Y. Therefore, the total complexity of our attack is $\widetilde{\mathcal{O}}\left(\kappa^{\omega+4} \lambda^{2 \omega+6}\right)$.

4 Conclusion

In this paper, we introduced a cryptanalysis of the new multilinear maps over the integers [CLT]5]. The scheme was modified to prevent a zeroizing attack [CHL ${ }^{+} 15$] on the original scheme [CLT]3]. The zero-testing element is defined over the independent modulus N so that the resulting value is expressed non-linearly. $x_{0}=\prod_{i=1}^{n} p_{i}$ was not published for security reasons, but we can compute all the secret primes p_{i} in polynomial time. Therefore, the modified scheme also is vulnerable to a zeroizing attack.

As other analyses of multilinear maps $\left[\mathrm{CGH}^{+} 15, \mathrm{CHL}^{+} 15,[\mathrm{H} . \mathrm{JI5}]\right.$, our analysis is based on a zeroizing attack. To construct a matrix equation, we need encodings of zero. It is worth considering analyzing multilinear maps without encodings of zero. The construction of a graded encoding scheme for which the subgroup membership and decision linear problems are hard is another open problem.

References

BWZ14. Dan Boneh, David J Wu, and Joe Zimmerman. Immunizing multilinear maps against zeroizing attacks. IACR Cryptology ePrint Archive, 2014:930, 2014.
CGH^{+}15. Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrede Lepoint, Hemanta K Maji, Eric Miles, Mariana Raykova, Amit Sahai, and Mehdi Tibouchi. Zeroizing without low-level zeroes: New mmap attacks and their limitations. In Advances in Cryptology-CRYPTO 2015, pages 247-266. Springer, 2015.
CHL^{+}15. Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé. Cryptanalysis of the multilinear map over the integers. In Advances in Cryptology-EUROCRYPT 2015 , pages $3-12$. Springer, 2015.

CLT13. Jean-Sébastien Coron, Tancrede Lepoint, and Mehdi Tibouchi. Practical multilinear maps over the integers. In Advances in Cryptology-CRYPTO 2013, pages 476-493. Springer, 2013.

CLT15. Jean-Sebastien Coron, Tancrede Lepoint, and Mehdi Tibouchi. New multilinear maps over the integers. In Advances in Cryptology-CRYPTO 2015, pages 267-286. Springer, 2015.
GGH13. Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices. In Eurocrypt, volume 7881, pages 1-17. Springer, 2013.
GGH15. Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps from lattices. In Theory of Cryptography, pages 498-527. Springer, 2015.
GGHZ14. Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Fully secure functional encryption without obfuscation. Technical report, Cryptology ePrint Archive, Report 2014/666, 2014.

HJ15. Yupu Hu and Huiwen Jia. Cryptanalysis of GGH map. Technical report, Cryptology ePrint Archive, Report 2015/301, 2015.
Sho09. Victor Shoup. A Computational Introduction to Number Theory and Algebra. Cambridge University Press, 2009.
Sto09. Arne Storjohann. Integer matrix rank certification. In Proceedings of the 2009 International Symposium on Symbolic and Algebraic Computation, pages 333-340. ACM, 2009.

[^0]: ${ }^{1}$ This procedure can be adapted to higher levels $1<k \leq \kappa$ by publishing appropriate quantities in params.

