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Abstract. The power of a statistical attack is inversely proportional to
the number of plaintexts necessary to recover information on the encryp-
tion key. By analyzing the distribution of the random variables involved
in the attack, cryptographers aim to provide a good estimate of the data
complexity of such an attack. In this paper, we analyze the hypotheses
made in simple, multiple, and multidimensional linear attacks that use
either non-zero or zero correlations, and provide more accurate estimates
of the data complexity of these attacks. This is achieved by taking, for
the first time, into consideration the key variance of the statistic for both
the right and wrong keys. For the family of linear attacks we differenti-
ate between the attacks which are performed in the known-plaintext and
those in the distinct-known-plaintext model. By this differentiation, we
improve the data complexity of some attacks by applying the distinct-
known-plaintext model. From the analysis provided in this paper, it fol-
lows that the number of attacked rounds in the multidimensional linear
context is impacted by the fact that the expected capacity of a multidi-
mensional linear approximation for a random permutation is not equal
to zero as previously assumed. The impact of the result is relatively im-
portant, since it weakens most existing multidimensional linear attacks.
From the link between differential and linear cryptanalysis we also derive
a new estimate of the data complexity of a truncated differential attack.
The theory developed in this paper is backed up by different experiments.
Keywords: multidimensional linear attack, zero-correlation linear at-
tack, key-difference-invariant-bias attack, truncated differential attacks,
known plaintext, distinct known plaintext, chosen plaintext, key vari-
ance, statistical model.
MSC 2010 codes: 94A60, 11T71, 68P25

1 Introduction

Classical linear [23] and differential [3] cryptanalysis are keystone of most sta-
tistical attacks. As generalization of differential attacks, truncated differential



attacks [20] take advantage of simultaneously multiple differential approxima-
tions. The question of taking advantage of multiple linear approximations was
considered first in [4] for independent linear approximations and then in [18]
for linear approximations with input and output masks covering a linear space.
More recently zero-correlation linear attacks [9, 11, 13] were introduced. These
attacks take advantage of linear approximation with no bias.

To estimate the data complexity of a statistical attack, the distributions
of the involved random variables for the right and wrong keys are analyzed.
In the following paragraphs we detail the different taken approaches and the
improvements considered in this paper.

Distinct-known-plaintext attacks For the recent zero-correlation linear attacks,
depending on the number of used approximations and on the relation between
the involved linear masks, different statistical models are presented. We first
recall the two models given in [9] to compute the data complexity of multi-
ple zero-correlation linear attacks and multidimensional zero-correlation linear
attacks. While the statistical model for the multidimensional zero-correlation
linear attack assumes that the plaintexts involved in the attacks are distinct,
the one for multiple zero-correlation linear attack assumes a normal distribution
of the expected capacity for the wrong keys.

In this paper, we develop on distinct-known-plaintext attacks. In particular,
we show that avoiding repetition in the plaintexts when the data complexity
is close to the full codebook could present some interest not only for multi-
dimensional zero-correlation attacks but also for multiple zero-correlation at-
tacks and more generally for all known-plaintext attacks. In particular using
distinct-known-plaintext we improve the data complexity of some multiple zero-
correlation linear attacks and key-invariant attacks [8].

Right- and wrong-key randomization hypothesis For most ciphers, we are only
able to estimate the expected value of a linear correlation. However, in [16, 17]
the authors provide experiments to show that also significant variances occur
and present an estimation of the wrong-key variance. In [12], this influence of
the wrong-key variance for a simple linear attack is taken into consideration and
a better estimate of the data complexity of a linear attack is given. In [19], the
distribution of the capacity for the right encryption key is established and it is
used to determine weak-key quantiles, that is, lower bounds of capacity that are
satisfied by a given proportion, say one half, or 30% of the keys. Such approach
has been previously taken in [22] in the case of single linear hull.

In this paper, we analyze and combine these different models and go beyond
by studying the joint probability distribution of the test statistic as both the
data sample and the key are considered as random variables. We present sta-
tistical models for both right-key and wrong-key behavior of the test statistic
that comprise zero-correlation and ordinary, multiple and multidimensional lin-
ear cryptanalysis attacks, in distinct or non-distinct known-plaintext sampling
models.
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We show that the data complexity of multiple and multidimensional linear
attacks can be computed using essentially the same methods. These attacks
offer two different approaches for estimating the variance of the capacity. In the
case of the PRESENT cipher [10] we observe experimentally that the standard
deviation of capacity is underestimated when using the multidimensional linear
approach, while it is overestimated when using the model of multiple independent
approximations.

Expected value of the capacity for the wrong keys When modeling the distribution
of the test statistic for the wrong keys, it is usually assumed that, for all keys, it
behaves as it would have been computed for a single random permutation. In the
linear context, this corresponds to the assumption that for each key the expected
value of the observed correlation is equal to zero. Similarly, when taking into
consideration multiple linear approximations, the test statistic computed from
the data samples is assumed to be drawn from a uniform distribution for all
wrong key candidates. In other words, the capacity, which corresponds to the
sum of squared correlations, has been assumed to be equal to zero. However in
this paper, we show that this hypothesis is not adequate and we suggest to take
the expected value of the capacity for a wrong key to be equal to `2−n where `
is the number of considered linear approximations and n is the encryption block
size.

This finding, which has been experimentally verified, has a major impact on
existing multidimensional linear attacks. Many such attacks exploited capacity
values that are smaller than the expected random capacity. Consequently, we
must invalidate the data complexity estimate by Hermelin, et al. [18]. In partic-
ular, the attack on 26 rounds of PRESENT [15] seems unrealistic. We show that
using the key-recovery attack setting of [15], where the key candidates are used
to partially invert one round before and one round after the multidimensional
linear distinguisher, only 24 rounds of PRESENT can be attacked. The validity
of other multidimensional linear attacks is also discussed in this paper.

Truncated differential attacks In [6], it has been shown that truncated differential
attacks and multidimensional linear attacks are strongly related. Both attacks
use the same distinguishing property of the cipher but assume that the data
samples are provided differently and compute a different test statistic.

Based on the analysis provided in the linear context, we investigate the key
variance of the statistics involved in truncated differential attacks, and improve
the accuracy of the data complexity estimate of this attack. Then discussion on
the validity of the truncated differential attack on 26 rounds of PRESENT [6]
and of the known-key distinguisher [7] on the full PRESENT is also presented.

Experiments Our analysis has been backed up using experiments on reduced
version of PRESENT but also on other ciphers. Unlike previous experiments we
selected ciphers where it is possible to experiment on attacks that require almost
the full codebook. Such experiments allowed us to analyze the evolution of the
expected value and variance of the random variables involved in the attacks.
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Outline The outline of this paper is as follows. The notation are introduced in
Section 2. Section 3 focuses on the multiple/multidimensional zero-correlation
linear attacks. The data complexity of key-invariant attacks [8] is also discussed
in this section. In Section 4 a more accurate statistical model for multiple and
multidimensional linear attacks is presented. Based on this model in Section 5,
we provide new estimate of the data complexity of a multiple/multidimensional
linear attacks. Following the same reasoning in Section 6, we present new models
and new estimate of the data complexity for the classical linear attacks as well
as for the truncated differential attacks. Section 7 concludes this paper.

2 Preliminaries

2.1 Linear Attacks

While the idea of using distinct-known plaintexts can be extended to any sta-
tistical attack, we focus in this paper on the most common known-plaintext
statistical attacks which are generalizations of linear cryptanalysis [23].

Given an n-bit permutation F , we denote by (u, v) ∈ Fn2 ×Fn2 , a pair of input
and output masks. In linear attacks, we take advantage of linear approximations
of the form u · x⊕ v ·F (x) = 0. The strength of a linear relation is measured by
its correlation. The correlation of a Boolean function fu,v(x) = u · x ⊕ v · F (x)
is defined as

cor(u, v) = 2−n
[
# {x ∈ Fn2 |fu,v(x) = 0} −# {x ∈ Fn2 |fu,v(x) = 1}

]
.

In [4] the statistical model of taking advantage of multiple independent lin-
ear approximations was presented. In the more recent multidimensional linear
attacks introduced in [18], the attacker takes advantage of all linear approxima-
tions with linear masks (u, v) u 6= 0 in a linear space.

The capacity C defined in [4] and generalized in [18] is a quantity used to
collect information of the strength of several linear approximations. Given a set
of input and output linear mask pairs (ui, vi), i = 1, . . . , `, where vi 6= 0, their
capacity is defined as the sum of the squared correlations:

C =
∑̀
i=1

cor(ui, vi)
2.

In case the linear approximations (ui, vi) form the set of non-zero elements of a
linear space U × V of dimension s, that is, `+ 1 = 2s, then the capacity can be
computed as

C = 2s
∑̀
j=0

(
pj −

1

`+ 1

)2

,

where pj is the probability that the value (x, F (x)) restricted to U ×V takes on
the value j ∈ U × V . The attack is, in that case, called multidimensional linear
attack.
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While multiple/multidimensional linear attacks take advantage of a set of
linear approximations with large capacity, multiple and multidimensional zero-
correlation linear attacks [9, 11, 13] exploit linear approximations with corre-
lation equal to zero. These attacks have been proven efficient on word-oriented
structures such as Feistel-type ciphers. When multiple approximations with zero-
correlation are used, the capacity C of the set of linear approximations is equal
to zero.

In the remainder of this paper, we denote by ` the number of linear approxima-
tions involved in our attacks. Given s the dimension of the linear space U × V ,
in (zero-correlation) multidimensional linear attacks we have ` = 2s − 1. The
block cipher size is denoted by n.

2.2 Statistics

The data complexity N of a statistical attack corresponds to the number of plain-
texts necessary to perform the attack. In general, we want to find the encryption
key also known as right key by differentiating the score of the right key from
the one of the wrong keys. In (zero-correlation) multiple/multidimensional lin-
ear attacks the test statistic of the scoring function corresponds to the estimated
capacity of the multiple/multidimensional linear approximations:

T = N
∑̀
1=1

ˆcor2i , (1)

where ˆcori is the empirical correlation of the i-th linear approximation (ui, vi). In
(zero-correlation) multidimensional linear attacks the computation of the statis-
tic T can be simplified and is equivalent to:

T =
∑̀
j=0

(V [j]−N/(`+ 1))2

N/(`+ 1)
, (2)

where V [j] corresponds to the number of occurrences of the j-th element of the
multidimensional distribution. In Section 4, we will use this same statistic when
drawing a sample over any distribution of values computed from a plaintext.

Following the notation of [28], we denote by PS the success probability and by
a the advantage of the attack where 2−a is the proportion of discarded keys.

Throughout this paper, we denote by Φ the cumulative distribution function
of the central normal distribution. To simplify the notation, we also introduce:
ϕa = Φ−1(1 − 2−a) and ϕPS

= Φ−1(PS). Given Exp(TR) and Var(TR) (resp.
Exp(TW ) and Var(TW )), the mean and variance of the normal random variable
TR for the right key (resp. TW for the wrong keys), we have (see i.e. [28]):

PS ≈ Φ

(
|Exp(TR)− Exp(TW )| −

√
Var(TW )ϕa√

Var(TR)

)
. (3)
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2.3 Data Complexity of a Multidimensional Linear Attack

The multidimensional linear cryptanalysis [18] traditionally assumes known plain-
text and that the cryptanalyst does not have any means to check for repetitions
in the plaintext. Then the statistic T given in Equation (2) computed from the
multidimensional distribution follows χ2 distribution that for larger distribu-
tions, say ` > 50 can be accurately approximated using the normal distribution
stated as follows.

Lemma 1. [18] In the known-plaintext model, the statistic TR involved in a
multiple/multidimensional linear attack for the right key follows approximately
a normal distribution with parameters:

Exp(TR) ≈ `+N · C and (4)

Var(TR) ≈ 2(`+ 2 ·N · C).

When distinguishing the cipher distribution from random, the alternative
distribution was in [18] assumed to be given by a statistic TW that, if com-
puted over sufficiently large `, follows the normal distribution with parameters
Exp(TW ) = ` and Var(TW ) = 2`. Then the data complexity of a known-plaintext
multidimensional linear attack was computed from these distributions as

N ≈
√

4a`+ 4Φ−1(2PS − 1)2

C
. (5)

This approach assumes that the right key is fixed and that the capacity of
the cipher data distribution with this key is equal to C. In practice, the same
value C is used for all encryption keys. An estimate of C is obtained using offline
analysis of the cipher. It is usually a lower bound of the average capacity over the
keys and a positive value. Similarly for all of the wrong keys, the same uniform
distribution of TW is used as explained above. In [12, 24] this simple approach
has been criticized and shown to produce too optimistic (for the attacker) results
in practice.

In Section 4, we study the statistical distributions of multiple/multidimensional
linear cryptanalysis as the encryption key and the wrong key candidates vary,
and provide a more accurate estimate of the data complexity. We first recall
some results on zero-correlation linear attack which in part motivated our work
on distinct-known-plaintext attacks as well as on the analysis of key-variance for
the right and wrong keys.

3 Zero-Correlation Linear Cryptanalysis

3.1 Multiple and Multidimensional Zero-Correlation Linear Attacks

In [9] we have the following two estimates of the data complexity of a multiple
and multidimensional zero-correlation linear attacks derived from [11,13].
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Lemma 2. [13] The number N of known plaintexts required in a multiple zero-
correlation linear cryptanalysis is:

N ≈ 2n(ϕPS + ϕa)√
`/2− ϕa

. (6)

The proof [13] follows from Equation (3) using the fact that the distribution
of TR (resp TW ) can be estimated by a normal distribution with parameters

Exp(TR) = ` and Var(TR) = 2` (resp. Exp(TW ) = `(1 +
N

2n
) and Var(TW ) =

2`(1 +
N

2n
)2).

Lemma 3. [9, 11]1 The number N of distinct-known plaintexts required in a
multidimensional zero-correlation linear cryptanalysis is:

N ≈ 2n(ϕPS + ϕa)√
`/2 + ϕPS

. (7)

The proof [9, 11] follows from the use of the hypergeometric distribution as it
will be given in a more general case in Theorem 1.

Assuming as in the proof of Lemma 2 that the correlation of the involved
linear approximations are independent, we can adapt this result to the context
of multiple zero-correlation linear cryptanalysis. In practice, we observed, see
Section 3.2, that the data complexity of a multiple zero-correlation linear attack
can be estimated by Equation (7) when assuming distinct-known plaintexts. This
result will be confirmed by the theory developed in Section 4.

Corollary 1. The data complexity of a known-plaintext multiple/multidimensional
zero-correlation linear attack using ` linear approximations is given by Equa-
tion (6). If we consider distinct-known plaintexts, the data complexity is given
by Equation (7).

Since for most attacks 0.5 ≤ PS ≤ 0.99, meaning that 0 ≤ ϕPS
≤ 2.4, the

difference between Equation (7) and Equation (6) is particularly noticeable
when

√
`/2 and ϕa are in the same order of magnitude. From Equation (7)

and Equation (6) we deduce that the success probability of a known-plaintext
zero-correlation linear attack is:

PS ≈ Φ
(
N

2n

√
`/2− ϕa

(
N + 2n

2n

))
, (8)

and the one of a distinct-known-plaintext zero-correlation linear attack is:

PS ≈ Φ

(
N
√
`/2

2n −N
− ϕa

2n

2n −N

)
. (9)

1 The distribution of the random variables has been derived in [11], the correct esti-
mate of the data complexity appears in [9].
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3.2 Experimental Results

We have implemented experiments on a Feistel-type cipher which is depicted
in Figure 1 and could correspond to scaled versions of CLEFIA [29] (a 16-bit
type-II GFN with 4 branches) .
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Fig. 1: Description of the key-recovery attack done on a Type-II GFN.

While in [30] experiments showing the distribution of Exp(TR) and Exp(TW )
have been presented, there is, to the best of our knowledge, no previous men-
tioning of experimental zero-correlation linear attacks in the literature.

The results of our experimental attacks averaged over 1000 keys are provided
in Figure 2. In these graphics we compare the success probability of multidi-
mensional and multiple zero-correlation linear attacks with the theoretical ones
given by Equation (9) for distinct plaintexts and by Equation (8) for non-distinct
plaintexts. These experiments support the theory given in Section 3.1 showing
that the same formula can be used to compute the complexity of multiple zero-
correlation and multidimensional zero-correlation linear attacks. The difference
lies only in the way of sampling, whether distinct or non-distinct known plain-
texts are used in the attack.

3.3 Applications

Multiple Zero-Correlation Linear Attacks As explained in detail later in
this paper, by considering distinct-known plaintexts we can use Equation (7) to
compute the data complexity of a multiple zero-correlation linear attack. As the
data complexity of multidimensional linear attacks has already been computed
under this setting, and because other comparable (in number of attacked rounds)
attacks have been performed in the chosen-plaintext model, this should give us a
better comparison factor. The result of our computation and a comparison with
the best attacks on the block cipher Camellia [1] are provided in Table 1. The
attack is from [9]. The data complexity has been computed using Equation (7)
instead of using Equation (6) with the parameters of the attack chosen as PS =
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Fig. 2: Attacks on a type-II-GFN cipher. Top: multidimensional zero-correlation linear
attacks, bottom: multiple zero-correlation linear attacks.
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0.85 and a = 96 or a = 160. The time complexity has been computed according
to the description given in [9]. We use the abbreviations KP, DKP and CP for
known plaintext, distinct-known plaintext and chosen plaintext, respectively.

Version #R Type ` a PS N Time Mem. Ref.

128 11 ID - - - 2118.4 CP 2118.43 296.4 [14]

128 11 ZC 214 96 85% 2125.3 KP 2125.8 2112 [9]

128 11 ZC 214 96 85% 2125.1 DKP 2125.8 2112 This paper

192 12 ID - - - 2119.7 CP 2161.06 2147.7 [14]

192 12 ZC 214 160 85% 2125.7 KP 2125.8 2112 [9]

192 12 ZC 214 160 85% 2125.46 DKP 2125.8 2112 This paper
Table 1: Best key-recovery attacks on Camellia-128 and Camellia-192 (attacks start-
ing from the first round). The memory is expressed in number of bytes. #R denotes
the number of attacked rounds. ID stands for impossible differential, ZC for zero-
correlation.

Similarly we can improve the data complexity of the multiple zero-correlation
linear attack on CAST-128 [31]. The parameters of the attack being n = 128,
` = 64770, a = 50 and PS = 0.85, the data complexity of the attack using
known plaintexts2 is N = 2123.73 and the data complexity of the attack using
distinct-known plaintexts is N = 2123.67.

Key-Difference-Invariant-Bias Attacks To the best of our knowledge, the
only paper presenting attacks in this context is the seminal paper [8]. For these
attacks, the statistical analysis is similar to the one done for zero-correlation
linear attacks. In Table 2 we summarize the complexity of the best related key-
attacks on LBlock [33] and show that by assuming distinct-known plaintexts the
data and time complexity of the attack can be improved. Similar improvement
can be obtained for the related-key attack on TWINE presented in [8]. The
two-letter abbreviation RK refers to related-key attack throughout the table.

4 Statistical Attacks and Key Variance of Capacity

In the previous section we showed that the data complexity of zero-correlation
linear attacks is reduced once we consider distinct-known plaintexts. The goal of
this section is to examine if using distinct plaintext gives any advantage in other
types of statistical attacks that analyze distributions of cipher data with non-
zero capacity. Contrary to the zero-correlation property, which is the same for all
encryption keys and hence has no variance due to the key, the non-zero capacities

2 With these parameters, the data complexity can not be equal to 2123.2 as given
in [31].
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#R Type #Keys ` a PS N Time Mem. Ref.

23 RKID 4 - - - 261.4 RKCP 278.3 261.4 [32]

24 KIB 32 27.81 4.5 85% 262.29 RKKP 274.59 261 [8]

24 KIB 32 27.81 8.5 85% 262.95 RKKP 270.67 261 [8]

24 KIB 32 27.81 8.5 85% 262.38RKDKP 270.67 261 This paper

24 KIB 32 27.81 16 85% 262.84 RKDKP 266.57 261 This paper*
Table 2: Best related-key attacks on LBlock. *: Computation of the time complexity
according to the description given in Section 5.3 of [8]. RKID stands for related-key
impossible differential, KIB for key-invariant bias.

may vary with the key. We build a comprehensive model that takes also the key
variance into account. In addition to the behavior of correct keys, the model is
general enough so that it can be applied also for the modeling of the behavior of
the wrong keys in key recovery attacks. Previously, strong evidence was brought
up that it is not accurate to model wrong keys to draw test statistic from the
uniform distribution [12, 24]. In [12] a solution was developed in the case of
Matsui’s classical linear attack Algorithm 2 with one linear approximation. We
generalize this approach to attacks that use multidimensional distributions. The
main motivation and challenges of the work presented in this section originate
from the multidimensional linear attack, but due to the generic link between
linear and differential types of attacks [6], the results can also be applied to
some differential attacks.

4.1 Sampling of Cipher Data with Fixed Key

Next, we will extend Lemma 1 to cover also the case of sampling with distinct
plaintext. The theorem is not specific to multidimensional linear cryptanalysis
but can be applied to any statistical cryptanalysis that exploits distributions of
samples of cipher data over a set of values.

Let f : Fn2 → {0, . . . , `} be a function which is used to compute values for
plaintext x ∈ D ⊂ Fn2 . In the setting of multidimensional linear cryptanalysis,
f(x) is the value of (x, F (x)) restricted to the subspace U × V , see Section 2.
The size of the sample set D is denoted by N . Let us denote

pj = 2−n|{x ∈ Fn2 | f(x) = j }|.

for all j = 0, . . . , `. Then pj is a probability distribution and we denote by C its
capacity, which is computed as

C =
∑̀
j=0

(
pj − 1

`+1

)2
1
`+1

.

In the following, we consider simultaneously the cases were the sampling is
done with or without replacement. To do so we introduce the following constant
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B which is defined by

B =

{
1, for non-distinct plaintext,

1− N − 1

2n − 1
, for distinct plaintext.

(10)

Theorem 1. We consider the statistic B−1T (D) where T (D) is computed from
the data sample D as defined by Equation (2) and B is defined by Equation (10).
Then B−1T (D) follows a non-central χ2 distribution with ` degrees of freedom
and non-centrality parameter B−1NC. In particular, B−1T (D) has the expected
value and variance as

ExpD(B−1T (D)) = `+B−1NC and (11)

VarD(B−1T (D)) = 2`+ 4B−1NC.

Proof. For each of the data values j = 0, . . . , ` the attacker initializes a counter
V [j] to value zero. Then, for each sampled plaintext x ∈ D, the attacker com-
putes the corresponding data value and increments the counter of this data value
by one. If sampling is with replacement, then the variables V [j] are statistically
independent and each V [j] follows the binomial distribution with parameters

ExpD(V [j]) = Npj and

VarD(V [j]) = Npj(1− pj).

If repetitions of plaintexts are prevented then the counters V [j] follow multivari-
ate hypergeometric distribution. In particular, the variables V [j] are statistically
independent and the expected value and variance of V [j] are equal to

ExpD(V [j]) = Npj and

VarD(V [j]) = Npj(1− pj)
(

1− N − 1

2n − 1

)
.

To proceed, we use the normal approximation of the binomial or in the case
of distinct plaintext of the hypergeometric distribution of V [j]. In addition we
estimate that

VarD(V [j]) = N
1

`+ 1
B,

for all j = 0, . . . , `, where B is defined by Equation (10). This variance is slightly
larger than what the variance of V [j] would be for a uniform distribution. In
this manner, the VarD(V [j]) are estimated to be equal for all j and the statistic
T as defined in Equation (2) can be written as

T =
∑̀
j=0

(V [j]−N 1
`+1 )2

N 1
`+1

= B
∑̀
j=0

(V [j]−N 1
`+1 )2

VarD(V [j])
.
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By the definition of non-central χ2 distribution, it then follows that B−1T follows
a non-central χ2 distribution with ` degrees of freedom and with non-centrality
parameter

δ =
∑̀
j=0

(Npj −N 1
`+1 )2

N 1
`+1B

= B−1NC.

ut

We note that Theorem 1 holds also if C = 0, and therefore includes the
multidimensional zero-correlation statistical model using distinct plaintext given
in [11] as a special case.

In an analogical way, we can also generalize the statistical model of the multi-
ple linear approximation, which previously exists only for non-distinct plaintext,
see [4] for the non-zero capacity case and [13] for the zero-correlation case.

Theorem 2. We consider the statistic B−1T (D) where T (D) is computed from
the data sample D of size N using a number of ` independent linear approxima-
tions as defined by Equation (1), where B is as defined in Equation (10). Then
B−1T (D) follows a non-central χ2 distribution with ` degrees of freedom and
non-centrality parameter B−1NC, where C is the capacity of the ` linear ap-
proximations. In particular, B−1T (D) has the expected value and variance given
as in Equation (11).

Proof. Let us denote by Zi the random variable corresponding to the number
of solutions of the i-th equation of the form u · x ⊕ v · F (x) = 0 and by N · pi
the expected number of solutions of this equation. By the assumption about the
independence of the linear approximations, we can use the hypergeometric distri-
bution, if the plaintexts are distinct, and otherwise the multinomial distribution
to obtain, since pi = 1/2(1 + cori),

ExpD(Zi) = Npi =
N

2
(1 + cori) and

VarD(Zi) = Npi (1− pi) =
N

4
(1− cor2i )B,

where B is defined as in Equation (10). Given Xi = 2 ·Zi/N − 1 we deduce that

ExpD(Xi) = cori and VarD(Xi) =
4

N2
VarD(Zi) ≈

1

N
·B.

By Equation (1), we have T (D) = N
∑
iX

2
i . We denote V (D) =

∑`
i=1

X2
i

VarD(Xi)
≈

T (D)B−1. The random variable V (D) follows a non-central χ2 distribution
with parameters ExpD(V (D)) = ` + δ and VarD(V (D)) = 2(` + 2δ) where

δ =
∑
i

ExpD(Xi)
2

VarD(Xi)
= NCB−1. ut

Theorem 2 and the assumption of statistical independence of linear approxima-
tions is needed in practice only if ` is relatively small in comparison to 2s − 1.
Otherwise, Theorem 1 gives adequate estimates.
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The non-central χ2 distribution allows accurate approximation when it has
more than about 50 degrees of freedom. In such a situation we can freely use the
following corollary.

Corollary 2. If in the setting of Theorem 1 or 2 the χ2 distribution is approx-
imated with the normal distribution, then the statistic T (D) follows the normal
distribution with parameters

ExpD(T (D)) = B`+NC and (12)

VarD(T (D)) = 2B2`+ 4BNC.

The mean and variance of the statistic T are studied in experiments on SMALLPRESENT-
[8] and SMALLPRESENT-[4] presented in Section 4.5. While the expected value
of T corresponds to the one given in the previous corollary, the variance deviates
deviates significantly from the experimental one, in particular, for distinct-known
plaintext. In the next sections, we adjust the model by taking into account the
variance on T due to the key. We present a general model based on the joint
data and key distribution which we will apply both to the right encryption keys
as well as to wrong keys.

4.2 Key Variance of Capacity

In the preceding section, we presented a statistical model for sampling a cipher in
multidimensional/multiple linear cryptanalysis, or more generally, for drawing
samples of cipher values. When used in practice, an accurate estimate of the
capacity of the set of linear approximations is needed. In the case of a key-
alternating iterated block cipher, it is common to use the linear hull theorem,
see i.e. Theorem 21 of [16], and the squared correlation matrices. For a practical
example, see [15]. In this manner, one gets a lower bound of the average value of
the capacity over the keys. In reality, the capacity may vary a lot with the key.
Next we investigate what can be said in general about the variance of the capacity
considered as a random variable computed for a random key. In this section, we
investigate the key variance in the general setting. The next two sections are
dedicated to the modeling of the right and wrong key behavior. The details of
this section are provided for the multidimensional linear case and resumed at
the end of this section in Corollary 4. The case of multiple independent linear
approximations is handled in Corollary 5.

We consider distributions of data values as in the previous section, but now
add the variable K to the notation to highlight the dependency of the key, and
write

pj(K) = 2−n|{x ∈ Fn2 | fK(x) = j }|,

for all j = 0, 1, . . . , `. In particular, the function f used in the previous section is
now depending on the key K. If we consider K as a random variable, then also

14



the values pj(K) can be considered as random variables. Moreover, the capacity

C(K) =
∑̀
j=0

(pj(K)− 1
`+1 )2

1
`+1

is also consider as a random variable. The problem is, how to estimate the
variance of C(K). We take two approaches, first starting from the distribution
definition of C(K) and then looking at the more specific case of independent
linear approximations. In both cases, we need additional assumptions.

Let us state the following assumption:

Hypothesis 1 (Key-Variance Hypothesis) For all fixed data values j, the ran-
dom variable pj(K) follows the normal distribution, that is,

pj(K) ∼ N (pj , σ
2),

where the variance σ2 is equal for all j = 0, . . . , `.

With the notation used in Hypothesis 1, we indicate that the expected values
pj = ExpK(pj(K)) of pj(K) taken over the random key K may be different
while the variance VarK(pj(K)) of pj(K) has the same value σ2 = VarK(pj(K))
for all j = 0, . . . , `.

Under this hypothesis we can determine the distribution of a constant mul-
tiplier of C(K).

Theorem 3. Suppose that Hypothesis 1 holds for the distributions pj(K). Let
us denote by C0 the capacity of the expected distribution pj, j = 0, 1, . . . , `. Then

C(K)

(`+ 1)σ2
∼ χ2

`(δ),

where

δ =
C0

(`+ 1)σ2
. (13)

Proof. Let us denote Q(K) = C(K)/(`+ 1)σ2. Then by Hypothesis 1 and the
definition of the χ2 distribution we get

Q(K) =
∑̀
j=0

(pj(K)− 1
`+1 )2

σ2
∼ χ2

`(δ). ut

In some cases, it is possible to derive the following relation between σ2 and
the expected capacity

ExpK(C(K)) = (`+ δ)(`+ 1)σ2.

Such cases will be shown in the next two corollaries. Recall that the expected
capacity, or an accurate estimate of it, may be available from an offline analysis
of the cipher. If we can compute σ2 given the expected capacity, then the pa-
rameters of the distribution of capacity will be determined. Let us denote the
expected value of C(K) taken over random K by the symbol C.
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Corollary 3. Suppose that the distributions pj(K) satisfy Hypothesis 1, and
that ` > 50. Then

C(K) ∼ N
(
C,

2`+ 4δ

(`+ δ)2
C2

)
.

Proof. By Theorem 3

ExpK(
C(K)

(`+ 1)σ2
) = `+ δ,

from where we obtain C = ExpKC(K) = (`+ δ)(`+ 1)σ2. ut

In the second case, δ = 0, that is, we have a central χ2 distribution. Recall
that if X ∼ χ2

` and a > 0 then aX ∼ Γ
(
`
2 , 2a

)
with Exp(aX) = a` and

Var(aX) = 2`a2.

Corollary 4. (Multidimensional case) Suppose that the distributions pj(K) sat-
isfy Hypothesis 1, and pj = 1

`+1 , that is, C0 = 0. Then δ = 0, and C(K) follows
gamma distribution

C(K) ∼ Γ
(
`

2
, 2(`+ 1)σ2

)
and its expected value and variance are

ExpK(C(K)) = `(`+ 1)σ2 = C,

VarK(C(K)) = 2`
(
(`+ 1)σ2

)2
=

2

`
C2.

Note that Hypothesis 1 holds trivially for ` = 1 and for one-dimensional
linear approximations with a large number of characteristics. Moreover, for a
long-key cipher the expected value of the correlation is equal to zero. Then we
get Theorem 22 of [16] as a special case of Corollary 4 with ` = 1, and moreover,
can apply it to linear approximations with i.i.d correlations (as the key varies)
to obtain the following result.

Corollary 5. (Multiple case) Suppose that we have multiple statistically inde-
pendent linear approximations (ui, vi) such that cor(ui, vi) = cori(K) ∼ N (0, λ),
for all i = 1, . . . , `. Then

C(K)

λ
=

∑`
i=1 cor2i
λ

∼ χ2
` ,

and C(K) has the following expected value and variance

ExpK(C(K)) = `λ = C,

VarK(C(K)) = 2`λ2 =
2

`
C2.
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4.3 Statistical Model for the Right Key

In this section we will show how to build a comprehensive statistical model
of the right-key behavior of the statistic T given in Equations (1) and (2) by
considering it as a random variable over the random data sample D of size N
and the random key K. To highlight this approach we denote T = T (D,K), and
compute its expected value and variance over D and K using the common rules
as follows:

ExpD,K (T (D,K)) = ExpK (ExpD(T (D,K))) ,

VarD,K (T (D,K)) = ExpK (VarD(T (D,K))) + VarK (ExpD(T (D,K))) .(14)

The values ExpD(T (D,K)) and VarD(T (D,K)) were derived in Section 4.1.
To compute the variance over the key VarK (ExpD(T (D,K)) we use the results
from Section 4.2 and must make some assumptions about the behavior of the
cipher.

In the special case of a key alternating block cipher with independent round
keys, it is well known that the average of the correlation coru,v(K) taken over
the keys is equal to zero, which is easy to prove directly. Then by using the well
known fact

pj(K) =
1

`+ 1

∑
u,v

(−1)(u,v)·jcoru,v(K)

we obtain that the average value of pj(K) taken over all keys K is equal to 1
`+1

for all j = 0, . . . , `.
In general, if the round keys are not independent, it is difficult to compute the

averages of pj(K) over the keys and to check how uniform they are. In Figure 1
of [27] such computations have been done over 7 rounds of PRESENT using
correlation matrices, but this approach is not feasible over many more rounds
due to the details of the key schedule. Nevertheless, it may be quite realistic to
assume that practical ciphers with strong key schedules have this property.

Next we state assumptions under which we can build the model for the right-
key behavior. The statistical models presented in [19] are based on the same
assumptions although only the first one is highlighted there as a hypothesis.

Hypothesis 2 (Right-Key Hypothesis - Multidimensional) For each fixed value
j ∈ {0, 1, . . . , `}, the random variables pj(K) computed for random encryption
keys K follow the normal distribution, that is,

pj(K) ∼ N (
1

`+ 1
, σ2),

where the variance σ2 is equal for all j = 0, 1, . . . , `.

Hypothesis 3 (Right-Key Hypothesis - Multiple) For each fixed value i ∈ {1, . . . , `},
the random variables cori(K) computed for random encryption keys K follow the
normal distribution, that is,

cori(K) ∼ N (0, λ),

17



where the variance λ, that is, the average squared correlation (also denoted as
ELP), is equal for all i = 0, 1, . . . , `.

Then by Theorems 1 and 2 and Corollaries 4 and 5 we obtain the following
result:

Theorem 4. Suppose that the random variables pj(K), j = 0, 1, . . . , ` satisfy
Hypothesis 2, or alternatively, cori(K), i = 1, . . . , ` satisfy Hypothesis 3. Let
us denote by CR the expected value of the capacity for the right key. Then the
statistic TR(D,K) computed either as in Equation (2) or as in Equation (1),
respectively, has the following mean and variance

ExpD,K (TR(D,K)) = B`+NCR and (15)

VarD,K (TR(D,K)) =
2

`
(B`+NCR)

2
,

where B is defined as in Equation (10).

Proof. By the above mentioned results, we have

ExpK
(
VarD(B−1TR(D,K)

)
= 2`+ 4B−1NCR and

VarK
(
ExpD(B−1TR(D,K)

)
= VarK

(
`+B−1NCR(K)

)
= 2B−2N2`−1C2

R.

Combining these using Equation (14) gives the variance of B−1TR(D,K) as
2
`

(
`+B−1NCR

)2
, from where we get the claimed value of the variance of

TR(D,K). ut

4.4 Statistical Model for the Wrong Keys

In this section, the results from Section 4.2 are applied to determine the param-
eters of the distribution of the test statistic computed for a wrong key.

Another important class of applications are the data distributions obtained
using wrong keys in key-recovery algorithms. Next we formulate a general wrong-
key randomization hypothesis which generalizes the one given in [12] to the case
where the distinguisher is based on a distribution of a data value of more than
one bit.

Hypothesis 4 (Wrong-Key Hypothesis - Multidimensional) For any fixed j the
random variables pj(K) over the wrong keys K follow the normal distribution
with

pj(K) ∼ N
(

1

`+ 1
, 2−n

1

`+ 1
(1− 1

`+ 1
)

)
.

The rationale behind this hypothesis is that when the key is wrong and the
full plaintext space of size 2−n is sampled the number of plaintexts that give the
value j is binomially distributed with uniform probability 1

`+1 .
For the special case ` = 1 studied in [12] this hypothesis means that the bias

p0(K)− 1
2 is normally distributed with the mean equal to zero and the variance
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equal to 2−n−2 thus agreeing with the wrong-key hypothesis stated in [12], see
also [16], Corollary 6.

Under this wrong-key hypothesis and by substituting σ2 = 2−n 1
`+1 (1− 1

`+1 )
to the result of Corollary 4 we get the following capacity distribution for the
wrong keys.

Corollary 6. (Multidimensional case) For the wrong keys K the quantity C(K)
corresponding to the capacity of the distribution pj(K) follows gamma distribu-
tion

C(K) ∼ Γ
(
`

2
, 21−n(1− 1

`+ 1
)

)
.

The mean and the variance are as follows

ExpK(C(K)) = 2−n`(1− 1

`+ 1
)

VarK(C(K)) = 21−2n`(1− 1

`+ 1
)2 =

2

`
ExpK(C(K))2.

Let us note that Corollary 7 of [16] is a special case of this result with ` = 1.
When the linear attack involves multiple independent linear approximations

we make the following assumption about the behavior of wrong keys.

Hypothesis 5 (Wrong-Key Hypothesis - Multiple) The correlations cori(K),
i = 1, . . . , ` over the wrong keys K are i.i.d. and follow the normal distribution
with

cori(K) ∼ N
(
0, 2−n

)
.

We apply Corollary 5 again to get the following capacity distribution for the
wrong keys when multiple independent linear approximations are used, and we
get another generalization of Corollary 7 of [16].

Corollary 7. (Multiple case) For the wrong keys K the quantity C(K) cor-
responding to the capacity of the ` independent linear approximations (ui, vi)
follows a gamma distribution

C(K) ∼ Γ
(
`

2
, 21−n

)
.

The mean and the variance are as follows

ExpK(C(K)) = 2−n`

VarK(C(K)) =
2

`
ExpK(C(K))2 = 21−2n`.

If we denote the expected wrong-key capacity by CW we have also in the
multidimensional case

CW = ExpK(C(K)) ≈ 2−n` and (16)

VarK(C(K)) =
2

`
C2
W ≈ 21−2n`
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for larger `. We will use this estimate in the following.
Analogically to the case of the right-key distribution we apply the results

from Sections 4.1 and 4.2 and combine them to get the following distribution of
the statistic T (D,K) which we now denote by TW (D,K) as it is computed from
the wrong-key data.

Theorem 5. Suppose that the random variables pj(K), j = 0, 1, . . . , ` satisfy
Hypothesis 4, or alternatively, the correlations cori(K), i = 1, . . . , ` satisfy Hy-
pothesis 5. Then the statistic TW (D,K) computed either as in Equation (2) or
as in Equation (1), respectively, has the following mean and variance

ExpD,K (TW (D,K)) ≈ B`+NCW and (17)

VarD,K (TW (D,K)) ≈ 2

`
(B`+NCW )

2
,

where B is defined as in Equation (10).

We highlight the following special case and state it as a separate corollary.

Corollary 8. In the context of Theorem 5 suppose that sampling is done using
distinct plaintexts. Then the statistic TW (D,K) has the following mean and
variance

ExpD,K (TW (D,K)) ≈ ` and

VarD,K (TW (D,K)) ≈ 2`.

Proof. By substituting CW = `2−n and B = (2n−N)/(2n−1) to Equation (17)
we get the result. ut

Interestingly, these are exactly the parameters that have been used in previous
works to model the wrong-key distribution for sampling without replacement
in multidimensional zero-correlation attacks, for example, in the derivation of
Lemma 3 in [9, 11]. However, no justification of these parameter values can be
found in the previous literature. As sampling with replacement from a uniform
distribution has the same parameters, it is possible that those parameters have
been reused in the lack of anything better. Fortunately, the parameter values
were correct and the existing zero-correlation attacks that use distinct plaintext
remain correct.

The situation is not that fortunate for general multidimensional linear at-
tacks that use non-distinct plaintext. The data complexity estimate as given
in Equation (5) has been derived under the hypothesis that the wrong-key
data is drawn from the uniform distribution with ExpD,K (TW (D,K)) = ` and
VarD,K (TW (D,K)) = 2`, see Equation (17) of [18]. This is certainly too op-
timistic for the attacker, since the true cipher data distributions in multidi-
mensional linear approximations never become completely uniform, indepen-
dently of how many rounds of the cipher is considered. At the lowest, the
capacity tends to be around 2−n`, that is, equal to the wrong-key capacity
estimated by our analysis above. The more realistic values of parameters in
the case of non-distinct plaintext are ExpD,K (TW (D,K)) = `(1 + N2−n) and
VarD,K (TW (D,K)) = 2`(1 +N2−n)2 as given by our analysis in Theorem 5.
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In the last two sections we have determined the means and variances of the
joint data and key distributions for the right and wrong keys. If the number ` of
approximations is large the non-central data distribution of the test statistic can
be approximated with the normal distribution. Then also the gamma distribution
of capacity over the key (right or wrong) can be approximated by the normal
distribution, and consequently, the joint distribution is approximately normal.

Taking an alternative approach and considering the joint data and key distri-
butions of the observed frequences V [j] = V [j](D,K) and observed correlations
ˆcori = ˆcori(D,K) and assuming that they approximately follow normal destri-

butions we can show that the test statistic T (D,K) has a gamma distribution
for all values of `. Note that if for each fixed key the observed frequency (or the
correlation) is assumed normal deviate, as previously done in this paper, and if
as assumed in the key distribution hypothesis that its expected value over the
key is also a normal deviate, then the assumption is satisfied for the joint data
key distribution.

Theorem 6. Suppose that in the context of Theorem 4 or Theorem 5 the ob-
served random variables V [j](D,K), j = 0, 1, . . . , ` or ˆcori(D,K), i = 1, . . . , `
approximately follow normal distributions. Then

T (D,K) ∼ Γ
(
`

2
, 2(B +N

C

`
)

)
,

in both the right key case K = KR, C = CR, and wrong key case K = KW ,
C = CW . Its mean and variance agree with the previously derived values in
Equation (15) and, respectively, Equation (17).

Proof. We give the complete proof for the multidimensional case. The case of
multiple independent approximations is analogical. By taking the fixed-key pa-
rameters as given in the proof of Theorem 1 and combining them with the ones
assumed in Hypothesis 2, or respectively, Hypothesis 4, we obtain

Exp

(
1

N
V [j](D,K)

)
=

1

`+ 1

Var

(
1

N
V [j](D,K)

)
=

B

N(`+ 1)
+ σ2,

where by Corollary 4 we have σ2 =
C

`(`+ 1)
. It follows that

T (D,K) =
∑̀
j=0

(
V [j](D,K)−N 1

`+1

)2
N 1
`+1

= (B +N
C

`
)
∑̀
j=0

(
1
N V [j](D,K)− 1

`+1

)2
B

N(`+1) + C
`(`+1)

.

By the assumption of the variables V [j](D,K) have normal distribution, the
claim follows. ut
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In the next section, we present results of our experiments. In particular we
compare the theoretical estimates of the mean and the variance from Equa-
tions (12) and (15) with the experimental ones.

Further, in Section 5, we present the impact of this theory on the data com-
plexity of multiple/multidimensional linear attacks. In all experiments the the-
oretical models we assume the joint data and key distribution to be close to the
normal distribution.

4.5 Experiments on SMALLPRESENT-[8] and SMALLPRESENT-
[4]

In this section, we compare the experimental and theoretical mean ExpD,K(TR(D,K))
of the variable TR in the cases of distinct-known-plaintext and of known-plaintext
distinguishing attacks. The experiments have been conducted on two scale ver-
sions [21] of the block cipher PRESENT [10]. SMALLPRESENT-[8] is a 32-bit ci-
pher designed with the 80-bit original key-schedule of PRESENT. SMALLPRESENT-
[4] is a 16-bit cipher. The round functions of both ciphers are depicted in Figure 3.
For the experiments on SMALLPRESENT-[4], a 20-bit key-schedule has been
defined. The multidimensional distributions are respectively involving ` = 255
and ` = 63 linear approximations.

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

S 7 S 6 S 5 S 4 S 3 S 2 S 1 S 0

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

S 3 S 2 S 1 S 0

Fig. 3: The round function of SMALLPRESENT-[8] (left) and SMALLPRESENT-[4]
(right).

In all cases the capacity of the multidimensional approximation used in the
theoretical models is the true value determined from the cipher.
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In Figures 4 and 5, we compare the theoretical means given by Equations (12)
and (15) of statistic TR with the experimental ones for both distinct and non-
distinct plaintext. For this cipher, the values seem to match very well.
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Fig. 4: The mean ExpD,K(TR(D,K)) for a 6-bit multidimensional distribution (` =

26 − 1) over 4 rounds of SMALLPRESENT-[4] with capacity CR = 2−9.20.

In Figures 6 and 7, the corresponding variances are analyzed. We observe
that the theoretical value is significantly improved when the key variance is
taken into account. Still there is in all cases a clear gap between the theoretical
value VarD,K(TR(D,K)) given by Equation (15) and the experimental values of
the variance.

In the computation of the theoretical value ` is taken equal to 2s−1 where s
is the dimension of the multidimensional linear approximation. It means that the
model relies on the multidimensional Hypothesis 2. We checked the validity of the
hypothesis, and only small deviation from it was observed in simulations on these
SMALLPRESENT variants. On the other hand, it is known that due to the linear
properties of the S-box, PRESENT ciphers allow accurate estimation of the
capacity using single-bit linear characteristics that can be considered statistically
independent. Therefore also the alternative approach of multiple independent
linear approximations, that is, the use of Hypothesis 3 would be justified.

Let us examine these alternative approaches in the case of SMALLPRESENT-
[8]. The observed multidimensional linear approximation consists of 4 bits of
input to one S-box and 4 bits output of one S-box after 9 rounds. If Hypothe-
sis 2 is applied, we take ` = 28 − 1. By this approach we get an underestimate
of the variance of TR which is depicted in Figure 7. On the other hand, the

23



8.5

9

9.5

10

10.5

26 27 28 29 30 31 32

lo
g
2
(E

x
p
K
,D
(T

(K
,D

))
)

log2(N)

`(1 −N/2n) + NC
Exp. distinct

` + NC
Exp. non-distinct

Fig. 5: The mean ExpD,K(TR(D,K)) for a 8-bit multidimensional distribution (` =

28 − 1) over 9 rounds of SMALLPRESENT-[8] with capacity CR = 2−21.29.

capacity of this distribution can be estimated using the most dominant linear
characteristics between these S-boxes, that is, by taking all single-bit charac-
teristics leading from the three leftmost bits from the output of first S-box to
the three leftmost bits of the input to the last S-box. If we then apply Hypoth-
esis 3 to compute the variance, we take ` = 9 in Corollary 4, meaning that

instead of 2 · 255 · B2 + 4BNCR +
2

255
N2C2

R as given in Theorem 4 we have

VarD,K(TR(D,K)) = 2 ·255 ·B2 +4BNCR+
2

9
N2C2

R. This value, however, gives

in our experiments an overestimate of the variance of TR. The true value lies
between these two extremes. While the gap between them seems quite big, its
impact to the accuracy of the data complexity estimates turn out, however, to
be relatively small as is demonstrated in the next section.

5 Data Complexity

5.1 Data Complexity Estimates

Corollary 9. Let CR and CW the expected values of the capacity for respec-
tively the right and wrong keys, as given in Section 4.3 and Section 4.4. Taking

VarD,K(TR(D,K)) =
2

`
(B` + NCR)2, we obtain that the data complexity es-

timates Nnon−distinct and Ndistinct in respectively the non-distinct and distinct
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Fig. 6: The variance VarD,K(TR(D,K)) for a 6-bit multidimensional distribution (` =
26 − 1) over 4 rounds of SMALLPRESENT-[4] with capacity CR = 2−9.20.

context are given by the following formulas.

Nnon−distinct ≈
√

2`(ϕPS
+ ϕa)

|CR − CW | −
√

2/`(CWϕa + CRϕPS
)
. (18)

Ndistinct ≈
√

2`(ϕPS
+ ϕa)

|CR − CW | −
√

2/`(CWϕa + CRϕPS
) + 2−n

√
2`(ϕPS

+ ϕa)
. (19)

Proof. According to Equation (3) and Theorems 4, 5, we have

PS ≈ Φ

(
N |CR − CW | −

√
2/`(B`+NCW )ϕa√

2/`(B`+NCR)

)
. (20)

We then deduce that√
2/`(B`+NCR)ϕPS

≈ N |CR − CW | −
√

2/`(B`+NCW )ϕa

and that

N
(
|CR − CW | −

√
2/`(CWϕa + CRϕPS

)
)
≈
√

2`B(ϕPS
+ ϕa).

When the sampling is with replacement then B = 1 and we obtain the result. If

we consider distinct plaintexts then B ≈ 1− N

2n
and

N
(
|CR − CW | −

√
2/`(CWϕa + CRϕPS

) + 2−n
√

2`(ϕPS
+ ϕa)

)
≈
√

2`(ϕPS
+ϕa).ut
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Fig. 7: The variance VarD,K(TR(D,K)) for a 8-bit multidimensional distribution (` =
28 − 1) over 9 rounds of SMALLPRESENT-[8] with capacity CR = 2−21.29.

In the following to compare Equations (18) and (19) we denote by λ ≥ 0 the
quantity defined by CR = λ · CW , λ ≥ 0. As given by Equation (16) we have
CW = `/2n and Equation (18) becomes

Nnon−distinct ≈ 2n(ϕa + ϕPS
)

|λ− 1|
√
`/2− (ϕa + λϕPS

)
,

and Equation (19) becomes

Ndistinct ≈ 2n(ϕa + ϕPS
)

|λ− 1|
√
`/2− (λ− 1)ϕPS

.

In the zero-correlation context we have λ = 0 and we obtain the results re-
called in Section 3 for respectively the non-distinct and distinct sampling meth-
ods.

Remark 1. For practical attacks we have PS ≥ 0.5 and a ≥ 1 meaning that ϕPS

and ϕa are positive values, and that (λ − 1)ϕPS
≤ ϕa + λϕPS

. Therefore we
deduce that Ndistinct ≤ Nnon−distinct.

5.2 Experiments on SMALLPRESENT-[4]

To perform a meaningful key-recovery attack, we simulated an attack on the 16-
bit reduced version of PRESENT. For this attack we selected a multidimensional
linear approximation of size ` = 26 − 1 over 4 rounds. The key-recovery attack
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was on 6 rounds meaning that 2 rounds were partially inverted. In Figure 8, we
give the results of the experiments.

When repetition of plaintexts is allowed, our model provides an underesti-
mate of the success probability at least up to the data complexity corresponding
to the full codebook. In that case, it seems that it is also possible to have a data
complexity larger than the full codebook.
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Fig. 8: Success probability of a key-recovery attack. The theoretical (Theo.) success
probability is computed from Equation (20). The parameters are n = 16, ` = 26 − 1,
CR = 2−9.20, CW = 2−10. Top: Using non-distinct plaintexts (B = 1). Bottom: Using
distinct plaintexts (B = 1 −N/216).

5.3 Impact on Existing Attacks

As explained in the end of Section 4.4, the previously developed theory to esti-
mate the data complexity of a multidimensional attack assumes a wrong expec-
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tation of CW (K). In particular, it was assumed that CW = ExpK(CW (K)) = 0,
while we now show that this one is close to 2−n`.

In practice, except for zero-correlation attacks where CR = 0, we often only
obtain an underestimate of CR. If this underestimate is smaller that CW then
|CR −CW | is overestimated and according to Equations (18) and (19), the data
complexity is underestimated. Therefore, it seems reasonable to assume that we
can estimate the complexity of a multiple/multidimensional linear attack only
if the computed value of CR is larger than CW . For instance in the multidi-
mensional linear attack on PRESENT [15], the parameters are ` = 9 · (28 − 1)
and n = 64 meaning that CW = 2−52.83. The estimate of CR derived from [15]
for different number of rounds are resumed in Table 3. As for the attack on 26
rounds we have CR < CW , thanks to the theory developed in this paper we
now know that using the multidimensional linear approximation of [15] with the
current known estimate of the capacity, the multidimensional linear attack on
26 rounds of PRESENT is not possible. An attack on 25 rounds is only possible
for an advantage of 1 bit and will require high time complexity.

Data complexity

r attacked Estimate of CR Previously Nnon−distinct Ndistinct

rounds (over r − 2 rounds) (5) (18) (19)

22 2−44.94 (20 rounds) 253.06 253.2126 253.2118

23 2−47.55 (21 rounds) 255.66 255.8584 255.8533

24 2−50.16 (22 rounds) 258.28 258.7086 258.6723

25 2−52.77 (23 rounds) 260.88 Not possible Not possible

26 2−55.38 (24 rounds) 263.50 Not possible Not possible

Table 3: Multidimensional linear attacks on PRESENT. Computation with an advan-
tage of 8 bits and PS = 0.95.

In Table 3, we also compare the different estimates of the data complexity.
The third columns corresponds to the estimate of the data complexity made
in [18] and used in [15]. This estimate of the data complexity does not take into
consideration the variance of the capacity for the right and wrong keys. Note
that the estimate of the data complexity obtained in [19] takes into consideration
the deviation for the right key but not for the wrong keys. The estimate of
the data complexity is similar that that of Equation (5). When taking into
consideration the deviation of the capacity for the different keys as well as the
fact that CW = 2−n` we obtain in paper the estimates of the data complexity
given in the last two columns.

In this table, the difference in data complexity between the distinct and non-
distinct models is relatively small. However in some cases this one can be larger.
For instance, for the attack on 24 rounds of PRESENT if we take a = 32 instead
of a = 8 and PS = 0.99 we then have Nnon−distinct = 259.77 and Ndistinct = 259.69.
More generally, using the previous results, to have Nnon−distinct > 2Ndistinct, we
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should have 2ϕa + (λ + 1)ϕPS
> |λ − 1|

√
`/2. In the zero-correlation context

(λ = 0), for a success probability of 0.5 (ϕPS
= 0) this is possible if ϕa >

√
`/8.

Using for large advantages the approximation ϕa ≈
√

2a log(2) we obtain that
Nnon−distinct > 2Ndistinct if a > `

16 log(2) .

The results of this paper show that the impact of the key variance of the
capacity for the right and wrong keys is relatively small (influencing slightly the
data complexity of the attack) in comparison to the impact of a wrong estimate
of the capacity for the wrong keys. In particular the latter result impacts most
multidimensional/multiple linear attacks that we can find in the literature. In
Table 4, we summarize the best multidimensional linear attacks on some ciphers
and show that because CR is estimated smaller than CW = 2−n` using the
current estimated of the capacity for the right key these attacks can not be
performed.

Cipher Attacked n ` CW = 2−n` CR Ref
Rounds

PRESENT 27 64 27 · (24 − 1)? 2−55.34 2−55.33 [34]

SERPENT 11 128 256 − 1 2−72 2−114 [25]

SERPENT 12 128 256 − 1 2−72 2−116 [25]

MIBS-80 19 64 212 − 1 2−52 2−53.415 [2]

Table 4: Multidimensional linear attacks on some ciphers where CR < 2−n`. ? : ac-
cording to the value given in [34].

From a similar analysis other attacks are also impacted. In the next section we
show how the key variance influence the data complexity of truncated differential
attacks.

6 Other Statistical Attacks

6.1 Classical Linear Attacks

In this section we present the impact of taking into consideration the key-variance
on the data complexity estimate of the classical Matsui’s Algorithm 2 which
based on a single linear approximation (u, v) with only one dominant character-
istic.

Let us first summarize the classical statistical model. The test statistic is
based on the observed correlation ĉ = ˆcor(u, v). Analogically to TR and TW in the
previous sections, we denote by ĉR and ĉW the corresponding random variables
for the right and wrong keys. By using the same notation as in Section 2.2 and by
denoting ϕ′a = Φ−1(1−2−a−1) the success probability of a classical key-recovery
linear attack is expressed as

PS ≈ Φ

(
c−

√
VarD,K(ĉW )ϕ′a√
VarD,K(ĉR)

)
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where c is the absolute value of the correlation of the dominant characteristic.
For details, we refer to [26].

Until 2013 only the data variance of the observed correlation had been con-
sidered. In [12] the variance in the case of the wrong key was correctly adjusted
to

VarD,K (ĉW (D,K)) =
1

N
+ 2−n.

We now complete the model by making the corresponding adjustment to
the variance of the test statistic also in the right key case. It is well known by
the linear hull theorem [16] that the average of the squared correlations of a
characteristic is equal to the average squared correlation of the linear hull of the
linear approximation with mask pair (u, v) usually denoted by ELP(u, v)= ELP,
see [16,17]. Then the variance of the distribution of the observed correlation for
the encryption keys that have positive expected observed correlation is equal to
ELP − c2 and similarly for the case of negative expected observed correlation.
Hence the variance of the joint key and data distribution of the test statistic for
the right key to be used in the computation of the success probability is equal
to

VarD,K(ĉR(D,K)) =
1

N
+ ELP− c2.

By substituting the adjusted variances to the formula of the success probability
we get

PS ≈ Φ

(
c
√
N −

√
1 +N2−nϕ′a√

N(ELP− c2) + 1

)
.

If we take ELP = c2 for all encryption keys as in previous approaches, then this
formula is identical to Equation (6) in [12].

In reality, assuming that there is a large number of other characteristics, the
value ELP − c2 is bounded from below by the variance of random noise which
is equal to 2−n. Using this estimate, we obtain the following lower bound of the
data complexity N , to achieve the given success probability PS and advantage
a,

N ≥ (ϕ′a + ϕPS
)2

c2 − (ELP− c2)(ϕ′a + ϕPS
)2 + ϕ′2a (ELP− c2 − 2−n)

.

6.2 Impact on Truncated Differential Attacks

In [6], the following close relation between truncated differential and multidi-
mensional linear attacks has been disclosed.

Theorem 7. Let F : Fs2 × Ft2 → Fq2 × Fr2 and n = s+ t = q + r. Let a truncated
differential [(0, δt), (0, ∆r)]δt∈Ft

2,∆r∈Fr
2

with probability p equal to

p = 2−t
∑

δt∈Ft
2,∆r∈Fr

2

P [(0, δt)
F→ (0, ∆r)].
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Let a multidimensional linear approximation [(as, 0), (bq, 0)]as∈Fs
2, bq∈F

q
2

with ca-
pacity C equal to

C =
∑

(as,bq)6=(0,0)

cor2 (as · xs ⊕ bq · yq) .

We have

p = 2−q(C + 1). (21)

In the following we denote by p∗, the probability of the truncated differential
when removing the input difference 0 from the set of differences.

p∗ = 2−t
∑

δt∈Ft
2,∆r∈Fr

2,δt 6=0

P [(0, δt)
F→ (0, ∆r)].

In [5], it was shown that p∗ =
2t

2t − 1
p − 1

2t − 1
. In the following, we use the

approximation p∗ ≈ p− 2−t.
Given NS the number of generated pairs from the N plaintexts, and p∗

the probability of the truncated differential, it was previously assumed (see for
instance [5]) that the expected number of pairs fulfilling the differential was
Ns · p∗. The variance was assumed to be NS · p∗ · (1− p∗).

Meaning that given a data set D, and

TTD(D) =
1

2
#{(x, x′) ∈ D|x⊕ x′ ∈ Ft2 \ 0 and F (x)⊕ F (x′) ∈ Fr2},

we have
ExpD(TTD(D)) = NS · p∗,

and
VarD(TTD(D)) = NS · p∗(1− p∗).

Using the link between truncated differential and multidimensional linear attacks
as well as the results of the previous section, we now integrate the key variance
to this model. Note that as truncated differential attacks are usually performed
in the known-plaintext model, the analysis provided in this section is derived
from the distinct known plaintexts model of the previous sections.

As in the multidimensional linear context, we assume that the probability p∗

is not identical for all encryption keys, and we denote by p∗(K) the quantity

p∗(K) =
1

2
#{(x, x′) ∈ Fn2 |x⊕ x′ ∈ Ft2 \ 0 and FK(x)⊕ FK(x′) ∈ Fr2}.

If we denote by p∗ = ExpK(p∗(K)), from Equation (21) we obtain that VarK(p∗(K)) =
2−2qVarK(C(K)). And that

ExpD,K(TTD(D,K)) = NS · p∗, (22)

VarD,K(TTD(D,K)) = NS · p∗(1− p∗) +N2
S2−2qVarK(C(K))
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If we take as in Section 4.3 VarK(CR(K)) ≈ 2

`
C2
R we obtain from ` = 2q+s − 1

that

ExpD,K(TTDR (D,K)) = NS · p∗R,

and

VarD,K(TTDR (D,K)) ≈ NS · p∗R(1− p∗R) +N2
S21−q−s(p∗R + 2−t − 2−q)2. (23)

The previous observation lead to the following hypotheses in the truncated
differential context.

Hypothesis 6 (Right-Key Hypothesis - Truncated Differential) The random
variable p∗R(K) computed over the right keys follows the normal distribution,
that is,

p∗R(K) ∼ N
(
p∗R, 2

1−q−s(p∗R + 2−t − 2−q)2
)
,

Hypothesis 7 (Wrong-Key Hypothesis - Truncated Differential) The random
variable p∗W (K) computed over the wrong keys follows the normal distribution,
that is,

p∗W (K) ∼ N
(
2−q, 21−q−n−t

)
,

In Figures 9 and 10 we plotted the mean and the variance for SMALLPRESENT-
[4], using the same multidimensional distribution than in Section 5.2.

As from a similar analysis, we obtain for the wrong keys that

ExpD,K(TTDW (D,K)) = NS · 2−q, (24)

VarD,K(TTDW (D,K)) = NS · 2−q(1− 2−q) +N2
S21−q−n−t.

As showed latter in Corollary 10, this new estimate of the variance for the
right and the wrong keys influence the success probability of a truncated differ-
ential attack.

Remark 2. While in previous research papers, it was wrongly assumed that for
the wrong keys we have CW = 0, this error was not made in the truncated differ-
ential context. Indeed, it was previously assumed that the uniform probability in
the truncated differential context was p∗W = 2−q. Using the previous relations,
we can directly find that CW = 2qpW − 1 ≈ 2q(2−t + p∗W ) − 1 = 2q−t. From
` = 2q+s − 1 we obtain that CW ≈ ` · 2−n. As shown by this derivation, in the
link between truncated differential probability and the capacity of the associated
multidimensional linear approximation, it is important to remove the input dif-
ference 0. In particular, the condition CR > `2−n is equivalent to the condition
p∗R > 2−q. When we only have underestimate of the truncated differential prob-
ability, an attack in the truncated differential differential case is only possible
when p∗R > 2−q. Meaning that when the truncated differential is derived from
a multidimensional linear approximation, we should have CR > ` · 2−n which is
the limit for a valid attack in the multidimensional linear context.
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Fig. 9: Mean of TR for a truncated differential with probability p∗R = 2−3 + 2−13.43.
The size of a structure is 213, meaning that when NS < 225 only one structure is used.
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This analysis impacts the truncated differential on 26 rounds of PRESENT pre-
sented in [6] as well as the known-key distinguisher on the full PRESENT [7].
Indeed, in that papers, the authors assumed that p∗R ≈ pR which is not true
when pR is close to pW . While the multidimensional linear attack of [15] makes
use of 9 multidimensional approximations with total capacity 2−55.38 over 24
rounds, we provide the details for one of these multidimensional approximation
of capacity close to 2−55.38/9 = 2−58.54 (in [7] a capacity of 2−58.77 is taken
into consideration). The dimension of this multidimensional approximation is 8
and we have 2s = 2q = 24. In this case we have a truncated differential with
probability p∗R = 2−q + 2−qCR − 2n−s = 2−4 + 2−62.54 − 2−60 < 2−4, making
this distinguisher over 24 rounds of PRESENT impossible.

Corollary 10. Given ε = p∗R − 2−q. From the expression of the mean and the
variance for the right and wrong keys, we get the following estimate of success
probability of a truncated differential attack involving 2t−1 input differences and
2n−q output differences.

PS ≈ Φ

( √
NSε−

√
2−q(1 +NS21−n−t)ϕa√

2−q + ε+NS21−q−n−t(2tε+ 1)2

)
.

The success probability of a last-rounds truncated differential attack using the
previous distribution is plotted in Figure 11 and is comparable to Figure 8.
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Fig. 11: Success probability of a TD attack on 6 rounds of SMALLPRESENT-[4]. The
size of a structure is 2t = 213 meaning that when the data complexity N < 213, we
have NS = N2.
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Using the formula of the success probability, which takes into considera-
tion the variance of the truncated differential probability for both the right
and wrong keys, provided in Corollary 10 and the parameters of [7], adjusting
p∗R = pR−2−60, we obtain a known-key distinguisher on 29 rounds of PRESENT
with success probability 55% instead of a distinguisher on the full 31 rounds of
PRESENT.

7 Conclusion

In this paper, we reconsider the theoretical model of statistical attacks on block
ciphers. While a large part of the paper is dedicated to the presentation of the
new statistical model for multiple and multidimensional linear attacks, we show
that the same priciples can be used to obtain a tighter estimate of the data
complexity of other statistical attacks.

The theoretical model based on the joint data and key distribution is not only
of theoretical interest but can also be applied in practice to obtain new informa-
tion about existing statistical attacks. Probably the most impactful contribution
of the paper is the correction of the erroneous ad hoc estimate of the expected
capacity for the wrong keys in the ordinary known-plaintext multidimensional
linear attack. In particular we showed that correcting it from 0 to 2−n` has fa-
tal consequences on most of the existing multidimensional linear attacks. On the
positive side, thanks to the corrected wrong-key model, we can now run the mul-
tidimensional zero-correlation attack also for non-distinct plaintext, which was
previously known only for zero-correlation attacks using multiple independent
linear approximations.

Another positive result we achieve from the new model is that the ad hoc
parameters used for the wrong-key distribution in the distinct-known-plaintext
multidimensional zero-correlation attacks are correct.

We also looked at the distinct-known plaintext sampling model in the ordi-
nary multidimensional linear context and illustrated that in some cases this way
of sampling might significantly reduce the data complexity. On the other hand,
we observed in the experiments that if we increase the size of the data sample
beyond the size of the full codebook in the classical known-plaintext context we
can achieve the same advantage and success probability as when using the full
codebook in the distinct-known-plaintext context.

Taking into consideration the key-variance of the capacity for both the right
and wrong keys we improve the accuracy of the data complexity estimate of
the multiple/multidimensional linear attack. While in this paper we present ap-
proaches to compute estimates of the key-variance of the capacity of the distri-
bution obtained from the cipher data using the right key, we observed in the
expriments that they are still not tight. We believe such estimates and methods
for achieving them depend strongly on the cipher and leave them for future in-
vestigation. Also the actual form of the joint data and key distribution of the
test statistic is left open in this paper. We provided the mean and the (esti-
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mate of the) variance, which allow to compute the data complexity under the
assumption that the normal approximation of the distribution is valid.
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27. Andrea Röck and Kaisa Nyberg. Generalization of Matsui’s Algorithm 1 to linear
hull for key-alternating block ciphers. Des. Codes Cryptography, 66(1-3):175–193,
2013.
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