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Abstract. The power of a statistical attack is inversely proportional to
the number of plaintexts needed to recover information on the encryption
key. By analyzing the distribution of the random variables involved in
the attack, cryptographers aim to provide a good estimate of the data
complexity of the attack. In this paper, we analyze the hypotheses made
in simple, multiple, and multidimensional linear attacks that use either
non-zero or zero correlations, and provide more accurate estimates of
the data complexity of these attacks. This is achieved by taking, for the
first time, into consideration the key variance of the statistic for both
the right and wrong keys. For the family of linear attacks considered in
this paper, we differentiate between the attacks which are performed in
the known-plaintext and those in the distinct-known-plaintext model.
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1 Introduction

1.1 Background and Previous Work

After being introduced a quarter of a century ago, the classical linear [25] and dif-
ferential [5] cryptanalysis methods have been extended to various more evolved
statistical attacks. A generalization of differential attacks, known as truncated
differential attacks [21], take advantage of simultaneously multiple differential
approximations. Since the invention of linear cryptanalysis, several authors have
considered taking advantage of multiple linear approximations, but the first gen-
eral statistical model was not presented until in [6]. The theoretically restrictive
assumption of independence of linear approximations was removed in the model
developed in [19] on the cost of taking into account a family of linear approxima-
tions which covers a linear space excluding zero. More recently zero-correlation
linear attacks [9,11,13] were introduced. While the linear attacks usually exploit



linear approximations that are, for a random encryption key, expected to have
correlation of large absolute value, zero-correlation attacks make use of linear
approximations which are unbiased, that is, have correlation equal to zero, for
all encryption keys.

The aim of a statistical key-recovery attack is to search for the correct value
for some bits of the encryption key based on a known statistical property of
the cipher. This property is expected to be detected only for the correct key
candidate, while wrong key candidates which are far from satisfying the property
can be discarded. To estimate the data complexity of a statistical attack, the
probability distributions of the involved random variables for the right and wrong
keys are analyzed. These distributions depend on both the data sample used to
compute it as well as the encryption key and the key candidate.

Distinct-known-plaintext attacks. The work done in this paper is motivated by
the zero-correlation linear attacks, where two different statistical models had
been in use. The model for multidimensional linear zero-correlation attacks as-
sumed distinct known plaintext [11], while the attacks using multiple indepen-
dent linear approximations assumed just known plaintext not excluding repeti-
tions [9, 13]. We observe that the differentiating factor of the statistical models
is not whether the attack is multidimensional or multiple, but instead, whether
distinct plaintext is assumed or not. In this paper, we develop on distinct-known-
plaintext attacks. In particular, we show that avoiding repetition in the plain-
texts when the data complexity is close to the full codebook could present some
interest not only for multidimensional zero-correlation attacks but also for mul-
tiple zero-correlation attacks and more generally for all known-plaintext attacks.
In particular using distinct-known-plaintext we improve the data complexity of
some multiple zero-correlation linear attacks and key-invariant attacks [8].

Right- and wrong-key hypothesis in key-recovery attacks. Previously, most sta-
tistical models used in linear attacks determine and exploit distributions of the
attack statistic with fixed keys and taking only the data as random variable.
Then it is assumed that for all cipher keys, the distributions for wrong key can-
didates are identical, and similarly, that the distributions obtained with correct
key are identical. This practice may be due to the fact that for most ciphers, we
are only able to estimate the expected value of a linear correlation, but estimating
the variance is difficult. Previously, in [17,18] the authors provide experiments to
show that also significant variances occur. In particular they present an estimate
of the variance of correlation in the wrong-key case. In [12], this influence of the
wrong-key variance for a simple linear attack was taken into consideration and
a better estimate of the data complexity of a linear attack was obtained and
demonstrated in experiments. In [20], the distribution of the capacity for the
right encryption key was established and was used to determine weak-key quan-
tiles, that is, lower bounds of capacity that are satisfied by a given proportion,
say one half, or 30% of the keys. Such approach was previously taken in [23] in
the case of single linear hull. Zero-correlation multiple or multidimensional lin-
ear attack is a special case, where for all correct keys the data is drawn from an
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identical probability distribution. For the wrong keys, however, the distributions
are not identical, a fact that has been ignored in the literature until recently.

Contributions of this paper. In this paper, we present the first complete treat-
ment of the statistical distributions of linear attack test statistics, that is, the
empirical correlations and capacities, by considering both the data and the key
as random variables. We analyze and combine the different models previously
presented and go beyond by studying the joint probability distribution of the
test statistic both in the wrong-key and right-key case and present formulas for
success probability and data complexity. In addition, the new statistical model
takes also into account whether the data sample is obtained by the usual known
plaintext sampling or the recently considered distinct plaintext sampling first
introduced in the context of multidimensional zero-correlation attacks [11].

Outline. The outline of this paper is as follows. We start in Section 2 by pre-
senting all the required background about linear key-recovery attacks including
statistical tools and properties of correlations. Section 3 is dedicated to the clas-
sical linear context. We present separately the case of linear approximation with
single dominant characteristic and the case of several characteristic. In both con-
texts we take into consideration the key deviation of the correlation for both the
wrong and right keys. Section 4 is dedicated to the presentation of the multiple
and multidimensional linear attacks and a more accurate statistical model these
attacks is presented. Based on this model, in Section 5, we provide new estimates
of the data complexity of a multiple/multidimensional linear attacks and present
in Section 6, as an application, the case of zero-correlation linear cryptanalysis.
Section 7 concludes this paper.

2 Correlation and Statistical Key-Recovery Attack

2.1 Correlation and Key Search

Iterated block cipher. Matsui’s Algorithm 2 [25] is a statistical cryptanalysis
method for finding a part of the last round key for an iterated block cipher. An
iterated block cipher with block size n bits processes plaintext x ∈ {0, 1}n and
expanded key K ′ = (k1, k2, . . . , kr) by iterating a key-dependent round function
gk with k = ki, i = 1, 2, . . . , r, to obtain ciphertext y, see Figure 1.

- - - - -x ygk1 gk2 gkr−1 gkr

Fig. 1: Iterated block cipher of r rounds with round function g and expanded encryption
key (k1, k2, . . . , kr).
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Last-round key-recovery attack. Key-recovery attacks on iterated block ciphers
allow to recover information on the key-bits involved in one or more of the first
rounds or last rounds, or both [4, 25]. To keep the notation simple, we restrict
the description in this paper to key recovery attacks over the last round.

Let K ′ = (K, kr) denote the extended key, that is, K is the concatenation of
the keys k1, k2, . . . , kr−1. The first prerequisite for the last-round key recovery
attack is the so-called last round trick, which means that there is a part y′ of
ciphertext y that can be computed from a part of the input to the last round
and a part of the last round key kr using a bijective function. Let us denote this
part of kr by k′r and the bijective function by Gk′r . Then it holds (see Figure 2)
that

y′ = Gk′r (E′K(x)),

where E′K is the encryption function over r − 1 rounds with its range restricted
to the domain of Gk′r .

�

H
-x - - y′E′K Gk′r

G−1
κ� �

?
G−1
κ (y′)

Fig. 2: Last round key recovery attack.

Then the attacker tries all possible key candidates κ of k′r. For the right key
candidate κ = k′r it holds that G−1κ (y′) = E′K(x), that is, the resulting data is
the same as obtained by encrypting plaintext x over r − 1 rounds of the cipher.

The last round trick is not specific to linear cryptanalysis, but is often used
also in the context of other statistical cryptanalysis, e.g., differential attacks. The
important prerequisite for this type of attack is that the cipher has a statistical
property that can be observed from the data obtained from r − 1 rounds of the
cipher.

Correlation. The classical linear cryptanalysis exploits a biased linear combi-
nation of input and output bits over r − 1 rounds of encryption E′K . Given a
vector u in the plaintext space and a vector v in the output space of E′K the
Boolean function u · x ⊕ v · E′K(x) is called the linear approximation over E′K
with input mask u and output mask v, where “·” denotes the inner product. For
example, u · x is the modulo 2 sum of the coordinate-wise products of u and x.
The strength of this linear approximation, also denoted as (u, v), is measured by
its correlation defined as

cor(u, v)(K) =

2−n
[
# {x ∈ {0, 1}n|u · x+ v · E′K(x) = 0} −# {x ∈ Fn2 |u · x+ v · E′K(x) = 1}

]
.
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Description of the attack. In the offline analysis of the cipher, the attacker selects
a linear approximation (u, v) such that cor(u, v)(K) is large in absolute value,
for all K. To launch an online attack, the cryptanalyst obtains a data sample
from the cipher. We denote the data sample by D and the number of data items
in D by N . In the case of classical linear cryptanalysis D is a set of plaintext-
ciphertext pairs (x, y). From the ciphertext y only the part y′ is used in the
attack.

Then the correct value k′r is searched by trying all candidates κ and seeing
if the cipher property, in this case large correlation, is observable from the data.
To this end, the attacker obtains pairs (x,G−1κ (y′)), for all (x, y′) ∈ D, and
determines the empirical correlation

ĉ(D,K, kr, κ) =
2

N
#{(x, y′) ∈ D |u · x+ v ·G−1κ (y′) = 0} − 1.

After examining all candidates κ of k′r, the cryptanalyst selects a set of key-
candidates κ that achieve the top largest values |ĉ(D,K, kr, κ)|.

Success probability and advantage of the attack. It has become customary to de-
note by 2−a the proportion of keys that are discarded in this screening process
and call the exponent a the advantage of the attack [30]. On the other hand,
the cryptanalyst must take care that the correct key k′r is among the survived
keys. Let us denote by PS the probability that the correct key k′r survives. Then
PS is called the success probability of the attack. The value a can also inter-
preted as the number of key bits correctly determined by the screening process
and therefore a is usually taken as a positive integer. Then the remaining key
bits are determined by exhaustive search and the correct solution is found with
probability PS . Clearly, there is a trade-off between a and PS . But more impor-
tantly, the larger |cor(u, v)(K)| is, the larger values a and PS can be achieved
by increasing the sample size N . The relationship between these quantities is
established using a statistical model. In this section we provide the detail in the
linear attack context.

(Distinct)-known plaintext attack. The statistical model depends also on the
way the cryptanalysts obtain the data sample. The pairs (x, y′) can be obtained
by receiving them randomly, in which case, the attack is called known-plaintext
(KP) attack. This can be modeled as picking x randomly and obtaining y′ for it.
In statistical terms, we say that the sampling of (x, y′) is done with replacement.
As the sample size grows, sorting out repetitions becomes infeasible due to the
memory and time requirements. Therefore, KP sampling is the most commonly
used model for linear cryptanalysis. In this paper, we will also study sampling
of distinct-known plaintext (DKP). In practice, it means that the cryptanalyst
generates a set of non-repeating but otherwise random plaintext x and obtains
the corresponding ciphertexts. In statistical terms, the pairs (x, y′) are sampled
randomly without replacement.
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2.2 Statistical Distributions

To estimate the data complexity of a statistical attack, we study the distribution
of the random variables involved in the attack.

Let us denote by Z = Z(D,K, kr, κ) the random variable corresponding to
the number of solutions of the equation u ·x+v ·G−1κ (y′) = 0, where (x, y′) ∈ D.
The n-bit block cipher with a fixed key K determines a probability p for a
randomly selected x to satisfy this equation. It is well known [18,25] that in case
of KP sampling, the variable Z follows a binomial distribution with expected
value Np and variance Np(1− p). In case of DKP sampling, by definition of the
hypergeometric distribution, the variable Z follows a hypergeometric distribution
with expected value Np but with variance

Np(1− p)2n −N
2n − 1

,

which goes to zero as the sample size grows.
In this paper, we often consider KP and DKP alternatives within the same

model. To this end, we introduce the following constant B which is defined by

B =

{
1, for KP,
2n −N
2n − 1

, for DKP.
(1)

Both the binomial distribution and hypergeometric distribution allow tight ap-
proximation using the normal distribution [33]. It means that a discrete random
variable Z with binomial or hypergeometric distribution, whose all values are
integers, is related to a continuous normal deviate X such that

Pr(Z = ζ) ≈ Pr(ζ − 1

2
≤ X < ζ +

1

2
) (2)

In particular, the expected values and variances of Z and X are equal. In this
paper, when we say that a discrete random variable follows a normal (or some
other continuous) distribution, it is in the sense given in Equation (2). We then
denote by Z ∼ N (µ, σ2) a random variable Z which follows a normal distribution
with mean µ and variance σ2.

In the rest of this paper, the empirical correlation is interpreted as a discrete
random variable. Due to the connection

ĉ(D,K, kr, κ) =
2

N
Z(D,K, kr, κ)− 1

and the normal approximation of the distribution of Z(D,K, kr, κ), we say that
ĉ(D,K, kr, κ) follows a normal distribution with expected value

ExpD(ĉ(D,K, kr, κ)) = 2n−1#{x ∈ Fn2 |u · x+ v ·G−1κ (y′) = 0} − 1 = 2p− 1

and variance

VarD(ĉ(D,K, kr, κ)) = ExpD(ĉ(D,K, kr, κ)2)− (ExpD(ĉ2(D,K, kr, κ)))2

=
1

N
4p(1− p)B, (3)

6



where B is defined as in Equation (1).
It should be noted that the approximation of the binomial distribution by a

normal distribution is commonly accepted and has been verified experimentally
in [1, 12, 18]. For more detailed considerations about distributions of discrete
random variables arising from differential and linear cryptanalysis we refer to
[18].

Later in this paper, we will also consider discrete random variables that are
formed as a sum of squares of independent binomial variables. Since a sum of
squares of independent standard normal deviates follows χ2 distribution, we
will identify such a discrete random variable with a continuous χ2 distributed
variable, and say that this discrete variable follows χ2 distribution.

The probability p depends on K, kr and κ. The crucial distinction is made
between the cases κ = k′r and κ 6= k′r. Previously also the dependency of p on
different values of κ for κ 6= k′r has been studied [12]. This paper is the first to
present a statistical model of the behavior of p in the case κ = k′r as K varies in
the classical linear setting.

2.3 Statistical Hypothesis Testing

Given two random variables TW and TR with respective cumulative distribution
functions FW and FR consider a situation that we have a value Θ, called a
threshold value, such that FW (Θ) > FR(Θ). Having observed a value T we
decide that T is drawn from the distribution of TR if T > Θ. If T ≤ Θ we decide
that T is drawn from the distribution of TW . Then error probabilities, the false
alarm ε0 and the non-detection ε1, are defined as

ε0 = 1− FW (Θ) and ε1 = FR(Θ).

The condition FW (Θ) > FR(Θ) guarantees that the probability that we reject
T when it is drawn from TR is less than the probability that we accept T when
it is drawn from TW . Then Θ = F−1W (1− ε0) = F−1R (ε1) and

ε1 = FR(F−1W (1− ε0)). (4)

In the context of statistical cryptanalysis the cumulative distribution func-
tions depend on the size N of the sample in such a way that, as N grows,
Equation (4) is satisfied with smaller error probabilities 1 − ε0 and ε1. On the
other hand, given one error probability, the cryptanalyst can find an appropriate
sample size and the other error probability to satisfy Equation (4), and then can
compute a threshold value for the test.

In this paper, we will compute examples of this principle for normally dis-
tributed test variables. Let us assume now that TW and TR are normal deviates
with different means µW and µR. We consider w.l.o.g. the case µW < µR. Let
us denote the standard deviations σW and σR, respectively. Then we then have
ε0 = 1− FW (Θ) = 1− Φ(Θ−µW

σW
) and ε1 = FR(Θ) = Φ(Θ−µR

σR
), where Φ denotes

the cumulative distribution function of the standard normal distribution. From
the symmetry of central normal distribution we get that ε1 = 1− Φ(µR−Θ

σR
),
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Let us denote by ζ0 and ζ1 the quantiles of the standard normal distribution
corresponding to the probabilities 1−ε0 and 1−ε1. It means that Φ(ζ0) = 1−ε0
and Φ(ζ1) = 1 − ε1, where Φ denote the cumulative distribution function of
the standard normal distribution. Then we compute the threshold value Θ =
µR − ζ1σR = µW + ζ0σW and by Equation (4) obtain

1− ε1 = Φ(ζ1) = Φ

(
µR − µW − σWΦ−1(1− ε0)

σR

)
, (5)

which gives the success probability of TR, that is, the probability that decision
is correct when T is drawn from the distribution of TR. Such a threshold can
be found as soon as the standard deviations σW and σR are sufficiently small to
satisfy

µW + σW ζ0 ≤ µR − σRζ1. (6)

The data complexity N is determined as the least sample size to obtain this
inequality.

3 Classical Linear Key-Recovery Attack

3.1 Matsui’s Algorithm 2

A linear approximation (u, v) over E′K consists of linear characteristics that are
given as sequences τ = (τ0 = u, τ1, . . . , τr−2, τr−1 = v) and its correlation can be
computed as a product of round-by-round correlation matrices [16]

c(u, v)(K) =
∑
τ

r−1∏
i=1

cor(τi−1 · z + τi · gki(z)), (7)

where the sum is taken over all characteristics τ of the linear approximation
(u, v).

The classical case of Matsui’s Algorithm 2 relies on the assumption that there
exists a single τ such that

c(u, v)(K) ≈
r−1∏
i=1

cor(τi−1 · z + τi · gki(z))

for all keys K. Moreover, the original attack assumes that the block cipher is
key-alternating, that is, the round function is of the form gk(z) = g(x⊕k). Then
a characteristic can be presented as follows

r−1∏
i=1

cor(τi−1 · z + τi · gki(z)) = (−1)τ ·Kρτ ,

where ρτ is independent of the key. Let us denote |ρτ | = c.
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Now we can formulate the assumptions about the statistical distributions of
the empirical correlation for the wrong key and the right key. We restrict to the
KP case for direct comparison with the previous treatments.

Let us denote by KW = (K, kr, κ) the key parameters that are used in
computing the empirical correlation ĉ(D,K,Kr, κ) for the wrong key candidate
κ 6= k′r, and denote in this case the counter by Z(D,KW ) = Z(D,K,Kr, κ)
the empirical correlation by ĉ(D,KW ) = ĉ(D,K,Kr, κ). Since the data is not
obtained from the cipher, it is not expected to exhibit the bias of the linear
approximation. Specifically, it is assumed that for a given key KW , the counter
Z(D,KW ) is binomially distributed with p = 1/2, which leads to the following
assumption about the continuous approximation of this probability distribution.

Wrong-key randomization hypothesis: For a wrong key candidate, ĉ(D,KW ) fol-
lows normal distribution with parameters

ExpD (ĉ(D,KW )) = 0

VarD (ĉ(D,KW )) =
1

N
.

In a similar way, let us denote by KR = (K, kr, κ) when κ = k′r, and de-
note by Z(D,KR) = Z(D,K,Kr, κ) the counter and by ĉ(D,KR) the empirical
correlation in this case. Note that following the notation of Section 2.1 we have

ĉ(D,KR) =
2

N
#{x ∈ D |u · x+ v · E′K = 0} − 1

which is independent of the value of kr and κ = k′r. The expected value of
ĉ(D,KR) taken over data D is then the correlation c(u, v)(K) of the linear
approximation, which for each key K is assumed to be equal to c or −c in this
classical case of a single dominant characteristic. This leads to the following
assumption.

Hypothesis of right-key equivalence: For all correct key κ = k′r the empirical
correlation ĉ(D,KR) follows normal distribution with parameters

ExpD (ĉ(D,KR)) = ±c

VarD (ĉ(D,KR)) = ExpD

(
(ĉ(D,KR)− ExpD (ĉ(D,KR)))

2
)

=
1

N
(1− c2).

Here it is usually estimated 1− c2 ≈ 1. Under these assumptions there are three
normal distributions as depicted in Figure 3. In any practical instance with a
fixed encryption key (K, kr), only two of the distributions are present, the middle
distribution and exactly one of the other two, but the cryptanalyst does not know
which of the two. It implies that wrong keys will be accepted on both sides.

When testing the key candidates, the cryptanalyst is facing with the task
of statistical hypothesis testing: given the value |ĉ(D,K, kr, κ)| computed from
the data D, determine if the data is obtained from the cipher with the correct
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0−c c

Fig. 3: Three normal distributions related to classical linear key-recovery attack:
middle curve = wrong key KW with ExpD (ĉ(D,KW )) = 0
left curve = right key KR with ExpD (ĉ(D,KR)) = −c
right curve = right key KR with ExpD (ĉ(D,KR)) = c

last-round key κ = k′r, or if it is not from the cipher, and the key candidate κ is
rejected.

Let us now apply the hypothesis testing paradigm explained in Section 2.3 to
the key recovery attack. Let TW be the observed correlation computed with the
wrong key candidate and TR the observed correlation with the right key. Then
µW = 0 and µR = c, and σ2

W = 1/N and σ2
R = 1/N(1− c2).

Let us denote the error probabilities

α0 = 2−a and α1 = 1− PS ,

where α0 is the probability that a wrong key candidate is accepted and α1 is the
probability that the correct key is rejected. Since wrong keys can be accepted
on both sides, the error probabilities for the test are

ε0 =
1

2
α0 = 2−(a+1) and ε1 = α1 = 1− PS .

By substituting these values to Equation (5) we can solve for data complexity
bound N and threshold Θ such that Θ =

√
1/Nζ0 = c−

√
(1− c2)/Nζ1 and

PS = Φ(ζ1) = Φ

(
c− ϕa+1

√
1/N√

1− c2

)
, (8)

where we have denoted the quantiles as ζ0 = Φ−1(1 − 2−(a+1)) = ϕa+1 and
ζ1 = Φ−1(PS) = ϕPS

.
The case ExpD(ĉ(D,KR)) < 0 is a mirror image of the case explained above

and −Θ can be taken as a threshold will be −Θ. Then the key candidate κ is
accepted if ĉ(D,K, kr, κ) > Θ or ĉ(D,K, kr, κ) < −Θ and rejected otherwise.

Let us summarize the derivations in the following theorem, which is a refine-
ment of the original result of Matsui [25]. The same formula (assuming 1−c2 ≈ 1)
was derived in [30], Corollary 1, using an order statistic approach and a folded
normal distribution for the right key.
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Theorem 1. Assume that an r-round block cipher has a linear approximation
with a single dominant characteristic over r − 1 rounds and correlation with
absolute value about equal to c. Assume that the hypotheses of right-key equiva-
lence and wrong-key randomization hold. Then the key-recovery attack presented
in this section will succeed with probability PS and advantage a if the size N of
the available data sample satisfies

N ≥ (ϕa+1 +
√

1− c2ϕPS
)2

c2
.

3.2 Integrating Key Variable in the Model

Only recently, the hypothesis of right-key equivalence and the wrong-key ran-
domization hypothesis have been questioned, as it has been observed in practical
experiments that the statistical distributions may vary significantly as the key
varies. The same holds for the wrong key case. For each wrong key candidate
the statistical distribution of ĉ(D,KW ) is different. Strong evidence was brought
up that it is not accurate to model wrong keys to draw test statistic from the
uniform distribution [12,26].

The wrong key case. In [12] the distribution of the empirical correlation ĉ(D,KW )
was examined in the case of a wrong key KW . Specifically, it was noted that the
empirical correlation depends on two mutually independent random variables
KW and D. Let κ 6= k′r, and denote

c̃(KW ) = c̃(K, kr, κ) = 2n−1#{x ∈ Fn2 |u · x+ v ·G−1κ (y′) = 0} − 1

= ExpD(ĉ(D,KW )).

In other words, c̃(KW ) is the correlation of the linear approximation (u, v) com-
puted over the function G−1κ ◦ Gk′r ◦ E

′
K . The original wrong-key randomiza-

tion hypothesis assumed that these correlations are equal for all wrong keys
KW = (K, kr, κ). Based on the remark after Corollary 4.3 of [18], in [12] they
suggested to revise the wrong-key randomization hypothesis as follows.

Hypothesis 1 Revised wrong-key randomization hypothesis: For each wrong key
KW = (K, kr, κ), the function G−1κ ◦ Gk′r ◦ E

′
K is a random vectorial Boolean

function and the correlation of its linear approximation has the following distri-
bution

c̃(KW ) ∼ N (0, 2−n).

Based on this hypothesis the following result was stated in [12] but the proof
was omitted. We give also the proof here.

Theorem 2. Suppose that the revised wrong-key randomization hypothesis holds
for an r-round block cipher. Then the empirical correlation ĉ(D,KW ) is approx-
imately normally distributed with parameters

ExpD,KW
(ĉ(D,KW )) = 0 and VarD,KW

(ĉ(D,KW )) =
1

N
+ 2−n. (9)
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Proof. The aim is to determine the distribution of ĉ(D,KW ) when both D and
K are simultaneously taken into consideration as random variables. We write
ĉ(D,KW ) as a sum of two random variables

(ĉ(D,KW )− c̃(KW )) + c̃(KW ), (10)

where, for each fixed KW ,

ĉ(D,KW )− c̃(KW ) ∼ N (0,
1

N
(1− c̃(KW )2)).

We observe that 2nc̃(KW )2 ∼ χ2 with one degree of freedom and has the mean
2−n and variance 21−2n. Hence it is negligible and often omitted in similar deriva-
tions, see e.g. [30], by replacing the true variance of the first variable by a key-
independent upper-bound 1

N . Then we apply the revised wrong-key randomiza-
tion hypothesis to the second part of Equation (10), which is independent of D,
to obtain that ĉ(D,KW ) can be expressed as a sum of two independent normally
distributed variables, the first one ĉ(D,KW )− c̃(KW ) ∼ N (0, 1

N ) depending on
D only, and the second one c̃(KW ) ∼ N (0, 2−n) depending on KW . ut

The right key case. Next we complete the statistical model of the classical linear
attack by making the corresponding adjustment to the variance of the empirical
correlation in the right key case. Let us start by recalling the Linear hull theorem
for iterated block ciphers. The proof of this classical result was given in [28].
The special case of key-alternating cipher was considered and proven in [17]. It
is interesting to note that the Linear hull theorem, stated for a general Boolean
function, has found applications also in coding theory [15] and in the theory of
Boolean complexity [24].

Theorem 3. Let (u, v) be a linear approximation and denote c(u, v)(K) =
cor(u · x + v · E′K(x)) and c(u, τ, v) = cor(u · x + τ · K + c · E′K(x)). Then
the average of c(u, v)(K)2 taken over K is equal to the sum of c(u, τ, v)2 taken
over τ .

Note that c(u, v)(K) is computed as the correlation over the space of the plain-
text x with a fixed key K, while correlation c(u, τ, v) is computed over the
plaintext x and the key K. The latter is also called the correlation of the char-
acteristics τ . Let |K| denote the length of K in bits. The quantity

2−|K|
∑
K

c(u, v)(K)2 =
∑
τ

c(u, τ, v)2

where the sum on right side is taken over all characteristics τ of the linear
approximation (u, v) is called the expected linear potential of (u, v) and denoted
as ELP (u, v) or just ELP if the linear approximation is clear from the context.

Matsui’s Algorithm 2 assumes a single characteristic τ with a dominating
correlation, which takes the form (−1)τ ·Kρτ . Let us denote by K0 the keys for
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which τ ·K = 0 and by K1 the keys for which τ ·K = 1. Then the assumption
about dominating characteristic can be formalized as follows

ExpK∈K0
(c(u, v)(K)) = ρτ and ExpK∈K1

c(u, v)(K) = −ρτ .

So the expected values of the correlations taken over the the two disjoint halfs
of the keyspace are ±c. Moreover, it is natural to assume that the variances of
c(u, v)(K) over the two disjoint halfs of the keyspace are equal, that is,

ExpK∈K0
(c(u, v)(K)2)− c2 = ExpK∈K1

(c(u, v)(K)2)− c2,

in which case

ExpK∈K0
(c(u, v)(K)2) = ExpK∈K1

(c(u, v)(K)2)

= ExpK(c(u, v)(K)2) = ELP (u, v).

It follows that

VarK∈K0
(c(u, v)(K)) = VarK∈K1

(c(u, v)(K)) =
∑
t6=τ

c(u, t, v)2 = ELP − c2.

Let us state this property, which was derived under specific assumptions, as a
following hypothesis.

Hypothesis 2 Revised hypothesis of right-key equivalence: When the key K is
taken as a random variable over the half space K0 or K1, the correlations are
distributed as follows

c(u, v)(K) ∼ N (±c, ELP − c2),

where the mean is positive for one half space and negative for the other.

Theorem 4. In the context of a linear key-recovery attack of an iterated block
cipher described in this section, the empirical correlation ĉ(D,KR) approximately
follows exactly one of the two normal distributions with parameters

ExpD,K(ĉ(D,KR)) = ±c and VarD,K(ĉ(D,KR)) =
1

N
+ ELP − c2.(11)

The choice between these distribution happens with probability equal to one half.

Proof. The proof is similar to the one in the wrong key case. Assuming that these
two probability distributions can be approximated by a normal distribution, we
can write ĉ(D,KR) as a sum of two normal deviates

(ĉ(D,KR)− c(u, v)(K)) + c(u, v)(K)

For each fixed key KR, the first term is a normal deviate of the random variable
D with mean 0 and variance 1

N (1 − c(u, v)(K)2). Replacing 1
N (1 − c(u, v)2) by

its close upper bound 1
N , we obtain that (ĉ(D,KR)− c(u, v)(K))∼N (0, 1

N ) and
is independent of K. The distribution of the second term can be approximated
with exactly one of two normal distributions N (c, ELP−c2) or N (−c, ELP−c2)
depending if the distribution is taken over K ∈ K0 or K ∈ K1. We obtain the
result since we have a sum of two independent random variables. ut
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By substituting the adjusted variances to the formula of the success proba-
bility given in Equation (8) we get

PS ≈ Φ

(
c
√
N − ϕa+1

√
1 +N2−nϕa+1√

1 +N(ELP − c2)

)
.

If ELP = c2 for all encryption keys as assumed by the Hypothesis of right-key
equivalence, then this formula is identical to Equation (6) in [12].

In reality, it would be more accurate to assume the value

ELP − c2 =
∑
t 6=τ

c(u, τ, v)2

to be bounded from below by the variance of random noise which is equal to
2−n. If the equality can be assumed to hold, that is, the linear approximation
is composed of one linear characteristic and pure noise, then by taking ELP =
c2 + 2−n we obtain the following complexity bound for the KP sampling in
Matsui’s Algorithm 2

N ≥ (ϕa+1 + ϕPS
)2

c2 − 2−n(ϕa+1 + ϕPS
)2
.

This complexity bound is larger than the one given in Theorem 1 due to the
variance over the key, and gives meaningful values for c > 2−n/2(ϕa+1 + ϕPS

).

3.3 Several Dominant Characteristics

If the number of dominant characteristics is small, the approach of single dom-
inant characteristic discussed in the previous section can be applied and the
key space will be divided into 2d parts according to the expected value of the
correlation. This approach was taken in [29] where it was shown that it is possi-
ble to distinguish between different values of correlations up to seven rounds of
PRESENT. As the number of dominant characteristics grows, the correlation as
expressed in Equation (7) will take several different values with non-negligible
absolute value and it becomes unfeasible to distinguish between them. Moreover,
this often means that for an increasing number of encryption keys the correlation
will be equal, or close, to zero. Most modern ciphers have been designed like this
to avoid linear cryptanalysis. Then the key space cannot be partitioned as in the
classical Matsui’s Algorithm 2, but instead, it is considered as a whole. Conse-
quently, the expected value of the empirical correlation, now taken over all keys,
is typically close to zero. Indeed, it is very likely that the average correlation is
equal to zero. This situation is interpreted by Daemen and Rijmen [18] as fol-
lows: “The average correlation of a hull gives no indication about the complexity
of a linear attack. Therefore, we only talk about the ELP of a hull.” Next we
elaborate what this means in practice.

Let us consider a linear approximation (u, v) and denote ExpK(c(u, v)(K))
by c. Then by definition of the ELP we have VarK(c(u, v)(K)) = ELP − c2 that
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we denote by σ2. Moreover, we assume normal distribution as state it as the
following.

Hypothesis 3 Right-key randomization hypothesis: The correlations of a block
cipher are random variables of key K and follow normal distribution

c(u, v)(K) ∼ N (c, ELP − c2).

We now state the following theorem. This theorem is the basic building block of
the new statistical model of multiple linear cryptanalysis. Therefore we include
both KP and DKP cases of data sampling in this theorem.

Theorem 5. Assume that the Right-key randomization hypothesis holds. Then
the empirical correlation ĉ(D,KR) of (u, v) is a normally distributed random
variable of D and K and

ExpD,K(ĉ(D,KR)) = c and VarD,K(ĉ(D,KR)) =
B

N
+ ELP − c2, (12)

where B is defined depending of the sampling in Equation (1).

Proof. The claim follows by splitting the random variable ĉ(D,KR) to two parts

(ĉ(D,KR)− c(u, v)(K)) + c(u, v)(K).

Similarly, as in the case of a single dominant characteristic, the probability dis-
tribution of the first part can be approximated by a normal deviate which is
independent of the key variable K. It has expected value equal to zero and vari-
ance equal to B

N . By assumption, the second part is a normal deviate of the
random variable K. Then the probability distribution of ĉ(D,KR) can be ap-
proximated by a sum of two independent normal deviates which has the claimed
parameters. ut

The form of the probability distribution of c(u, v)(K) has been seen normal
for many practical ciphers [1]. One example is the cipher PRESENT [10], for
which, in addition, the expected values c of correlations are practically equal to
zero. In such a case the means of the empirical correlations in the wrong and
right key cases are the same, that is, equal to zero. But the variances are different
which makes distinguishing possible also in this case. By Theorem 2 the variance
in the wrong key case is equal to 2−n which is less than ELP . The approach
is to use the square ĉ(D,K, kr, κ)2 as a test statistic, which in both cases is
a constant multiple of a χ2-distributed random variable where the constant is
equal to B

N + ELP in the right key case and B
N + 2−n in the wrong key case.

Hence the test statistic has different means B
N +ELP or B

N + 2−n and variances

2(BN +ELP )2 or 2(BN + 2−n)2 in the right key and wrong key case, respectively.
Now the hypothesis testing approach of Section 2.3 can be applied analogically
to the classical case by replacing the normal distribution by gamma distribution.

The larger ELP , the better is the distinguisher. If multiple linear approxi-
mations with large ELP are taken into account simultaneously, the difference
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in variances can be amplified even further and the distinguisher improved. This
approach was first modeled in [6] by assuming that the involved linear approxi-
mations are independent. This model covered the statistics as a random variable
over the data sample and assumed that the behavior is practically the same for
all keys. Similarly, the extension of the statistical model to multidimensional
linear cryptanalysis presented in [19] did not take into account the effect of the
key. The goal of the next section is to complete these models and include the
key variable to them.

4 Multiple and Multidimensional Linear Attacks

4.1 Capacity

In [6] the statistical model of taking advantage of multiple independent linear
approximations in key-recovery attacks was presented. In the more recent mul-
tidimensional linear attacks introduced in [19], the attacker exploits of all linear
approximations with linear masks (u, v) 6= 0 in a linear space. The main benefit
of the latter approach is that it does not require the assumption of independence
of the linear approximations.

The main motivation and challenges of the work presented in this section
originate from the multidimensional linear attack, but due to the generic link
between linear and differential types of attacks [7], the results can also be applied
to truncated differential attacks.

To collect information of the correlations of all the linear approximations
over E′K used in the attack, the notion of capacity was introduced in [6] and
generalized in [19]. Given a set of input and output linear mask pairs (uj , vj),
j = 1, . . . , `, where (uj , vj) 6= 0, their capacity is defined as the sum of the
squared correlations:

C(K) =
∑̀
j=1

c(uj , vj)(K)2. (13)

In case the linear approximations (uj , vj) form the set of non-zero elements of
a linear space U × V of dimension s, that is, ` + 1 = 2s, then the capacity can
also be computed as

C(K) = 2s
∑̀
η=0

(
pη(K)− 2−s

)2
, (14)

where pη(K) is the probability that a data value (x,E′K(x)) restricted to U ×V
takes the value η ∈ U × V . In other words, C(K) is the squared Euclidean
imbalance [3] of the probability distribution pη(K).

While multiple and multidimensional linear attacks take advantage of a set of
linear approximations with large capacity, multiple and multidimensional zero-
correlation linear attacks [9, 11, 13] exploit linear approximations with corre-
lation equal to zero. These attacks have been proven efficient on word-oriented
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structures such as Feistel-type ciphers. When multiple approximations with zero-
correlation are used, the capacity C(K) of the set of linear approximations is
equal to zero for all keys K.

To capture the statistical behavior of capacities we develop a model that takes
also the key variance into account. The case of wrong keys is straightforward
as all empirical correlations are independently and identically distributed as
D and KW varies. The right key case requires some additional assumptions.
In [20], the cipher correlations were assumed independent and certain weak key
quantiles where determined and tested for multiple linear key recovery attack
on the PRESENT cipher.

4.2 Key-Recovery Attack

We consider the same last-round key-recovery setting as in Section 2. In (zero-
correlation) multiple/multidimensional linear key-recovery attacks the test statis-
tic is the empirical capacity of a set of linear approximations. We denote it by
T (D,K, kr, κ) and it is computed as follows

T = T (D,K, kr, κ) = N
∑̀
j=1

ĉj(D,K, kr, κ)2, (15)

where ĉj(D,K, kr, κ) is the empirical correlation of the j-th linear approximation
uj · x+ vj ·G−1κ (EK′(x)).

In multidimensional linear key-recovery attacks, the online test statistic is
computed over all non-zero linear approximations, in which case, instead of the
individual empirical correlations, cryptanalyst may compute the test statistic
over the observed data (x,G−1κ (y′)), x ∈ U and G−1κ (y′) ∈ V , also as follows

T = T (D,K, kr, κ) =
∑̀
η=0

(V [η]−N2−s)2

N2−s
, (16)

where V [η] corresponds to the number of occurrences of the value η of the
observed data distribution. In the offline analysis, only a subset of all linear
approximations in a linear space U × V are taken into consideration when the
capacity estimate is computed.

In the following, we study the statistical distributions of multiple and multi-
dimensional linear cryptanalysis as the encryption key and the wrong key candi-
dates vary and provide new key-dependent distribution parameters. With these
new developments we aim at improving the estimate of the data complexity.
One of the main obstacles that still remains is how to estimate the variance of
T (D,K, kr, κ) for κ = k′r. We will also present some approaches how to tackle
this problem.

4.3 Statistical Model for the Wrong Keys

The wrong key behavior is modeled according to the statistics of random cipher
as in [17] under the assumption that the revised wrong-key hypothesis stated
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in Section 3.2 holds. As shown in Theorem 2 and the remark after it, the em-
pirical correlation ĉ(D,KW ), KW = (K, kr, κ), where κ 6= k′r, is approximately
normally distributed with parameters

ExpD,KW
(ĉ(D,KW )) = 0 and VarD,KW

(ĉ(D,KW )) =
1

N
B + 2−n,

where the constant B is determined as in Equation (1) according to KP or DKP
sampling.

Let us denote the number of exploited linear approximations by `. Then we
can write the test statistic computed for wrong key KW in multiple or multidi-
mensional linear key recovery attack as follows

T = T (D,KW ) = N
∑̀
j=1

ĉj(D,KW )2 = (B + 2−nN)
∑̀
j=1

ĉj(D,KW )2

1
NB + 2−n

.

Note that
ĉj(D,KW )√

1
NB + 2−n

∼ N (0, 1). As for a random function, the linear approx-

imations are independent, it follows that

T

B + 2−nN
∼ χ2

` (17)

and the parameters of the probability distribution of T are as given by the
following theorem.

Theorem 6. Assuming that the revised wrong-key hypothesis holds for ` linear
approximations involved in a multiple or multidimensional linear attack, then
the statistic T (D,KW ) computed as in Equation (15) (or Equation (16)) is a
constant multiple of a χ2-distributed variable with ` degrees of freedom and has
the following mean and variance

ExpD,KW
(T (D,KW )) = B`+N2−n` and (18)

VarD,KW
(T (D,KW )) =

2

`

(
B`+N2−n`

)2
,

where B is defined as in Equation (1).

Proof. From Equation (17) and by definition of the χ2 distribution, we have

ExpD,KW

(
T

B + 2−nN

)
= `

and

VarD,KW

(
T

B + 2−nN

)
= 2`.

ut
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We highlight the following special case and state it as a separate corollary.

Corollary 1. In the context of Theorem 6 suppose that sampling is done using
distinct known plaintexts. Then the statistic T (D,KW ) has the following mean
and variance

ExpD,KW
(T (D,KW )) ≈ `

VarD,KW
(T (D,KW )) ≈ 2`.

Proof. By substituting B = (2n − N)/(2n − 1) to Equation (18) we get the
result. ut

Interestingly, these are exactly the parameters that have been used in previous
works to model the wrong-key distribution for DKP sampling in multidimen-
sional zero-correlation attacks in [9, 11]. However, no justification of these pa-
rameter values can be found in the previous literature. As KP sampling from a
uniform distribution will yield the same distribution parameters for T (D,KW ),
it is possible that those parameters have been reused in DKP case in the lack of
anything better. Fortunately, the parameter values were correct and the existing
zero-correlation attacks that use DKP remain correct.

The situation is not that fortunate for general multidimensional linear attacks
that use KP. The data complexity estimate as given in Equation (21) has been
derived under the hypothesis that the wrong-key data is drawn from the uniform
distribution with ExpD,KW

(T (D,KW )) = ` and VarD,KW
(T (D,KW )) = 2`,

see Equation (17) of [19]. This is certainly too optimistic for the attacker,
since the data distributions in multidimensional linear approximation in ran-
dom case are unlikely to become completely uniform. The more realistic values
of parameters in the KP case are ExpD,KW

(T (D,KW )) = `(1 + N2−n) and
VarD,KW

(T (D,KW )) = 2`(1 +N2−n)2 as given by our analysis in Theorem 6.

Remark 1. We denote by C(KW ) =
∑`
j=1 c̃j(KW )2 with c̃j(KW ) = c̃(K, kr, κ) =

2n−1#{x ∈ Fn2 |uj · x+ vj ·G−1κ (y′) = 0}− 1 the capacity for a given wrong key.
Assuming the Revised wrong-key randomization hypothesis, we have cj(KW ) ∼
N (0, 2−n) and by definition, a constant multiplier of C(KW ) follows a χ2 dis-
tribution with ` degrees of freedom. It means that C(KW ) follows a gamma
distribution with ExpKW

(C(KW )) = `/2n and VarKW
(C(KW )) = 21−2n`.

4.4 Modeling the Right Key Behavior

In Section 3.3, we gave the distribution of correlation of a single linear approxi-
mation (see Theorem 5). In this section we model the behavior of the statistic T
involved in a multiple/multidimensional linear attack for the right key using the
same straightforward approach as in the wrong-key case presented above. The
result is obtained by combining the squares of normally distributed correlations
into a (constant multiple of) a χ2 distributed statistic. This is basically how the
distributions of T (D,KR), for the right key KR = (K, kr, κ), where κ = k′r, were
determined in [20]. It takes the following assumption to do this:
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Hypothesis 4 (Key-variance hypothesis – multiple:) The empirical correlations
ĉj(D,KR), j = 1, 2, · · · , ` of the multiple linear approximations involved in Equa-
tion (15) are statistically independent and their expected values cor(uj , vj)(K)
taken over the data are normal deviates of K and have equal variances.

For the sake of clarity, let us introduce the following notations before present-
ing the result. Given 1 ≤ j ≤ `, the correlations of the ` linear approximations
are, for a fixed key K, denoted by cj(K) = cor(uj , vj)(K) = ExpD(ĉj(D,KR))
and cj = ExpK (cj(K)). Given the expected linear potentials ELPj = ELP (uj , vj)
as defined in Section 3.2, the capacity is

C = ExpK(C(K)) =
∑̀
j=1

ExpK(cj(K)2) =
∑̀
j=1

ELPj .

Since in general ExpK(cj(K)2) 6= ExpK(cj(K))2, we also introduce C0 =
∑`
j=1 c

2
j

which can be interpreted as the capacity of the expected correlations. We then
state the following result.

Theorem 7. Suppose that the linear approximations involved in the computa-
tion of the attack statistic as in Equation (15)

T = T (D,KR) =
∑̀
j=1

ĉj(D,KR)2

satisfy Hypotheses 2 and 4. We have

Q =
T

B + N
` (C − C0)

∼ χ2
`(δ),

where the non-centrality parameter of the χ2 distribution is

δ =
NC0

B + N
` (C − C0)

,

and B is defined as in Equation (1).

Proof. By Hypotheses 2 and 4 we can apply Theorem 5 for each j = 1, 2, . . . , `
and get that each ĉj(D,KR) follows normal distribution with parameters

ExpD,K ĉj(D,KR) = cj and VarD,K ĉj(D,KR) =
B

N
+ ELPj − c2j ,

and moreover, they are all independent.
With the notations previously defined, the summation over j gives

∑̀
j=1

VarD,K(ĉj(D,KR)) =
B

N
`+ C − C0.
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It then follows by Hypothesis 4 that

VarD,K(ĉj(D,KR)) =
B

N
+
C − C0

`
.

Moreover, by Hypothesis 4 the empirical correlations are normal deviates, mean-
ing that for all j,

ĉj(D,KR)√
B
N + C−C0

`

∼ N

 cj√
B
N + C−C0

`

, 1

 .

By definition of the non-central χ2 distribution we obtain that

Q =
T

B + N
` (C − C0)

=
∑̀
j=1

 ĉj(D,KR)√
B
N + C−C0

`

2

follows a non-central χ2 distribution with ` degrees of freedom and non-central
parameter

δ =
∑̀
j=1

cj√
B
N + C−C0

`

.

ut

Let us recall that in the multidimensional case, when the key K is fixed and the
statistic T is computed by Equation (16) over 2s data values η, the empirical
frequencies V [η] are independent random variables of D for all but one η, for
which V [η] is determined by the other values. Therefore, we only need an as-
sumption about their expected values pη(K) to prove Theorem 7 in this case.

This assumption is formulated as follows, where we recall that
∑`
η=0 pη = 1 and

therefore, for each K, only ` of the values pη(K) can be taken as free variables.

Hypothesis 5 (Key-variance hypothesis – multidimensional:) For each fixed
data value η = 0, . . . , 2s−1, the probabilities pη(K) taken as random variables of
K, are normal deviates with equal variances. Moreover, each subset of ` values
pη(K) are independent, and they determine the remaining value uniquely.

Under the previous hypothesis we obtain the following result which is similar to
the one of Theorem 7.

Theorem 8. Suppose that the expected values pη(K) = ExpD(V [η]/N) involved
in the computation of the attack statistic as in Equation (16)

T = T (D,K, kr, κ) =
∑̀
η=0

(V [η]−N2−s)2

N2−s
,
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satisfy Hypothesis 5. Then

Q =
T

B + N
` (C − C0)

∼ χ2
`(δ),

where the non-centrality parameter of the χ2 distribution is

δ =
NC0

B + N
` (C − C0)

,

and B is defined as in Equation (1).

Proof. Let us start by computing the sum of the variances of pη(K) over η =
0, 1, 2, . . . , ` = 2s − 1. We obtain∑̀

η=0

VarK pη(K) =
∑̀
η=0

(
ExpK(pη(K)2)− p2η

)
= 2−s(C + 1)− 2−s(C0 + 1) =

C − C0

`+ 1
.

Without loss of generality, we denote by p0(K) the probability that is determined
by the other probabilities. pη(K), η 6= 0. Then by Hypothesis 5

pη(K) ∼ N
(
pη,

C − C0

`(`+ 1)

)
, η 6= 0.

It follows that

Npη(K) ∼ N
(
Npη, N

2 C − C0

`(`+ 1)

)
, η 6= 0.

On the other hand, for each fixed K, the frequency V [η], η 6= 0 follows a binomial
distribution with probability pη(K). We estimate pη(K)(1 − pη(K)) ≈ 2−s as
usual. Then

V [η]−Npη(K) ∼ N (0, BN2−s), η 6= 0,

and this distribution is independent of K, and hence, independent of Npη(K) .
It follows that

V [η] ∼ N
(
Npη,

N

`+ 1
(B +

N

`
(C − C0)

)
.

The rest of the proof is analogical to the proof of Theorem 7. ut

The distribution of T = T (D,KR). Summarizing the results of Theorems 7
and 8, the test statistic T has the following parameters

ExpD,K(T (D,KR)) = (`+ δ)(B +
N

`
(C − C0) = B`+NC

VarD,K(T (D,KR)) = 2(`+ 2δ)(B +
N

`
(C − C0)2 (19)

=
2

`
((`+ δ)2 − δ2))(B +

N

`
(C − C0)2

=
2

`
((B`+NC)2 − (NC0)2).
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The form of the distribution of T can be determined in two cases:

1. ` > 50, in which case normal approximation can be used, or

2. C0 = 0, in which case T follows a gamma distribution

T (D,KR) ∼ Γ
(
`

2
, 2(B +N

C

`
)

)
.

Both of these cases are important for applications.

In the next section, we present results of our experiments when ` > 50 and
C0 = 0. In particular we compare the theoretical estimates of the mean and the
variance from Equation (19) with the experimental ones.

In the experiments we use versions of the SMALLPRESENT cipher where we
can compute the correlations and capacities for the full codebook. In practical
applications, however, the problem of how to obtain accurate estimates of the
expected values and variances of the test statistics which are needed to estimate
the data complexity of the key recovery attack. This question, as well as testing
the accuracy of Hypotheses 4 and 5 require cipher specific information. We have
investigated the case of the key-alternating block cipher and will present the
results of this work in a forthcoming paper.

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

S 7 S 6 S 5 S 4 S 3 S 2 S 1 S 0

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

S 3 S 2 S 1 S 0

Fig. 4: The round function of SMALLPRESENT-[8] (left) and SMALLPRESENT-[4]
(right).
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4.5 Experiments on SMALLPRESENT

In this section, we verify developed theory by comparing the experimental and
theoretical mean ExpD,K(T (D,KR)) of the test statistic T in the cases of DKP
and KP sampling.

The experiments have been conducted on two scale versions [22] of the block
cipher PRESENT [10]. SMALLPRESENT-[8] is a 32-bit cipher designed with
the 80-bit original key-schedule of PRESENT. SMALLPRESENT-[4] is a 16-bit
cipher. The round functions of both ciphers are depicted in Figure 4. For the
experiments on SMALLPRESENT-[4], a 20-bit key-schedule has been defined.
The multidimensional distributions are respectively involving ` = 255 and ` = 63
linear approximations.

In all cases the capacity of the multidimensional approximation used in the
theoretical models is the true value determined from the cipher.

In Figures 5 and 6, we compare the theoretical means given by Equation (19)
of statistic T with the experimental ones for both distinct and non-distinct plain-
text. For this cipher, the values seem to match very well.
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Fig. 5: The mean ExpD,K(T (D,KR)) for a 6-bit multidimensional distribution (` =

26 − 1) over 4 rounds of SMALLPRESENT-[4] with capacity C = 2−9.20.

In Figures 7 and 8, the corresponding variances are analyzed. We observe
that the theoretical value is significantly improved when the key variance is
taken into account. Still there is in all cases a clear gap between the theoretical
value VarD,K(T (D,KR)) given by Equation (19) and the experimental values of
the variance.

In the computation of the theoretical value ` is taken equal to 2s−1 where s
is the dimension of the multidimensional linear approximation. It means that the
model relies on the multidimensional Hypothesis 5, where moreover, we assume
that pη = 0, that is, C0 = 0. We checked the validity of these assumptions, and
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Fig. 6: The mean ExpD,K(T (D,KR)) for a 8-bit multidimensional distribution (` =

28 − 1) over 9 rounds of SMALLPRESENT-[8] with capacity C = 2−21.29.

only small deviation from it was observed in simulations on these SMALLPRE-
SENT variants. On the other hand, it is known that due to the linear properties
of the S-box, PRESENT ciphers allow accurate estimation of the capacity using
single-bit linear characteristics that can be considered statistically independent.
Therefore also the alternative approach of multiple independent linear approxi-
mations, that is, the use of Hypothesis 4 would be justified.

Let us examine these alternative approaches in the case of SMALLPRESENT-
[8]. The observed multidimensional linear approximation consists of 4 bits of in-
put to one S-box and 4 bits output of one S-box after 9 rounds. If Hypothesis 5
is applied, we take ` = 28 − 1. By this approach we get an underestimate of the
variance of T (D,KR) which is depicted in Figure 8. An alternative approach
could be to include only the most dominant linear characteristics between these
S-boxes, that is, by taking all single-bit characteristics leading from the three
leftmost bits from the output of first S-box to the three leftmost bits of the input
to the last S-box. This approach, however, seems in our experiments to give an
overestimate of the variance of T (D,KR). The true value lies between these two
extremes. Closing this gap and obtaining more accurate estimate of the variance
is left for future work.

5 Data Complexity

5.1 Previous Model

The multidimensional linear cryptanalysis [19] traditionally assumes known plain-
text and that the cryptanalyst does not have any means to check for repetitions
in the plaintext. Then the statistic T given in Equation (16) computed from the
multidimensional distribution for a fixed key (K, kr, κ) follows, up to a constant
multiplier, a χ2 distribution both for κ = k′r and κ 6= k′r. The parameters in the
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KP model given in [19] were the following:

Exp(T (D,KR)) ≈ `+N · C and Var(T (D,KR)) ≈ 2(`+ 2 ·N · C),
Exp(T (D,KW )) ≈ ` and Var(T (D,KW )) ≈ 2`.

(20)

The distributions for wrong and right key candidates have different means
and variances and thus it is possible to distinguish between them by statistical
inference analogical to the hypothesis testing method described in Section 3.1
but this time between two χ2 distributed random variables. Then the error
probabilities and the corresponding quantiles by replacing the cumulative density
function Φ by the cumulative density function of the χ2 distribution with `
degrees of freedom.

In practice, it is accurate to approximate χ2 distributions using normal distri-
bution as soon as ` = 2s−1 > 50. Using the parameters given by Equation (20),
and by denoting the advantage and success probability of the key-recovery at-
tack respectively by a and PS , the following estimate of the data complexity of
a KP multidimensional linear attack was given in [19]

N ≈
√

4a`+ 4Φ−1(2PS − 1)2

C
. (21)

To derive this result in [19] it is assumed that the capacity C(K) of the
cipher data distribution, for any key K, is equal to its mean C, and the same
value C is used for all encryption keys. Moreover, it is often difficult to obtain
an accurate estimate of C. Usually only a rough lower bound can be obtained in
the offline analysis of the cipher. Secondly, it is assumed that, for any wrong key
candidate κ 6= k′r, the data is drawn from the uniform distribution. In [12, 26]
this simple approach has been criticized and shown to produce too optimistic
(for the attacker) results in practice.
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5.2 Data Complexity Estimates

In the hypothesis testing context described in Section 2.3, we can estimate the
data complexity of a multiple/multidimensional linear attack. In this section,
since we do not yet know how to estimate the value of C0, we assume that C0 = 0.
As explained at the end of Section 4.4, this means that the random variable
T (D,KR) follows a gamma distribution. Using Equation (4) we could therefore
obtain an accurate formula of the success probability of the attack. However in
order to compare with previous works we assume that ` > 50, which is the case
in most attacks, and use normal approximations of the gamma distributions
of T (D,KW ) and T (D,KR). We denote by CR = ExpK(C(K)) and CW =
ExpKW

(C(KW )) the expected values of the capacity for respectively the right
and wrong keys.

Corollary 2. Assuming that VarD,K(T (D,KR)) =
2

`
(B` + NCR)2 and a nor-

mal approximation of the gamma distribution we obtain that the data complexity
estimates NKP and NDKP in respectively the non-distinct and distinct context
are given by the following formulas.

NKP ≈
√

2`(ϕPS
+ ϕa)

|CR − CW | −
√

2/`(CWϕa + CRϕPS
)
. (22)

NDKP ≈
√

2`(ϕPS
+ ϕa)

|CR − CW | −
√

2/`(CWϕa + CRϕPS
) + 2−n

√
2`(ϕPS

+ ϕa)
. (23)

Proof. According to Equation (5) and Theorems 6 and 7 (or 8), using the nota-
tions µR = ExpD,K(T (D,KR)), σ2

R = VarD,K(T (D,KR)), we have

PS ≈ Φ

(
N |CR − CW | −

√
2/`(B`+NCW )ϕa√

2/`(B`+NCR)

)
. (24)
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We then deduce that√
2/`(B`+NCR)ϕPS

≈ N |CR − CW | −
√

2/`(B`+NCW )ϕa

and that

N
(
|CR − CW | −

√
2/`(CWϕa + CRϕPS

)
)
≈
√

2`B(ϕPS
+ ϕa).

When the sampling is with replacement then B = 1 and we obtain the result. If

we consider distinct plaintexts then B ≈ 1− N

2n
and

N
(
|CR − CW | −

√
2/`(CWϕa + CRϕPS

) + 2−n
√

2`(ϕPS
+ ϕa)

)
≈
√

2`(ϕPS
+ϕa).ut

In the following to compare Equations (22) and (23) we denote by λ ≥ 0 the
quantity defined by CR = λ · CW , λ ≥ 0. From Remark 1 we have CW = `/2n

and Equations (22) and (23) become

NKP ≈ 2n(ϕa + ϕPS
)

|λ− 1|
√
`/2− (ϕa + λϕPS

)
, (25)

NDKP ≈ 2n(ϕa + ϕPS
)

|λ− 1|
√
`/2− (λ− 1)ϕPS

.

In the zero-correlation context we have λ = 0 and we obtain the results re-
called in Section 6 for respectively the non-distinct and distinct sampling meth-
ods.

Remark 2. For practical attacks we have PS ≥ 0.5 and a ≥ 1 meaning that ϕPS

and ϕa are positive values, and that (λ− 1)ϕPS
≤ ϕa + λϕPS

. Therefore we can
verify that NDKP ≤ NKP as expected.

5.3 Experiments on SMALLPRESENT-[4]

To perform a meaningful key-recovery attack, we simulated an attack on the 16-
bit reduced version of PRESENT. For this attack we selected a multidimensional
linear approximation of size ` = 26 − 1 over 4 rounds. The key-recovery attack
was on 6 rounds meaning that 2 rounds were partially inverted. In Figure 9, we
give the results of the experiments.

When repetition of plaintexts is allowed, our model provides an underesti-
mate of the success probability at least up to the data complexity corresponding
to the full codebook. In that case, it seems that it is also possible to have a data
complexity larger than the full codebook. Through these graphics we also illus-
trated that for a same advantage and data complexity the success probability is
larger when using distinct plaintexts.
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Fig. 9: Success probability of a key-recovery attack. The theoretical success probability
is computed from Equation (24) using the normal distribution . The experimental
results (Exp.) are represented with dotted lines. The parameters are n = 16, ` = 26−1,
CR = 2−9.20, CW = 2−10. Top: Using non-distinct plaintexts (B = 1). Bottom: Using
distinct plaintexts (B = 1 −N/216).

6 Zero-Correlation Linear Cryptanalysis

6.1 Multiple and Multidimensional Zero-Correlation Linear Attacks

Zero-correlation linear cryptanalysis is a special case of multiple/multidimensional
linear cryptanalysis with CR = 0 and CW = `2−n. Applying Corollary 2 we ob-
tain the following estimate of the data complexity of a multiple/multidimensional
zero-correlation linear attack.

Corollary 3. The number NKP of known plaintexts required in a multiple or
multidimensional zero-correlation linear attack is:

NKP ≈ 2n(ϕPS + ϕa)√
`/2− ϕa

. (26)

The number NDKP of distinct-known plaintexts required in a multiple or multi-
dimensional zero-correlation linear attack is:

NDKP ≈ 2n(ϕPS + ϕa)√
`/2 + ϕPS

. (27)
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Proof. The result is straightforward while putting λ = 0 in Equation (25). ut

In [9, 11, 13], Equations (26) and (27) were given for respectively KP mul-
tiple zero-correlation attacks and DKP multidimensional zero-correlation linear
attacks. The results of this paper allows now to consider the two other cases:
DKP multiple zero-correlation attacks and KP multidimensional zero-correlation
attacks is backed up by experiments in the next section.

Since for most attacks 0.5 ≤ PS ≤ 0.99, meaning that 0 ≤ ϕPS
≤ 2.4, the

difference between Equation (27) and Equation (26) is particularly noticeable
when

√
`/2 and ϕa are in the same order of magnitude. From Equation (27)

and Equation (26) we deduce that the success probability of a known-plaintext
zero-correlation linear attack is:

PS ≈ Φ
(
NKP

2n

√
`/2− ϕa

(
NKP + 2n

2n

))
, (28)

and the one of a distinct-known-plaintext zero-correlation linear attack is:

PS ≈ Φ

(
NDKP

√
`/2

2n −NDKP
− ϕa

2n

2n −NDKP

)
. (29)

6.2 Experimental Results

We have implemented experiments on a Feistel-type cipher which is depicted
in Figure 10 and could correspond to scaled versions of CLEFIA [31] (a 16-bit
type-II GFN with 4 branches) .
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Fig. 10: Description of the key-recovery attack done on a Type-II GFN.

While in [32] experiments showing the distribution of ExpD,K(T (D,KR)) and
ExpD,KW

(T (D,KW )) have been presented, there is, to the best of our knowledge,
no previous mentioning of experimental zero-correlation linear attacks in the
literature.
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The results of our experimental attacks averaged over 1000 keys are provided
in Figure 11. In these graphics we compare the success probability of multidi-
mensional and multiple zero-correlation linear attacks with the theoretical ones
given for KP by Equation (28) and for DKP by Equation (29). These experi-
ments support the theory given in Section 6.1 showing that the same formula
can be used to compute the complexity of multiple zero-correlation and multi-
dimensional zero-correlation linear attacks. The difference lies only in the way
of sampling, whether distinct or non-distinct known plaintexts are used in the
attack. The bottom left graphic of Figure 11 corresponds to a case where only
32 approximations are taken into consideration. The gap between the theoret-
ical and experimental success probability observed in these experiments is due
to the approximation of the gamma distributions by normal distributions which
is not accurate since ` = 32. Using Equation 4 with the corresponding gamma
distribution we obtain a more accurate estimate of the success probability of the
attack.
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Fig. 11: Attacks on a type-II-GFN cipher. Top: multidimensional zero-correlation linear
attacks, bottom: multiple zero-correlation linear attacks.
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6.3 Applications

Multiple zero-correlation linear attacks. As explained in detail later in this paper,
by considering distinct-known plaintexts we can use Equation (27) to compute
the data complexity of a multiple zero-correlation linear attack. As the data com-
plexity of multidimensional linear attacks has already been computed under this
setting, and because other comparable (in number of attacked rounds) attacks
have been performed in the chosen-plaintext model, this should give us a better
comparison factor. The result of our computation and a comparison with the
best attacks on the block cipher Camellia [2] are provided in Table 1. The attack
is from [9]. The data complexity has been computed using Equation (27) instead
of using Equation (26) with the parameters of the attack chosen as PS = 0.85
and a = 96 or a = 160. The time complexity has been computed according to the
description given in [9]. We use the abbreviations KP, DKP and CP for known
plaintext, distinct-known plaintext and chosen plaintext, respectively.

Version #R Type ` a PS N Time Mem. Ref.

128 11 ID - - - 2118.4 CP 2118.43 296.4 [14]

128 11 ZC 214 96 85% 2125.3 KP 2125.8 2112 [9]

128 11 ZC 214 96 85% 2125.1 DKP 2125.8 2112 Equation (27)

192 12 ID - - - 2119.7 CP 2161.06 2147.7 [14]

192 12 ZC 214 160 85% 2125.7 KP 2125.8 2112 [9]

192 12 ZC 214 160 85% 2125.46 DKP2125.8 2112 Equation (27)
Table 1: Best key-recovery attacks on Camellia-128 and Camellia-192 (attacks start-
ing from the first round). The memory is expressed in number of bytes. #R denotes
the number of attacked rounds. ID stands for impossible differential, ZC for zero-
correlation.

Similarly we can improve the data complexity of the multiple zero-correlation
linear attack on CAST-128 [34]. The parameters of the attack being n = 128,
` = 64770, a = 50 and PS = 0.85, the data complexity of the attack using known
plaintextsfootnoteWith these parameters, the data complexity can not be equal
to 2123.2 as given in [34]. is N = 2123.73 and the data complexity of the attack
using distinct-known plaintexts is N = 2123.67.

Key-difference-invariant-bias attacks. Key-difference-invariant-bias attack is a
related-key linear attack introduced in [8]. In this attack the attacker is taking
advantage of linear approximations with same bias for different related keys.
For these attacks, the statistical analysis is similar to the one done for zero-
correlation linear attacks. For these attacks we can estimate the data complexity
using the formulas provided in Corollary 3. In Table 2 we summarize the com-
plexity of the best related key-attacks on LBlock [36]. These ones were obtained
assuming a KP sampling. Assuming a DKP sampling, and the formula of the
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data complexity provided by Equation (27), we show that the data complex-
ity and a-fortiori the time complexity of the attack can be improved. Similar
improvement can be obtained for the related-key attack on TWINE presented
in [8]. The two-letter abbreviation RK refers to related-key attack throughout
the table.

#R Type #Keys ` a PS N Time Mem. Ref.

23 RKID 4 - - - 261.4 RKCP 278.3 261.4 [35]

24 KIB 32 27.81 4.5 85% 262.29 RKKP 274.59 261 [8]

24 KIB 32 27.81 8.5 85% 262.95 RKKP 270.67 261 [8]

24 KIB 32 27.81 8.5 85% 262.38RKDKP 270.67 261 Equation (27)

24 KIB 32 27.81 16 85% 262.84 RKDKP266.57 261 Equation (27)*
Table 2: Best related-key attacks on LBlock. *: Computation of the time complexity
according to the description given in Section 5.3 of [8]. RKID stands for related-key
impossible differential, KIB for key-invariant bias.

7 Conclusion

In this paper, we presented enhancements to the statistical models of linear
type attacks on iterated block ciphers. Our main result is a general statistical
model that considers both data and key as random variables and covers multiple
and multidimensional linear attacks, including zero-correlation attacks, which
use random sampling of plaintext-ciphertext pairs, either with replacement or
without replacement.

First, we elaborate in detail the regular key-recovery attack that exploits one
linear approximation with a single dominant characteristic. When integrating the
key as a random variable in the model, the data complexity of distinguishing
between wrong and right key candidates can be expressed as a function of the
ELP of the linear approximation. Before, the data complexity is determined from
a statistical model assuming that for each fixed cipher key and key candidate the
distribution of the test statistic has identical distribution. The new integrated
statistical model gives the data complexity estimate for a random key. As a
consequence, the issue raised in [27] is resolved. In particular, the fact that
multiple strong characteristics cancel each other for many keys is not a problem
for linear cryptanalysis in general. While it has been known by most researchers
that ELP is the right quantity to consider in the context of linear attacks, no
satisfactory presentation of how it determines the complexity of the attack for
a random encryption key has not been given in the literature until now.

We then extend the statistical model with both data and key as random
variables to multiple and multidimensional linear cryptanalysis. This model is
built under the simplifying assumption that all linear approximations involved
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in the attack are independent and have equal variance over data and key. In the
case of multidimensional linear cryptanalysis it suffices to make an assumption
on variance with the key. The assumptions are the same that were previously
used by Huang et al. [20] and shown to produce accurate results in simulations
of key-recovery attacks.

We also tested the validity of the new model in experiments on various mul-
tidimensional linear approximations over small versions of SMALLPRESENT
which allows to compute the exact values of distribution parameters. While the
new model seems to predict the expected value of the test statistic very accu-
rately, the variance in the multidimensional linear attack is significantly under-
estimated. Resolving this issue by developing more accurate variance estimates
is left for future work. Based on our preliminary investigations we believe that
improvements can be obtained for certain type of ciphers such as key-alternating
block ciphers.

Finally we apply the new model to zero-correlation linear attacks. Previous
model for multidimensional zero-correlation attacks was given for DKP sampling,
while the multiple zero-correlation linear attack has been modeled only for KP
sampling. The new unified model contains these models as special cases. In
addition, it now allows also the multidimensional attacks to use KP data, which
is the standard setting in linear cryptanalysis. In the zero-correlation attacks,
the distribution of the test statistic is key dependent only for the wrong key.
One of the results given in this paper is a justification of the previously used ad
hoc model for the wrong key behavior in the multidimensional zero-correlation
cryptanalysis.
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