Cryptanalysis of the New Multilinear Map over the Integers

Brice Minaud ${ }^{1}$ and Pierre-Alain Fouque ${ }^{1,2}$
${ }^{1}$ Université de Rennes 1, France
${ }^{2}$ Institut Universitaire de France
brice.minaud@gmail.com, pierre-alain.fouque@ens.fr

Abstract

This note describes a polynomial attack on the new multilinear map over the integers presented by Coron, Lepoint and Tibouchi at Crypto 2015 (CLT15). This version is a fix of the first multilinear map over the integers presented by the same authors at Crypto 2013 (CLT13) and broken by Cheon et al. at Eurocrypt 2015. The attack essentially downgrades CLT15 to its original version CLT13, and leads to a full break of the multilinear map for virtually all applications. A more complete version of the paper will be made available in the coming weeks. Nevertheless the main attack is given in full details.

Keywords: Multilinear maps, graded encoding schemes.

1 Introduction

Cryptographic multilinear maps are a powerful and versatile tool to build cryptographic schemes, ranging from one-round multipartite Diffie-Hellman to witness encryption and general program obfuscation. The notion of cryptographic multilinear map was first introduced by Boneh and Silverberg in 2003, as a natural generalization of bilinear maps such as pairings on elliptic curves [BS03]. However it was not until 2013 that the first concrete instantiation over ideal lattices was realized by Garg, Gentry and Halevi [GGH13a], quickly inspiring another construction over the integers by Coron, Lepoint and Tibouchi [CLT13]. Alongside these first instantiations, a breakthrough result by Garg, Gentry, Halevi, Raykova, Sahai and Waters achieved (indistinguishability) obfuscation for all circuits from multilinear maps [GGH $\left.{ }^{+} 13 \mathrm{~b}\right]$. From that point multilinear maps have garnered considerable interest in the cryptographic community, and a host of other applications have followed.

However this wealth of applications rests on the relatively fragile basis of only three actual constructions of multilinear maps to date: namely the original construction over ideal lattices [GGH13a], the construction over the integers [CLT13], and another recent construction over lattices [GGH15]. Moreover none of these constructions relies on standard hardness assumptions. In fact the first two constructions have since been broken for applications requiring low-level encodings of zero, including the "direct" application to one-round multipartite

Diffie-Hellman [HJ15, CHL+15]. Thus building candidate multilinear maps and assessing their security may be regarded as a work in progress, and research in this area has been very active in recent years.

Following the attack by Cheon et al. on the [CLT13] multilinear map over the integers, several attempts to repair the scheme were published on ePrint, which hinged on hiding encodings of zero in some way; however these attempts were quickly proven insecure $\left[\mathrm{CGH}^{+} 15\right]$. At Crypto 2015, Coron, Lepoint and Tibouchi set out to repair their scheme by following a different route [CLT15]: they essentially retained the structure of encodings from [CLT13], but added a new type of noise designed to thwart Cheon et al.'s approach. Their construction was thus able to retain the attractive features of the original, namely conceptual simplicity, relative efficiency, and wide range of presumed hard problems on which applications could be built.

1.1 Our contribution

In this paper we propose a polynomial attack on the new multilinear map over the integers presented by Coron, Lepoint and Tibouchi at Crypto 2015 [CLT15]. The attack operates by computing the secret parameter x_{0}, and from there all other secret parameters can be recovered via (a close variant of) Cheon et al.'s attack $\left[\mathrm{CHL}^{+} 15\right]$. In the optimized version of the scheme where an exact multiple of x_{0} is provided in the public parameters, the attack recovers x_{0} instantly. In the more general non-optimized version of the scheme, the practical complexity of our polynomial attack is very close to the security parameters for the concrete instances implemented in [CLT15], e.g. 2^{81} for the 80-bit instance.

Moreover the attack applies to virtually all possible applications of the CLT15 multilinear map. Indeed, while it does require low-level encodings of zero, these encodings are provided by the ladders given in the public parameters. In this respect CLT15 is weaker than CLT13.

Our attacks have been verified on the reference implementation of CLT15.
An upcoming complete version of this paper will also include a probabilistic variant of the attack, which avoids a costly determinant computation. Instead the attack relies on finding and exploiting divisors of the secret parameter v_{0}. While it is conceptually less simple than our main attack, the probabilistic variant offers a lower practical complexity.

1.2 Overview of the Attack

We begin by briefly recalling the CLT15 multilinear map (more precisely, graded encoding scheme). The message space is $\mathbb{Z}_{g_{1}} \times \cdots \times \mathbb{Z}_{g_{n}}$ for some small primes g_{1}, \ldots, g_{n}, and $\left(m_{1}, \ldots, m_{n}\right)$ is encoded at some level $k \leq \kappa$ as:

$$
\mathrm{CRT}_{\left(p_{i}\right)}\left(\frac{r_{i} g_{i}+m_{i}}{z^{k}}\right)+a x_{0}
$$

where:
$\left(p_{i}\right)$ is a sequence of n large primes.
$x_{0}=\prod p_{i}$.
$\mathrm{CR} \mathrm{T}_{\left(p_{i}\right)}\left(x_{i}\right)$ is the unique integer in $\left(-x_{0} / 2, x_{0} / 2\right]$ congruent to x_{i} modulo p_{i}. z is a fixed secret integer modulo x_{0}.
r_{i} is a small noise.
a is another noise.
Encodings at the same level can be added together, and the resulting encoding encodes the sum of the messages. Similarly encodings at levels i and j can be multiplied to yield an encoding at level $i+j$ of the coordinate-wise product of the encoded messages. This behavior holds as long as the values $r_{i} g_{i}+m_{i}$ do not go over p_{i}, i.e. reduction modulo p_{i} does not interfere. In order to prevent the size of encodings from increasing as a result of additions and multiplications, a ladder of encodings of zero of increasing size is published at each level. Encodings can then be reduced by subtracting elements of the ladder at the same level.

The power of the multilinear map comes from the zero-testing procedure, which allows users to test whether an encoding at the maximal level κ encodes zero. This is achieved by publishing a so-called zero-testing parameter denoted $\boldsymbol{p}_{z t} \in \mathbb{Z}$, together with a large prime $N \gg x_{0}$. An encoding at the maximal level κ may be written as:

$$
\begin{aligned}
e & =\sum\left(r_{i}+m_{i} g_{i}^{-1} \bmod p_{i}\right) u_{i}+a x_{0} \\
\text { where } u_{i} & \triangleq\left(g_{i} z^{-\kappa}\left(p_{i}^{*}\right)^{-1} \bmod p_{i}\right) p_{i}^{*} \quad \text { with } p_{i}^{*}=\prod_{j \neq i} p_{j}
\end{aligned}
$$

That is, some constants independent of the encoding have been folded with the CRT coefficients into u_{i}. Now $\boldsymbol{p}_{z t}$ is chosen such that $v_{i} \triangleq u_{i} \boldsymbol{p}_{z t} \bmod N$ and $v_{0} \triangleq x_{0} \boldsymbol{p}_{z t} \bmod N$ satisfy $\operatorname{abs}\left(v_{i}\right) \ll N$ and $\operatorname{abs}\left(v_{0}\right) \ll N$. In this way, for any encoding e of zero at level κ, since $m_{i}=0$, we have:

$$
\operatorname{abs}\left(e \boldsymbol{p}_{z t} \bmod N\right)=\operatorname{abs}\left(\sum r_{i} v_{i}+a v_{0}\right) \ll N
$$

provided the noises r_{i} and a are small enough. Thus, users can test whether e is an encoding of zero at level κ by checking whether $\operatorname{abs}\left(e \boldsymbol{p}_{z t} \bmod N\right) \ll N$.

Integer Extraction. Our attack proceeds in two steps. As a first step, we define the integer extraction procedure $\phi: \mathbb{Z} \rightarrow \mathbb{Z}$. In short, ϕ computes $\sum_{i} r_{i} v_{i}+a v_{0}$ over the integers for any level- κ encoding e (of size up to the largest ladder element). Note that this value is viewed over the integers and not modulo N. If e is "small", then $\phi(e)=e \boldsymbol{p}_{z t} \bmod N$, i.e. ϕ matches the computation from the zero-testing procedure.

If e is "large" on the other hand, then e would need to be reduced by the ladder before zero-testing can be applied. However the crucial observation is that ϕ is \mathbb{Z}-linear as long as the values $r_{i} g_{i}+m_{i}$ associated with each encoding do not go over p_{i}. Thus e can be ladder-reduced into e^{\prime}, then $\phi\left(e^{\prime}\right)=e^{\prime} \boldsymbol{p}_{z t} \bmod N$
is known, and $\phi(e)$ can be recovered from $\phi\left(e^{\prime}\right)$ by compensating the ladder reduction using \mathbb{Z}-linearity. In a nutshell, ϕ allows us to ignore ladder reductions in equations appearing in the rest of the attack.

Recovering $\boldsymbol{x}_{\mathbf{0}}$. In the optimized variant of the scheme implemented in [CLT15], a small multiple $q x_{0}$ of x_{0} is given in the public parameters. In that case $q x_{0}$ may be regarded as an encoding of zero at level κ, and $\phi\left(q x_{0}\right)=q v_{0}$. Since this holds over the integers, we can compute $q=\operatorname{gcd}\left(q x_{0}, q v_{0}\right)$ and then $x_{0}=q x_{0} / q$.

In the general case where no exact multiple of x_{0} is given in the public parameters, pick $n+1$ encodings a_{i} at some level t, and $n+1$ encodings of zero b_{i} at level $\kappa-t$. Note that ladder elements provide encodings of zero even if the scheme itself does not. Then compute:

$$
\omega_{i, j} \triangleq \phi\left(a_{i} b_{j}\right)
$$

If we write $a_{i} \bmod v_{0}=\operatorname{CRT}_{\left(p_{j}\right)}\left(a_{i, j} / z^{t}\right)$ and $b_{i} \bmod v_{0}=\operatorname{CRT}_{\left(p_{j}\right)}\left(r_{i, j} g_{j} / z^{\kappa-t}\right)$, then we get:

$$
\omega_{i, j} \bmod v_{0}=\sum_{k} a_{i, k} r_{j, k} v_{k} \bmod v_{0}
$$

Similar to Cheon et al.'s attack on the CLT13 multilinear map, this equality can be viewed as a matrix product. Indeed, let Ω denote the $(n+1) \times(n+1)$ integer matrix with entries $\omega_{i, j}$, let A denote the $(n+1) \times n$ integer matrix with entries $a_{i, j}$, let R denote the $(n+1) \times n$ integer matrix with entries $r_{i, j}$, and finally let V denote the $n \times n$ diagonal matrix with diagonal entries v_{i}. If we embed everything into $\mathbb{Z} / v_{0} \mathbb{Z}$, then we have:

$$
\Omega=A \cdot V \cdot R^{\mathrm{T}} \quad \text { in } \mathbb{Z} / v_{0} \mathbb{Z}
$$

Since A and R are $(n+1) \times n$ matrices, this implies that Ω is not full-rank when embedded into $\mathbb{Z} / v_{0} \mathbb{Z}$. As a consequence $v_{0} \operatorname{divides} \operatorname{det}(\Omega)$. We can repeat this process with different choices of the families $\left(a_{i}\right),\left(b_{i}\right)$ to build another matrix Ω^{\prime} with the same property. Finally we recover v_{0} as $v_{0}=\operatorname{gcd}\left(\operatorname{det}(\Omega), \operatorname{det}\left(\Omega^{\prime}\right)\right)$, and $x_{0}=v_{0} / \boldsymbol{p}_{z t} \bmod N$.

Recovering other secret parameters. Once x_{0} is known, Cheon et al.'s attack can be applied by taking all values modulo v_{0}, and every remaining secret parameter is recovered, fully breaking the scheme.

1.3 Impact of the Attack

Two variants of the CLT15 multilinear map should be considered. Either a small multiple of x_{0} is provided in the public parameters. In that case x_{0} can be recovered instantly, and the scheme becomes equivalent to CLT13 in terms of security (cf. Section 5.1). In particular it falls victim to Cheon et al.'s attack when low-level encodings of zero are present, but it may still be secure for applications
that do not require such encodings, such as obfuscation. It is interesting to note that Cheon et al.'s attack is very efficient since all computations can be performed modulo a small prime as the outputs are small integers. However the scheme is strictly less efficient than CLT13 by construction, so there is no point in using CLT15 for those applications.

Otherwise, if no small multiple of x_{0} is given out in the public parameters, then ladders of encodings of zero must be provided at levels below the maximal level. Thus we have access to numerous encodings of zero below the maximal level, even if the particular application of multilinear maps under consideration does not require them. As a result our determinant-based attack is applicable (cf. Section 5.4), and we still recover x_{0} in polynomial time, albeit less efficiently than the previous case. Moreover once x_{0} is recovered, encodings of zero provided by the ladder enable Cheon et al.'s attack, and every secret parameter is recovered.

In summary, the optimized version of CLT15 providing a small multiple of x_{0} is no more secure than CLT13, and less efficient. On the other hand in the general non-optimized case, the scheme is broken for virtually all possible applications due to encodings of zero provided by the ladder. Thus overall the CLT15 scheme can be considered fully broken.

1.4 Organization of the Paper

For the sake of being self-contained, in Section 3, we present multilinear maps, graded encoding schemes, as well as the CLT15 construction. In Section 4 we recall Cheon et al.'s attack on CLT13 since it serves as a follow-up to our attack once x_{0} is recovered, and shares similar ideas. Readers already familiar with the CLT15 multilinear map can skip straight to Section 5 where we describe our main attack.

2 Notation

The symbol \triangleq denotes an equality by definition. For n an integer, $|n|$ is the size of n in bits. To avoid confusion, we write $\operatorname{abs}(n)$ for the absolute value of n.

Modular arithmetic. The group of integers modulo $n, \mathbb{Z} / n \mathbb{Z}$, is denoted \mathbb{Z}_{n}. The notation "mod p " should be understood as having the lowest priority. For instance, in the expression $(a / b) \cdot c \bmod p$, the division a / b should be computed modulo p.

Moreover we always view $a \bmod p$ as an integer in \mathbb{Z}. The representative closest to zero is always chosen, positive in case of tie. In other words $-p / 2<$ $a \bmod p \leq p / 2$.

Chinese Remainder Theorem. Given n prime numbers $\left(p_{i}\right)$, we define p_{i}^{*} as in [Hal15a]:

$$
p_{i}^{*}=\prod_{j \neq i} p_{j}
$$

Moreover, for $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}$ let:

$$
\mathrm{CRT}_{\left(p_{i}\right)}\left(x_{i}\right) \triangleq \sum_{i}\left(x_{i}\left(p_{i}^{*}\right)^{-1} \bmod p_{i}\right) p_{i}^{*} \bmod \prod_{i} p_{i}
$$

That is, $\operatorname{CRT}_{\left(p_{i}\right)}\left(x_{i}\right)$ is (a representative of) the unique integer modulo $\prod p_{i}$ such that $\mathrm{CRT}_{\left(p_{i}\right)}\left(x_{i}\right) \bmod p_{i}=x_{i} \bmod p_{i}$, as per the Chinese Remainder Theorem.

It is useful to observe that for any $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}$:

$$
\begin{equation*}
\mathrm{CRT}_{\left(p_{i}\right)}\left(x_{i} p_{i}^{*}\right)=\sum_{i} x_{i} p_{i}^{*} \bmod \prod_{i} p_{i} \tag{1}
\end{equation*}
$$

3 Presentation of the CLT15 Multilinear Map

3.1 Multilinear Maps and Graded Encoding Schemes

In this section we give a brief introduction to multilinear maps to make our article self-contained. In particular we only consider symmetric multilinear maps. We refer the interested reader to [GGH13a, Hal15b] for a more thorough presentation.

Cryptographic multilinear maps were introduced by Boneh and Silverberg [BS03], as a natural generalization of bilinear maps stemming from pairings on elliptic curves, which had found striking new applications in cryptography [Jou00, BF01, ...]. A (symmetric) multilinear map is defined as follows.

Definition 1 (Multilinear Map [BS03]). Given two groups $\mathbb{G}, \mathbb{G}_{T}$ of the same prime order, a map $e: \mathbb{G}^{\kappa} \rightarrow \mathbb{G}_{T}$ is a κ-multilinear map iff it satisfies the following two properties:

1. for all $a_{1}, \ldots, a_{\kappa} \in \mathbb{Z}$ and $x_{1}, \ldots, x_{\kappa} \in \mathbb{G}$,

$$
e\left(x_{1}^{a_{1}}, \ldots, x_{\kappa}^{a_{\kappa}}\right)=e\left(x_{1}, \ldots, x_{\kappa}\right)^{a_{1} \cdots a_{\kappa}}
$$

2. if g is a generator of \mathbb{G}, then $e(g, \ldots, g)$ is a generator of \mathbb{G}_{T}.

A natural special case are leveled multilinear maps:
Definition 2 (Leveled Multilinear Map [HSW13]). Given $\kappa+1$ groups $\mathbb{G}_{1}, \ldots, \mathbb{G}_{\kappa}, \mathbb{G}_{T}$ of the same prime order, and for each $i \leq \kappa$, a generator $g_{i} \in$ \mathbb{G}_{i}, a κ-leveled multilinear map is a set of bilinear maps $\left\{e_{i, j}: \mathbb{G}_{i} \times \mathbb{G}_{j} \rightarrow\right.$ $\left.G_{i+j} \mid i, j, i+j \leq \kappa\right\}$ such that for all i, j with $i+j \leq \kappa$, and all $a, b \in \mathbb{Z}$:

$$
e_{i, j}\left(g_{i}^{a}, g_{j}^{b}\right)=g_{i, j}^{a b} .
$$

Similar to public-key encryption [DH76] and identity-based cryptosystems [Sha85], multilinear maps were originally introduced as a compelling target for cryptographic research, without a concrete instantiation [BS03]. The first multilinear map was built ten years later in the breakthrough construction of Garg, Gentry and Halevi [GGH13a]. More accurately, what the authors proposed was
a graded encoding scheme, and to this day all known cryptographic multilinear maps constructions are actually variants of graded encoding schemes [Hal15b]. For this reason, and because both constructions have similar expressive power, the term "multilinear map" is used in the literature in place of "graded encoding scheme", and we will follow suit in the rest of this article.

Graded encoding schemes are a relaxed definition of leveled multilinear map, where elements x_{i}^{a} for $x_{i} \in \mathbb{G}_{i}, a \in \mathbb{Z}$ are no longer required to lie in a group. Instead, they are regarded as "encodings" of a ring element a at level i, with no assumption about the underlying structure. Formally, encodings are thus defined as general binary strings in $\{0,1\}^{*}$. In the following definition, $S_{i}^{(\alpha)}$ should be regarded as the set of encodings of a ring element α at level i.

Definition 3 (Graded Encoding System [GGH13a]). $A \kappa$-graded encoding system consists of a ring R and a system of sets $\mathcal{S}=\left\{S_{i}^{(\alpha)} \subset\{0,1\}^{*} \mid \alpha \in\right.$ $R, 0 \leq i \leq \kappa\}$, with the following properties:

1. For each fixed i, the sets $S_{i}^{(\alpha)}$ are pairwise disjoint as α spans R.
2. There is an associative binary operation ' + ' and a self-inverse unary operation '-' on $\{0,1\}^{*}$ such that for every $\alpha_{1}, \alpha_{2} \in R$, every $i \leq \kappa$, and every $u_{1} \in S_{i}^{\left(\alpha_{1}\right)}, u_{2} \in S_{i}^{\left(\alpha_{2}\right)}$, it holds that:

$$
u_{1}+u_{2} \in S_{i}^{\left(\alpha_{1}+\alpha_{2}\right)} \quad \text { and } \quad-u_{1} \in S_{i}^{\left(-\alpha_{1}\right)}
$$

where $\alpha_{1}+\alpha_{2}$ and $-\alpha_{1}$ are addition and negation in R.
3. There is an associative binary operation ' x ' on $\{0,1\}^{*}$ such that for every $\alpha_{1}, \alpha_{2} \in R$, every $i_{1}, i_{2} \in \mathbb{N}$ such that $i_{1}+i_{2} \leq \kappa$, and every $u_{1} \in S_{i_{1}}^{\left(\alpha_{1}\right)}, u_{2} \in$ $S_{i_{2}}^{\left(\alpha_{2}\right)}$, it holds that $u_{1} \times u_{2} \in S_{\left.i_{1}+i_{2}\right)}^{\left(\alpha_{1} \cdot \alpha_{2}\right)}$. Here $\alpha_{1} \cdot \alpha_{2}$ is the multiplication in R, and $i_{1}+i_{2}$ is the integer addition.

Observe that a leveled multilinear map is a graded encoding system where $R=\mathbb{Z}$ and, with the notation from the definitions, $S_{i}^{(\alpha)}$ contains the single element g_{i}^{α}. Also note that the behavior of addition and multiplication of encodings with respect to the levels i is the same as that of a graded ring, hence the graded qualifier.

All known constructions of graded encoding schemes do not fully realize the previous definition, insofar as they are "noisy" ${ }^{3}$. That is, all encodings have a certain amount of noise; each operation, and especially multiplication, increases this noise; and the correctness of the scheme breaks down if the noise goes above a certain threshold. The situation in this regard is similar to somewhat homomorphic encryption schemes.

3.2 Multilinear Map Procedures

The exact interface offered by a multilinear map, and called upon when it is used as a primitive in a cryptographic scheme, varies depending on the scheme.

[^0]However the core elements are the same. Below we reproduce the procedures for manipulating encodings defined in [CLT15], which are a slight variation of [GGH13a].

In a nutshell, the scheme relies on a trusted third party that generates the instance (and is usually no longer needed afterwards). Users of the instance (that is, everyone but the generating trusted third party) cannot encode nor decode arbitrary encodings: they can only combine existing encodings using addition, negation and multiplication, and subject to the limitation that the level of an encoding cannot exceed κ. The power of the multilinear map comes from the zero-testing (resp. extraction) procedure, which allows users to test whether an encoding at level κ encodes zero (resp. roughly get a λ-bit "hash" of the value encoded by a level- κ encoding).

Here users are also given access to random level-0 encodings, and have the ability to re-randomize encodings, as well as promote any encoding to a higherlevel encoding of the same element. These last functionalities are tailored towards the application of multilinear maps to one-round multi-party Diffie-Hellman. In general different applications of multilinear map require different subsets of the procedures below, and sometimes variants of them.
instGen $\left(1^{\lambda}, 1^{\kappa}\right)$: the randomized instance procedure takes as input the security parameter λ, the multilinearity level κ, and outputs the public parameters ($\mathrm{pp}, \boldsymbol{p}_{z t}$), where pp is a description of a κ-graded encoding system as above, and $\boldsymbol{p}_{z t}$ is a zero-test parameter (see below).
samp (pp): the randomized sampling procedure takes as input the public parameters pp and outputs a level-0 encoding $u \in S_{0}^{(\alpha)}$ for a nearly uniform $\alpha \in R$.
enc($\mathrm{pp}, i, u)$: the possibly randomized encoding procedure takes as input the public parameters pp , a level $i \leq \kappa$, and a level-0 encoding $u \in S_{0}^{\alpha}$ for some $\alpha \in R$, and outputs a level- i encoding $u^{\prime} \in S_{i}^{(\alpha)}$.
reRand (pp, i, u) : the randomized rerandomization procedure takes as input the public parameters pp, a level $i \leq \kappa$, and a level- i encoding $u \in S_{i}^{\alpha}$ for some $\alpha \in R$, and outputs another level- i encoding $u^{\prime} \in S_{i}^{(\alpha)}$ of the same α, such that for any $u_{1}, u_{2} \in S_{i}^{(\alpha)}$, the output distributions of reRand(pp, $\left.i, u_{1}\right)$ and reRand (pp, i, u_{2}) are nearly the same.
neg (pp, u) : the negation procedure is deterministic and that takes as input the public parameters pp, and a level- i encoding $u \in S_{i}^{(\alpha)}$ for some $\alpha \in R$, and outputs a level- i encoding $u^{\prime} \in S_{i}^{(-\alpha)}$.
$\operatorname{add}\left(\mathrm{pp}, u_{1}, u_{2}\right):$ the addition procedure is deterministic and takes as input the public parameters pp, two level- i encodings $u_{1} \in S_{i}^{\left(\alpha_{1}\right)}, u_{2} \in S_{i}^{\left(\alpha_{2}\right)}$ for some $\alpha_{1}, \alpha_{2} \in R$, and outputs a level- i encoding $u^{\prime} \in S_{i}^{\left(\alpha_{1}+\alpha_{2}\right)}$.
mult($\mathrm{pp}, u_{1}, u_{2}$): the multiplication procedure is deterministic and takes as input the public parameters pp, two encodings $u_{1} \in S_{i}^{\left(\alpha_{1}\right)}, u_{2} \in S_{j}^{\left(\alpha_{2}\right)}$ of some $\alpha_{1}, \alpha_{2} \in R$ at levels i and j such that $i+j \leq \kappa$, and outputs a level- $(i+j)$ encoding $u^{\prime} \in S_{i+j}^{\left(\alpha_{1} \cdot \alpha_{2}\right)}$.
isZero(pp, u): the zero-testing procedure is deterministic and takes as input the public parameters pp , and an encoding $u \in S_{\kappa}^{(\alpha)}$ of some $\alpha \in R$ at the maximum level κ, and outputs 1 if $\alpha=0,0$ otherwise, with negligible probability of error (over the choice of $u \in S_{\kappa}^{(\alpha)}$).
$\operatorname{ext}\left(\mathrm{pp}, \boldsymbol{p}_{z t}, u\right)$: the extraction procedure is deterministic and takes as input the public parameters pp , the zero-test parameter $\boldsymbol{p}_{z t}$, and an encoding $u \in S_{\kappa}^{(\alpha)}$ of some $\alpha \in R$ at the maximum level κ, and outputs a λ-bit string s such that:

1. For $\alpha \in R$ and $u_{1}, u_{2} \in S_{\kappa}^{(\alpha)}, \operatorname{ext}\left(\mathrm{pp}, \boldsymbol{p}_{z t}, u_{1}\right)=\operatorname{ext}\left(\mathrm{pp}, \boldsymbol{p}_{z t}, u_{2}\right)$.
2. The distribution $\left\{\operatorname{ext}\left(\mathrm{pp}, \boldsymbol{p}_{z t}, v\right) \mid \alpha \leftarrow R, v \in S_{\kappa}^{(\alpha)}\right\}$ is nearly uniform over $\{0,1\}^{\lambda}$.

3.3 The CLT15 Multilinear Map over the Integers

Shortly after the multilinear map over ideal lattices by Garg, Gentry and Halevi [GGH13a], another construction over the integers was proposed by Coron, Lepoint and Tibouchi [CLT13]. However a devastating attack was published by Cheon, Han, Lee, Ryu and Stehlé at Eurocrypt 2015 (on ePrint in late 2014). In the wake of this attack, a revised version of their multilinear map over the integers was presented by Coron, Lepoint and Tibouchi at Crypto 2015 [CLT15]. In the remainder of this article, we will refer to the original construction over the integers as the CLT13 multilinear map, and to the new version from Crypto 2015 as the CLT15 multilinear map.

In this section we recall the CLT15 construction. Once again we omit aspects of the construction that are not relevant to our attack, and refer the reader to [CLT15] for more details. The message space is $R=\mathbb{Z}_{g_{1}} \times \cdots \times \mathbb{Z}_{g_{n}}$, for some (relatively small) primes $g_{i} \in \mathbb{N}$. An encoding of a message $\left(m_{1}, \ldots, m_{n}\right) \in$ $\mathbb{Z}_{g_{1}} \times \cdots \times \mathbb{Z}_{g_{n}}$ at level $k \leq \kappa$ has the following form:

$$
\begin{equation*}
e=\operatorname{CRT}_{\left(p_{i}\right)}\left(\frac{r_{i} g_{i}+m_{i}}{z^{k}} \bmod p_{i}\right)+a x_{0} \tag{2}
\end{equation*}
$$

where:

- The p_{i} 's are n large secret primes.
- The r_{i} 's are random noise such that $\operatorname{abs}\left(r_{i} g_{i}+m_{i}\right) \ll p_{i}$.
$-x_{0}=\prod_{i \leq n} p_{i}$.
$-z$ is a fixed secret integer modulo x_{0}.
- a is random noise.

The scheme relies on the following parameters:
$\lambda:$ the security parameter.
$\kappa:$ the multilinearity level.
$n:$ the number of primes p_{i}.
$\eta:$ the bit length of secret primes p_{i}.
$\gamma=n \eta:$ the bit length of x_{0}.
$\rho:$ the bit length of the g_{i} 's and initial r_{i} 's.

Addition, negation and multiplication of encodings is exactly addition, negation and multiplication over the integers. Indeed, m_{i} is recovered from e as $m_{i}=\left(e \bmod p_{i}\right) \bmod g_{i}$, and as long as $r_{i} g_{i}+m_{i}$ does not go over p_{i}, addition and multiplication will go through both moduli. Thus we have defined encodings and how to operate on them.

Regarding the sampling procedure from Section 3.2, for our purpose, it suffices to know that it is realized by publishing a large number of level-0 encodings of random elements. Users can then sample a new random element as a subset sum of published elements. Likewise, the rerandomization procedure is achieved by publishing a large number of encodings of zero at each level, and an element is re-randomized by adding a random subset sum of encodings of zero at the same level. The encoding procedure is realized by publishing a single level-1 encoding y of 1 (by which we mean $(1, \ldots, 1) \in \mathbb{Z}_{g_{1}} \times \cdots \times \mathbb{Z}_{g_{n}}$): any encoding can then be promoted to an encoding of the same element at a higher level by multiplying by y.

Zero-testing in CLT13. We now move on to the crucial zero-testing procedure. This is where CLT13 and CLT15 differ. We begin by briefly recalling the CLT13 approach.

In CLT13, the product x_{0} of the p_{i} 's is public. In particular, every encoding can be reduced modulo x_{0}, and every value below should be regarded as being modulo x_{0}. Let $p_{i}^{*}=\prod_{j \neq i} p_{j}$. Using (1), define:

$$
\boldsymbol{p}_{z t} \triangleq \sum_{i \leq n}\left(\frac{h_{i} z^{\kappa}}{g_{i}} \bmod p_{i}\right) p_{i}^{*}=\mathrm{CRT}_{\left(p_{i}\right)}\left(\frac{h_{i} z^{\kappa}}{g_{i}} p_{i}^{*} \bmod p_{i}\right) \quad \bmod x_{0}
$$

where the h_{i} 's are some relatively small numbers such that $\operatorname{abs}\left(h_{i}\right) \ll p_{i}$. Now take a level- κ encoding of zero:

$$
e=\mathrm{CRT}_{\left(p_{i}\right)}\left(\frac{r_{i} g_{i}}{z^{\kappa}} \bmod p_{i}\right) \quad \bmod x_{0}
$$

Since multiplication acts coordinate-wise on the CRT components, using (1) again, we have:

$$
\omega \triangleq e \boldsymbol{p}_{z t}=\mathrm{CRT}_{\left(p_{i}\right)}\left(h_{i} r_{i} p_{i}^{*}\right)=\sum_{i} h_{i} r_{i} p_{i}^{*} \quad \bmod x_{0}
$$

Since $p_{i}^{*}=x_{0} / p_{i}$, as long as we set our parameters so that $\operatorname{abs}\left(h_{i} r_{i}\right) \ll p_{i}$, we have $\operatorname{abs}(\omega) \ll x_{0}$.

Thus the zero-testing procedure is as follows: for a level- κ encoding e, compute $\omega=e \boldsymbol{p}_{z t} \bmod x_{0}$. Output 1, meaning we expect e to encode zero, iff the ν most significant bits of ω are zero, for an appropriately chosen ν. In [CLT13], multiple $\boldsymbol{p}_{z t}$'s can be defined in order to avoid false positives; we restrict our attention to a single $\boldsymbol{p}_{z t}$.

Zero-testing in CLT15. In CLT13, an encoding at some fixed level is entirely defined by its vector of associated values $c_{i}=r_{i} g_{i}+m_{i}$. Moreover, addition and multiplication of encodings act coordinate-wise on these values, and the value of the encoding itself is $\mathbb{Z}_{x_{0}}$-linear as a function of these values. Likewise, ω is $\mathbb{Z}_{x_{0}}$ linear as a function of the r_{i} 's. This nice structure is an essential part of what makes the devastating attack by Cheon et al. $\left[\mathrm{CHL}^{+} 15\right]$ possible. In CLT15, the authors set out to break this structure by introducing a new noise component a.

For this purpose, the public parameters include a new prime number $N \gg x_{0}$, with $|N|=\gamma+2 \eta+1$. Meanwhile x_{0} is kept secret, and no longer part of the public parameters. Encodings are thus no longer reduced modulo x_{0}, and take the general form given in (3), including a new noise value a. Equivalently, we can write an encoding e of $\left(m_{i}\right)$ at level k as:

$$
\begin{align*}
e & =\sum_{i}\left(r_{i}+m_{i}\left(g_{i}^{-1} \bmod p_{i}\right)\right) u_{i}+a x_{0} \tag{3}\\
\text { with } u_{i} & \triangleq\left(g_{i} z^{-k}\left(p_{i}^{*}\right)^{-1} \bmod p_{i}\right) p_{i}^{*} .
\end{align*}
$$

That is, we fold the $g_{i} z^{-k}$ multiplier of r_{i} with the CRT coefficient into u_{i}.
The zero-testing parameter $\boldsymbol{p}_{z t}$ is now defined modulo N in such a way that:

$$
\begin{align*}
v_{0} & \triangleq x_{0} \boldsymbol{p}_{z t} \bmod N & \forall i, v_{i} & \triangleq u_{i} \boldsymbol{p}_{z t} \bmod N \tag{4}\\
\text { satisfy: } & \operatorname{abs}\left(v_{0}\right) & \ll N & \operatorname{abs}\left(v_{i}\right)
\end{align*} \ll N
$$

To give an idea of the sizes involved, $\left|v_{0}\right| \approx \gamma$ and $\left|v_{i}\right| \approx \gamma+\eta$ for $i>0$. We refer the reader to [CLT15] for how to build such a $\boldsymbol{p}_{z t}$. The point is that if e is an encoding of zero at level κ, then we have:

$$
\omega=e \boldsymbol{p}_{z t} \bmod N=\sum r_{i} v_{i}+a v_{0} \bmod N
$$

In order for this quantity to be smaller than N, the size of a must be somehow controlled. Conversely as long as a is small enough and the noise satisfies $\operatorname{abs}\left(r_{i}\right) \ll p_{i}$ then $\operatorname{abs}(\omega) \ll N$. We refer the reader to [CLT15] for an exact choice of parameters.

Thus the size of a must be controlled. The term $a x_{0}$ will be dominant in (3) in terms of size, so decreasing a is the same as decreasing the size of the encoding as a whole. The scheme requires a way to achieve this without altering the encoded value (and without publishing x_{0}).

For this purpose, inspired by [VDGHV10], a ladder $\left(X_{i}^{(k)}\right)_{i \leq \ell}$ of encodings of zero of increasing size is published for each level $k \leq \kappa$. The size of an encoding e at level k can then be reduced without altering the encoded value by recursively subtracting from e the largest ladder element smaller than e, until e is smaller than X_{0}. More precisely we can choose X_{0} small enough that the previous zerotesting procedure goes through, and then choose X_{ℓ} twice the size of X_{0}, so that the product of any two encodings smaller than X_{0} can be reduced to an encoding smaller than X_{0}. After each addition and multiplication, the size of the resulting encoding is reduced via the ladder.

In the end, the zero-testing procedure is very similar to CLT13: given a (ladder-reduced) level- κ encoding e, compute $\omega=e \boldsymbol{p}_{z t} \bmod N$. Then output 1, meaning we expect e to encode zero, iff the ν high-order bits of ω are zero.

Extraction. The extraction procedure simply outputs the ν high-order bits of ω, computed as above. For both CLT13 and CLT15, it can be checked that they only depend on the m_{i} 's (as opposed to the noises a and the r_{i} 's).

4 Cheon et al.'s Attack on CLT13

In this section we provide a short description of Cheon et al.'s attack on CLT13 $\left[\mathrm{CHL}^{+} 15\right]$, as elements of this attack appear in our own. We actually present (a close variant of) the slightly simpler version in $\left[\mathrm{CGH}^{+} 15\right]$.

Assume we have access to a level- 0 encoding a of some random value, n level- 1 encodings $\left(b_{i}\right)$ of zero, and a level- 1 encoding y of 1 . This is the case for one-round multi-party Diffie-Hellman (see previous section). Let $a_{i}=a \bmod p_{i}$, i.e. a_{i} is the i-th value " $r_{i} g_{i}+m_{i}$ " associated with a. For $i \leq n$, define $r_{i, j}=b_{i} z / g_{j} \bmod p_{j}$, i.e. $r_{i, j}$ is the j-th value " r_{j} " associated with b_{i} (recall that b_{i} is an encoding of zero, so $m_{j}=0$). Finally let $y_{k}=y z \bmod p_{k}$.

Now compute:

$$
\begin{array}{ll}
e_{i, j}=a \cdot b_{i} \cdot b_{j} \cdot y^{\kappa-2} \bmod x_{0} & \omega_{i, j}=e_{i, j} \boldsymbol{p}_{z t} \bmod x_{0} \\
e_{i, j}^{\prime}=\quad b_{i} \cdot b_{j} \cdot y^{\kappa-2} \bmod x_{0} & \omega_{i, j}^{\prime}=e_{i, j}^{\prime} \boldsymbol{p}_{z t} \bmod x_{0}
\end{array}
$$

Note that:

$$
\begin{align*}
\omega_{i, j} & =\sum_{k}\left(a_{k} \frac{r_{i, k} g_{k}}{z} \frac{r_{j, k} g_{k}}{z} \frac{y_{k}^{\kappa-2}}{z^{\kappa-2}} \frac{h_{k} z^{\kappa}}{g_{k}} \bmod p_{k}\right) p_{k}^{*} \\
& =\sum_{k} a_{k} r_{i, k} r_{j, k} c_{k} \quad \text { with } c_{k}=g_{k} y_{k}^{\kappa-2} h_{k} p_{k}^{*} \tag{5}
\end{align*}
$$

Crucially, in the second line, the modulo p_{k} disappears and the equation holds over the integers, because $e_{i, j}$ is a valid encoding of zero, so the correctness of the scheme requires $\operatorname{abs}\left(e_{i, j} z^{\kappa} / g_{k} \bmod p_{k}\right) \ll p_{k}$.

Equation (5) may be seen as a matrix multiplication. Indeed, define Ω, resp. Ω^{\prime}, as the $n \times n$ matrix with entries $\omega_{i, j}$, resp. $\omega_{i, j}^{\prime}$, and likewise R with entries $r_{i, j}$. Moreover let A, resp. C, be the diagonal matrix with diagonal entries a_{i}, resp. c_{i}. Then (5) may be rewritten:

$$
\begin{aligned}
\Omega & =R \cdot A \cdot C \cdot R^{\mathrm{T}} \\
\Omega^{\prime} & =R \cdot C \cdot R^{\mathrm{T}} \\
\Omega \cdot\left(\Omega^{\prime}\right)^{-1} & =R \cdot A \cdot R^{-1} .
\end{aligned}
$$

Here matrices are viewed over \mathbb{Q} for inversion (they are invertible whp).

Once $\Omega \cdot\left(\Omega^{\prime}\right)^{-1}$ has been computed, the (diagonal) entries of A can be recovered as its eigenvalues. In practice this can be achieved by computing the characteristic polynomial, and all computations can be performed modulo some prime p larger than the a_{i} 's (which are size 2ρ).

Thus we recover the a_{i} 's, and by definition $a_{i}=a \bmod p_{i}$, so p_{i} can be recovered as $p_{i}=\operatorname{gcd}\left(a-a_{i}, x_{0}\right)$. From there it is trivial to recover all other secret parameters of the scheme.

5 Main Attack

5.1 On the Impact of Recovering x_{0}

If x_{0} is known, CLT15 essentially collapses to CLT13. In particular, all encodings can be reduced modulo x_{0} so ladders are no longer needed. What is more, all $\omega_{i, j}$'s from Cheon et al.'s attack can be reduced modulo $v_{0}=x_{0} \boldsymbol{p}_{z t} \bmod N$, which effectively removes the new noise a. As a direct consequence Cheon et al.'s attack goes through and all secret parameters are recovered (cf. [CLT15, Section 3.3]). Moreover ladder elements reduced by x_{0} provide low-level encodings of zero even if the scheme itself does not.

Our attack recovers x_{0}. As a first step, we introduce integer extraction.

5.2 Integer Extraction

Integer extraction essentially removes the extra noise induced by ladder reductions when performing computations on encodings. In addition, as we shall see in Section 5.3, this step is enough to recover x_{0} when an exact multiple is known, as is the case in the optimized variant proposed and implemented in [CLT15].

Integer Extraction of Level- $\boldsymbol{\kappa}$ Encodings of Zero. In the remainder we say that an encoding at level k is small iff it is less than $X_{0}^{(k)}$ in absolute value. In particular, any ladder-reduced encoding is small.

Definition 4 (integer extraction of an encoding). Let $e \in \mathbb{Z}$, and write:

$$
\begin{aligned}
e & =\sum_{i=1}^{n} r_{i} u_{i}+a x_{0} \\
\text { with: } u_{i} & =\left(g_{i} z^{-k}\left(p_{i}^{*}\right)^{-1} \bmod p_{i}\right) p_{i}^{*} \text { as in (3) } \\
r_{i} & \in \mathbb{Z} \cap\left(-p_{i} / 2, p_{i} / 2\right] .
\end{aligned}
$$

Note that r_{i} is uniquely defined as $r_{i}=e g_{i}^{-1} z^{k} \bmod p_{i}$, and $a=\left(e-\sum r_{i} u_{i}\right) / x_{0}$. Hence the following map is well-defined over \mathbb{Z} :

$$
\phi: e \mapsto \sum_{i} r_{i} v_{i}+a v_{0}
$$

with: $v_{0}=x_{0} \boldsymbol{p}_{z t} \bmod N$, and $\forall i>0, v_{i}=u_{i} \boldsymbol{p}_{z t} \bmod N$ as in (4).
We call $\phi(e)$ the integer extraction of e.

Remark. ϕ is defined over the integers, and not modulo N. Indeed the v_{i} 's are seen as integers: recall from Section 2 that throughout this paper $x \bmod N$ denotes an integer in $\mathbb{Z} \cap(-N / 2, N / 2]$.

The point is that if e is a small encoding of zero at level κ, then $\phi(e)=e \boldsymbol{p}_{z t}$ $\bmod N$. In that case $\phi(e)$ matches the extraction in the sense of the ext procedure of Section 3.2 (more precisely ext returns the high-order bits of $\phi(e)$).

However we want to compute $\phi(e)$ even when e is larger. For this purpose, the crucial point is that ϕ is actually \mathbb{Z}-linear as long as for all encodings involved, the associated r_{i} 's do not go over $p_{i} / 2$, i.e. reduction modulo p_{i} does not interfere. More formally:

Lemma 1. Let $e, a, r_{1}, \ldots, r_{n} \in \mathbb{Z}$ with $-p_{i} / 2<r_{i} \leq p_{i} / 2$ such that $e=$ $\sum r_{i} u_{i}+a x_{0}$ as in Definition 4. Define $e^{\prime}=\sum r_{i}^{\prime} u_{i}+a^{\prime} x_{0}$ in the same manner. Let $k \in \mathbb{Z}$.

1. If $\forall i,-p_{i} / 2<r_{i}+r_{i}^{\prime} \leq p_{i} / 2$, then: $\quad \phi\left(e+e^{\prime}\right)=\phi(e)+\phi\left(e^{\prime}\right)$
2. If $\forall i,-p_{i} / 2<k r_{i} \quad \leq p_{i} / 2$, then: $\quad \phi(k e)=k \phi(e)$

An important remark is that the conditions on the r_{i} 's above are also required for the correctness of the scheme to hold. In other words, as long as we perform valid computations from the point of view of the multilinear map (i.e. there is no reduction of the r_{i} 's modulo p_{i}, and correctness holds), then the \mathbb{Z}-linearity of ϕ also holds.

Using this observation, we can recursively compute the integer extraction of every ladder element $X_{i}^{(\kappa)}$. Indeed $\phi\left(X_{0}^{(\kappa)}\right)=X_{0}^{(\kappa)} \boldsymbol{p}_{z t} \bmod N$. Then assume we know $\phi\left(X_{0}^{(\kappa)}\right), \ldots, \phi\left(X_{i}^{(\kappa)}\right)$ for some $i<\ell$. Reduce X_{i+1} by the previous elements of the ladder. We get:

$$
\begin{aligned}
& Y_{i+1} & \triangleq X_{i+1}^{(\kappa)}-\alpha_{i} X_{i}^{(\kappa)}-\cdots-\alpha_{0} X_{0}^{(\kappa)} \\
\text { with: } & \operatorname{abs}\left(Y_{i+1}\right) & <\operatorname{abs}\left(X_{0}^{(\kappa)}\right) \\
\text { whence: } & \phi\left(X_{i+1}^{(\kappa)}\right) & =\phi\left(Y_{i+1}\right)+\sum_{j \leq i} \alpha_{j} \phi\left(X_{j}^{(\kappa)}\right)
\end{aligned}
$$

Since $\operatorname{abs}\left(Y_{i+1}\right)<\operatorname{abs}\left(X_{0}\right)$ we can compute $\phi\left(Y_{i+1}\right)=Y_{i+1} \boldsymbol{p}_{z t} \bmod N$, and deduce $\phi\left(X_{i+1}^{(\kappa)}\right)$.

In exactly the same manner, we can compute $\phi(e)$ for any valid level- κ encoding of zero, by first reducing via the ladder and then compensating using \mathbb{Z}-linearity. Here, by valid we mean of size up to X_{ℓ}, and such that the corresponding r_{i} 's are within the limit imposed by the correctness of the multilinear map.

In Appendix A, we show how to also compensate ladder reductions at intermediate levels for any computation on encodings, e.g. compute $\phi(a b c)$ for a three-way product $a b c$. However this will not be needed for our attack, as the previous technique will suffice.

5.3 Recovering x_{0} when an Exact Multiple is Known

The authors of [CLT15] propose an optimized version of their scheme, where a multiple $q x_{0}$ of x_{0} is provided in the public parameters. The size of q is chosen such that $q x_{0}$ is about the same size as N. Ladders at levels below κ are no longer necessary: every encoding can be reduced modulo $q x_{0}$ without altering encoded values or increasing any noise. The ladder at level κ is still needed as a preliminary to zero-testing, however it does not need to go beyond $q x_{0}$, which makes it much smaller. In the end this optimization greatly reduces the size of the public key and speeds up computations.

In this scenario, note that $q x_{0}$ may be regarded as an encoding of 0 at level κ (and indeed every level). Moreover by construction it is small enough to be reduced by the ladder at level κ with a valid computation (i.e. with low enough noise for every intermediate encoding involved that the scheme operates as desired and zero-extraction is correct). As a direct consequence we have:

$$
\phi\left(q x_{0}\right)=q v_{0}
$$

and so we can recover q as $q=\operatorname{gcd}\left(q x_{0}, \phi\left(q x_{0}\right)\right)$, and get $x_{0}=q x_{0} / q$. This attack has been verified on the reference implementation, and recovers x_{0} instantly.

Remark. $q v_{0}$ is larger than N by design, so that it cannot be computed simply as $q x_{0} \boldsymbol{p}_{z t} \bmod N$ due to modular reductions (cf. [CLT15, Section 3.4]). The point is that our computation of ϕ is over the integers and not modulo N.

5.4 Recovering x_{0} in the General Case

We now return to the non-optimized version of the scheme, where no exact multiple of x_{0} is provided in the public parameters.

The second step of our attack recovers x_{0} using a matrix product similar to Cheon et al.'s (cf. Section 4), except we start with families of $n+1$ encodings rather than n. That is, assume that for some t we have $n+1$ level t small encodings $\left(a_{i}\right)$ of any value, and $n+1$ level $(\kappa-t)$ small encodings $\left(b_{i}\right)$ of zero. This is easily achievable for one-round multi-party Diffie-Hellman (cf. Section 3.2), e.g. choose $t=1$, then pick $(n+1)$ level-1 encodings $\left(a_{i}\right)$ of zero from the public parameters, and let $b_{i}=a_{i}^{\prime} y^{\kappa-2}$ for a_{i}^{\prime} another family of $(n+1)$ level- 1 encodings of zero and y any level-1 encoding, where the product is ladder-reduced at each level. In other applications of the multilinear map, observe that ladder elements provide plenty of small encodings of zero, as each ladder element can be reduced by the elements below it to form a small encoding of zero. Thus the necessary conditions to perform both our attack to recover x_{0}, and the follow-up attack by Cheon et al. to recover other secret parameters once x_{0} is known, are very lax. In this respect [CLT15] is weaker than [CLT13].

Let $a_{i, j}=a_{i} z \bmod p_{j}$, i.e. $a_{i, j}$ is the j-th value " $r_{j} g_{j}+m_{j}$ " associated with a_{i}. Likewise for $i \leq n$, let $r_{i, j}=b_{i} z^{\kappa-1} / g_{j} \bmod p_{j}$, i.e. $r_{i, j}$ is the j-th value " r_{j} " associated with b_{i} (recall that b_{i} is an encoding of zero, so $m_{j}=0$). Now compute:

$$
\omega_{i, j} \triangleq \phi\left(a_{i} b_{j}\right)
$$

If we look at the $\omega_{i, j}$'s modulo v_{0} (which is unknown for now), everything behaves as in CLT13 since the new noise term $a v_{0}$ disappears, and the ladder reduction at level κ is negated by the integer extraction procedure. Hence, similar to Section 4, we have:

$$
\begin{equation*}
\omega_{i, j} \bmod v_{0}=\sum_{k} a_{i, k} r_{j, k} v_{k} \bmod v_{0} \tag{6}
\end{equation*}
$$

Again, equation (6) may be seen as a matrix product. Indeed, define Ω as the $(n+1) \times(n+1)$ integer matrix with entries $\omega_{i, j}$, let A be the $(n+1) \times n$ matrix with entries $a_{i, j}$, let R be the $(n+1) \times n$ matrix with entries $r_{i, j}$, and finally let V be the $n \times n$ diagonal matrix with diagonal entries v_{i}. Then (6) may be rewritten modulo v_{0} :

$$
\Omega=A \cdot V \cdot R^{\mathrm{T}} \quad \text { in } \mathbb{Z}_{v_{0}}
$$

Since A and R are $(n+1) \times n$ matrices, this implies that Ω is not fullrank when embedded into $\mathbb{Z}_{v_{0}}$. As a consequence $v_{0} \operatorname{divides} \operatorname{det}(\Omega)$, where the determinant is computed over the integers. Now we can build a new matrix Ω^{\prime} in the same way using a different choice of b_{i} 's, and recover v_{0} as $v_{0}=$ $\operatorname{gcd}\left(\operatorname{det}(\Omega), \operatorname{det}\left(\Omega^{\prime}\right)\right)$. Finally we get $x_{0}=v_{0} / \boldsymbol{p}_{z t} \bmod N\left(\right.$ note that $N \gg x_{0}$ by construction).

The attack has been verified on the reference implementation with reduced parameters.

Remark. As pointed out above, Ω cannot be full-rank when embedded into $\mathbb{Z}_{v_{0}}$. Our attack also requires that it is full-rank over $\mathbb{Q}(w h p)$. This holds because while Ω can be nicely decomposed as a product when viewed modulo v_{0}, the "remaining" part of Ω, that is $\Omega-\left(\Omega \bmod v_{0}\right)$ is the matrix of the terms $a v_{0}$ for each $\omega_{i, j}$, and the value a does have the nice structure of $\omega_{i, j} \bmod v_{0}$. This is by design, since the noise a was precisely added in CLT15 in order to defeat the matrix product structure in Cheon et al.'s attack.

5.5 Attack Complexity

It is clear that the attack is polynomial, and asymptotically breaks the scheme. In this section we provide a closer look at its practical complexity. When an exact multiple of x_{0} is known, the attack is instant as mentioned in Section 5.3, so we focus on the general case from Section 5.4. There are two steps worth considering from a complexity point of view: computing Ω and computing its determinant. Computing the final gcd is negligible in comparison using a subquadratic algorithm [Möl08], which is practical for our parameter size.

Computing $\boldsymbol{\Omega}$. Computing Ω requires $(n+1)^{2}$ integer extractions of a single product. Each integer extraction requires 1 multiplication, and 2ℓ additions (as well as ℓ multiplications by small scalars). For comparison, using the multilinear scheme for one user requires 1 multiplication and ℓ additions on integers of
similar size. Thus overall computing Ω costs about n^{2} times as much as simply using the multilinear scheme. For the 52-bit instance proposed in [CLT15] for instance, this means that if it is practical to use the scheme about a million times, then it is practical to compute Ω. Thus we will focus on the determinant computation as the main bottleneck.

Computing the Determinant. Let n denote the size of a matrix Ω (it is $(n+1)$ in our case but we will disregard this), and β the number of bits of its largest entry. When computing the determinant of an integer matrix, one has to carefully control the size of the integers appearing in intermediate computations. It is generally possible to ensure that these integers do not grow past the size of the determinant. Using Hadamard's bound this size can be upper bounded as $\log (\operatorname{det}(\Omega)) \leq n\left(\beta+\frac{1}{2} \log n\right)$, which can be approximated to $n \beta$ in our case, since β is much larger than $n .{ }^{4}$

As a result, computing the determinant using "naive" methods requires $\mathcal{O}\left(n^{3}\right)$ operations on integers of size up to $n \beta$, which results in a complexity $\tilde{\mathcal{O}}\left(n^{4} \beta\right)$ using fast integer multiplication (but slow matrix multiplication). The asymptotic complexity is known to be strictly less than $\tilde{\mathcal{O}}\left(n^{3} \beta\right)$ [KV04]; however we are interested in the complexity of practical algorithms. Computing the determinant can be reduced to solving the linear system associated with Ω with a random target vector: indeed the determinant can then be recovered as the least common denominator of the (rational) solution vector. In this context the fastest algorithms use p-adic lifting [Dix82], and an up-to-date analysis using fast arithmetic in [MS04] gives a complexity $\mathcal{O}\left(n^{3} \beta \log ^{2} \beta \log \log \beta\right)($ with $\log n=o(\beta)) .{ }^{5}$

For the concrete instantiations of one-round multipartite Diffie-Hellman implemented in [CLT15], this yields the following complexities:

Security parameter:	52	62	72	80
Determinant complexity:	2^{57}	2^{66}	2^{74}	2^{81}

Thus, beside being polynomial, the attack is actually coming very close to the security parameter as it increases to 80 bits. ${ }^{6}$

Acknowledgement. We would like to thank the authors of CLT13 and CLT15 Jean-Sébastien Coron, Tancrède Lepoint and Mehdi Tibouchi for fruitful discussions and remarks.

[^1]
References

[BF01] Dan Boneh and Matt Franklin. Identity-based encryption from the Weil pairing. In Advances in Cryptology-CRYPTO 2001, pages 213229. Springer, 2001.
[BS03] Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryptography. Contemporary Mathematics, 324(1):71-90, 2003.
$\left[\mathrm{CGH}^{+} 15\right]$ Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrède Lepoint, Hemanta K Maji, Eric Miles, Mariana Raykova, Amit Sahai, and Mehdi Tibouchi. Zeroizing without low-level zeroes: New attacks on multilinear maps and their limitations. In Advances in Cryptology-CRYPTO 2015, pages 247-266. Springer, 2015.
[CHL ${ }^{+}$15] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé. Cryptanalysis of the multilinear map over the integers. In Advances in Cryptology-EUROCRYPT 2015, pages 3-12. Springer, 2015.
[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear maps over the integers. In Advances in Cryptology-CRYPTO 2013, pages 476-493. Springer, 2013.
[CLT15] Jean-Sebastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. New multilinear maps over the integers. In Advances in Cryptology-CRYPTO 2015, pages 267-286. Springer, 2015.
[DH76] Whitfield Diffie and Martin E Hellman. Multiuser cryptographic techniques. In Proceedings of the June 7-10, 1976, national computer conference and exposition, pages 109-112. ACM, 1976.
[Dix82] John D. Dixon. Exact solution of linear equations using P-adic expansions. Nümerische Mathematik, 40(1):137-141, 1982.
[Für14] Martin Fürer. How fast can we multiply large integers on an actual computer? In LATIN 2014: Theoretical Informatics, pages 660-670. Springer, 2014.
[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices. In Eurocrypt, volume 7881, pages 1-17. Springer, 2013.
[GGH ${ }^{+}$13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. Candidate indistinguishability obfuscation and functional encryption for all circuits. In Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on, pages 40-49. IEEE, 2013.
[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps from lattices. In Theory of Cryptography, pages 498-527. Springer, 2015.
[Hal15a] Shai Halevi. Cryptographic graded-encoding schemes: Recent developments. TCS+ online seminar, available at https://sites.google.com/ site/plustcs/past-talks/20150318shaihaleviibmtjwatson, 2015.
[Hal15b] Shai Halevi. Graded encoding, variations on a scheme. Technical report, Cryptology ePrint Archive, Report 2015/866, 2015. http://eprint. iacr. org, 2015.
[HJ15] Yupu Hu and Huiwen Jia. Cryptanalysis of GGH map. Technical report, Cryptology ePrint Archive, Report 2015/301, 2015.
[HSW13] Susan Hohenberger, Amit Sahai, and Brent Waters. Full domain hash from (leveled) multilinear maps and identity-based aggregate signatures. In Advances in Cryptology-CRYPTO 2013, pages 494-512. Springer, 2013.
[Jou00] Antoine Joux. A one round protocol for tripartite Diffie-Hellman. In Algorithmic number theory, pages 385-393. Springer, 2000.
[KV04] Erich Kaltofen and Gilles Villard. Computing the sign or the value of the determinant of an integer matrix, a complexity survey. Journal of Computational and Applied Mathematics, 162(1):133-146, 2004.
[Möl08] Niels Möller. On Schönhage's algorithm and subquadratic integer GCD computation. Mathematics of Computation, 77(261):589-607, 2008.
[MS04] Thom Mulders and Arne Storjohann. Certified dense linear system solving. Journal of Symbolic Computation, 37(4):485-510, 2004.
[Sha85] Adi Shamir. Identity-based cryptosystems and signature schemes. In Advances in cryptology, pages 47-53. Springer, 1985.
[VDGHV10] Marten Van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomorphic encryption over the integers. In Advances in cryptology-EUROCRYPT 2010, pages 24-43. Springer, 2010.
[Zim15] Joe Zimmerman. How to obfuscate programs directly. In Advances in Cryptology-EUROCRYPT 2015, pages 439-467. Springer, 2015.

A Integer Extraction of Products

Using Section 5.2, if a, b are two small encodings at levels s and $\kappa-s$ respectively, and b encodes zero, we know how to compute $\phi(a b)$, because the size of $a b$ is at most that of X_{ℓ}.

We now consider larger products. Let a_{1}, \ldots, a_{m}, be small encodings at level s_{1}, \ldots, s_{m}, with $t_{j} \triangleq \sum_{i \leq j} s_{i}, t_{m}=\kappa$, and with a_{m} an encoding of zero. We would like to compute $\phi\left(a_{1} \cdots a_{m}\right)$. Note that $a_{1} \cdots a_{m}$ may be much larger than $X_{\ell}^{(\kappa)}$ in the absence of ladder reduction, so our previous technique is not enough.

Instead, a valid computation is to compute the product $\pi \triangleq a_{1} \cdots a_{m}$ pairwise from the left, and reduce at each step. That is, let $\pi_{1} \triangleq a_{1}$, and recursively define the ladder-reduced partial product $\pi_{i+1} \triangleq \pi_{i} a_{i+1}-\sum_{j} \alpha_{j}^{i+1} X_{i}^{\left(t_{i+1}\right)}<X_{0}^{\left(t_{i+1}\right)}$ for $i<m$. Thus $\pi_{m}<X_{0}^{(\kappa)}$ encodes the same element as π, and $\phi\left(\pi_{m}\right)=$ $\pi_{m} \boldsymbol{p}_{z t} \bmod N$. In order to compute $\phi(\pi)$, observe:

$$
\begin{aligned}
\pi & =\left(\left(\left(a_{1} a_{2}-\sum \alpha_{i}^{(2)} X_{i}^{\left(t_{2}\right)}\right) \ldots\right) a_{m-1}-\sum \alpha_{i}^{m-1} X_{i}^{\left(t_{m-1}\right)}\right) a_{m}-\sum \alpha_{i}^{(m)} X_{i}^{(\kappa)} \\
& +\sum_{2 \leq k \leq m} \sum_{i} \alpha_{i}^{(k)} X_{i}^{\left(t_{k}\right)} a_{k+1} \cdots a_{m}
\end{aligned}
$$

Hence:

$$
\phi\left(a_{1} \cdots a_{m}\right)=\phi\left(\pi_{m}\right)+\sum_{2 \leq k \leq m} \sum_{i} \alpha_{i}^{(k)} \phi\left(X_{i}^{\left(t_{k}\right)} a_{k+1} \cdots a_{m}\right)
$$

In the above equation, $\phi\left(\pi_{m}\right)$ is known since π_{m} is small, so we are reducing the computation of a product π of m elements to a sum of products of $m-1$
elements, of the form $X_{i}^{\left(t_{k}\right)} a_{k+1} \cdots a_{m}$. As mentioned earlier we already know how to compute ϕ for products of 2 small elements, so by induction we are done.

To be more precise, the induction is carried out on the hypothesis: we know how to compute ϕ for products of up to m small encodings (with the last being an encoding of zero so that the overall product encodes zero). In order to apply the induction hypothesis on $X_{i}^{\left(t_{k}\right)} a_{k+1} \cdots a_{m}$, the term $X_{i}^{\left(t_{k}\right)}$ would need to be small, which is not the case. However it can be reduced by previous ladder elements, i.e. first compute $X_{0}^{\left(t_{k}\right)} a_{k+1} \cdots a_{m}$, then define $Y_{1}=X_{1}^{\left(t_{k}\right)}-\alpha_{0} X_{0}^{t_{k}}<X_{0}^{\left(t_{k}\right)}$, whence $\phi\left(X_{1}^{\left(t_{k}\right)} a_{k+1} \cdots a_{m}\right)=\phi\left(Y_{1} a_{k+1} \cdots a_{m}\right)+\alpha_{0} \phi\left(X_{0}^{t_{k}} a_{k+1} \cdots a_{m}\right)$, and so forth as in the previous section. Thus the induction goes through and we know how to compute $\phi(\pi)$.

All in all, while the above formalism may obfuscate the process somewhat, the idea is simple: ϕ is $(\mathbb{Z}-)$ linear as long as we are performing valid computations from the point of view of the scheme. As a consequence every ladder reduction involved during a computation can be compensated for at its last stage, when the level- κ encoding is multiplied by the zero-testing parameter. The payback is that we will be able to ignore ladder reductions in the rest of the attack.
A note on complexity. It may seem that computing $\phi\left(a_{1} \cdots a_{m}\right)$ using the previous approach has a huge complexity, but actually most of the computation overlaps. In fact we only ever need to compute the $\phi\left(X_{i}^{\left(t_{k}\right)} a_{k+1} \cdots a_{m}\right)$'s for each i, k. Memorizing intermediate results yields a complexity in ℓm, where ℓ is the size of the longest ladder. The time required for each term is quite close to merely using the multi-party Diffie-Hellman scheme.

[^0]: ${ }^{3}$ In fact the question of achieving the functionality of multilinear maps without noise may be regarded as an important open problem [Zim15].

[^1]: ${ }^{4}$ This situation is fairly unusual, and in the literature the opposite is commonly assumed; algorithms are often optimized for large n rather than large β.
 ${ }^{5}$ This assumes a multitape Turing machine model, which is somewhat less powerful than a real computer.
 ${ }^{6}$ We may note in passing that in a random-access or log-RAM computing model [Für14], which is more realistic than the multitape model, the estimated complexity would already be slightly lower than the security parameter.

