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Abstract

We study ballot secrecy and ballot independence for election schemes.
First, we propose a definition of ballot secrecy as an indistinguishability
game in the computational model of cryptography. Our definition builds
upon and strengthens earlier definitions to ensure that ballot secrecy is
preserved in the presence of an adversary that controls the bulletin board
and communication channel. Secondly, we propose a definition of ballot
independence as an adaptation of a non-malleability definition for asym-
metric encryption. We also provide a simpler, equivalent definition as an
indistinguishability game. Thirdly, we prove relations between our defi-
nitions. In particular, we prove that ballot independence is necessary in
election schemes satisfying ballot secrecy. And that ballot independence
is sufficient for ballot secrecy in election schemes with zero-knowledge tal-
lying proofs. Fourthly, we demonstrate the applicability of our results
by analysing Helios. Our analysis identifies a new attack against Helios,
which enables an adversary to determine if a voter did not vote for a
candidate chosen by the adversary. The attack requires the adversary
to control the bulletin board or communication channel, thus, it could
not have been detected by earlier definitions of ballot secrecy. Finally,
we prove that ballot secrecy is satisfied by a variant of Helios that uses
non-malleable ballots.

Keywords. Elections, Helios, independence, non-malleability, privacy,
provable security, secrecy, voting.

1 Introduction

An election is a decision-making procedure to choose representatives. Choices
should be made freely, and this has started a movement towards voting as a
secret act. The movement is championed by the United Nations [UN48, Article
21], the Organization for Security and Cooperation in Europe [OSC90, Para-
graph 7.4], and the Organization of American States [OAS69, Article 23]. And
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has led to the emergence of ballot secrecy1 as a de facto standard requirement
of voting systems.

• Ballot secrecy. A voter’s vote is not revealed to anyone.

Many voting systems – including systems that have been deployed in real-
world, large-scale public elections – attempt to satisfy ballot secrecy by plac-
ing extensive trust in software and hardware. Unfortunately, many systems
are not trustworthy, and are vulnerable to attacks that could compromise bal-
lot secrecy [GH07, Bow07, WWH+10, WWIH12, SFD+14]. Such vulnerabilities
can be avoided by formulating ballot secrecy as a rigorous and precise secu-
rity definition, and proving that systems satisfy this definition. We propose
such a definition in the computational model of cryptography. Our definition
builds upon and strengthens earlier definitions of ballot secrecy by Bernhard
et al. [BCP+11, BPW12b, SB13, SB14, BCG+15b] to ensure that ballot secrecy
is preserved in the presence of an adversary that controls the bulletin board
and the communication channel, whereas definitions by Bernhard et al. only
consider trusted bulletin boards and channels.

Ballot independence [Gen95, CS13, CGMA85] is seemingly related to ballot
secrecy.

• Ballot independence. Observing another voter’s interaction with the vot-
ing system does not allow a voter to cast a meaningfully related vote, i.e.,
ballots are non-malleable.

Cortier & Smyth [CS13, CS11, SC11] attribute a class of ballot secrecy attacks
to the absence of ballot independence. Their attribution caused some debate.
In particular, Bulens, Giry & Pereira [BGP11, §3.2] highlight the investigation
of systems which allow the submission of related votes, whilst preserving ballot
secrecy, as an interesting research problem. And Desmedt & Chaidos [DC12]
claim to provide a solution.2 We facilitate the study of ballot independence
by proposing two definitions of independence in the computational model. Our
first definition is a straightforward adaptation of a non-malleability definition for
asymmetric encryption. And our second definition is a straightforward adaption
of an indistinguishability game for asymmetric encryption. The former defini-
tion naturally captures ballot independence, but it is complex and proofs of
non-malleability are relatively difficult. The latter definition is equivalent, yet
simpler, and proofs of indistinguishability are easier.

We demonstrate relations between our definitions of secrecy and indepen-
dence. In particular, we prove that ballot secrecy implies ballot independence,
hence, ballot independence is necessary (assuming ballot secrecy is required).

1Ballot secrecy and privacy occasionally appear as synonyms in the literature. We favour
ballot secrecy because it avoids confusion with other privacy notions, such as receipt-freeness
and coercion resistance, for example.

2Smyth & Bernhard [SB13, §5.1] critique the results by Desmedt & Chaidos [DC12] and
argue that their security results do not support their claims.
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We also prove the inverse implication for a class of voting systems with zero-
knowledge tallying proofs. And show that the inverse implication does not hold
in general, hence, ballot secrecy is strictly stronger than ballot independence.

We employ our ballot secrecy definition to analyse Helios [AMPQ09], a web-
based voting system that has been deployed in the real-world. The original He-
lios scheme is vulnerable to attacks against ballot secrecy [CS13, CS11, SC11].
And the current version of Helios is intended to mitigate against those attacks.
Bernhard [Ber14] and Bernhard et al. [BCG+15a, BCG+15b] prove that vari-
ants of the current version satisfy notions of ballot secrecy, assuming the bulletin
board and communication channel are secure, despite the use of malleable bal-
lots. Nevertheless, it follows from our results that ballot secrecy is not satisfied
when this assumption is dropped. And this leads to the discovery of a new
attack against Helios, whereby an adversary can determine if a voter did not
vote for a candidate chosen by the adversary. Violations of ballot secrecy can
be overcome using a variant of Helios that uses non-malleable ballots, and we
formally prove that our definition of ballot secrecy is satisfied by that variant.

Contribution. This paper contributes to the security of voting systems by:
proposing definitions of ballot secrecy (§3) and ballot independence (§4) in the
computational model; proving that ballot secrecy is strictly stronger than ballot
independence in general, and that secrecy and independence coincide for elec-
tions schemes with zero-knowledge tallying proofs (§5); and identifying a new
attack against Helios, proposing a fix, and proving that ballot secrecy is satisfied
when the fix is incorporated (§6).

2 Election schemes

We recall syntax for election schemes3 from Smyth, Frink & Clarkson [SFC16].4

Definition 1 (Election scheme [SFC16]). An election scheme is a tuple of
probabilistic polynomial-time algorithms (Setup,Vote,Tally) such that:

Setup, denoted5 (pk , sk ,mb,mc) ← Setup(κ), is run by the tallier6. Setup
takes a security parameter κ as input and outputs a key pair pk , sk, a
maximum number of ballots mb, and a maximum number of candidates
mc.

3Election schemes capture an interesting class of voting systems, which includes Helios.
4We omit algorithm Verify from our syntax and we omit the condition that election schemes

must satisfy notions of completeness and injectivity, because we do not focus on verifiability
in the main body.

5Let A(x1, . . . , xn; r) denote the output of probabilistic algorithm A on inputs x1, . . . , xn

and random coins r. Let A(x1, . . . , xn) denote A(x1, . . . , xn; r), where r is chosen uniformly
at random. And let ← denote assignment.

6Some election schemes (e.g., Helios) permit the tallier’s role to be distributed amongst
several talliers. For simplicity, we consider only a single tallier in this paper. Generalising
syntax and security definitions to multiple talliers is a possible direction for future work.
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Vote, denoted b ← Vote(pk , v,nc, κ), is run by voters. Vote takes as input
a public key pk, a voter’s vote v, some number of candidates nc, and a
security parameter κ. A voter’s vote should be selected from a sequence
1, . . . ,nc of distinct candidates. Vote outputs a ballot b or error symbol ⊥.

Tally, denoted (v, pf ) ← Tally(sk , bb,nc, κ), is run by the tallier. Tally takes
as input a private key sk, a bulletin board bb, some number of candidates
nc, and a security parameter κ, where bb is a set. It outputs an election
outcome v and a non-interactive tallying proof pf (i.e., a proof that the
outcome is correct). An election outcome is a vector v of length nc such
that v[v] indicates7 the number of votes for candidate v.

Election schemes must satisfy correctness: there exists a negligible function
negl, such that for all security parameters κ, integers nb and nc, and votes
v1, . . . , vnb ∈ {1, . . . ,nc}, it holds that: if v is a zero-filled vector of length nc,
then

Pr[(pk , sk ,mb,mc)← Setup(κ);

for 1 ≤ i ≤ nb do
bi ← Vote(pk , vi,nc, κ);
v[vi]← v[vi] + 1;

(v′, pf )← Tally(sk , {b1, . . . , bnb},nc, κ) :
nb ≤ mb ∧ nc ≤ mc ⇒ v = v′] > 1− negl(κ).

3 Ballot Secrecy

Our informal definition of ballot secrecy (§1) could be formulated as an indistin-
guishability game, similar to indistinguishability games for asymmetric encryp-
tion (e.g., IND-CPA): we could challenge the adversary to determine whether
a ballot is for one of two possible votes. This formalisation is too weak, be-
cause election schemes also output the election outcome and a tallying proof,
which needs to be incorporated into the game. Unfortunately, it is insufficient
to simply grant the adversary access to an oracle that provides an election out-
come and tallying proof corresponding to some ballots, because such a game is
unsatisfiable, in particular, the adversary can use the oracle to reveal the vote
encapsulated inside the challenge ballot. This reveals some limitations in our
informal definition of ballot secrecy.

For simplicity, our informal definition of ballot secrecy deliberately omits
some side-conditions, which are necessary for satisfiability, in particular, we did
not stress that a voter’s vote may be revealed in the following scenarios: unani-
mous election outcomes reveal how everyone voted and, more generally, election
outcomes can be coupled with partial knowledge about the distribution of vot-
ers’ votes to deduce voters’ votes. For example, suppose Alice, Bob and Mallory
vote in a referendum and the outcome is two “yes” votes and one “no” vote.

7Let v[v] denote component v of vector v.
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Mallory and Alice can deduce Bob’s vote by pooling knowledge of their own
votes. Similarly, Mallory and Bob can deduce Alice’s vote. Furthermore, Mal-
lory can deduce that Alice and Bob both voted yes, if she voted no. Accordingly,
ballot secrecy must concede that election outcomes reveal partial information
about voters’ votes,8 hence, we refine our informal definition of ballot secrecy
as follows:

A voter’s vote is not revealed to anyone, except when the vote can
be deduced from the election outcome and any partial knowledge on
the distribution of votes.

This refinement ensures the aforementioned examples are not violations of ballot
secrecy. By comparison, if Mallory votes yes and she can deduce the vote of
Alice, without knowledge of Bob’s vote, then ballot secrecy is violated.

3.1 Indistinguishability game

We formalise ballot secrecy as an indistinguishability game between an adversary
and a challenger.9

Definition 2 (Ballot-Secrecy). Let Γ = (Setup,Vote,Tally) be an election scheme,
A be an adversary, κ be a security parameter, and Ballot-Secrecy(Γ,A, κ) be the
following game.10

Ballot-Secrecy(Γ,A, κ) =

(pk , sk ,mb,mc)← Setup(κ);
nc ← A(pk , κ);
β ←R {0, 1};
L← ∅;
bb← AO();
(v, pf )← Tally(sk , bb,nc, κ);
g ← A(v, pf );
return g = β ∧ balanced(bb,nc, L) ∧ 1 ≤ nc ≤ mc ∧ |bb| ≤ mb;

Predicate balanced(bb,nc, L) holds when: for all votes v ∈ {1, . . . ,nc} we have
|{b | b ∈ bb ∧ ∃v1 . (b, v, v1) ∈ L}| = |{b | b ∈ bb ∧ ∃v0 . (b, v0, v) ∈ L}|. And
oracle O is defined as follows:11

8We acknowledge that alternative formalisations of election schemes might permit different
results. For instance, voting systems which only announce the winning candidate [BY86,HK02,
HK04,DK05], rather than the number of votes for each candidate (i.e., the election outcome,
in our terminology), could offer stronger notions of ballot secrecy.

9Games are probabilistic algorithms that output booleans. An adversary wins a game by
causing it to output true (>). We denote an adversary’s success Succ(Exp(·)) in a game Exp(·)
as the probability that the adversary wins, that is, Succ(Exp(·)) = Pr[b ← Exp(·) : b = >].
Adversaries are assumed to be stateful, that is, information persists across invocations of the
adversary in a single game, in particular, the adversary can access earlier assignments.

10Let x←R S denote assignment to x of an element chosen uniformly at random from set
S. And let |v| denote the length of vector v.

11Oracles may access game parameters, e.g., pk .
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• O(v0, v1) computes b← Vote(pk , vβ ,nc, κ);L← L ∪ {(b, v0, v1)} and out-
puts b, where v0, v1 ∈ {1, ...,nc}.

We say Γ satisfies ballot secrecy (Ballot-Secrecy), if for all probabilistic
polynomial-time adversaries A, there exists a negligible function negl, such
that for all security parameters κ, we have Succ(Ballot-Secrecy(Γ,A, κ)) ≤
1/2 + negl(κ).

The game captures a setting where the tallier generates a key pair using the
scheme’s Setup algorithm, publishes the public key, and only uses the private
key to compute the election outcome and tallying proof.

The adversary has access to a left-right oracle [BDJR97, BR05] which can
compute ballots on the adversary’s behalf. Ballots can be computed by the left-
right oracle in two ways, corresponding to a bit β chosen uniformly at random by
the challenger. If β = 0, then, given a pair of votes v0, v1, the oracle computes
a ballot for v0 and outputs the ballot to the adversary. Otherwise (β = 1), the
oracle outputs a ballot for v1. The adversary constructs a bulletin board, which
may include ballots computed by the oracle. Thus, the game captures a setting
where the bulletin board is constructed by an adversary that casts ballots on
behalf of a subset of voters and controls the distribution of votes cast by the
remaining voters.

The challenger tallies the adversary’s bulletin board to derive an election
outcome and tallying proof. The adversary is given the outcome and proof, and
wins by determining whether β = 0 or β = 1. Intuitively, if the adversary wins,
then there exists a strategy to distinguish ballots. On the other hand, if the
adversary loses, then the adversary is unable to distinguish between a ballot for
vote v0 and a ballot for vote v1, therefore, voters’ votes cannot be revealed.

Our notion of ballot secrecy is satisfiable by election schemes which reveal
the number of votes for each candidate (i.e., the election outcome). Hence, to
avoid trivial distinctions, we insist the game is balanced : “left” and “right” in-
puts to the left-right oracle are equivalent, when the corresponding left-right
oracle’s outputs appear on the bulletin board. For example, suppose the inputs
to the left-right oracle are (v1,0, v1,1), . . . , (vn,0, vn,1) and the corresponding out-
puts are b1, . . . , bn, further suppose the bulletin board is {b1, . . . , b`} such that
` ≤ n; that game is balanced if the “left” inputs v1,0, . . . , v`,0 are a permutation
of the “right” inputs v1,1, . . . , v`,1. The balanced condition prevents trivial dis-
tinctions. For instance, an adversary that constructs a bulletin board containing
only the ballot output by a left-right oracle query with input (1, 2) cannot win
the game, because it is unbalanced. Albeit, that adversary could trivially de-
termine whether β = 0 or β = 1, given the tally of that bulletin board.

3.2 Non-malleable encryption is sufficient for secrecy

To demonstrate the applicability of our definition, we recall a construction
by Quaglia & Smyth [QS16] for election schemes from asymmetric encryption
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schemes.12

Definition 3 (Enc2Vote [QS16]). Given an asymmetric encryption scheme Π =
(Gen,Enc,Dec),13 we define Enc2Vote(Π) as follows.

• Setup(κ) computes (pk , sk ,m)← Gen(κ) and outputs (pk , sk , poly(κ), |m|).

• Vote(pk , v,nc, κ) computes b ← Enc(pk , v) and outputs b, if 1 ≤ v ≤ nc,
and outputs ⊥, otherwise.

• Tally(sk , bb,nc, κ) initialises vector v of length nc, computes for b ∈ bb
do v ← Dec(sk , b); if 1 ≤ v ≤ nc then v[v] ← v[v] + 1, and outputs
(v, ε).

Algorithm Setup requires poly to be a polynomial function and m = {1, . . . , |m|}.
Algorithm Tally requires ε to be a constant symbol.

Lemma 1. Given an asymmetric encryption scheme Π with perfect correct-
ness, we have Enc2Vote(Π) is an election scheme (i.e., Enc2Vote(Π) satisfies
correctness).

The proof of Lemma 1 appears in [QS16, §C.4].14

Intuitively, given a non-malleable asymmetric encryption scheme Π, the con-
struction Enc2Vote(Π) derives ballot secrecy from Π until tallying and algorithm
Tally maintains ballot secrecy by returning only the number of votes for each
candidate. A formal proof of ballot secrecy follows from Quaglia & Smyth, in
particular, Quaglia & Smyth show that Enc2Vote(Π) satisfies a stronger notion
of ballot secrecy [QS16, Proposition 5 & 16], hence, Enc2Vote(Π) satisfies our
notion of ballot secrecy too.

Corollary 2. Let Π be an encryption scheme with perfect correctness. If Π
satisfies IND-PA0, then election scheme Enc2Vote(Π) satisfies Ballot-Secrecy.

The reverse implication of Corollary 2 does not hold.

Proposition 3. There exists an asymmetric encryption scheme Π such that
election scheme Enc2Vote(Π) satisfies Ballot-Secrecy, but Π does not satisfy
IND-PA0.

The proof of Proposition 3 and all further proofs, except where otherwise stated,
appear in Appendix B.

12The construction by Quaglia & Smyth builds upon constructions by Bernhard et al. [SB14,
SB13,BPW12b,BCP+11].

13We define asymmetric encryption and an associated security definition (namely, IND-PA0)
in Appendix A.1.

14Quaglia & Smyth only consider asymmetric encryption schemes with perfect correctness,
because they require election schemes to satisfy injectivity, and perfect correctness is required
to show that Enc2Vote(Π) satisfies injectivity. We adopt the same assumption to capitalise
upon their results.
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4 Ballot independence

Our informal definition of ballot independence (§1) essentially states that an ad-
versary is unable to construct a ballot meaningfully related to a non-adversarial
ballot. That is, ballots are non-malleable. Hence, we formulate ballot inde-
pendence using non-malleability. The first formalisation of non-malleability is
due to Dolev, Dwork & Naor [DDN91, DDN00], in the context of asymmetric
encryption. Bellare & Sahai [BS99] build upon their results, and results by
Bellare et al. [BDPR98], to introduce an alternative non-malleability definition
for asymmetric encryption. We formalise non-malleability for election schemes
as a straightforward adaptation of that definition.

Our formalisation of non-malleability for election schemes captures an in-
tuitive notion of ballot independence, but the definition is complex and proofs
of non-malleability are relatively difficult. Bellare & Sahai [BS99] observe sim-
ilar complexities of non-malleability for encryption and show that their non-
malleability definition for encryption is equivalent to a simpler, indistinguisha-
bility game for encryption. In a similar direction, we derive a simpler, equivalent
definition of ballot independence as a straightforward adaptation of that indis-
tinguishability game.

4.1 Non-malleability game

We formalise ballot independence as a non-malleability game.

Definition 4 (CNM-CVA). Let Γ = (Setup,Vote,Tally) be an election scheme, A
be an adversary, κ be a security parameter, and cnm-cva(Γ,A, κ) and cnm-cva-$(
Γ,A, κ) be the following games.15

cnm-cva(Γ,A, κ) =

(pk , sk ,mb,mc)← Setup(κ);
(V,nc)← A(pk , κ);
v ←R V ;
b← Vote(pk , v,nc, κ);
(R, bb)← A(b);
(v, pf )← Tally(sk , bb,nc, κ);
return R(v, v) ∧ b 6∈ bb ∧
V ⊆ {1, . . . ,nc}
∧ 1 ≤ nc ≤ mc ∧ |bb| ≤ mb;

cnm-cva-$(Γ,A, κ) =

(pk , sk ,mb,mc)← Setup(κ);
(V,nc)← A(pk , κ);
v, v′ ←R V ;
b← Vote(pk , v′,nc, κ);
(R, bb)← A(b);
(v, pf )← Tally(sk , bb,nc, κ);
return R(v, v) ∧ b 6∈ bb
∧ V ⊆ {1, . . . ,nc}
∧ 1 ≤ nc ≤ mc ∧ |bb| ≤ mb;

In the above games, we insist that relation R is computable in polynomial time.
We say Γ satisfies comparison based non-malleability under chosen vote at-
tack (CNM-CVA), if for all probabilistic polynomial-time adversaries A, there
exists a negligible function negl, such that for all security parameters κ, we have
Succ(cnm-cva(Γ,A, κ))− Succ(cnm-cva-$(Γ,A, κ)) ≤ negl(κ).

15We abbreviate x←R S;x′ ←R S as x, x′ ←R S.
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Similarly to game Ballot-Secrecy, games cnm-cva and cnm-cva-$ capture: key
generation using algorithm Setup, publication of the public key, and only using
the private key to compute the election outcome and tallying proof.

CNM-CVA is satisfied if no adversary can distinguish between games cnm-cva
and cnm-cva-$. That is, for all adversaries, we have with negligible probability
that the adversary wins cnm-cva iff the adversary loses cnm-cva-$. The first
three steps of games cnm-cva and cnm-cva-$ are identical, thus, these steps
cannot be distinguished. Then, game cnm-cva-$ performs an additional step:
the challenger samples a second vote v′ from vote space V . Thereafter, game
cnm-cva(Γ,A, κ), respectively game cnm-cva-$(Γ,A, κ), proceeds as follows: the
challenger constructs a challenge ballot b for v, respectively v′; the adversary
is given ballot b and must compute a relation R and bulletin board bb; the
challenger tallies bb and outputs the election outcome v; and the challenger
evaluates whether R(v, v) holds. Hence, CNM-CVA is satisfied if there is no
advantage of the relation constructed by an adversary given a challenge ballot
for v, over the relation constructed by an adversary given a challenge ballot
for v′. That is, for all adversaries, we have with negligible probability that the
relation evaluated by the challenger in cnm-cva holds iff the relation evaluated in
cnm-cva-$ does not hold. It follows that no adversary can meaningfully relate
ballots. On the other hand, if CNM-CVA is not satisfied, then there exists a
strategy to construct related ballots.

CNM-CVA avoids crediting the adversary for trivial and unavoidable rela-
tions which hold if the challenge ballot appears on the bulletin board. For
example, suppose the adversary is given a challenge ballot for v, respectively v′,
in cnm-cva, respectively cnm-cva-$, this adversary could output a bulletin board
containing only the challenge ballot and a relation R such that R(v, v) holds if
v[v] = 1, hence, the relation evaluated in cnm-cva holds, whereas the relation
evaluated in cnm-cva-$ does not hold, but the adversary loses in both games
because the challenge ballot appears on the bulletin board. By contrast, if the
adversary can derive a ballot meaningfully related to the challenge ballot, then
the adversary can win the game. For instance, Cortier & Smyth [CS13, CS11]
demonstrate the following attack: an adversary observes a voter’s ballot, casts
a meaningfully related ballot, and exploits the relation to recover the voter’s
vote from the election outcome.

Comparing CNM-CVA and CNM-CPA. The main distinction between non-
malleability for asymmetric encryption (CNM-CPA) and non-malleability for
election schemes (CNM-CVA) is: CNM-CPA performs a parallel decryption,
whereas, CNM-CVA performs a single tally. It follows that non-malleability
for encryption reveals plaintexts corresponding to ciphertexts, whereas, non-
malleability for elections reveals the number of ballots for each candidate.

4.2 Indistinguishability game

We formalise an alternative definition of ballot independence as an indistin-
guishability game.
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Definition 5 (IND-CVA). Let Γ = (Setup,Vote,Tally) be an election scheme,
A be an adversary, κ be the security parameter, and IND-CVA(Γ,A, κ) be the
following game.

IND-CVA(Γ,A, κ) =

(pk , sk ,mb,mc)← Setup(κ);
(v0, v1,nc)← A(pk , κ);
β ←R {0, 1};
b← Vote(pk , vβ ,nc, κ);
bb← A(b);
(v, pf )← Tally(sk , bb,nc, κ);
g ← A(v);
return g = β ∧ b 6∈ bb ∧ 1 ≤ v0, v1 ≤ nc ≤ mc ∧ |bb| ≤ mb;

We say Γ satisfies ballot independence or indistinguishability under chosen vote
attack (IND-CVA), if for all probabilistic polynomial-time adversaries A, there
exists a negligible function negl, such that for all security parameters κ, we have
IND-CVA(Γ,A, κ) ≤ 1/2 + negl(κ).

IND-CVA is satisfied if the adversary cannot determine whether the challenge
ballot b is for one of two possible votes v0 and v1. In addition to the challenge
ballot, the adversary is given the election outcome derived by tallying a bulletin
board constructed by the adversary. To avoid trivial distinctions, the adver-
sary’s bulletin board should not contain the challenge ballot. Intuitively, the
adversary wins if there exists a strategy to construct related ballots, since this
strategy enables the adversary to construct a ballot b′, related to the challenge
ballot b, and determine if b is for v0 or v1 from the outcome derived by tallying
a bulletin board containing b′.

Comparing IND-CVA and IND-PA0. Unsurprisingly, the distinction between
indistinguishability for asymmetric encryption (IND-PA0) and indistinguishabil-
ity for election schemes (IND-CVA), is similar to the distinction between non-
malleability for asymmetric encryption and non-malleability for election schemes
(§4.1), namely, IND-PA0 performs a parallel decryption, whereas, IND-CVA per-
forms a single tally.

4.3 Equivalence between games

Our ballot independence games are adaptations of standard security definitions
for asymmetric encryption: CNM-CVA is based on non-malleability for encryp-
tion and IND-CVA is based on indistinguishability for encryption. Bellare &
Sahai [BS99] have shown that non-malleability is equivalent to indistinguisha-
bility for encryption and their proof can be adapted to show that CNM-CVA
and IND-CVA are equivalent.

Theorem 4 (CNM-CVA = IND-CVA). Given an election scheme Γ, we have Γ
satisfies CNM-CVA iff Γ satisfies IND-CVA.
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4.4 Non-malleable encryption is sufficient for independence

It follows naturally from our definitions that non-malleable ciphertexts are suf-
ficient for ballot independence. Indeed, we can derive non-malleable ballots in
our construction Enc2Vote using encryption schemes satisfying CNM-CPA.16

Corollary 5. Let Π be an encryption scheme with perfect correctness. If Π
satisfies CNM-CPA, then election scheme Enc2Vote(Π) satisfies CNM-CVA.

The proof of Corollary 5 follows from Corollary 2 and Theorems 4 & 7. The
reverse implication of Corollary 5 does not hold.

Corollary 6. There exists an asymmetric encryption scheme Π such that elec-
tion scheme Enc2Vote(Π) satisfies CNM-CVA, but Π does not satisfy CNM-CPA.

The proof of Corollary 6 follows from Proposition 3 and Theorems 4 & 7.

5 Relations between secrecy and independence

The main distinctions between our ballot secrecy (Ballot-Secrecy) and ballot
independence (IND-CVA) games are as follows.

1. The challenger produces one challenge ballot for the adversary in our bal-
lot independence game, whereas, the left-right oracle produces arbitrarily
many challenge ballots for the adversary in our ballot secrecy game.

2. The adversary in our ballot secrecy game has access to a tallying proof,
but the adversary in our ballot independence game does not.

3. The winning condition in our ballot secrecy game requires the bulletin
board to be balanced, whereas, the bulletin board must not contain the
challenge ballot in our ballot independence game.

The second point distinguishes our two games and shows that ballot secrecy is
stronger than ballot independence.17 Hence, non-malleable ballots are necessary
in election schemes satisfying ballot secrecy.

Theorem 7 (Ballot-Secrecy⇒ IND-CVA). Given an election scheme Γ satisfy-
ing Ballot-Secrecy, we have Γ satisfies IND-CVA.

Moreover, since tallying proofs can reveal voters’ votes (e.g., a variant of Enc2Vote
could define tallying proofs that map ballots to votes) and these proofs are
available to the adversary in our ballot secrecy game, but not in our ballot in-
dependence game, it follows that ballot secrecy is strictly stronger than ballot
independence.

16Bellare & Sahai [BS99, §5] show that IND-PA0 coincides with CNM-CPA, thus it suffices
to consider IND-PA0 in Corollaries 5 & 6.

17Smyth & Bernhard explain that alternative formalisations of election schemes might per-
mit different results [SB13, §5.2].
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Proposition 8 (IND-CVA 6⇒ Ballot-Secrecy). There exists an election scheme
Γ such that Γ satisfies IND-CVA, but not Ballot-Secrecy.

The proof of Proposition 8 follows immediately from our informal reasoning and
we omit a formal proof.

Although ballot secrecy is generally stronger than ballot independence, we
show that ballot independence is sufficient for ballot secrecy in the class of
election schemes without tallying proofs (Definition 6), assuming a soundness
condition (Definition 7), which asserts that adding a ballot for v to the bulletin
board effects the election outcome by exactly vote v. (This condition is required
to hold in the presence of an adversary, whereas correctness is not. We show
the condition is implied by universal verifiability in Appendix C.)

Definition 6. An election scheme Γ = (Setup,Vote,Tally) is without tallying
proofs, if there exists a constant symbol ε such that for all multisets bb we have:

Pr[(pk , sk ,mb,mc)← Setup(κ); (v, pf )← Tally(sk , bb,nc, κ) : pf = ε] = 1.

Definition 7 (Soundness). Let Γ = (Setup,Vote,Tally) be an election scheme,
A be an adversary, κ be a security parameter, and Soundness(Γ,A, κ) be the
following game.

Soundness(Γ,A, κ) =

(pk , sk ,mb,mc)← Setup(κ);
(v,nc, bb0)← A(pk , κ);
b← Vote(pk , v,nc, κ);
(v0, pf 0)← Tally(sk , bb0,nc, κ);
(v1, pf 1)← Tally(sk , bb0 ∪ {b},nc, κ);
v∗ ← (v0[1], . . . , v0[v − 1], v0[v] + 1, v0[v + 1], . . . , v0[|v0|]);
return v∗ 6= v1 ∧ b 6∈ bb0 ∧ 1 ≤ v ≤ nc ≤ mc ∧ |bb0 ∪ {b}| ≤ mb;

We say Γ satsfies Soundness, if for all probabilistic polynomial-time adversaries
A, there exists a negligible function negl, such that for all security parameters
κ, we have Succ(Soundness(Γ,A, κ)) ≤ negl(κ).

Proposition 9 (Ballot-Secrecy = IND-CVA, without tallying proofs). Let Γ be
an election scheme without tallying proofs. Suppose Γ satisfies Soundness. We
have Γ satisfies Ballot-Secrecy iff Γ satisfies IND-CVA.

Our equivalence result generalises to the class of election schemes with
zero-knowledge tallying proofs, that is, election schemes that construct tally-
ing proofs using zero-knowledge non-interactive proof systems.

Definition 8 (Zero-knowledge tallying proofs). Let Γ = (Setup,Vote,Tally)
be an election scheme. We say Γ has zero-knowledge tallying proofs, if there
exists a zero-knowledge non-interactive proof system (Prove,Verify) and for all
probabilistic polynomial-time adversaries A and security parameters κ, we have:
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Pr[(pk , sk ,mb,mc)← Setup(κ);

(nc, bb)← A(pk , κ);
(v, pf )← Tally(sk , bb,nc, κ) :
|bb| ≤ mb ∧ nc ≤ mc ⇒ ∃w, r . Prove((pk , bb,nc, v), w, κ; r) = pf ] = 1.

Theorem 10 (Ballot-Secrecy = IND-CVA, with zero-knowledge tallying proofs).
Let Γ be an election scheme with zero-knowledge tallying proofs. Suppose Γ
satisfies Soundness. We have Γ satisfies Ballot-Secrecy iff Γ satisfies IND-CVA.

6 Case Study: Helios

Helios is an open-source, web-based electronic voting system,18 which has been
used in the real-world: the International Association of Cryptologic Research
(IACR) has used Helios annually since 2010 to elect board members [BVQ10,
HBH10],19 the Catholic University of Louvain used Helios to elect their uni-
versity president in 2009 [AMPQ09], and Princeton University has used Helios
since 2009 to elect student governments [Adi09].20

Informally, Helios can be modelled as an election scheme (Setup,Vote,Tally)
such that:

Setup generates a key pair for an asymmetric homomorphic encryption scheme,
proves correct key generation in zero-knowledge, and outputs the public
key coupled with the proof.

Vote enciphers the vote to a ciphertext, proves correct ciphertext construction
in zero-knowledge, and outputs the ciphertext coupled with the proof.

Tally proceeds as follows. First, any ballots on the bulletin board for which
proofs do not hold are discarded. Secondly, the ciphertexts in the re-
maining ballots are homomorphically combined,21 the homomorphic com-
bination is decrypted to reveal the election outcome, and correctness of
decryption is proved in zero-knowledge. Finally, the election outcome and
proof of correct decryption are output.

Helios was first implemented as Helios 2.0.22

The original Helios scheme [AMPQ09] is vulnerable to attacks against ballot
secrecy [CS13,CS11,SC11]. The current version of Helios is intended to mitigate
against these attacks.23 In particular, it incorporates Smyth’s recommendation

18https://vote.heliosvoting.org, accessed 19 Aug 2015.
19https://www.iacr.org/elections/, accessed 1 Sep 2015.
20https://princeton.heliosvoting.org/, accessed 1 Sep 2015.
21The homomorphic combination of ciphertexts is straightforward for two-candidate elec-

tions [CF85,BY86,SK94,Ben96,HS00], since votes (e.g., “yes” or “no”) can be encoded as 1
or 0. Multi-candidate elections are also possible [BY86,Hir10,DJN10].

22https://github.com/benadida/helios/releases/tag/2.0, released 25 Jul 2009, accessed
16 Nov 2015.

23https://github.com/benadida/helios-server/releases/tag/v3.1.4, released 10 Mar
2011, accessed 19 Aug 2015.
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to reject ballots containing zero-knowledge proofs that have been previously
observed [Smy12, §4]. For clarity, we write Helios 3.1.4 for the current ver-
sion of Helios. Bernhard [Ber14, §6.11] and Bernhard et al. [BCG+15a, §D.3]
show that variants of Helios 3.1.4 using the Fiat-Shamir heuristic (rather than
the weak Fiat–Shamir transformation, which does not include statements in
hashes) satisfy notions of ballot secrecy.24 These notions assume ballots are
recorded-as-cast, i.e., cast ballots are preserved with integrity through the bal-
lot collection process [AN06, §2]. Unfortunately, ballot secrecy is not satisfied
without this assumption, because Helios 3.1.4 uses malleable ballots (as do the
variants studied by Bernhard [Ber14] and Bernhard et al. [BCG+15a], and as
does the variant defined by the specification for the next Helios release [Adi14]),
which are incompatible with ballot secrecy (§5).

Theorem 11. Helios 3.1.4 does not satisfy Ballot-Secrecy.

Proof sketch. Suppose an adversary queries the left-right oracle with inputs v0

and v1 to derive a ballot for vβ , where β is the bit chosen by the challenger.
Further suppose the adversary exploits malleability to derive a related ballot b
for vβ and outputs bulletin board {b}.25 The board is balanced, because it does
not contain the ballot output by the left-right oracle. Suppose the adversary
performs the following computation on input of the election outcome v: if v[v0] =
1, then output 0, otherwise, output 1. Since b is a ballot for vβ , it follows by
correctness that v[v0] = 1 iff β = 0, and v[v1] = 1 iff β = 1, hence, the adversary
wins the game.

Our informal proof of Theorem 11 is straightforward. A formal proof would
require a formal description of Helios 3.1.4. Such a formal description can be
derived by adapting the formalisation of the original Helios scheme by Smyth,
Frink & Clarkson [SFC16] to reject ballots containing zero-knowledge proofs
that have been previously observed. These details provide little value, so we do
not pursue them further.

The proof sketch of Theorem 11 does not immediately give way to an attack
against Helios. Nevertheless, we can derive an attack (as the following example
demonstrates) by extrapolating from the proof sketch and Cortier & Smyth’s
permutation attack, which asserts: given a ballot b for vote v, we can exploit
malleability to derive a ballot b′ for vote v′ [CS13, §3.2.2]. Suppose Alice, Bob
and Charlie are voters, and Mallory is an adversary that wants to convince
herself that Alice did not vote for a candidate v. Further suppose Alice casts
a ballot b1 for vote v1, Bob casts a ballot b2, and Charlie casts a ballot b3.
Moreover, suppose that either Bob or Charlie voted for v. (Thus, we exclude
election outcomes without any votes for candidate v, which would permit Mal-
lory to trivially convince herself that Alice did not vote for candidate v.) Let
us assume that votes for v′ are not expected. Mallory proceeds as follows: she

24Bernhard, Pereira & Warinschi [BPW12a] consider whether Helios satisfies a notion of
ballot secrecy in two candidate elections.

25The recorded-as-cast assumption is violated because the ballot output by the left-right
oracle does not appear on the bulletin board.
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intercepts ballot b1, exploits malleability to derive a ballot b such that v = v1

implies b is a vote for v′, and casts ballot b. It follows that the tallier will
compute the election outcome from bulletin board {b, b2, b3}. If the outcome
does not contain any votes for v′, then Mallory is convinced that Alice did not
vote for v. This attack also works against the variants of Helios 3.1.4 studied by
Bernhard and Bernhard et al.. Neither Bernhard [Ber14, §6.11] nor Bernhard
et al. [BCG+15a, §D.3] were able to detect the attack,26 because interception is
not possible when ballots are recorded-as-cast.27

We have seen that non-malleable ballots are necessary for ballot secrecy (§5),
hence, future Helios releases should adopt non-malleable ballots. Smyth, Frink
& Clarkson [SFC16] make progress in this direction by proposing Helios’16, a
variant of Helios which satisfies verifiability and is intended, but not proven,
to use non-malleable ballots (cf. [SHM15]). We recall their formal description
in Appendix D. And, using that formalisation, we can prove that Helios’16
satisfies ballot secrecy.

Theorem 12. Helios’16 satisfies Ballot-Secrecy.

Proof sketch. We prove that Helios’16 has zero-knowledge tallying proofs.
And, since Helios’16 satisfies universal verifiability [SFC16], it is also satisfies
Soundness (§C). Hence, by Theorem 10, it suffices to prove that Helios’16 sat-
isfies IND-CVA. And we show that satisfying IND-CVA reduces to the security
of the encryption scheme (namely, IND-CPA) underlying Helios’16.

A formal proof of Theorem 12 appears in Appendix E. The proof assumes the
random oracle model [BR93]. This proof, coupled with the proof of verifiability
by Smyth, Frink & Clarkson [SFC16], provides strong motivation for future
Helios releases being based upon Helios’16, since it is the only variant of Helios
which is known to be secure.

7 Related work

Discussion of ballot secrecy originates from Chaum [Cha81] and the earliest
definitions of ballot secrecy are due to Benaloh et al. [BY86, BT94, Ben96].28

More recently, Bernhard et al. propose a series of ballot secrecy definitions:
they consider election schemes without tallying proofs [BCP+11,BPW12b] and,
subsequently, schemes with tallying proofs [BPW12a, SB13, SB14, BCG+15b].
The definition of ballot secrecy by Bernhard, Pereira & Warinschi computes
tallying proofs using algorithm Tally or a simulator [BPW12a], but the re-
sulting definition is too weak [BCG+15b, §3.4] and some strengthening is re-
quired [BCG+15b, §4]. (Cortier et al. [CGGI13a, CGGI13b] propose a variant

26Nor could the attack have been detected by Bernhard, Pereira & Warinschi [BPW12a].
27This observation suggests that recorded-as-cast is unsatisfiable: an adversary that can

intercept ballots can always prevent the collection of ballots. Nevertheless, the definition of
recorded-as-cast is informal, thus ambiguity should be expected and some interpretation of
the definition should be satisfiable.

28Bernhard et al. [BCG+15b,BCG+15a] survey ballot secrecy definitions.
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of the ballot secrecy definition by Bernhard, Pereira & Warinschi. That vari-
ant is also too weak [BCG+15b].) By comparison, the definition by Smyth
& Bernhard computes tallying proofs using only algorithm Tally [SB13], but
the resulting definition is too strong [BCG+15b, §3.5] and a weakening is re-
quired [SB14]. The relative merits of ballot secrecy definitions due to Smyth &
Bernhard [SB14, Definition 5] and Bernhard et al. [BCG+15b, Definition 7] are
unknown, in particular, it is unknown whether one definition is stronger than
the other.

Discussion of ballot independence originates from Gennaro [Gen95]. And the
apparent relationship between ballot secrecy and ballot independence has been
considered. Benaloh [Ben96, §2.9] shows that a simplified version of his voting
system allows the administrator’s private key to be recovered by an adversary
who casts a ballot as a function of other voters’ ballots. And, more gener-
ally, Sako & Kilian [SK95, §2.4], Michels & Horster [MH96, §3] and Cortier &
Smyth [CS13,CS11] discuss how malleable ballots can be exploited to compro-
mise ballot secrecy. The first definition of ballot independence seems to be due to
Smyth & Bernhard [SB13,SB14]. Moreover, Smyth & Bernhard formally prove
relations between their definitions of ballot secrecy and ballot independence.

All of the ballot secrecy definitions by Bernhard et al. [BCP+11, BPW12b,
BPW12a, SB13, SB14, BCG+15b] and the ballot independence definition by
Smyth & Bernhard [SB13,SB14] focus on detecting attacks by adversaries that
control some voters. Attacks by adversaries that control the bulletin board
or communication channel are not detected, i.e., the bulletin board is implic-
itly assumed to operate in accordance with the election scheme’s rules and the
communication channel is implicitly assumed to be secure. This introduces a
trust assumption. Under this assumption, Smyth & Bernhard prove that non-
malleable ballots are not necessary for ballot secrecy [SB13, §4.3], and Bern-
hard [Ber14] and Bernhard et al. [BCG+15a, BCG+15b] prove that variants of
Helios 3.1.4 satisfy notions of ballot secrecy, despite the use of malleable ballots.
By comparison, we prove that non-malleable ballots are necessary for ballot se-
crecy without this trust assumption. Hence, the aforementioned variants of
Helios 3.1.4 do not satisfy our definition of ballot secrecy. Thus, our definition
of ballot secrecy improves upon definitions due to Bernhard et al. by detecting
more attacks.

Some of the ideas presented in this paper previously appeared in a technical
report by Smyth [Smy14] and an extended version of that technical report by
Bernhard & Smyth [BS15]. In particular, the limitations of ballot secrecy defi-
nitions by Bernhard et al. were identified by Smyth [Smy14]. And Definition 2
is based upon the definition of ballot secrecy proposed by Smyth [Smy14, Def-
inition 3]. The main distinction between Definition 2 and the definition by
Smyth is syntax: this paper adopts syntax for election schemes from Smyth,
Frink & Clarkson [SFC16], whereas, Smyth adopts syntax by Smyth & Bern-
hard [SB14, SB13]. The change in syntax is motivated by the superiority of
syntax by Smyth, Frink & Clarkson. Unfortunately, the change has a drawback:
we cannot immediately prove that the definition of ballot secrecy proposed in
this paper is strictly stronger than the definition proposed by Smyth & Bern-
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hard [SB14, SB13]. By comparison, the technical reports contain such proofs.
Nevertheless, the advantages of the syntax change outweigh the disadvantages.
Moreover, we can capitialise upon results by Smyth, Frink & Clarkson [SFC16]
and Quaglia & Smyth [QS16].

8 Conclusion

This work was initiated by a desire to eliminate the trust assumptions placed
upon the bulletin board and the communication channel in definitions of ballot
secrecy by Bernhard et al. and the definition of ballot independence by Smyth
& Bernhard. This necessitated the introduction of new security definitions.

The definition of ballot secrecy was largely constructed from intuition, with
inspiration from indistinguishability games for asymmetric encryption and ex-
isting definitions of ballot secrecy. Moreover, the definition was guided by the
desire to strengthen existing definitions of ballot secrecy.

The definition of ballot independence was inspired by the realisation that in-
dependence requires non-malleable ballots. This enabled definitions of ballot in-
dependence to be constructed as straightforward adaptations of non-malleability
and indistinguishability definitions for asymmetric encryption; the former adap-
tation being a more natural formulation of ballot independence and the latter
being simpler.

Relationships between security definitions aid our understanding and offer in-
sights that facilitate the construction of secure election schemes. This prompted
the study of relations between ballot secrecy and ballot independence, result-
ing in a proof that non-malleable ballots are necessary for ballot secrecy. And,
moreover, a proof that non-malleable ballots are sufficient for ballot secrecy
in election schemes with zero-knowledge tallying proofs. Furthermore, a sep-
aration result demonstrates that ballot secrecy is strictly stronger than ballot
independence.

In light of the revelation that non-malleable ballots are necessary for ballot
secrecy, and in the knowledge that Helios ballots are malleable, it was discovered
that Helios does not satisfy ballot secrecy. Although the proof sketch of this
result did not immediately uncover an attack against Helios, an extrapolation
from that proof sketch revealed an attack that allows an adversary to determine
if a voter did not vote for a candidate chosen by the adversary. This naturally led
to the consideration of whether definitions of ballot secrecy by Bernhard et al.
could have detected this attack and the conclusion that they could not, because
the attack requires the adversary to control the bulletin board or communication
channel, which is prohibited by their definitions.

We exploit our results to prove that a variant of Helios satisfies ballot secrecy.
This proof is particularly significant due to the use of Helios in the real-world.
And we encourage Helios developers to base future releases on this variant, since
it is the only variant of Helios which is known to be secure.
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A Cryptographic primitives

A.1 Asymmetric encryption

Definition 9 (Asymmetric encryption scheme [KL07]). An asymmetric en-
cryption scheme is a tuple of probabilistic polynomial-time algorithms (Gen,Enc,
Dec), such that:29

• Gen, denoted (pk , sk ,m) ← Gen(κ), inputs a security parameter κ and
outputs a key pair (pk , sk) and message space m.

• Enc, denoted c← Enc(pk ,m), inputs a public key pk and message m ∈ m,
and outputs a ciphertext c.

• Dec, denoted m ← Dec(sk , c), inputs a private key sk and ciphertext c,
and outputs a message m or an error symbol. We assume Dec is deter-
ministic.

Moreover, the scheme must be correct: there exists a negligible function negl,
such that for all security parameters κ and messages m, we have Pr[(pk , sk ,m)←
Gen(κ); c ← Enc(pk ,m) : m ∈ m ⇒ Dec(sk , c) = m] > 1 − negl(κ). A scheme
has perfect correctness if the probability is 1.

Definition 10 (Homomorphic encryption [SFC16]). An asymmetric encryption
scheme Γ = (Gen,Enc,Dec) is homomorphic, with respect to ternary operators
�, ⊕, and ⊗,30 if there exists a negligible function negl, such that for all security
parameters κ, we have the following.31 First, for all messages m1 and m2 we
have Pr[(pk , sk ,m) ← Gen(κ); c1 ← Enc(pk ,m1); c2 ← Enc(pk ,m2) : m1,m2 ∈
m ⇒ Dec(sk , c1 ⊗pk c2) = Dec(sk , c1) �pk Dec(sk , c2)] > 1 − negl(κ). Secondly,
for all messages m1 and m2, and all coins r1 and r2, we have Pr[(pk , sk ,m)←
Gen(κ) : m1,m2 ∈ m ⇒ Enc(pk ,m1; r1) ⊗pk Enc(pk ,m2; r2) = Enc(pk ,m1 �pk

29Our definition differs from Katz and Lindell’s original definition [KL07, Definition 10.1]
in that we formally state the plaintext space.

30Henceforth, we implicitly bind ternary operators, i.e., we write Γ is a homomorphic asym-
metric encryption scheme as opposed to the more verbose Γ is a homomorphic asymmetric
encryption scheme, with respect to ternary operators �, ⊕, and ⊗.

31We write X ◦pk Y for the application of ternary operator ◦ to inputs X, Y , and pk . We
occasionally abbreviate X ◦pk Y as X ◦ Y , when pk is clear from the context.
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m2; r1 ⊕pk r2)] > 1 − negl(κ). We say Γ is additively homomorphic, if for all
security parameters κ, key pairs pk , sk, and message spaces m, such that there
exists coins r and (pk , sk ,m) = Gen(κ; r), we have �pk is the addition operator
in group (m,�pk ).

Definition 11 (IND-CPA [BDPR98]). Let Π = (Gen,Enc,Dec) be an asymmet-
ric encryption scheme, A be an adversary, κ be the security parameter, and
IND-CPA(Π,A, κ) be the following game.32

IND-CPA(Π,A, κ) =

(pk , sk ,m)← Gen(κ);
(m0,m1)← A(pk ,m, κ);
β ←R {0, 1};
c← Enc(pk ,mβ);
g ← A(c);
return g = β;

In the above game, we insist m0,m1 ∈ m and |m0| = |m1|. We say Γ satis-
fies IND-CPA, if for all probabilistic polynomial-time adversaries A, there ex-
ists a negligible function negl, such that for all security parameters κ, we have
Succ(IND-CPA(Π,A, κ)) ≤ 1/2 + negl(κ).

Definition 12 (IND-PA0 [BS99]). Let Π = (Gen,Enc,Dec) be an asymmet-
ric encryption scheme, A be an adversary, κ be the security parameter, and
IND-PA0(Π,A, κ) be the following game.

IND-PA0(Π,A, κ) =

(pk , sk ,m)← Gen(κ);
(m0,m1)← A(pk ,m, κ);
β ←R {0, 1};
c← Enc(pk ,mβ);
c← A(c);
m← (Dec(sk , c[1]), . . . ,Dec(sk , c[|c|]);
g ← A(m);
return g = β ∧

∧
1≤i≤|c| c 6= c[i];

In the above game, we insist m0,m1 ∈ m and |m0| = |m1|. We say Γ satis-
fies IND-PA0, if for all probabilistic polynomial-time adversaries A, there ex-
ists a negligible function negl, such that for all security parameters κ, we have
Succ(IND-CVA(Γ,A, κ)) ≤ 1/2 + negl(κ).

A.2 Proof systems

Definition 13 (Sigma protocol [SFC16,Dam10,HL10]). A sigma protocol for a
relation R is a tuple (Comm,Chal,Resp,Verify) of probabilistic polynomial-time
algorithms such that:

32Our definition of an asymmetric encryption scheme explicitly defines the plaintext space,
whereas, Bellare et al. [BDPR98] leave the plaintext space implicit; this change is reflected in
our definition of IND-CPA. Moreover, we provide the adversary with the message space and
security parameter. We adapt IND-PA0 similarly.
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• Comm, denoted (comm, t) ← Comm(s, w, κ), is executed by a prover.
Comm takes a statement s, witness w and security parameter k as input,
and outputs a commitment comm and some state information t.

• Chal, denoted chal ← Chal(s, comm, κ), is executed by a verifier. Chal
takes a statement s, a commitment comm and a security parameter k as
input, and outputs a string chal.

• Resp, denoted resp← Resp(chal, t, κ), is executed by a prover. Resp takes
a challenge chal, state information t and security parameter k as input,
and outputs a response resp.

• Verify, denoted v ← Verify(s, (comm, chal, resp), κ) is executed by a veri-
fier. Verify takes a statement s, a transcript (comm, chal, resp) and a secu-
rity parameter k as input, and outputs a bit v, which is 1 if the transcript
successfully verifies and 0 otherwise. We assume Verify is deterministic.

Moreover, the sigma protocol must be complete: there exists a negligible function
negl, such that for all statements and witnesses (s, w) ∈ R and security parame-
ters k, we have Pr[(comm, t)← Comm(s, w, κ); chal← Chal(s, comm, κ); resp←
Resp(chal, t, κ) : Verify(s, (comm, chal, resp), κ) = 1] > 1− negl(κ).

A.3 Non-interactive proof systems

Definition 14 (Non-interactive proof system [SFC16]). A non-interactive proof
system for a relation R is a tuple of algorithms (Prove,Verify), such that:

• Prove, denoted σ ← Prove(s, w, κ), is executed by a prover to prove
(s, w) ∈ R.

• Verify, denoted v ← Verify(s, σ, κ), is executed by anyone to check the
validity of a proof. We assume Verify is deterministic.

Moreover, the system must be complete: there exists a negligible function negl,
such that for all statement and witnesses (s, w) ∈ R and security parameters κ,
we have Pr[σ ← Prove(s, w, κ) : Verify(s, σ, κ) = 1] > 1− negl(κ).

Definition 15 (Fiat-Shamir transformation [FS87]). Given a sigma protocol
Σ = (Comm,Chal,Resp,VerifyΣ) for relation R and a hash function H, the
Fiat-Shamir transformation, denoted FS(Σ,H), is the tuple (Prove,Verify) of
algorithms, defined as follows:

Prove(s, w, κ) =

(comm, t)← Comm(s, w, κ);
chal← H(comm, s);
resp← Resp(chal, t, κ);
return (comm, resp);

Verify(s, (comm, resp), κ) =

chal← H(comm, s);
return VerifyΣ(s, (comm, chal, resp), κ);
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Definition 16 (Zero-knowledge [QS16]). Let ∆ = (Prove,Verify) be a non-
interactive proof system for a relation R, derived by application of the Fiat-
Shamir transformation [FS87] to a random oracle H and the sigma protocol.
Moreover, let S be an algorithm, A be an adversary, κ be a security parameter,
and ZK(∆,A,H,S, κ) be the following game.

ZK(∆,A,H,S, κ) =

β ←R {0, 1};
g ← AH,P(κ);
return g = β;

Oracle P is defined on inputs (s, w) ∈ R as follows:

• P(s, w) computes if β = 0 then σ ← Prove(s, w, κ) else σ ← S(s, κ) and
outputs σ.

And algorithm S can patch random oracle H.33 We say ∆ satisfies zero-
knowledge, if there exists a probabilistic polynomial-time algorithm S, such
that for all probabilistic polynomial-time algorithm adversaries A, there ex-
ists a negligible function negl, and for all security parameters κ, we have
Succ(ZK(∆,A,H,S, κ)) ≤ 1

2 +negl(κ). An algorithm S for which zero-knowledge
holds is called a simulator for (Prove,Verify).

Definition 17 (Simulation sound extractability [SFC16,BPW12a,Gro06]). Sup-
pose Σ is a sigma protocol for relation R, H is a random oracle, and (Prove,
Verify) is a non-interactive proof system, such that FS(Σ,H) = (Prove,Verify).
Further suppose S is a simulator for (Prove,Verify) and H can be patched by
S. Proof system (Prove,Verify) satisfies simulation sound extractability if there
exists a probabilistic polynomial-time algorithm K, such that for all probabilis-
tic polynomial-time adversaries A and coins r, there exists a negligible function
negl, such that for all security parameters κ, we have:34

Pr[P← (); Q← AH,P(—; r); W← KA
′
(H,P,Q) :

|Q| 6= |W| ∨ ∃j ∈ {1, . . . , |Q|} . (Q[j][1],W[j]) 6∈ R ∧
∀(s, σ) ∈ Q, (t, τ) ∈ P . Verify(s, σ, κ) = 1 ∧ σ 6= τ ] ≤ negl(κ)

where A(—; r) denotes running adversary A with an empty input and random
coins r, where H is a transcript of the random oracle’s input and output, and
where oracles A′ and P are defined below:

• A′(). Computes Q′ ← A(—; r), forwarding any of A’s oracle queries to
K, and outputs Q′. By running A(—; r), K is rewinding the adversary.

• P(s). Computes σ ← S(s); P← (P[1], . . . ,P[|P|], (s, σ)) and outputs σ.

33Random oracles can be programmed or patched. We will not need the details of how
patching works, so we omit them here; see Bernhard et al. [BPW12a] for a formalisation.

34We extend set membership notation to vectors: we write x ∈ x if x is an element of the
set {x[i] : 1 ≤ i ≤ |x|}.
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Algorithm K is an extractor for (Prove,Verify).

Theorem 13 (from [BPW12a]). Let Σ be a sigma protocol for relation R, and
let H be a random oracle. Suppose Σ satisfies special soundness and special
honest verifier zero-knowledge. Non-interactive proof system FS(Σ,H) satisfies
zero-knowledge and simulation sound extractability.

The Fiat-Shamir transformation can be generalised to include an optional
string m in the hashes produced by functions Prove and Verify. We write
Prove(s, w,m, κ) and Verify(s, (comm, resp),m, k) for invocations of Prove and
Verify which include an optional string. When m is provided, it is included
in the hashes in both algorithms. That is, given FS(Σ,H) = (Prove,Verify),
the hashes are computed as follows in both algorithms: chal← H(comm, s,m).
Simulators can be generalised to include an optional string m too. We write
S(s,m, κ) for invocations of simulator S which include an optional string. The-
orem 13 can be extended to this generalisation.

B Proofs

B.1 Proof of Proposition 3

We present a construction (Definition 18) for encryption schemes (Lemma 14)
which are clearly not secure (Lemma 15). Nevertheless, the construction pro-
duces encryption schemes that are sufficient for ballot secrecy (Lemma 16). The
proof of Proposition 3 follows from Lemmata 14–16.

Definition 18. Given an asymmetric encryption scheme Π = (Gen,Enc,Dec)
and a constant symbol ω, let Leak(Π, ω) = (Gen,Enc,Dec′), such that Dec′(sk ,
c) proceeds as follows: if c = ω, then output sk, otherwise, compute m ← Dec(
sk , c) and output m.

Lemma 14. Given an asymmetric encryption scheme Π and a constant symbol
ω, such that Π’s ciphertext space does not contain ω, we have Leak(Π, ω) is an
asymmetric encryption scheme.

Proof sketch. The proof follows immediately from correctness of the underlying
encryption scheme, because constant symbol ω does not appear in the scheme’s
ciphertext space.

Lemma 15. Given an asymmetric encryption scheme Π and a constant symbol
ω, such that Π’s ciphertext space does not contain ω and Π’s message space is
larger than one for some security parameter, we have Leak(Π, ω) does not satisfy
IND-PA0.

Proof sketch. The proof is trivial: an adversary can output two distinct mes-
sages and a vector containing constant symbol ω during the first two adversary
calls, learn the private key from the parallel decryption, and use the key to
recover the plaintext from the challenge ciphertext, which allows the adversary
to win the game.
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Lemma 16. Let Π = (Gen,Enc,Dec) be an asymmetric encryption scheme and
ω be a constant symbol. Suppose Π’s ciphertext space does not contain ω and
Π’s message space is smaller than the private key. Further suppose Enc2Vote(Π)
satisfies Ballot-Secrecy. We have Enc2Vote(Leak(Π, ω)) satisfies Ballot-Secrecy.

Proof. Let Enc2Vote(Π) = (Setup,Vote,Tally) and let Enc2Vote(Leak(Π, ω)) =
(Setup,Vote,Tally). By definition of Enc2Vote and Leak, we have Setup = Setup
and Vote = Vote. Suppose m is Π’s message space. By definition of Leak, we
have m is Leak(Π, ω)’s message space too. Moreover, since |m| is smaller than
the private key, we have for all security parameters κ, bulletin boards bb, and
number of candidates nc, that nc ≤ |m| implies

Pr[(pk , sk ,m)← Gen(κ); (v, pf )← Tally(sk , bb,nc, κ);

(v, pf )← Tally(sk , bb,nc, κ) : v = v ∧ pf = pf ] = 1,

because Enc2Vote ensures that v is not influenced by decrypting ω (witness
that decrypting ω outputs sk such that sk > |m| ≥ nc) and pf is a con-
stant symbol. It follows for all adversaries A and security parameters κ that
games Ballot-Secrecy(Enc2Vote(Π),A, κ) and Ballot-Secrecy(Enc2Vote(Leak(Π,
ω)),A, κ) are equivalent, hence, we have Succ(Ballot-Secrecy(Enc2Vote(Π),
A, κ)) = Succ(Ballot-Secrecy(Enc2Vote(Leak(Π, ω)),A, κ)). Moreover, since
Enc2Vote(Π) satisfies Ballot-Secrecy, it follows that Enc2Vote(Leak(Π, ω)) satis-
fies Ballot-Secrecy too.

Proof of Proposition 3. Let Π be an asymmetric encryption scheme and ω be
a constant symbol. Suppose Π’s ciphertext space does not contain ω. Fur-
ther suppose Π’s message space is larger than one for some security param-
eter, but smaller than the private key. We have Enc2Vote(Leak(Π, ω)) is an
asymmetric encryption scheme (Lemma 14) such that Enc2Vote(Leak(Π, ω))
satisfies Ballot-Secrecy (Lemma 16), but Leak(Π, ω) does not satisfy IND-PA0
(Lemma 15), concluding our proof.

B.2 Proof of Theorem 4

For the if implication, suppose Γ does not satisfy CNM-CVA, hence, there ex-
ists a probabilistic polynomial-time adversary A, such that for all negligible
functions negl, there exists a security parameter κ and Succ(cnm-cva(Γ,A, κ))
− Succ(cnm-cva-$(Γ,A, κ)) > negl(κ). We construct an adversary B against
game IND-CVA from adversary A.

• B(pk , κ) computes (V,nc)← A(pk , κ); v, v′ ←R V and outputs (v, v′,nc).

• B(b) computes (R, bb)← A(b) and outputs bb.

• B(v) outputs 0 if R(v, v) holds and 1 otherwise.
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If the challenger selects β = 0 in IND-CVA(Γ,B, κ), then adversary B simulates
A’s challenger to A in cnm-cva(Γ,A, κ) and B’s success (which requires R(v, v)
to hold) is Succ(cnm-cva(Γ,A, κ)). Otherwise (β = 1), adversary B simulates
A’s challenger to A in cnm-cva-$(Γ,A, κ) and, since B will evaluate R(v, v),
B’s success (which requires R(v, v) not to hold) is 1 − Succ(cnm-cva-$(Γ,A,
κ)). It follows that Succ(IND-CVA(Γ,A, κ)) = 1/2 · (Succ(cnm-cva(Γ,A, κ)) +
1 − Succ(cnm-cva-$(Γ,A, κ))) and, therefore, 2 · Succ(IND-CVA(Γ,A, κ)) − 1 =
Succ(cnm-cva(Γ,A, κ)) − Succ(cnm-cva-$(Γ,A, κ)). Since Γ does not satisfy
CNM-CVA and a function that doubles the output of a negligible function is
a negligible function, we have Succ(cnm-cva(Γ,A, κ)) − Succ(cnm-cva-$(Γ,A,
κ)) > 2 · negl(κ). It follows that 2 · Succ(IND-CVA(Γ,A, κ)) − 1 > 2 · negl(κ),
hence, Succ(IND-CVA(Γ,A, κ)) > 1/2 + negl(κ), concluding our proof.

For the only if implication, suppose Γ does not satisfy IND-CVA, hence, there
exists a probabilistic polynomial-time adversary A, such that for all negligible
functions negl, there exists a security parameter κ and Succ(IND-CVA(Γ,A,
κ)) > 1/2 + negl(κ). We construct an adversary B against CNM-CVA from
adversary A.

• B(pk , κ) computes (v0, v1,nc)← A(pk , κ) and outputs ({v0, v1},nc).

• B(b) computes bb ← A(b), picks coins r uniformly at random, derives a
relation R such that R(v, v) holds if there exists a bit g such that v =
vg ∧ g = A(v; r) and fails otherwise, and outputs (R, bb).

Adversary B simulates A’s challenger to A in game IND-CVA(Γ,A, κ). Indeed,
the challenge ballot is equivalently computed. As is the election outcome. The
computation A(v; r) is not black-box, but this does not matter: it is still in-
voked exactly one time in the game. Let use consider adversary B’s success in
cnm-cva(Γ,B, κ) and cnm-cva-$(Γ,B, κ).

• Game cnm-cva(Γ,B, κ) samples a single vote v from V . By inspection of
cnm-cva(Γ,B, κ) and IND-CVA(Γ,A, κ), we have Succ(cnm-cva(Γ,B, κ)) =
Succ(IND-CVA(Γ,A, κ)), hence, Succ(cnm-cva(Γ,B, κ))− 1/2 > negl(κ).

• Game cnm-cva-$(Γ,B, κ) samples votes v and v′ from V . Vote v is indepen-
dent of A’s perspective, indeed, an equivalent formulation of cnm-cva-$(
Γ,B, κ) could sample v after A has terminated and immediately before
evaluating the adversary’s relation. By inspection of cnm-cva-$(Γ,B, κ)
and IND-CVA(Γ,A, κ), we have Succ(cnm-cva-$(Γ,B, κ)) = 1/2 · Succ(
IND-CVA(Γ,A, κ)) + 1/2 · (1− Succ(IND-CVA(Γ,A, κ))) = 1/2.

It follows that Succ(cnm-cva(Γ,B, κ))− Succ(cnm-cva-$(Γ,B, κ)) > negl(κ).

B.3 Proof of Theorem 7

Suppose Γ does not satisfy ballot independence, hence, there exists a probabilis-
tic polynomial-time adversary A, such that for all negligible functions negl, there
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exists a security parameter κ and Succ(IND-CVA(Γ,A, κ)) > 1/2 + negl(κ). We
construct a ballot secrecy adversary B from the ballot independence adversary
A.

• B(pk , κ) computes (v0, v1,nc)← A(pk , κ) and outputs nc.

• B() computes b← O(v0, v1); bb← A(b) and outputs bb.

• B(v, pf ) computes g ← A(v) and outputs g.

Adversary B simulates A’s challenger to A. Indeed, the challenge ballot and
election outcome are equivalently computed. Moreover, the challenge ballot
does not appear on the bulletin board, hence, the bulletin board is balanced.
It follows that Succ(IND-CVA(Γ,A, κ)) = Succ(Ballot-Secrecy(Γ,B, κ)), hence,
Succ(Ballot-Secrecy(Γ,B, κ)) > 1/2 + negl(κ), concluding our proof.

B.4 Proof of Proposition 9

In essence, the proof follows from Theorem 10. Albeit, formally, a few extra
steps are required. In particular, the definition of an election scheme with
zero-knowledge proofs demands that tallying proofs must be constructed by a
zero-knowledge non-interactive proof system, but an election scheme without
tallying proofs need not construct proofs with such a system. Thus, we must
introduce an election scheme with zero-knowledge proofs and prove that it is
equivalent to the election scheme without proofs. This is trivial, so we do not
pursue the details.

B.5 Proof of Theorem 10

Let BS-0, respectively BS-1, be the game derived from Ballot-Secrecy by replac-
ing β ←R {0, 1} with β ← 0, respectively β ← 1. These games are trivially
related to Ballot-Secrecy, namely, Succ(Ballot-Secrecy(Γ,A, κ)) = 1

2 · Succ(BS-0(
Γ,A, κ))+ 1

2 ·Succ(BS-1(Γ,A, κ)). Moreover, let BS-1:0 be the game derived from
BS-1 by replacing g = β with g = 0. We relate game BS-1:0 to BS-1, and games
BS-0 and BS-1:0 to the hybrid games G0,G1, . . . introduced in Definition 19.
We prove Theorem 10 using these relations.

Lemma 17. Given an adversary A that wins game Ballot-Secrecy against elec-
tion scheme Γ, we have Succ(BS-1(Γ,A, κ)) = 1− Succ(BS-1:0(Γ,A, κ)) for all
security parameters κ.

Definition 19. Let Γ = (Setup,Vote,Tally) be an election scheme with zero-
knowledge tallying proofs, A be an adversary, and κ be a security parameter.
Moreover, let S be the simulator for the zero-knowledge non-interactive proof
system using by algorithm Tally to construct talling proofs. We introduce games
G0,G1, . . . , defined as follows.
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Gj(Γ,A, κ) =

(pk , sk ,mb,mc)← Setup(κ);
nc ← A(pk , κ);
L← ∅;
bb← AO();
(v, pf )← Tally(sk , bb \ {b | (b, v0, v1) ∈ L},nc, κ);
for b ∈ bb ∧ (b, v0, v1) ∈ L do

v[v0]← v[v0] + 1;

pf ← S((pk ,nc, bb, v), κ);
g ← A(v, pf );
return g = 0 ∧ balanced(bb,nc, L) ∧ 1 ≤ nc ≤ mc ∧ |bb| ≤ mb;

Oracle O is defined such that O(v0, v1) computes, on inputs v0, v1 ∈ {1, ...,nc},
the following:

if |L| < j then
b← Vote(pk , v1,nc, κ);

else
b← Vote(pk , v0,nc, κ);

L← L ∪ {(b, v0, v1)};
return b;

Games G0,G1, . . . are distinguished from games BS-0 and BS-1:0 by their
left-right oracles and tallying procedures. In particular, the first j left-right or-
acle queries in Gj compute ballots for the oracle’s “left” input and any remaining
queries compute ballots for the oracle’s “right” input, whereas the left-right or-
acle in BS-0, respectively BS-1:0, always computes ballots for the oracle’s “left,”
respectively “right,” input. Moreover, the tallying procedure in Gj computes
the outcome by tallying the ballots on the bulletin board that were constructed
by the adversary and by simulating the tallying of any remaining ballots (i.e.,
ballots constructed by the oracle). And the tallying proof is simulated in Gj .
By comparision, the outcome and tallying proof are computing by talling all
the ballots on the bulletin board in both BS-0 and BS-1:0.

Lemma 18. Let Γ be an election scheme, A be an adversary, and κ be a security
parameter. If Γ satisfies Soundness, then Succ(BS-0(Γ,A, κ)) = Succ(G0(Γ,A, κ))
and Succ(BS-1:0(Γ,A, κ)) = Succ(Gq(Γ,A, κ)), where q is an upper-bound on
A’s left-right oracle queries.

Proof. The challengers in games BS-0 and G0, respectively BS-1:0 and Gq, both
construct public keys using the same algorithm and provide those keys, along
with the security parameter, as input to the first adversary call, thus, these
inputs and corresponding outputs are equivalent.

Left-right oracles queries O(v0, v1) in games BS-0 and G0 output ballots for
vote v0, hence, the bulletin boards are equivalent in both games. The bulletin
boards in BS-1:0 and Gq are similarly equivalent, in particular, left-right oracles
queries O(v0, v1) in both games output ballots for vote v1, because q is an
upper-bound on the left-right oracle queries, therefore, |L| < q in Gq. Thus, the
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bulletin board output by the second adversary call is equivalent in BS-0 and G0,
respectively BS-1:0 and Gq.

It follows that 1 ≤ nc ≤ mc ∧ |bb| ≤ mb in BS-0 iff 1 ≤ nc ≤ mc ∧
|bb| ≤ mb in G0, and similarly for BS-1:0 and Gq. Moreover, predicate balanced
is satisfied in BS-0 iff it is satisfied in G0, and similarly for BS-1:0 and Gq.
Hence, if 1 ≤ nc ≤ mc ∧ |bb| ≤ mb is not satisfied or predicate balanced is
not satisfied, then Succ(BS-0(Γ,A, κ)) = Succ(G0(Γ,A, κ)) and Succ(BS-1:0(Γ,
A, κ)) = Succ(Gq(Γ,A, κ)), concluding our proof. Otherwise, it suffices to show
that the outcome and tallying proof are equivalently computed in BS-0 and G0,
respectively BS-1:0 and Gq, since this ensures the inputs to the third adversary
call are equivalent, thus the corresponding outputs are equivalent too, which
suffices to conclude.

In BS-0, respectively BS-1:0, the outcome is computed by tallying the bul-
letin board. By comparison, in G0, respectively Gq, the outcome is computed
by tallying the ballots on the bulletin board that were constructed by the ad-
versary (i.e., ballots in bb \ {b | (b, v0, v1) ∈ L}, where bb is the bulletin board
and L is the set constructed by the oracle), and by simulating the tallying of
any remaining ballots (i.e., ballots constructed by the oracle, namely, ballots in
bb∩{b | (b, v0, v1) ∈ L}). Suppose (pk , sk ,mb,mc) is an output of Setup(κ) and
nc is an integer such that nc ≤ mc. Since Γ satisfies Soundness, computing v as

(v, pf )← Tally(sk , bb,nc, κ);

is equivalent to computing v as

(v, pf )← Tally(sk , bb \ {b | (b, v0, v1) ∈ L},nc, κ);
(v′, pf ′)← Tally(sk , bb ∩ {b | (b, v0, v1) ∈ L},nc, κ);
v← v + v′;

and as
(v, pf )← Tally(sk , bb \ {b | (b, v0, v1) ∈ L},nc, κ);
for b ∈ bb ∧ (b, v0, v1) ∈ L do

(v′, pf ′)← Tally(sk , {b},nc, κ);
v← v + v′;

Thus, to prove the outcome is computed equivalently in BS-0 and G0, respec-
tively BS-1:0 and Gq, it suffices to prove that the simulations are valid, i.e.,
computing the above is equivalent to computing

(v, pf )← Tally(sk , bb \ {b | (b, v0, v1) ∈ L},nc, κ);
for b ∈ bb ∧ (b, v0, v1) ∈ L do

v[v0]← v[v0] + 1;

In G0, respectively Gq, we have for all (b, v0, v1) ∈ L that b is an output of
Vote(pk , v0,nc, κ), respectively Vote(pk , v1,nc, κ), such that v0, v1 ∈ {1, ...,nc}.
Moreover, by correctness of Γ, we have Tally(sk , {b},nc, κ) outputs (v′, pf ′) such
that v′ is a zero-filled vector, except for index v0, respectively v1, which contains
one. Hence, the simulation is valid in G0. Furthermore, since predicate balanced
holds in Gq, we have for all v ∈ {1, . . . ,nc} that |{b | b ∈ bb ∧ ∃v1 . (b, v, v1) ∈
L}| = |{b | b ∈ bb ∧ ∃v0 . (b, v0, v) ∈ L}|. Hence, in Gq, computing
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for b ∈ bb ∧ (b, v0, v1) ∈ L do v[v0]← v[v0] + 1;

is equivalent to computing

for b ∈ bb ∧ (b, v0, v1) ∈ L do v[v1]← v[v1] + 1;

Thus, the simulation is valid in Gq too.
In BS-0, respectively BS-1:0, the tallying proof is computed by tallying the

bulletin board. By comparison, in G0, respectively Gq, the tallying proof is com-
puted by simulator S. Since Γ has zero-knowledge tallying proofs, there exists
a non-interactive proof system (Prove,Verify) such that for all (v, pf ) output by
Tally(sk , bb,nc, κ) there exists w and r such that Prove((pk ,nc, bb, v), w, κ; r) =
pf . Moreover, since S is a simulator for (Prove,Verify), proofs output by
Prove((pk ,nc, bb, v), w, κ) are indistinguishable from outputs of S((pk ,nc, bb,
v), κ). Thus, tallying proofs are equivalently computed in BS-0 and G0, respec-
tively BS-1:0 and Gq, thereby concluding our proof.

Proof of Theorem 10. By Theorem 7, it suffices to prove that ballot indepen-
dence implies ballot secrecy. Suppose Γ does not satisfy ballot secrecy, hence,
there exists a probabilistic polynomial-time adversary A, such that for all neg-
ligible functions negl, there exists a security parameter κ and

1

2
+ negl(κ) < Succ(Ballot-Secrecy(Γ,A, κ))

By definition of BS-0 and BS-1, we have

=
1

2
· (Succ(BS-0(Γ,A, κ)) + Succ(BS-1(Γ,A, κ)))

And, by Lemma 17, we have

=
1

2
· (Succ(BS-0(Γ,A, κ)) + 1− Succ(BS-1:0(Γ,A, κ)))

=
1

2
+

1

2
· (Succ(BS-0(Γ,A, κ))− Succ(BS-1:0(Γ,A, κ)))

Let q be an upper-bound on A’s left-right oracle queries. Hence, by Lemma 18,
we have

=
1

2
+

1

2
· (Succ(G0(Γ,A, κ))− Succ(Gq(Γ,A, κ)))

which can be rewritten as the telescoping series

=
1

2
+

1

2
·
∑

1≤j≤q

Succ(Gj−1(Γ,A, κ))− Succ(Gj(Γ,A, κ))

Let j ∈ {1, . . . , q} be such that Succ(Gj−1(Γ,A, κ)) − Succ(Gj(Γ,A, κ)) is the
largest term in that series. Hence,

≤ 1

2
+

1

2
· q · (Succ(Gj−1(Γ,A, κ))− Succ(Gj(Γ,A, κ)))
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Thus,

1

2
+

1

q
· negl(κ) ≤ 1

2
+

1

2
· (Succ(Gj−1(Γ,A, κ))− Succ(Gj(Γ,A, κ)))

From A, we construct an adversary B against IND-CVA whose success is at least
1
2 + 1

2 · (Succ(Gj−1(Γ,A, κ))− Succ(Gj(Γ,A, κ))).
Let Γ = (Setup,Vote,Tally). Since Γ has zero-knowledge tallying proofs, tal-

lying proofs output by Tally are constructed by a zero-knowledge non-interactive
proof system. Let algorithm S be the simulator for that proof system. We define
B as follows.

• B(pk , κ) computes nc ← A(pk , κ);L ← ∅ and runs AO(), handling A’s
oracle queries O(v0, v1) as follows: if |L| < j, then compute b← Vote(pk ,
v1,nc, κ);L ← L ∪ {b, v0, v1} and return b to A, otherwise, assign vc0 ←
v0; vc1 ← v1, and output (v0, v1,nc).

• B(b) assigns L← L∪ {(b, vc0, vc1)}; returns b to A and handles any further
oracle queriesO(v0, v1) as follows, namely, compute b← Vote(pk , v0,nc, κ);
L ← L ∪ {(b, v0, v1)} and return b to A; assigns A’s output to bb; and
outputs bb \ {b | (b, v0, v1) ∈ L}.

• B(v) computes for b ∈ bb ∧ (b, v0, v1) ∈ L do v[v0] ← v[v0] + 1, and
pf ← S((pk ,nc, bb, v), κ); g ← A(v, pf ), and outputs g.

We prove that B wins IND-CVA.
Suppose (pk , sk ,mb,mc) is an output of Setup(κ). Further suppose we run

B(pk , κ). It is straightforward to see that B simulates the challenger and oracle
in both Gj−1 and Gj to A. In particular, B simulates query O(v0, v1) by comput-
ing b← Vote(pk , v1,nc, κ) for the first j−1 queries. Since Gj−1 and Gj are equiv-
alent to adversaries that make fewer than j left-right oracle queries, adversary A
must make at least j queries to ensure Succ(Gj−1(Γ,A, κ))− Succ(Gj(Γ,A, κ))
is non-negligible. Hence, B(pk , κ) terminates with non-negligible probability.
Suppose adversary B terminates by outputting (v0, v1,nc), where v0, v1 corre-
spond to the inputs of the jth oracle query by A. Further suppose b is an output
of Vote(pk , vβ ,nc, κ), where β is a bit. If β = 0, then B(b) simulates the oracle
in Gj−1 to A, otherwise, B(b) simulates the oracle in Gj to A. In particular,
B(b) responds to the jth oracle query with ballot b for vβ , thus simulating the
challenger in Gj−1 when β = 0, respectively Gj when β = 1. And B(b) responds
to any further oracle queries O(v0, v1) with ballots for v0. Suppose bb is an
output of A, thus B(b) outputs bb \ {b | (b, v0, v1) ∈ L}. Further suppose (v, pf )
is an output of Tally(sk , bb \ {b | (b, v0, v1) ∈ L},nc, κ) and g is an output of
B(v). It is trivial to see that B(v) simulates A’s challenger. Thus, either

1. β = 0 and B simulates Gj−1 to A, thus, g = β with at least the probability
that A wins Gj−1; or

2. β = 1 and B simulates Gi to A, thus, g 6= 0 with at least the probability
that B looses Gi and, since A wins game Ballot-Secrecy, we have g is a bit,
hence, g = β.
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It follows that the success of adversary B is at least 1
2 ·Succ(Gj−1(Γ,A, κ)) + 1

2 ·
(1− Succ(Gj(Γ,A, κ))), thus we conclude our proof.

C Universal verifiability implies soundness

We recall the full syntax for election schemes in Definition 20. (The syntax for
election schemes presented in Section 2 omitted algorithm Verify and the condi-
tion that election schemes must satisfy notions of completeness and injectivity,
because we did not consider verifiability in the main body.)

Definition 20 (Election scheme [SFC16]). An election scheme is a tuple
of probabilistic polynomial-time algorithms (Setup,Vote,Tally,Verify) such that
(Setup,Vote,Tally) is an election scheme and

• Verify, denoted s← Verify(pk , bb,nc, v, pf , κ), is run to audit an election.
It takes as input a public key pk, some number of candidates nc, a bulletin
board bb, an election outcome v, a proof pf , and a security parameter κ. It
outputs a bit s, which is 1 if the election verifies successfully or 0 otherwise.

Election schemes must satisfy Completeness: there exists a negligible function
negl, such that for all security parameters κ, bulletin boards bb, and integers nc,
we have

Pr[(pk , sk ,mb,mc)← Setup(κ); (v, pf )← Tally(sk , bb,nc, κ)

: |bb| ≤ mb ∧ nc ≤ mc ⇒ Verify(pk , bb,nc, v, pf , κ) = 1] > 1− negl(κ).

Election schemes must also satisfy Injectivity: for all security parameters κ,
integers nc, and votes v and v′, such that v 6= v′, we have

Pr[(pk , sk ,mb,mc)← Setup(κ); b← Vote(pk , v,nc, κ);

b′ ← Vote(pk , v′,nc, κ) : b 6= ⊥ ∧ b′ 6= ⊥ ⇒ b 6= b′] = 1.

Universal verifiability (Definition 21) challenges the adversary to concoct
a scenario in which Verify accepts, but the election outcome is not correct.
Formally, we capture the correct outcome using function correct-outcome,35

defined such that for all pk , nc, bb, κ, `, and v ∈ {1, . . . ,nc}, we have:

correct-outcome(pk ,nc, bb, κ)[v] = `

⇐⇒ ∃=`b ∈ bb \ {⊥} : ∃r : b = Vote(pk , v,nc, κ; r)

That is, component v of vector correct-outcome(pk , bb,nc, κ) equals ` iff there
exist ` ballots on the bulletin board that are votes for candidate v. The vector
produced by correct-outcome must be of length nc.

35Function correct-outcome uses a counting quantifier [Sch05] denoted ∃=. Predicate
(∃=`x : P (x)) holds exactly when there are ` distinct values for x such that P (x) is sat-
isfied. Variable x is bound by the quantifier, whereas ` is free.
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Definition 21 (Exp-UV-Ext [SFC16]). Let Γ = (Setup,Vote,Tally,Verify) be an
election scheme, A be an adversary, κ be a security parameter, and Exp-UV-Ext(
Γ,A, κ) be the following game.

Exp-UV-Ext(Γ,A, κ) =

(pk ,nc, bb, v, pf )← A(κ);
return
v 6= correct-outcome(pk ,nc, bb, κ) ∧ Verify(pk , bb,nc, v, pf , κ) = 1;

We say Γ satisfies universal verifiability (Exp-UV-Ext), if for all probabilistic
polynomial-time adversaries A, there exists a negligible function negl, such that
for all security parameters κ, we have Succ(Exp-UV-Ext(Γ,A, κ)) ≤ negl(κ).

We show that universally verifiable election schemes satisfy Soundness (Propo-
sition 20).

Lemma 19. Given an election scheme (Setup,Vote,Tally), there exists a neg-
ligible function negl, such that for all security parameters κ, integers nc, and
votes v ∈ {1, . . . ,nc}, we have

Pr[(pk , sk ,mb,mc)← Setup(κ); b← Vote(pk , v,nc, κ)

: 1 ≤ mb ∧ nc ≤ mc ⇒ b 6= ⊥] > 1− negl(κ).

Proof. Suppose κ is a security parameter and nc and v are integers, such that
v ∈ {1, . . . ,nc}. Further suppose (pk , sk ,mb,mc) is an output of Setup(κ), b is
an output of Vote(pk , v,nc, κ), and (v, pf ) is an output of Tally(sk , {b},nc, κ),
such that 1 ≤ mb ∧ nc ≤ mc. By correctness, we have v is a zero-filled vector
of length nc, except for index v which contains integer 1, with overwhelm-
ing probability. Given that Tally(sk , {b},nc, κ) and Tally(sk , {b, b},nc, κ) input
the same set {b}, correctness ensures the probability of Vote(pk , v,nc, κ) out-
putting two identical ballots is upper-bounded by a negligible function. It fol-
lows that the probability of Vote(pk , v,nc, κ) outputting error symbol ⊥ twice
is upper-bounded by a negligible function too. Moreover, the probability of
Vote(pk , v,nc, κ) outputting error symbol ⊥ is also upper-bounded by a negli-
gible function, thereby concluding our proof.

Proposition 20 (Exp-UV-Ext ⇒ Soundness). If election scheme Γ satisfies
Exp-UV-Ext, then Γ satisfies Soundness.

Proof. Let Γ = (Setup,Vote,Tally,Verify). Suppose Γ does not satisfy Soundness,
hence, there exists a probabilistic polynomial-time adversary A, such that for
all negligible functions negl, there exists a security parameter κ and negl(κ) <
Succ(Soundness(Γ,A, κ)). We construct an adversary B against Exp-UV-Ext
from A. We define B as follows.

B(κ) =
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(pk , sk ,mb,mc)← Setup(κ);
(v,nc, bb0)← A(pk , κ);
(v0, pf 0)← Tally(sk , bb0,nc, κ);
β ←R {0, 1};
if β = 1 then

b← Vote(pk , v,nc, κ);
bb1 ← bb ∪ {b};
(v1, pf 1)← Tally(sk , bb1,nc, κ);

return (pk ,nc, bbβ , vβ , pf β);

We prove that B wins Exp-UV-Ext with non-negligible probability.
Suppose (pk , sk ,mb,mc) is an output of Setup(κ), (v,nc, bb0) is an out-

put of A(pk , κ), b is an output of Vote(pk , v,nc, κ), (v0, pf 0) is an output of
Tally(sk , bb0,nc, κ), and (v1, pf 1) is an output of Tally(sk , bb1,nc, κ), where
bb1 = bb0 ∪ {b}. Let v∗ ← (v0[1], . . . , v0[v − 1], v0[v] + 1, v0[v + 1], . . . , v0[|v0|]).
Since A is a winning adversary, we have v∗ 6= v1 ∧ b 6∈ bb0 ∧ 1 ≤ v ≤ nc ≤
mc ∧ |bb0 ∪ {b}| ≤ mb, with probability greater than negl(κ).

Suppose β is a bit chosen uniformly at random. By Completeness, we have
Verify(pk , bbβ ,nc, vβ , pf β , κ) = 1, with overwhelming probability. Hence, it
suffices to prove that vβ 6= correct-outcome(pk ,nc, bbβ , κ), with non-negligible
probability. Let δ0, respectively δ1, be the probability that v0 6= correct-outcome(
pk ,nc, bb0, κ), respectively v1 6= correct-outcome(pk ,nc, bb1, κ). It follows that
Succ(Exp-UV-Ext(Γ,B, κ)) = 1

2 · δ0 + 1
2 · δ1 and it remains to show that δ0 + δ1

is non-negligible. It suffices to prove that v0 = correct-outcome(pk ,nc, bb0,
κ)∧v1 = correct-outcome(pk ,nc, bb1, κ) is false with overwhelming probability.

Suppose v0 = correct-outcome(pk ,nc, bb0, κ). By definition of function
correct-outcome, we have ∃=v0[v]b′ ∈ bb0 \ {⊥} : ∃r : b′ = Vote(pk , v,nc, κ; r).
Since 1 ≤ |bb0 ∪ {b}| ≤ mb, we have b 6= ⊥ by Lemma 19, with overwhelming
probability. Given that b is an output of Vote(pk , v,nc, κ), b 6∈ bb0, and v∗[v] =
v0[v]+1, it follows that ∃=v∗[v]b′ ∈ bb0∪{b}\{⊥} : ∃r : b′ = Vote(pk , v,nc, κ; r).
Moreover, by Injectivity, b is not an output of Vote(pk , v′,nc, κ) for all v′ ∈
{1, . . . , |v∗|} \ {v}. Thus, for all v′ ∈ {1, . . . , |v∗|} \ {v} we have ∃=v∗[v′]b′ ∈
bb0 ∪ {b} \ {⊥} : ∃r : b′ = Vote(pk , v′,nc, κ; r). Given that bb1 = bb0 ∪ {b},
we have v∗ = correct-outcome(pk ,nc, bb1, κ). Moreover, given that v∗ 6= v1, we
have v1 6= correct-outcome(pk ,nc, bb1, κ) with overwhelming probability, which
suffices to conclude our proof.

D Helios

Smyth, Frink & Clarkson [SFC16] formalise a generic construction for Helios-like
election schemes (Definition 23), which is parameterized on the choice of homo-
morphic encryption scheme and sigma protocols for the relations introduced in
the following definition.
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Definition 22 (from [SFC16]). Let (Gen,Enc,Dec) be a homomorphic asym-
metric encryption scheme and Σ be a sigma protocol for a binary relation R.36

• Σ proves correct key construction if a ((κ, pk ,m), (sk , r)) ∈ R ⇔ (pk , sk ,
m) = Gen(κ; r).

Further, suppose that (pk , sk ,m) is the output of Gen(κ; r), for some security
parameter κ and coins r.

• Σ proves plaintext knowledge in a subspace if ((pk , c,m′), (m, r)) ∈ R ⇔
c = Enc(pk ,m; r) ∧m ∈ m′ ∧m′ ⊆ m.

• Σ proves correct decryption if ((pk , c,m), sk) ∈ R⇔ m = Dec(sk , c).

Definition 23 (Generalized Helios [SFC16]). Suppose Γ = (Gen,Enc,Dec) is
an additively homomorphic asymmetric encryption scheme with a message space
that, for sufficiently large security parameters, includes {0, 1}, Σ1 proves correct
key construction, Σ2 proves plaintext knowledge in a subspace, Σ3 proves correct
decryption, and H is a hash function. Let FS(Σ1,H) = (ProveKey,VerKey),
FS(Σ2,H) = (ProveCiph,VerCiph), and FS(Σ3,H) = (ProveDec,VerDec). We
define election scheme generalised Helios, denoted Helios(Γ,Σ1,Σ2,Σ3,H) =
(Setup,Vote,Tally,Verify), as follows.

Setup(κ). Select coins s, compute (pk , sk ,m) ← Gen(κ; s); ρ ← ProveKey((κ,
pk ,m), (sk , s), κ); PK T ← (pk ,m, ρ); SK T ← (pk , sk), let m be the largest inte-
ger such that {0, . . . ,m} ⊆ m, and output (PK T ,SK T ,m,m).

Vote(PK T , v,nc, κ). Parse PK T as a vector (pk ,m, ρ). Output ⊥ if parsing
fails or VerKey((κ, pk ,m), ρ, κ) 6= 1 ∨ v 6∈ {1, . . . ,nc}. Select coins r1, . . . , rnc−1

and compute:

for 1 ≤ j ≤ nc − 1 do
if j = v then mj ← 1; else mj ← 0;
cj ← Enc(pk ,mj ; rj);
σj ← ProveCiph((pk , cj , {0, 1}), (mj , rj), j, κ);

c← c1 ⊗ · · · ⊗ cnc−1;
m← m1 � · · · �mnc−1;
r ← r1 ⊕ · · · ⊕ rnc−1;
σnc ← ProveCiph((pk , c, {0, 1}), (m, r),nc, κ);

Output ballot (c1, . . . , cnc−1, σ1, . . . , σnc).

36Given a binary relation R, we write ((s1, . . . , sl), (w1, . . . , wk)) ∈ R ⇔
P (s1, . . . , sl, w1, . . . , wk) for (s, w) ∈ R ⇔ P (s1, . . . , sl, w1, . . . , wk) ∧ s = (s1, . . . , sl) ∧ w =
(w1, . . . , wk), hence, R is only defined over pairs of vectors of lengths l and k.
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Tally(SK T , bb,nc, κ). Initialise vectors v of length nc and pf of length nc− 1.
Compute for 1 ≤ j ≤ nc do v[j]← 0. Parse SK T as a vector (pk , sk). Output
(v, pf ) if parsing fails. Let {b1, . . . , b`} be the largest subset of bb such that
b1 < · · · < b` and for all 1 ≤ i ≤ ` we have bi is a vector of length 2 · nc− 1 and∧nc−1
j=1 VerCiph((pk , bi[j], {0, 1}), bi[j+ nc− 1], j, κ) = 1∧VerCiph((pk , bi[1]⊗ · · ·
⊗ bi[nc − 1], {0, 1}), bi[2 · nc − 1],nc, κ) = 1. If {b1, . . . , b`} = ∅, then output
(v, pf ), otherwise, compute:

for 1 ≤ j ≤ nc − 1 do
c← b1[j]⊗ · · · ⊗ b`[j];
v[j]← Dec(sk , c);
pf [j]← ProveDec((pk , c, v[j]), sk , κ);

v[nc]← `−
∑nc−1
j=1 v[j];

Output (v, pf ).

Verify(PK T , bb,nc, v, pf , κ). Parse v as a vector of length nc, parse pf as a
vector of length nc − 1, parse PK T as a vector (pk ,m, ρ). Output 0 if pars-
ing fails or VerKey((κ, pk ,m), ρ, κ) 6= 1. Let {b1, . . . , b`} be the largest subset
of bb satisfying the conditions given by the tally algorithm and let mb be the
largest integer such that {0, . . . ,mb} ⊆ m. If {b1, . . . , b`} = ∅ ∧

∧nc
j=1 v[j] = 0 or∧nc−1

j=1 VerDec((pk , b1[j]⊗· · ·⊗b`[j], v[j]), pf [j], κ) = 1∧v[nc] = `−
∑nc−1
j=1 v[j]∧

1 ≤ ` ≤ mb, then output 1, otherwise, output 0.

The above algorithms assume nc > 1. Smyth, Frink & Clarkson define special
cases of Vote, Tally and Verify when nc = 1. We omit those cases for brevity
and, henceforth, assume nc is always greater than one.

The scheme works as follows [SFC16].

• Setup generates the tallier’s key pair. The public key includes a non-
interactive proof demonstrating that the key pair is correctly constructed.

• Vote takes a vote v ∈ {1, . . . ,nc} and outputs ciphertexts c1, . . . , cnc−1

such that if v < nc, then ciphertext cv contains plaintext 1 and the re-
maining ciphertexts contain plaintext 0, otherwise, all ciphertexts contain
plaintext 0. Vote also outputs proofs σ1, ..., σnc so that this can be ver-
ified. In particular, proof σj demonstrates ciphertext cj contains 0 or 1,
for all 1 ≤ j ≤ nc−1. And proof σnc demonstrates that the homomorphic
combination of ciphertexts c1⊗· · ·⊗cnc−1 contains 0 or 1. (It follows that
the voter’s ballot contains a vote for exactly one candidate.)

• Tally homomorphically combines ciphertexts representing votes for a par-
ticular candidate and decrypts the homomorphic combinations. The num-
ber of votes for a candidate v ∈ {1, . . . ,nc − 1} is simply the homomor-
phic combination of ciphertexts representing votes for that candidate. The
number of votes for candidate nc is equal to the number of votes for all
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other candidates subtracted from the total number of valid ballots on the
bulletin board.

• Verify checks that each of the above steps has been performed correctly.

The generic construction can be instantiated to derive Helios’16.

Definition 24 (Helios’16 [SFC16]). Election scheme Helios’16 is Helios(Γ,Σ1,
Σ2,Σ3,H), where Γ is additively homomorphic El Gamal [CGS97, §2], Σ1 is
the sigma protocol for proving knowledge of discrete logarithms by Chaum et
al. [CEGP87, Protocol 2], Σ2 is the sigma protocol for proving knowledge of
disjunctive equality between discrete logarithms by Cramer et al. [CFSY96, Fig-
ure 1], Σ3 is the sigma protocol for proving knowledge of equality between discrete
logarithms by Chaum & Pedersen [CP93, §3.2], and H is a random oracle.

Although Helios actually uses SHA-256 [NIS12], we assume that H is a random
oracle to prove Theorem 12. Moreover, we assume the sigma protocols used
by Helios’16 satisfy the preconditions of generalised Helios, that is, [CEGP87,
Protocol 2] is a sigma protocol for proving correct key construction, [CFSY96,
Figure 1] is a sigma protocol for proving plaintext knowledge in a subspace,
and [CP93, §3.2] is a sigma protocol for proving decryption. We leave formally
proving this assumption as future work.

E Helios satisfies ballot secrecy

The construction for Helios-like schemes produces election schemes with zero-
knowledge tallying proofs (Lemma 21) that satisfy universal verifiability [SFC16]
and, thus, soundness (Proposition 20). They also satisfy ballot independence
(Proposition 22). Hence, they satisfy ballot secrecy too (Theorem 10). More-
over, Helios’16 satisfies ballot secrecy.

Henceforth, we assume Γ, Σ1, Σ2 and Σ3 satisfy the preconditions of Defini-
tion 23, and H is a random oracle. Let Helios(Γ,Σ1,Σ2,Σ3,H) = (Setup,Vote,
Tally,Verify) and Γ = (Gen,Enc,Dec). Moreover, let FS(Σ1,H) = (ProveKey,
VerKey), FS(Σ2,H) = (ProveCiph,VerCiph), and FS(Σ3,H) = (ProveDec,VerDec).

Lemma 21. If (ProveDec,VerDec) is zero-knowledge, then Helios(Γ,Σ1,Σ2,Σ3,
H) has zero-knowledge tallying proofs.

Proof sketch. Suppose A is an adversary and κ is a security parameter. Fur-
ther suppose (pk , sk ,mb,mc) is an output of Setup(κ), (nc, bb) is an output
of A(pk , κ), and (v, pf ) is an output of Tally(sk , bb,nc, κ), such that |bb| ≤
mb ∧ nc ≤ mc. By inspection of algorithm Tally, tallying proof pf is a vector of
proofs produced by ProveDec. Thus, there trivially exists a non-interactive proof
system that could construct pf , moreover, that proof system is zero-knowledge
because (ProveDec,VerDec) is zero-knowledge, which concludes our proof.

Proposition 22. Given an election scheme Γ satisfying IND-CPA and non-
interactive proof systems (ProveKey,VerKey) and (ProveCiph,VerCiph) satisfying
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special soundness and special honest verifier zero-knowledge, we have Helios(Γ,
Σ1,Σ2,Σ3,H) satisfies IND-CVA.

Proof. By Theorem 13, the proof systems have extractors and simulators. Let
SimProveKey be the simulator for (ProveKey,VerKey). And let ExtProveCiph be
the extractor for (ProveCiph,VerCiph).

Let IND-CPA∗ be a variant of IND-CPA in which: 1) the adversary out-
puts two vectors of messages m0 and m1 such that |m0| = |m1| and for
all 1 ≤ i ≤ |m0| we have |m0[i]| = |m1[i]| and m0[i] and m1[i] are from
the encryption scheme’s message space, and 2) the challenger computes c1 ←
Enc(pk ,mβ [1]); . . . ; c|mβ | ← Enc(pk ,mβ [|mβ |]) and inputs c1, . . . , c|mβ | to the
adversary. We have Γ satisfies IND-CPA∗ [KL07, §10.2.2].

Suppose Helios(Γ,Σ1,Σ2,Σ3,H) does not satisfy IND-CVA. Hence, there
exists a probabilistic polynomial-time adversary A, such that for all negligible
functions negl, there exists a security parameter κ and 1/2+negl(κ) < IND-CVA(
Γ,A, κ). Since A is a winning adversary, we have A(PK T , κ) outputs (v0, v1,nc)
such that v0 6= v1 with non-negligible probability, hence, either v0 < v1 or
v1 < v0. For brevity, we suppose v0 < v1. (Our proof can be adapted to
consider cases such that v1 < v0, but these details provide little value, so we do
not pursue them.) We construct the following adversary B against IND-CPA∗

from A:

• B(pk ,m, κ) outputs ((1, 0), (0, 1)).

• B(c) proceeds as follows. First, compute:

ρ← SimProveKey((κ, pk ,m), κ);
PK T ← (pk ,m, ρ);
(v0, v1,nc)← A(PK T , κ);

Secondly, select coins r1, . . . , rnc−1 and compute:

for j ∈ {1, . . . ,nc − 1} \ {v0, v1} do
cj ← Enc(pk , 0; rj);
σj ← ProveCiph((pk , cj , {0, 1}), (0, rj), j, κ);

cv0 ← c[1];
σv0 ← SimProveCiph((pk , cv0 , {0, 1}), v0, κ);
if v1 6= nc then

cv1 ← c[2];
σv1 ← SimProveCiph((pk , cv1 , {0, 1}), v1, κ);

c← c1 ⊗ · · · ⊗ cnc−1;
σnc ← SimProveCiph((pk , c, {0, 1}),nc, κ);
b← (c1, . . . , cnc−1, σ1, . . . , σnc);
bb← A(b);

Thirdly, compute {b1, . . . , b`} as the largest subset of bb satisfying the
conditions of algorithm Tally. Fourthly, initialise H as a transcript of the
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random oracle’s input and output, P as a transcript of simulated proofs,
and v as a zero-filled vector of length nc. Fifthly, compute:

for 1 ≤ i ≤ ` do
for 1 ≤ j ≤ nc − 1 do

Q← ((pk , bi[j], {0, 1}), bi[j + nc − 1]);
W← ExtProveCiph(H,P, (Q));
v[j]← v[j] + W[1][1];

v[nc]← `− Σnc−1
j=1 v[j];

g ← A(v);

Finally, output g.

We prove that B wins IND-CPA.
Suppose (pk , sk ,m) is an output of Gen(κ) and (m0,m1) is an output of

B(pk ,m, κ). Let β ∈ {0, 1}. Further suppose c1 is an output of Enc(pk ,mβ [1])
and c2 is an output of Enc(pk ,mβ [2]). Let c = (c1, c2). Moreover, suppose
ρ is an output of SimProveKey((κ, pk ,m), κ). Let PK T = (pk ,m, ρ). Sup-
pose (v0, v1,nc) is an output of A(PK T , κ). Since SimProveKey is a simula-
tor for (ProveKey,VerKey), we have B simulates the challenger in IND-CVA to
A(PK T , κ). In particular, PK T is a triple containing a public key and cor-
responding message space generated Gen, and a (simulated) proof of correct
construction. Suppose B computes b and bb is an output of A(b). Further sup-
pose B computes v, and g is an output of A(v). The following claims prove that
B simulates the challenger in IND-CVA to A(b) and A(v), hence, g = β, with at
least the probability that A wins IND-CVA, concluding our proof.

Claim 23. Adversary B’s computation of b is equivalent to computing b as
b← Vote(PK T , vβ ,nc, κ).

Proof of Claim 23. We have PK T parses as a vector (pk ,m, ρ). Moreover, since
(pk , sk ,m) is an output of Gen(κ), there exist coins r such that (pk , sk ,m) =
Gen(κ; r). Hence, (sk , r) is a witness for statement (κ, pk ,m). Furthermore,
since SimProveKey is a simulator for (ProveKey,VerKey) and proofs output by
ProveKey are indistinguisable from outputs of SimProveKey, we have VerKey((κ,
pk ,m), ρ, κ) = 1, with non-negligible probability. In addition, since B is a
winning adversary, we have v0, v1 ∈ {1, . . . ,nc}, with non-negligible probabil-
ity. It follows that Vote(PK T , vβ ,nc, κ) does not output ⊥, with non-negligible
probability. Indeed, computation b← Vote(PK T , vβ ,nc, κ) is equivalent to the
following. Select coins r1, . . . , rnc−1 and compute:
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for 1 ≤ j ≤ nc − 1 do
if j = vβ then mj ← 1; else mj ← 0;
cj ← Enc(pk ,mj ; rj);
σj ← ProveCiph((pk , cj , {0, 1}), (mj , rj), j, κ);

c← c1 ⊗ · · · ⊗ cnc−1;
m← m1 � · · · �mnc−1;
r ← r1 ⊕ · · · ⊕ rnc−1;
σnc ← ProveCiph((pk , c, {0, 1}), (m, r),nc, κ);
b← (c1, . . . , cnc−1, σ1, . . . , σnc);

Since vβ ∈ {v0, v1}, ciphertexts computed by the above for-loop all contain
plaintext 0, except (possibly) ciphertext cv0 and, if defined, ciphertext cv1 . (Ci-
phertext cv1 only exists if v1 < nc.) Given that v0 < v1 ≤ nc, ciphertext cv0
contains 1 − β, i.e., if β = 0, then cv0 contains 1, otherwise (β = 1), cv0 con-
tains 0. If v1 < nc, then ciphertext cv1 contains β. Moreover, since � is the
addition operator in group (m,�) and 0 is the identity element in that group, if
v1 = nc, then plaintext m computed by the above algorithm is 1−β, otherwise,
m = 1− β � β = 1. Hence, the above algorithm is equivalent to selecting coins
r1, . . . , rnc−1 and computing:

for j ∈ {1, . . . ,nc − 1} \ {v0, v1} do
cj ← Enc(pk , 0; rj);
σj ← ProveCiph((pk , cj , {0, 1}), (0, rj), j, κ);

cv0 ← Enc(pk , 1− β; rv0);
σv0 ← ProveCiph((pk , cv0 , {0, 1}), (1− β, rv0), v0, κ);
if v1 6= nc then

cv1 ← Enc(pk , β; rv1);
σv1 ← ProveCiph((pk , cv1 , {0, 1}), (β, rv1), v1, κ);

c← c1 ⊗ · · · ⊗ cnc−1;
if v1 = nc then m← 1− β; else m← 1;
r ← r1 ⊕ · · · ⊕ rnc−1;
σnc ← ProveCiph((pk , c, {0, 1}), (m, r),nc, κ);
b← (c1, . . . , cnc−1, σ1, . . . , σnc);

Computation cv0 ← Enc(pk , 1 − β; rv0) is equivalent to cv0 ← c[1], because
if β = 0, then c[1] contains plaintext 1, otherwise (β = 1), c[1] contains
plaintext 0. Similarly, if v1 6= nc, then computation cv1 ← Enc(pk , β; rv1)
is equivalent to cv1 ← c[1]. Moreover, proof ProveCiph((pk , cv0 , {0, 1}), (1 −
β, rv0), v0, κ), respectively ProveCiph((pk , cv1 , {0, 1}), (β, rv1), v1, κ), can be sim-
ulated by SimProveCiph((pk , cv0 , {0, 1}), v0, κ), respectively SimProveCiph((pk ,
cv1 , {0, 1}), v1, κ). Furthermore,

c← c1 ⊗ · · · ⊗ cnc−1;
if v1 = nc then m← 1− β; else m← 1;
r ← r1 ⊕ · · · ⊕ rnc−1;
σnc ← ProveCiph((pk , c, {0, 1}), (m, r),nc, κ);

can be simulated by
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c← c1 ⊗ · · · ⊗ cnc−1;
σnc ← SimProveCiph((pk , c, {0, 1}),nc, κ);

Hence, we conclude the proof of this claim.

Claim 24. Adversary B’s computation of v is equivalent to computing v as
(v, pf )← Tally(SK T , bb,nc, κ), where SK T = (pk , sk).

Proof of Claim 24. Let {b1, . . . , b`} be the largest subset of bb satisfying the
conditions of algorithm Tally. It is trivial to see that the claim holds when
{b1, . . . , b`} = ∅, because v is computed as a zero-filled vector of length nc in
both cases. We prove the claim also holds when {b1, . . . , b`} 6= ∅.

By simulation sound extractability, for all 1 ≤ i ≤ ` and 1 ≤ j ≤ nc − 1,
there exists a message mi,j ∈ {0, 1} and coins ri,j and ri,j+nc−1 such that:

bi[j] = Enc(pk ,mi,j ; ri,j)

bi[j + nc − 1] = ProveCiph((pk , bi[j], {0, 1}), (mi,j , ri,j), j, κ; ri,j+nc−1)

with overwhelming probability. It follows for all 1 ≤ i ≤ ` and 1 ≤ j ≤ nc − 1
that computation Q← ((pk , bi[j], {0, 1}), bi[j+ nc− 1]); W← ExtProveCiph(H,
P, (Q)) is such that W[1] is a witness for (pk , bi[j], {0, 1}), i.e., (mi,j , ri,j),
and W[1][1] = mi,j . Hence, adversary B’s computation of v is equivalent to
initialising v as a zero-filled vector of length nc and computing:

for 1 ≤ i ≤ ` do
for 1 ≤ j ≤ nc − 1 do

v[j]← v[j] +mi,j ;

v[nc]← `− Σnc−1
j=1 v[j];

and, therefore,

for 1 ≤ j ≤ nc − 1 do
v[j]← Σ`i=1mi,j ;

v[nc]← `− Σnc−1
j=1 v[j];

Moreover, computing v as (v, pf ) ← Tally(SK T , bb,nc, κ) is equivalent to ini-
tialising v as a zero-filled vector of length nc and computing

for 1 ≤ j ≤ nc − 1 do
c← b1[j]⊗ · · · ⊗ b`[j];
v[j]← Dec(sk , c);

v[nc]← `−
∑nc−1
j=1 v[j];

and, therefore,

for 1 ≤ j ≤ nc − 1 do
v[j]← m1,j � · · · �m`,j ;

v[nc]← `−
∑nc−1
j=1 v[j];

Let mb be the largest integer such that {0, . . . ,mb} ⊆ m. Since A is a winning
adversary, we have ` ≤ mb. Moreover, since m1,j , . . . ,m`,j ∈ {0, 1} for all
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1 ≤ j ≤ nc − 1 and � is the addition operator in group (m,�), we have

m1,j � · · · � m`,j =
∑`
i=1mi,j , which suffices to conclude the proof of this

claim.

For Helios’16, encryption scheme Γ is additively homomorphic El Gamal
[CGS97, §2]. Moreover, (ProveKey,VerKey), respectively (ProveCiph,VerCiph)
and (ProveDec,VerDec), is the non-interactive proof system derived by appli-
cation of the Fiat-Shamir transformation [FS87] to a random oracle H and
the sigma protocol for proving knowledge of discrete logarithms by Chaum et
al. [CEGP87, Protocol 2], respectively the sigma protocol for proving knowledge
of disjunctive equality between discrete logarithms by Cramer et al. [CFSY96,
Figure 1] and the sigma protocol for proving knowledge of equality between
discrete logarithms by Chaum & Pedersen [CP93, §3.2].

Bernhard, Pereira & Warinschi [BPW12a, §4] remark that the sigma proto-
cols underlying non-interactive proof systems (ProveKey,VerKey) and (ProveCiph,
VerCiph) both satisfy special soundness and special honest verifier zero-knowledge,
hence, Theorem 13 is applicable. Bernhard, Pereira & Warinschi also remark
that the sigma protocol underlying (ProveDec,VerDec) satisfies special sound-
ness and “almost special honest verifier zero-knowledge” and argue that “we
could fix this[, but] it is easy to see that ... all relevant theorems [including
Theorem 13] still hold.” We adopt the same position and assume that Theo-
rem 13 is applicable.

Proof of Theorem 12. Helios’16 has zero-knowledge tallying proofs (Lemma 21),
subject to the applicability of Theorem 13 to the sigma protocol underlying
(ProveDec,VerDec). Moreover, since Helios’16 satisfies Exp-UV-Ext [SFC16],
we have Helios’16 satisfies Soundness (Proposition 20). Furthermore, since
El Gamal satisfies IND-CPA [TY98, KL07] and non-interactive proof systems
(ProveKey,VerKey) and (ProveCiph,VerCiph) satisfy special soundness and spe-
cial honest verifier zero-knowledge, we have Helios’16 satisfies IND-CVA (Propo-
sition 22). Hence, Helios’16 satisfies Ballot-Secrecy too (Theorem 10).
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[CS11] Véronique Cortier and Ben Smyth. Attacking and fixing Helios:
An analysis of ballot secrecy. In CSF’11: 24th Computer Security
Foundations Symposium, pages 297–311. IEEE Computer Society,
2011.
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