
1

Secrecy and independence for election schemes
Ben Smyth

Interdisciplinary Centre for Security, Reliability and
Trust, University of Luxembourg, Luxembourg

September 12, 2017

Abstract—We study ballot secrecy and ballot independence for
election schemes. First, we propose a definition of ballot secrecy
as an indistinguishability game in the computational model
of cryptography. Our definition builds upon and strengthens
earlier definitions to ensure that ballot secrecy is preserved in
the presence of an adversary that controls the bulletin board
and communication channel. Secondly, we propose a definition
of ballot independence as an adaptation of a non-malleability
definition for asymmetric encryption. We also provide a simpler,
equivalent definition as an indistinguishability game. Thirdly,
we prove relations between our definitions. In particular, we
prove that ballot independence is necessary in election schemes
satisfying ballot secrecy. And that ballot independence is suffi-
cient for ballot secrecy in election schemes with zero-knowledge
tallying proofs. Fourthly, we demonstrate the applicability of our
results by analysing Helios. Our analysis identifies a new attack
against Helios, which enables an adversary to determine if a
voter did not vote for a candidate chosen by the adversary. The
attack requires the adversary to control the bulletin board or
communication channel, thus, it could not have been detected
by earlier definitions of ballot secrecy. Finally, we prove that
ballot secrecy is satisfied by a variant of Helios that uses non-
malleable ballots. Index Terms—Elections, Helios, independence,
non-malleability, privacy, provable security, secrecy, voting.

I. INTRODUCTION

An election is a decision-making procedure to choose
representatives [Gum05], [AH10]. Choices should be made
freely, and this has started a movement towards voting as
a secret act. This movement is championed by the United
Nations [UN48, Article 21], the Organization for Security
and Cooperation in Europe [OSC90, Paragraph 7.4], and the
Organization of American States [OAS69, Article 23]. And has
led to the emergence of ballot secrecy1 as a de facto standard
requirement of voting systems.
• Ballot secrecy. A voter’s vote is not revealed to anyone.

Many voting systems – including systems that have been
used in large-scale, binding elections – attempt to satisfy
ballot secrecy by placing extensive trust in software and
hardware. Unfortunately, many systems are not trustworthy,
and are vulnerable to attacks that could compromise ballot se-
crecy [GH07], [Bow07], [WWH+10], [WWIH12], [SFD+14].
Such vulnerabilities can be avoided by formulating ballot
secrecy as a rigorous and precise security definition, and
proving that systems satisfy this definition. We propose such
a definition in the computational model of cryptography.
Our definition builds upon and strengthens earlier definitions
of ballot secrecy by Bernhard et al. [BCP+11], [BPW12b],

[SB13a], [SB14], [BCG+15b] to ensure that ballot secrecy
is preserved in the presence of an adversary that controls
the bulletin board and the communication channel, whereas
definitions by Bernhard et al. only consider trusted bulletin
boards and channels.

Ballot independence [Gen95], [CS13], [CGMA85] is seem-
ingly related to ballot secrecy.
• Ballot independence. Observing another voter’s interac-

tion with the voting system does not allow a voter to
cast a meaningfully related vote, i.e., ballots are non-
malleable.

Cortier & Smyth [CS13], [CS11], [SC11] attribute a class of
ballot secrecy attacks to the absence of ballot independence.
Their attribution caused some debate. In particular, Bulens,
Giry & Pereira [BGP11, §3.2] highlight the investigation of
systems which allow the submission of related votes, whilst
preserving ballot secrecy, as an interesting research problem.
And Desmedt & Chaidos [DC12] claim to provide a solution.2

We facilitate the study of ballot independence by proposing
two definitions of independence in the computational model.
Our first definition is a straightforward adaptation of a non-
malleability definition for asymmetric encryption. Our second
is a straightforward adaption of an indistinguishability game
for asymmetric encryption. The former definition naturally
captures ballot independence, but it is complex and proofs of
non-malleability are relatively difficult. The latter definition is
equivalent, yet simpler, and proofs of indistinguishability are
easier.

We demonstrate relations between our definitions of secrecy
and independence. In particular, we prove that ballot secrecy
implies ballot independence, hence, ballot independence is
necessary, assuming ballot secrecy is required. We also prove
the inverse implication for a class of voting systems with
zero-knowledge tallying proofs. And show that the inverse
implication does not hold in general, hence, ballot secrecy
is strictly stronger than ballot independence.

We employ our ballot secrecy definition to analyse He-
lios [AMPQ09], [Per16], a web-based voting system that has
been used in binding elections. This scheme is vulnerable
to attacks against ballot secrecy [CS13], [CS11]. The next

1. Ballot secrecy and privacy occasionally appear as synonyms in the
literature. We favour ballot secrecy to avoid confusion with other privacy
notions, such as receipt-freeness and coercion resistance.

2. Smyth & Bernhard [SB13a, §5.1] critique the work by Desmedt &
Chaidos [DC12] and argue that the security results do not support their claims.

2

Helios release [Adi14], henceforth Helios’12, is intended
to mitigate against those attacks. And Bernhard, Pereira &
Warinschi [BPW12a], Bernhard [Ber14] and Bernhard et
al. [BCG+15a], [BCG+15b] prove that Helios’12 satisfies
various notions of ballot secrecy, assuming the bulletin board
and communication channel are secure, despite the use of
malleable ballots. Nevertheless, it follows from our results
that ballot secrecy is not satisfied when this assumption is
dropped. And this leads to the discovery of a new attack
against Helios, whereby an adversary can determine if a voter
did not vote for a candidate chosen by the adversary. Violations
of ballot secrecy can be overcome using a variant of Helios
that uses non-malleable ballots, and we formally prove that
our definition of ballot secrecy is satisfied by that variant.

a) Contribution and structure: This paper contributes
to the security of voting systems by: proposing definitions
of ballot secrecy (§III) and ballot independence (§IV) in the
computational model; proving that ballot secrecy is strictly
stronger than ballot independence in general, and that secrecy
and independence coincide for elections schemes with zero-
knowledge tallying proofs (§V); and identifying a new attack
against Helios, proposing a fix, and proving that ballot secrecy
is satisfied when the fix is applied (§VI). The remaining
sections present election scheme syntax (§II), related work
(§VII), and a brief conclusion (§VIII), some readers might
like to study the related work before definitions of secrecy
and independence. The appendices introduce cryptographic
primitives and associated security definitions, present proofs,
and provide the details of Helios.

II. ELECTION SCHEMES

We recall syntax for election schemes from Smyth, Frink &
Clarkson [SFC17].3 Election schemes capture an interesting
class of voting systems that consist of the following three
steps. First, a tallier generates a key pair. Secondly, each voter
constructs and casts a ballot for their vote. Finally, the tallier
tallies the cast ballots and announces an outcome.4

Definition 1 (Election scheme [SFC17]). An election scheme
is a tuple of probabilistic polynomial-time algorithms
(Setup,Vote,Tally) such that:
• Setup, denoted5 (pk , sk ,mb,mc) ← Setup(κ), is run

by the tallier6. Setup takes a security parameter κ as
input and outputs a key pair pk , sk , a maximum number
of ballots mb, and a maximum number of candidates mc.

• Vote, denoted b ← Vote(pk , v,nc, κ), is run by voters.
Vote takes as input a public key pk , a voter’s vote v,
some number of candidates nc, and a security parameter
κ. The vote should be selected from a sequence 1, . . . ,nc
of candidates. Vote outputs a ballot b or error symbol ⊥.

• Tally, denoted (v, pf) ← Tally(sk , bb,nc, κ), is run by
the tallier. Tally takes as input a private key sk , a bulletin
board bb, some number of candidates nc, and a security
parameter κ, where bb is a set.7 It outputs an election
outcome v and a non-interactive tallying proof pf (i.e., a
proof that the outcome is correct). An election outcome
is a vector v of length nc such that v[v] indicates8 the
number of votes for candidate v.

Election schemes must satisfy correctness: there exists a
negligible function negl, such that for all security parameters
κ, integers nb and nc, and votes v1, . . . , vnb ∈ {1, . . . ,nc},
it holds that: if v is a zero-filled vector of length nc, then

Pr[(pk , sk ,mb,mc)← Setup(κ);
for 1 ≤ i ≤ nb do

bi ← Vote(pk , vi,nc, κ);
v[vi]← v[vi] + 1;

(v′, pf)← Tally(sk , {b1, . . . , bnb},nc, κ) :
nb ≤ mb ∧ nc ≤ mc ⇒ v = v′] > 1− negl(κ).

III. BALLOT SECRECY

Our informal definition of ballot secrecy (§I) could be
formulated as an indistinguishability game, similar to in-
distinguishability games for asymmetric encryption (e.g.,
IND-CPA): we could challenge the adversary to determine
whether a ballot is for one of two possible votes. This for-
malisation is too weak, because election schemes also output
the election outcome and a tallying proof, which needs to be
incorporated into the game. Unfortunately, it is insufficient to
simply grant the adversary access to an oracle that provides
an election outcome and tallying proof corresponding to some
ballots, because such a game is unsatisfiable. In particular, the
adversary can use the oracle to reveal the vote encapsulated
inside the challenge ballot. This reveals some limitations in
our informal definition of ballot secrecy.

For simplicity, our informal definition of ballot secrecy
deliberately omits some side-conditions, which are necessary
for satisfiability. In particular, we did not stress that a voter’s
vote may be revealed in the following scenarios: unanimous
election outcomes reveal how everyone voted and, more gener-
ally, election outcomes can be coupled with partial knowledge
about the distribution of voters’ votes to deduce voters’ votes.
For example, suppose Alice, Bob and Mallory vote in a
referendum and the outcome is two “yes” votes and one “no”
vote. Mallory and Alice can deduce Bob’s vote by pooling
knowledge of their own votes. Similarly, Mallory and Bob
can deduce Alice’s vote. Furthermore, Mallory can deduce that
Alice and Bob both voted yes, if she voted no. Accordingly,

3. We omit algorithm Verify from our syntax, because we focus on
ballot secrecy, rather than verifiability, in this paper. (Verifiability is studied
elsewhere, e.g., [SFC17].)

4. Smyth, Frink & Clarkson use the syntax to model first-past-the-post
voting systems and Smyth shows the syntax is sufficiently versatile to capture
ranked-choice voting systems too [Smy17].

5. Let A(x1, . . . , xn; r) denote the output of probabilistic algorithm A
on inputs x1, . . . , xn and random coins r. Let A(x1, . . . , xn) denote
A(x1, . . . , xn; r), where r is chosen uniformly at random. And let← denote
assignment.

6. Some election schemes (e.g., Helios) permit the tallier’s role to be
distributed amongst several talliers. For simplicity, we consider only a single
tallier in this paper. Generalising syntax and security definitions to multiple
talliers is a possible direction for future work.

7. Bulletin boards are modelled as sets to avoid the class of attacks
against ballot secrecy that arise when duplicate ballots appear on bulletin
boards [CS11], [CS13].

8. Let v[v] denote component v of vector v.

3

ballot secrecy must concede that election outcomes reveal
partial information about voters’ votes,9 hence, we refine our
informal definition of ballot secrecy as follows:

A voter’s vote is not revealed to anyone, except when
the vote can be deduced from the election outcome
and any partial knowledge on the distribution of
votes.

This refinement ensures the aforementioned examples are not
violations of ballot secrecy. By comparison, if Mallory votes
yes and she can deduce the vote of Alice, without knowledge
of Bob’s vote, then ballot secrecy is violated.

A. Indistinguishability game

We formalise ballot secrecy as an indistinguishability game
between an adversary and a challenger.10

Definition 2 (Ballot-Secrecy). Let Γ = (Setup,Vote,Tally) be
an election scheme, A be an adversary, κ be a security pa-
rameter, and Ballot-Secrecy(Γ,A, κ) be the following game.11

Ballot-Secrecy(Γ,A, κ) =

(pk , sk ,mb,mc)← Setup(κ);
nc ← A(pk , κ);
β ←R {0, 1};
L← ∅;
bb← AO();
(v, pf)← Tally(sk , bb,nc, κ);
g ← A(v, pf);
return g = β ∧ balanced(bb,nc, L) ∧ 1 ≤ nc ≤ mc ∧
|bb| ≤ mb;

Predicate balanced(bb,nc, L) holds when: for all votes v ∈
{1, . . . ,nc} we have |{b | b ∈ bb ∧ ∃v1 . (b, v, v1) ∈ L}| =
|{b | b ∈ bb ∧ ∃v0 . (b, v0, v) ∈ L}|. And oracle O is defined
as follows:12

• O(v0, v1) computes b ← Vote(pk , vβ ,nc, κ);L ← L ∪
{(b, v0, v1)} and outputs b, where v0, v1 ∈ {1, ...,nc}.

We say Γ satisfies ballot secrecy (Ballot-Secrecy), if for all
probabilistic polynomial-time adversaries A, there exists a
negligible function negl, such that for all security parameters
κ, we have Succ(Ballot-Secrecy(Γ,A, κ)) ≤ 1/2 + negl(κ).

The game captures a setting in which the tallier generates a
key pair using the scheme’s Setup algorithm, publishes the
public key, and only uses the private key to compute the
election outcome and tallying proof.

The adversary has access to a left-right oracle which can
compute ballots on the adversary’s behalf.13 Ballots can be
computed by the left-right oracle in two ways, corresponding
to a bit β chosen uniformly at random by the challenger.
If β = 0, then, given a pair of votes v0, v1, the oracle
computes a ballot for v0 and outputs the ballot to the adversary.
Otherwise (β = 1), the oracle outputs a ballot for v1. The
adversary constructs a bulletin board, which may include
ballots computed by the oracle. Thus, the game captures a
setting where the bulletin board is constructed by an adversary
that casts ballots on behalf of a subset of voters and controls
the distribution of votes cast by the remaining voters.

The challenger tallies the adversary’s bulletin board to
derive an election outcome and tallying proof. The adversary is
given the outcome and proof, and wins by determining whether
β = 0 or β = 1. Intuitively, if the adversary wins, then there
exists a strategy to distinguish ballots. On the other hand, if
the adversary loses, then the adversary is unable to distinguish
between a ballot for vote v0 and a ballot for vote v1, therefore,
voters’ votes cannot be revealed.

Our notion of ballot secrecy considers election schemes
which reveal the number of votes for each candidate (i.e.,
the election outcome). Hence, to avoid trivial distinctions in
our ballot secrecy game, we insist the game is balanced:
“left” and “right” inputs to the left-right oracle are equivalent,
when the corresponding outputs appear on the bulletin board.
For example, suppose the inputs to the left-right oracle are
(v1,0, v1,1), . . . , (vn,0, vn,1) and the corresponding outputs are
b1, . . . , bn, further suppose the bulletin board is {b1, . . . , b`}
such that ` ≤ n; that game is balanced if the “left” in-
puts v1,0, . . . , v`,0 are a permutation of the “right” inputs
v1,1, . . . , v`,1. The balanced condition prevents trivial distinc-
tions.14 For instance, an adversary that constructs a bulletin
board containing only the ballot output by a left-right oracle
query with input (1, 2) cannot win the game, because it is
unbalanced. Albeit, that adversary could trivially determine
whether β = 0 or β = 1, given the tally of that bulletin board.

B. Non-malleable encryption is sufficient for secrecy

To demonstrate the applicability of our definition, we recall
a construction by Quaglia & Smyth [QS16] for election
schemes from asymmetric encryption schemes.15

Definition 3 (Enc2Vote [QS16]). Given an asymmet-
ric encryption scheme Π = (Gen,Enc,Dec), we define
Enc2Vote(Π) as follows.

• Setup(κ) computes (pk , sk ,m) ← Gen(κ) and outputs
(pk , sk , poly(κ), |m|).

9. Alternative formalisations of election schemes might permit different
results. For instance, voting systems which only announce the winning
candidate [BY86], [HK02], [HK04], [DK05], rather than the number of votes
for each candidate (i.e., the election outcome, in our terminology), could offer
stronger notions of ballot secrecy.
10. Games are probabilistic algorithms that output booleans. An adversary

wins a game by causing it to output true (>). We denote an adversary’s success
Succ(Exp(·)) in a game Exp(·) as the probability that the adversary wins,
that is, Succ(Exp(·)) = Pr[g ← Exp(·) : g = >]. Adversaries are assumed
to be stateful, that is, information persists across invocations of the adversary
in a single game, in particular, the adversary can access earlier assignments.
11. Let x←R S denote assignment to x of an element chosen uniformly at

random from set S. And let |v| denote the length of vector v.
12. Oracles may access game parameters, e.g., pk .
13. Bellare et al. introduced left-right oracles in the context of symmetric

encryption [BDJR97]. And Bellare & Rogaway provide a tutorial on their
use [BR05].
14. A weaker balanced condition might be sufficient for alternative formali-

sations of election schemes. For instance, voting systems which only announce
the winning candidate could be analysed using a balanced condition asserting
that the winning candidate was input on both the “left” and “right.”
15. The construction by Quaglia & Smyth builds upon constructions by

Bernhard et al. [SB14], [SB13a], [BPW12b], [BCP+11].

4

• Vote(pk , v,nc, κ) computes b← Enc(pk , v) and outputs
b if 1 ≤ v ≤ nc ≤ |m| and ⊥ otherwise.

• Tally(sk , bb,nc, κ) initialises vector v of length nc,
computes for b ∈ bb do v ← Dec(sk , b); if 1 ≤ v ≤ nc
then v[v]← v[v] + 1, and outputs (v, ε).

Algorithm Setup requires poly to be a polynomial function,
algorithms Setup and Vote require m = {1, . . . , |m|} to be
the encryption scheme’s plaintext space, and algorithm Tally
requires ε to be a constant symbol.

Lemma 1. Given an asymmetric encryption scheme Π, we
have Enc2Vote(Π) is an election scheme (i.e., Enc2Vote(Π)
satisfies correctness).

A proof of Lemma 1 follows from [QS16, §C.2].16

Intuitively, given a non-malleable asymmetric encryption
scheme Π, election scheme Enc2Vote(Π) derives ballot se-
crecy from Π until tallying and algorithm Tally maintains
ballot secrecy by returning only the number of votes for
each candidate. A formal proof of ballot secrecy follows
from Quaglia & Smyth, in particular, Quaglia & Smyth
show that Enc2Vote(Π) satisfies a stronger notion of ballot
secrecy [QS16, Proposition 5 & 16], hence, Enc2Vote(Π)
satisfies our notion of ballot secrecy too.

Corollary 2. Given an asymmetric encryption scheme Π
satisfying IND-PA0, we have election scheme Enc2Vote(Π)
satisfies Ballot-Secrecy.

The reverse implication of Corollary 2 does not hold.

Proposition 3. There exists an asymmetric encryption
scheme Π such that election scheme Enc2Vote(Π) satisfies
Ballot-Secrecy, but Π does not satisfy IND-PA0.

A proof of Proposition 3 and all further proofs, except where
otherwise stated, appear in Appendix B.

IV. BALLOT INDEPENDENCE

Our informal definition of ballot independence (§I) es-
sentially states that an adversary is unable to construct a
ballot meaningfully related to a non-adversarial ballot. That
is, ballots are non-malleable. Hence, we formulate ballot
independence using non-malleability. The first formalisation
of non-malleability is due to Dolev, Dwork & Naor [DDN91],
[DDN00], in the context of asymmetric encryption. Bellare
& Sahai [BS99] build upon their results, and results by
Bellare et al. [BDPR98], to introduce an alternative non-
malleability definition for asymmetric encryption. We for-
malise non-malleability for election schemes as a straightfor-
ward adaptation of that definition.

Our formalisation of non-malleability for election schemes
captures an intuitive notion of ballot independence, but the
definition is complex and proofs of non-malleability are
relatively difficult. Bellare & Sahai [BS99] observe similar
complexities of non-malleability for encryption and show that
their non-malleability definition for encryption is equivalent
to a simpler, indistinguishability game for encryption. In a
similar direction, we derive a simpler, equivalent definition
of ballot independence as a straightforward adaptation of that
indistinguishability game.

A. Non-malleability game
We formalise ballot independence as a non-malleability

game, called comparison based non-malleability under chosen
vote attack (CNM-CVA).

Definition 4 (CNM-CVA). Let Γ = (Setup,Vote,Tally) be
an election scheme, A be an adversary, κ be a security
parameter, and cnm-cva(Γ,A, κ) and cnm-cva-$(Γ,A, κ) be
the following games.17

cnm-cva(Γ,A, κ) =

(pk , sk ,mb,mc)← Setup(κ);
(V,nc)← A(pk , κ);
v ←R V ;
b← Vote(pk , v,nc, κ);
(R, bb)← A(b);
(v, pf)← Tally(sk , bb,nc, κ);
return R(v, v) ∧ b 6∈ bb ∧ V ⊆ {1, . . . ,nc}
∧ 1 ≤ nc ≤ mc ∧ |bb| ≤ mb;

cnm-cva-$(Γ,A, κ) =

(pk , sk ,mb,mc)← Setup(κ);
(V,nc)← A(pk , κ);
v, v′ ←R V ;
b← Vote(pk , v′,nc, κ);
(R, bb)← A(b);

(v, pf)← Tally(sk , bb,nc, κ);
return R(v, v) ∧ b 6∈ bb ∧ V ⊆ {1, . . . ,nc}
∧ 1 ≤ nc ≤ mc ∧ |bb| ≤ mb;

In the above games, we insist that relation R is computable
in polynomial time. We say Γ satisfies comparison based non-
malleability under chosen vote attack (CNM-CVA), if for all
probabilistic polynomial-time adversaries A, there exists a
negligible function negl, such that for all security parameters
κ, we have Succ(cnm-cva(Γ,A, κ))− Succ(cnm-cva-$(Γ,A,
κ)) ≤ negl(κ).

Similarly to game Ballot-Secrecy, games cnm-cva and
cnm-cva-$ capture: key generation using algorithm Setup,
publication of the public key, and only using the private key
to compute the election outcome and tallying proof.

CNM-CVA is satisfied if no adversary can distinguish be-
tween games cnm-cva and cnm-cva-$. That is, for all adver-
saries, we have with negligible probability that the adversary
wins cnm-cva iff the adversary loses cnm-cva-$. The first three
steps of games cnm-cva and cnm-cva-$ are identical, thus,
these steps cannot be distinguished. Then, game cnm-cva-$
performs an additional step: the challenger samples a second
vote v′ from vote space V . Thereafter, game cnm-cva(Γ,A, κ),
respectively game cnm-cva-$(Γ,A, κ), proceeds as follows:
the challenger constructs a challenge ballot b for v, respec-
tively v′; the adversary is given ballot b and must compute a

16. Quaglia & Smyth only consider asymmetric encryption schemes with
perfect correctness, because they require election schemes to satisfy injectivity,
and perfect correctness is required to show that Enc2Vote(Π) satisfies
injectivity. Nonetheless, perfect correctness is not required to ensure the
construction produces election schemes. Indeed, the proof by Quaglia &
Smyth [QS16, §C.2] can trivially be adapted to prove Lemma 1.
17. We abbreviate x←R S;x′ ←R S as x, x′ ←R S.

5

relation R and bulletin board bb; the challenger tallies bb and
outputs the election outcome v; and the challenger evaluates
whether R(v, v) holds. Hence, CNM-CVA is satisfied if there
is no advantage of the relation constructed by an adversary
given a challenge ballot for v, over the relation constructed
by an adversary given a challenge ballot for v′. That is, for
all adversaries, we have with negligible probability that the
relation evaluated by the challenger in cnm-cva holds iff the
relation evaluated in cnm-cva-$ does not hold. It follows that
no adversary can meaningfully relate ballots. On the other
hand, if CNM-CVA is not satisfied, then there exists a strategy
to construct related ballots.

CNM-CVA avoids crediting the adversary for trivial and un-
avoidable relations which hold if the challenge ballot appears
on the bulletin board. For example, suppose the adversary is
given a challenge ballot for v in cnm-cva, respectively v′

in cnm-cva-$, this adversary could output a bulletin board
containing only the challenge ballot and a relation R such
that R(v, v) holds if v[v] = 1, hence, the relation evaluated in
cnm-cva holds, whereas the relation evaluated in cnm-cva-$
does not hold, but the adversary loses in both games because
the challenge ballot appears on the bulletin board. By contrast,
if the adversary can derive a ballot meaningfully related to
the challenge ballot, then the adversary can win the game.
For instance, Cortier & Smyth [CS13], [CS11] demonstrate
the following attack: an adversary observes a voter’s ballot,
casts a meaningfully related ballot, and exploits the relation
to recover the voter’s vote from the election outcome.

b) Comparing CNM-CVA and CNM-CPA: The main
distinction between non-malleability for asymmetric encryp-
tion (CNM-CPA) and non-malleability for election schemes
(CNM-CVA) is: CNM-CPA performs a parallel decryption,
whereas, CNM-CVA performs a single tally. It follows that
non-malleability for encryption reveals plaintexts correspond-
ing to ciphertexts, whereas, non-malleability for elections
reveals the number of ballots for each candidate.

B. Indistinguishability game

We formalise an alternative definition of ballot indepen-
dence as an indistinguishability game, called indistinguisha-
bility under chosen vote attack (IND-CVA).

Definition 5 (IND-CVA). Let Γ = (Setup,Vote,Tally) be
an election scheme, A be an adversary, κ be the security
parameter, and IND-CVA(Γ,A, κ) be the following game.

IND-CVA(Γ,A, κ) =

(pk , sk ,mb,mc)← Setup(κ);
(v0, v1,nc)← A(pk , κ);
β ←R {0, 1};
b← Vote(pk , vβ ,nc, κ);
bb← A(b);
(v, pf)← Tally(sk , bb,nc, κ);
g ← A(v);
return g = β ∧ b 6∈ bb ∧ 1 ≤ v0, v1 ≤ nc ≤ mc ∧
|bb| ≤ mb;

We say Γ satisfies ballot independence or indistinguishability
under chosen vote attack (IND-CVA), if for all probabilistic

polynomial-time adversaries A, there exists a negligible func-
tion negl, such that for all security parameters κ, we have
IND-CVA(Γ,A, κ) ≤ 1/2 + negl(κ).

IND-CVA is satisfied if the adversary cannot determine
whether the challenge ballot b is for one of two possible votes
v0 and v1. In addition to the challenge ballot, the adversary is
given the election outcome derived by tallying a bulletin board
constructed by the adversary. To avoid trivial distinctions, the
adversary’s bulletin board should not contain the challenge
ballot. Intuitively, the adversary wins if there exists a strategy
to construct related ballots, since this strategy enables the
adversary to construct a ballot b′, related to the challenge ballot
b, and determine if b is for v0 or v1 from the outcome derived
by tallying a bulletin board containing b′.

c) Comparing IND-CVA and IND-PA0: Unsurprisingly,
the distinction between indistinguishability for asymmetric
encryption (IND-PA0) and indistinguishability for election
schemes (IND-CVA) is similar to the distinction between non-
malleability for asymmetric encryption and non-malleability
for election schemes (§IV-A), namely, IND-PA0 performs a
parallel decryption, whereas, IND-CVA performs a single tally.

C. Equivalence between games

Our ballot independence games are adaptations of standard
security definitions for asymmetric encryption: CNM-CVA
is based on non-malleability for encryption and IND-CVA
is based on indistinguishability for encryption. Bellare &
Sahai [BS99] have shown that non-malleability is equivalent
to indistinguishability for encryption and their proof can be
adapted to show that CNM-CVA and IND-CVA are equivalent.

Theorem 4 (CNM-CVA = IND-CVA). Given an election
scheme Γ, we have Γ satisfies CNM-CVA iff Γ satisfies
IND-CVA.

D. Non-malleable encryption is sufficient for independence

It follows naturally from our definitions that non-malleable
ciphertexts are sufficient for ballot independence. Indeed, we
can derive non-malleable ballots in election schemes produced
by construction Enc2Vote on input of encryption schemes
satisfying CNM-CPA.18

Corollary 5. Given an asymmetric encryption scheme Π
satisfying CNM-CPA, we have election scheme Enc2Vote(Π)
satisfies CNM-CVA.

A proof of Corollary 5 follows from Corollary 2 and Theo-
rems 4 & 7. The reverse implication of Corollary 5 does not
hold.

Corollary 6. There exists an asymmetric encryption scheme Π
such that election scheme Enc2Vote(Π) satisfies CNM-CVA,
but Π does not satisfy CNM-CPA.

A proof of Corollary 6 follows from Proposition 3 and
Theorems 4 & 7.

18. Bellare & Sahai [BS99, §5] show that IND-PA0 coincides with
CNM-CPA, thus it suffices to consider IND-PA0 in Corollaries 5 & 6.

6

V. RELATIONS BETWEEN SECRECY AND INDEPENDENCE

The main distinctions between our ballot secrecy
(Ballot-Secrecy) and ballot independence (IND-CVA)
games are as follows.

1) The challenger produces one challenge ballot for the
adversary in our ballot independence game, whereas,
the left-right oracle produces arbitrarily many challenge
ballots for the adversary in our ballot secrecy game.

2) The adversary in our ballot secrecy game has access
to a tallying proof, but the adversary in our ballot
independence game does not.

3) The winning condition in our ballot secrecy game re-
quires the bulletin board to be balanced, whereas, the
bulletin board must not contain the challenge ballot in
our ballot independence game.

The second point distinguishes our two games and shows that
ballot secrecy is stronger than ballot independence.19 Hence,
non-malleable ballots are necessary in election schemes satis-
fying ballot secrecy.

Theorem 7 (Ballot-Secrecy ⇒ IND-CVA). Given an elec-
tion scheme Γ satisfying Ballot-Secrecy, we have Γ satisfies
IND-CVA.

Moreover, since tallying proofs can reveal voters’ votes (e.g.,
a variant of Enc2Vote could define tallying proofs that map
ballots to votes) and since these proofs are available to the
adversary in our ballot secrecy game, but not in our ballot
independence game, it follows that ballot secrecy is strictly
stronger than ballot independence.

Proposition 8 (IND-CVA 6⇒ Ballot-Secrecy). There exists an
election scheme Γ such that Γ satisfies IND-CVA, but not
Ballot-Secrecy.

A proof of Proposition 8 follows immediately from our
informal reasoning and we omit a formal proof.

Although ballot secrecy is generally stronger than ballot
independence, we show that ballot independence is sufficient
for ballot secrecy in the class of election schemes without
tallying proofs (Definition 6), assuming a soundness condition
(Definition 7), which asserts that adding a ballot for v to the
bulletin board effects the election outcome by exactly vote
v. (This condition is required to hold in the presence of an
adversary, whereas correctness is not.)

Definition 6. An election scheme Γ = (Setup,Vote,Tally)
is without tallying proofs, if there exists a constant symbol ε
such that for all multisets bb we have: Pr[(pk , sk ,mb,mc)←
Setup(κ); (v, pf)← Tally(sk , bb,nc, κ) : pf = ε] = 1.

Definition 7 (HB-Tally-Soundness). Let Γ = (Setup,Vote,
Tally) be an election scheme, A be an adversary, κ be a
security parameter, and HB-Tally-Soundness(Γ,A, κ) be the
following game.

HB-Tally-Soundness(Γ,A, κ) =

(pk , sk ,mb,mc)← Setup(κ);
(v,nc, bb0)← A(pk , κ);
b← Vote(pk , v,nc, κ);
(v0, pf 0)← Tally(sk , bb0,nc, κ);
(v1, pf 1)← Tally(sk , bb0 ∪ {b},nc, κ);
v∗ ← (v0[1], . . . , v0[v − 1], v0[v] + 1, v0[v + 1], . . . ,
v0[|v0|]);
return v∗ 6= v1 ∧ b 6∈ bb0 ∧ 1 ≤ v ≤ nc ≤ mc ∧
|bb0 ∪ {b}| ≤ mb;

We say Γ satisfies honest-ballot tally soundness
(HB-Tally-Soundness), if for all probabilistic polynomial-
time adversaries A, there exists a negligible function
negl, such that for all security parameters κ, we have
Succ(HB-Tally-Soundness(Γ,A, κ)) ≤ negl(κ).

Proposition 9 (Ballot-Secrecy = IND-CVA, without proofs).
Let Γ be an election scheme without tallying proofs. Sup-
pose Γ satisfies HB-Tally-Soundness. We have Γ satisfies
Ballot-Secrecy iff Γ satisfies IND-CVA.

Our equivalence result generalises to the class of election
schemes with zero-knowledge tallying proofs, that is, election
schemes that construct tallying proofs using zero-knowledge
non-interactive proof systems.

Definition 8 (Zero-knowledge tallying proofs). Let Γ =
(Setup,Vote,Tally) be an election scheme. We say Γ has zero-
knowledge tallying proofs, if there exists a zero-knowledge
non-interactive proof system (Prove,Verify), such that for
all security parameters κ, integers nc, bulletin boards bb,
outputs (pk , sk ,mb,mc) of Setup(κ), and outputs (v, pf) of
Tally(sk , bb,nc, κ), we have pf = Prove((pk , bb,nc, v), sk ,
κ; r), such that coins r are chosen uniformly at random by
Tally.

Theorem 10 (Ballot-Secrecy = IND-CVA, with ZK proofs).
Let Γ be an election scheme with zero-knowledge tallying
proofs. Suppose Γ satisfies HB-Tally-Soundness. We have Γ
satisfies Ballot-Secrecy iff Γ satisfies IND-CVA.

We show that honest-ballot tally soundness is implied by
universal verifiability in Appendix C. Hence, a special case
of Theorem 10 requires Γ to satisfy universal verifiability.
Thus, applications of Theorem 10 are simplified for verifiable
election schemes.

VI. CASE STUDY: HELIOS

Helios is an open-source, web-based electronic voting
system,20 which has been used in binding elections. In
particular, the International Association of Cryptologic Re-
search (IACR) has used Helios annually since 2010 to elect
board members [BVQ10], [HBH10],21 the ACM used He-
lios for their 2014 general election [Sta14], the Catholic
University of Louvain used Helios to elect their university

19. Smyth & Bernhard explain that alternative formalisations of election
schemes might permit different results [SB13a, §5.2].
20. https://vote.heliosvoting.org, accessed 19 Jan 2017.
21. https://www.iacr.org/elections/, accessed 19 Jan 2017.

7

president in 2009 [AMPQ09], and Princeton University has
used Helios since 2009 to elect student governments.22,23

Informally, Helios can be modelled as an election scheme
(Setup,Vote,Tally) such that:
• Setup generates a key pair for an asymmetric homomor-

phic encryption scheme, proves correct key generation in
zero-knowledge, and outputs the public key coupled with
the proof.

• Vote enciphers the vote to a ciphertext, proves correct
ciphertext construction in zero-knowledge, and outputs
the ciphertext coupled with the proof.

• Tally proceeds as follows. First, any ballots on the bulletin
board for which proofs do not hold are discarded. Sec-
ondly, the ciphertexts in the remaining ballots are homo-
morphically combined,24 the homomorphic combination
is decrypted to reveal the election outcome, and correct-
ness of decryption is proved in zero-knowledge. Finally,
the election outcome and proof of correct decryption are
output.

Helios was first implemented as Helios 2.0.25

Helios 2.0 is vulnerable to attacks against ballot se-
crecy [CS13], [CS11], [SC11], [BPW12a].26 And the next
Helios release (Helios’12) is intended to mitigate against
those attacks. In particular, the specification [Adi14] incor-
porates the Fiat-Shamir heuristic (rather than the weak Fiat–
Shamir heuristic [BPW12a], which does not include state-
ments in hashes), and there are plans to omit meaningfully
related ballots before tallying.27,28 Bernhard, Pereira & Warin-
schi [BPW12a], Bernhard [Ber14, §6.11] and Bernhard et
al. [BCG+15a, §D.3] show that Helios’12 satisfies various
notions of ballot secrecy.29 These notions assume ballots are
recorded-as-cast, i.e., cast ballots are preserved with integrity
through the ballot collection process [AN06, §2]. Unfortu-
nately, ballot secrecy is not satisfied without this assumption,
because Helios’12 uses malleable ballots in elections with
more than two candidates.30 Indeed, a vote v selected from
candidates 1, . . . ,nc is enciphered to a tuple of ciphertexts
c1, . . . , cnc−1 such that if v < nc, then ciphertext cv contains
plaintext 1 and the remaining ciphtertexts contain plaintext
0, otherwise, all ciphertexts contain plaintext 0. Moreover,
correct ciphertext construction is shown using proofs σ1, . . . ,
σnc such that proof σj demonstrates ciphertext cj contains 0 or
1 for all j ∈ {1, . . . ,nc−1}, and proof σnc demonstrates that
the homomorphic combination of ciphertexts c1⊗· · ·⊗ cnc−1

contains 0 or 1. Hence, given a ballot c1, . . . , cnc−1, σ1, . . . ,
σnc , we have cχ(1), . . . , cχ(nc−1), σχ(1), . . . , σχ(nc−1), σnc is
a ballot for all permutations χ on {1, . . . ,nc−1}. Thus, ballots
are malleable, which is incompatible with ballot secrecy (§V).

Theorem 11. Helios’12 does not satisfy Ballot-Secrecy.

Proof sketch. Suppose an adversary queries the left-right ora-
cle with inputs v0 and v1 to derive a ballot for vβ , where β is
the bit chosen by the challenger. Further suppose the adversary
exploits malleability to derive a related ballot b for vβ and
outputs bulletin board {b}.31 The board is balanced, because
it does not contain the ballot output by the left-right oracle.
Suppose the adversary performs the following computation on
input of the election outcome v: if v[v0] = 1, then output 0,

otherwise, output 1. Since b is a ballot for vβ , it follows by
correctness that v[v0] = 1 iff β = 0, and v[v1] = 1 iff β = 1,
hence, the adversary wins the game.

Our informal proof of Theorem 11 is straightforward. A formal
proof would require a formal description of Helios’12. Such a
formal description can be derived by adapting the formalisa-
tion of Helios 3.1.4 by Smyth, Frink & Clarkson [SFC17] to
omit meaningfully related ballots during tallying. These details
provide little value, so we do not pursue them further.

The proof sketch of Theorem 11 gives way to the attacks
described by Cortier & Smyth [CS13], [CS11], whereby an
adversary casts a ballot meaningfully related to a voter’s ballot
and exploits the relation to recover the voter’s vote from
the election outcome. We can also derive a new attack (as
the following example demonstrates) by extrapolating from
the proof sketch and Cortier & Smyth’s permutation attack,
which asserts: given a ballot b for vote v, we can exploit
malleability to derive a ballot b′ for vote v′ [CS13, §3.2.2].
Suppose Alice, Bob and Charlie are voters, and Mallory is
an adversary that wants to convince herself that Alice did not
vote for a candidate v. Further suppose Alice casts a ballot b1
for vote v1, Bob casts a ballot b2, and Charlie casts a ballot
b3. Moreover, suppose that either Bob or Charlie voted for v.
(Thereby excluding election outcomes without any votes for
candidate v, which would permit Mallory to trivially convince
herself that Alice did not vote for candidate v.) Let us assume
that votes for v′ are not expected. Mallory proceeds as follows:
she intercepts ballot b1, exploits malleability to derive a ballot
b such that v = v1 implies b is a vote for v′, and casts ballot
b. It follows that the tallier will compute the election outcome
from bulletin board {b, b2, b3}. (Omitting meaningfully related
ballots before tallying does not prevent the attack, because
none of the tallied ballots are related.) If the outcome does
not contain any votes for v′, then Mallory is convinced that
Alice did not vote for v. Notions of ballot secrecy used by

22. http://heliosvoting.wordpress.com/2009/10/13/
helios-deployed-at-princeton/, accessed 19 Jan 2017.
23. https://princeton.heliosvoting.org/, accessed 19 Jan 2017.
24. The homomorphic combination of ciphertexts is straightforward for two-

candidate elections [CF85], [BY86], [SK94], [Ben96], [HS00], since votes
(e.g., “yes” or “no”) can be encoded as 1 or 0. Multi-candidate elections are
also possible [BY86], [Hir10], [DJN10].
25. https://github.com/benadida/helios/releases/tag/2.0, released 25 Jul 2009,

accessed 19 Jan 2017.
26. Beyond ballot secrecy, attacks against universal verifiability [BPW12a],

[SFC17], [CE16] and eligibility [SP13], [SP15], [MS16] are known.
27. Cf. http://documentation.heliosvoting.org/attacks-and-defenses, https://

github.com/benadida/helios-server/issues/8, and https://github.com/benadida/
helios-server/issues/35, accessed 19 Jan 2017.
28. Mechanisms to omit ballots have been proposed, e.g., [CS11], [SC11],

[Smy12], [CS13], [SB13b], [BCG+15b], [BCG+15a], but the specification
for Helios’12 does not yet define a particular mechanism.
29. Proofs by Bernhard, Pereira & Warinschi and Bernhard et al. are limited

to two candidate elections.
30. Ballots are non-malleable for two candidate elections. (Bernhard, Pereira

& Warinschi and Bernhard et al. are reliant on non-malleability for their
proofs.)
31. The recorded-as-cast assumption is violated because the ballot output by

the left-right oracle does not appear on the bulletin board.

8

Bernhard, Pereira & Warinschi [BPW12a], Bernhard [Ber14,
§6.11] and Bernhard et al. [BCG+15a, §D.3] would not detect
the attack, because interception is not possible when ballots
are recorded-as-cast.32

The attack is reliant on a particular candidate not receiving
any votes. This is trivial to capture in the context of our ballot
secrecy game, because the bulletin board is constructed by an
adversary that casts ballots on behalf of a subset of voters and
controls the distribution of votes cast by the remaining voters.
Beyond the game, candidates will presumably vote for them-
selves. Thus, for first-past-the-post elections, the practicality
of an attack is probably limited to elections in which voters
vote in constituencies and each polling station announces its
own outcome (cf. Cortier & Smyth [CS13, §3.3]).

We have seen that non-malleable ballots are necessary for
ballot secrecy (§V), hence, future Helios releases should adopt
non-malleable ballots. Smyth, Frink & Clarkson [SFC17]
make progress in this direction by proposing Helios’16, a
variant of Helios which satisfies verifiability and is intended,
but not proven, to use non-malleable ballots (cf. [SHM15]). We
recall their formal description in Appendix D. And, using that
formalisation, we prove that Helios’16 satisfies ballot secrecy.

Theorem 12. Helios’16 satisfies Ballot-Secrecy.

Proof sketch. We prove that Helios’16 has zero-knowledge
tallying proofs. And, since Helios’16 satisfies universal verifi-
ability [SFC17], it is also satisfies HB-Tally-Soundness (§C).
Hence, by Theorem 10, it suffices to prove that Helios’16
satisfies IND-CVA. And we show that satisfying IND-CVA
reduces to the security of the encryption scheme (namely,
IND-CPA of El Gamal) underlying Helios’16.

A formal proof of Theorem 12 appears in Appendix E.
The proof assumes the random oracle model [BR93]. This
proof, coupled with the proof of verifiability by Smyth, Frink
& Clarkson [SFC17], provides strong motivation for future
Helios releases being based upon Helios’16, since it is the
only variant of Helios which is known to be secure.

VII. RELATED WORK

Discussion of ballot secrecy originates from Chaum [Cha81]
and the earliest definitions of ballot secrecy are due to
Benaloh et al. [BY86], [BT94], [Ben96].33 More recently,
Bernhard et al. propose a series of ballot secrecy def-
initions: they consider election schemes without tallying
proofs [BCP+11], [BPW12b] and, subsequently, schemes with
tallying proofs [BPW12a], [SB13a], [SB14], [BCG+15b]. The
definition of ballot secrecy by Bernhard, Pereira & Warinschi
computes tallying proofs using algorithm Tally or a simulator
[BPW12a], but the resulting definition is too weak [BCG+15b,
§3.4] and some strengthening is required [BCG+15b, §4].
(Cortier et al. [CGGI13a], [CGGI13b] propose a variant of the
ballot secrecy definition by Bernhard, Pereira & Warinschi.
That variant is also too weak [BCG+15b].) By compari-
son, the definition by Smyth & Bernhard computes tallying
proofs using only algorithm Tally [SB13a], but the resulting
definition is too strong [BCG+15b, §3.5] and a weakening
is required [SB14]. The relative merits of ballot secrecy

definitions due to Smyth & Bernhard [SB14, Definition 5]
and Bernhard et al. [BCG+15b, Definition 7] are unknown,
in particular, it is unknown whether one definition is stronger
than the other.

In the context of elections, discussion of ballot indepen-
dence originates from Gennaro [Gen95]. And the apparent
relationship between ballot secrecy and ballot independence
has been considered. Benaloh [Ben96, §2.9] shows that a
simplified version of his voting system allows the admin-
istrator’s private key to be recovered by an adversary who
casts a ballot as a function of other voters’ ballots. And,
more generally, Sako & Kilian [SK95, §2.4], Michels &
Horster [MH96, §3], Wikström [Wik06], [Wik08], [Wik16]
and Cortier & Smyth [CS13], [CS11] discuss how malleable
ballots can be exploited to compromise ballot secrecy. The
first definition of ballot independence seems to be due to
Smyth & Bernhard [SB13a], [SB14]. Moreover, Smyth &
Bernhard formally prove relations between their definitions
of ballot secrecy and ballot independence. Independence has
also been studied beyond elections, e.g., [CGMA85], and the
possibility of compromising security properties due to the lack
of independence has been considered, e.g., [CR87], [PP89],
[Pfi94], [DDN91], [DDN00], [Gen00].

All of the ballot secrecy definitions by Bernhard et
al. [BCP+11], [BPW12b], [BPW12a], [SB13a], [SB14],
[BCG+15b] and the ballot independence definition by Smyth
& Bernhard [SB13a], [SB14] focus on detecting attacks by
adversaries that control some voters. Attacks by adversaries
that control the bulletin board or communication channel are
not detected, i.e., the bulletin board is implicitly assumed to
operate in accordance with the election scheme’s rules and the
communication channel is implicitly assumed to be secure.
This introduces a trust assumption. Under this assumption,
Smyth & Bernhard prove that non-malleable ballots are not
necessary for ballot secrecy [SB13a, §4.3], and Bernhard,
Pereira & Warinschi [BPW12a], Bernhard [Ber14] and Bern-
hard et al. [BCG+15a], [BCG+15b] prove that Helios’12
satisfies various notions of ballot secrecy. By comparison,
we prove that non-malleable ballots are necessary for ballot
secrecy without this trust assumption. Hence, Helios’12 does
not satisfy our definition of ballot secrecy. Thus, our definition
of ballot secrecy improves upon definitions due to Bernhard
et al. by detecting more attacks.

Some of the ideas presented in this paper previously
appeared in a technical report by Smyth [Smy14] and an
extended version of that technical report by Bernhard &
Smyth [BS15]. In particular, the limitations of ballot se-
crecy definitions by Bernhard et al. were identified by
Smyth [Smy14]. And Definition 2 is based upon the definition
of ballot secrecy proposed by Smyth [Smy14, Definition 3].

32. This observation suggests that recorded-as-cast is unsatisfiable: an ad-
versary that can intercept ballots can always prevent the collection of ballots.
Nevertheless, the definition of recorded-as-cast is informal, thus ambiguity
should be expected and some interpretation of the definition should be
satisfiable.
33. Quaglia & Smyth present a tutorial-style introduction to modelling

ballot secrecy [QS17], and Bernhard et al. survey ballot secrecy defini-
tions [BCG+15b], [BCG+15a].

9

The main distinction between Definition 2 and the definition
by Smyth is syntax: this paper adopts syntax for election
schemes from Smyth, Frink & Clarkson [SFC17], whereas,
Smyth adopts syntax by Smyth & Bernhard [SB14], [SB13a].
The change in syntax is motivated by the superiority of syntax
by Smyth, Frink & Clarkson. Unfortunately, the change has
a drawback: we cannot immediately prove that the definition
of ballot secrecy proposed in this paper is strictly stronger
than the definition proposed by Smyth & Bernhard [SB14],
[SB13a]. By comparison, the technical reports contain such
proofs. Nevertheless, the advantages of the syntax change
outweigh the disadvantages. Moreover, we can capitalise upon
results by Smyth, Frink & Clarkson [SFC17] and Quaglia &
Smyth [QS16].

Following the initial release of these results [Smy15],
[Smy16], Cortier et al. [CSD+17] presented a machined-
checked proof that variants of Helios satisfy the notion of
ballot secrecy by Bernhard et al. [BCG+15b]. As discussed
above, that notion is too weak. In particular, attacks by
adversaries that control the bulletin board or communication
channel are not detected. Thus, the proof presented here is
more appropriate. Nonetheless, their proof builds upon ideas
similar to those presented here. In particular, their proof is
dependent upon non-malleable ballots and zero-knowledge
tallying proofs.

Beyond the computational model of security, Delaune,
Kremer & Ryan formulate a definition of ballot secrecy in
the applied pi calculus [DKR09]. Smyth et al. show that
this definition is amenable to automated reasoning [DRS08],
[Smy11], [BS16]. Albeit, the scope of automated reasoning is
limited by analysis tools (e.g., ProVerif [BSCS16]), because
the function symbols and equational theory used to model
cryptographic primitives might not be suitable for automated
analysis (cf. [DKRS11], [PB12], [ABR12], [SAR13]).

Ballot secrecy formalises a notion of privacy assuming
the adversary’s capabilities are limited to controlling the set
of recorded ballots and assuming ballots are constructed in
the prescribed manner. We have seen that Helios’16 satisfies
ballot secrecy, but ballot secrecy does not ensure privacy
when adversaries are able to communicate with voters nor
when voters deviate from the prescribed voting procedure to
follow instructions provided by adversaries. Indeed, the coins
used for encryption serve as proof of how a voter voted
in Helios and the voter may communicate those coins to
the adversary. Stronger notions of privacy, such as receipt-
freeness [MN06], [KZZ15], [CCFG16] and coercion resis-
tance [JCJ05], [GGR09], [UMQ10], [KTV12], are needed in
the presence of such adversaries.

Ballot secrecy also assumes that ballots are tallied in the
prescribed manner. Hence, the tallier must be trusted. Al-
ternatively, we can design election schemes that distribute
the tallier’s role amongst several talliers and ensure privacy
assuming at least one tallier tallies ballots in the prescribed
manner. Extending our results in this direction is an oportunity
for future work. Ultimately, we would prefer not to trust
talliers. But, this is only known to be possible for decentralised
voting systems, e.g., [Sch99], [KY02], [Gro04], [HRZ10],
[KSRH12], which are unsuitable for large-scale elections.

McCarthy, Smyth & Quaglia [MSQ14] have shown that
auction schemes can be constructed from election schemes,
and Quaglia & Smyth [QS16] provide a generic construction
for auction schemes from election schemes. Moreover, Quaglia
& Smyth adapt our definition of ballot secrecy to a definition
of bid secrecy, and prove that auction schemes produced by
their construction satisfy bid secrecy. (Similarly, they adapt
the definition of election verifiability by Smyth, Frink &
Clarkson [SFC17] to a definition of auction verifiability, and
prove that their construction produces schemes satisfying auc-
tion verifiability.) Thus, this research has applications beyond
voting.

VIII. CONCLUSION

This work was initiated by a desire to eliminate the
trust assumptions placed upon the bulletin board and the
communication channel in definitions of ballot secrecy by
Bernhard et al. and the definition of ballot independence
by Smyth & Bernhard. This necessitated the introduction of
new security definitions. The definition of ballot secrecy was
largely constructed from intuition, with inspiration from indis-
tinguishability games for asymmetric encryption and existing
definitions of ballot secrecy. Moreover, the definition was
guided by the desire to strengthen existing definitions of ballot
secrecy. The definition of ballot independence was inspired
by the realisation that independence requires non-malleable
ballots. This enabled definitions of ballot independence to be
constructed as straightforward adaptations of non-malleability
and indistinguishability definitions for asymmetric encryption;
the former adaptation being a more natural formulation of
ballot independence and the latter being simpler.

Relationships between security definitions aid our under-
standing and offer insights that facilitate the construction of
secure election schemes. This prompted the study of relations
between ballot secrecy and ballot independence, resulting in
a proof that non-malleable ballots are necessary for ballot
secrecy. And, moreover, a proof that non-malleable ballots are
sufficient for ballot secrecy in election schemes with zero-
knowledge tallying proofs. Furthermore, a separation result
demonstrates that ballot secrecy is strictly stronger than ballot
independence.

In light of the revelation that non-malleable ballots are
necessary for ballot secrecy, and in the knowledge that Helios
ballots are malleable, it was discovered that Helios does not
satisfy ballot secrecy. Although the proof sketch of this result
did not immediately uncover an attack against Helios, an
extrapolation from that proof sketch revealed an attack that
allows an adversary to determine if a voter did not vote
for a candidate chosen by the adversary. This naturally led
to the consideration of whether definitions of ballot secrecy
by Bernhard et al. could have detected this attack and the
conclusion that they could not, because the attack requires
the adversary to control the bulletin board or communication
channel, which is prohibited by those definitions.

We exploited our results to prove that a variant of Helios
satisfies ballot secrecy. This proof is particularly significant
due to the use of Helios in binding elections. And we encour-
age Helios developers to base future releases on this variant,

10

since it is the only variant of Helios which is known to be
secure.

ACKNOWLEDGEMENTS

Some of the prose (in particular, the two opening paragraphs
of Section III) were prepared in collaboration with David
Bernhard and I am very grateful for David’s contribution. I
am also grateful to David for extensive discussions that helped
improve this paper and, more generally, my knowledge of
cryptography. In addition, I am grateful to Elizabeth Quaglia
for her valuable feedback that also helped improve this paper
and to Constantin Cătălin Drăgan for explaining subtleties
of his work. This work was performed in part at INRIA,
with support from the European Research Council under the
European Union’s Seventh Framework Programme (FP7/2007-
2013) / ERC project CRYSP (259639).

APPENDIX A
CRYPTOGRAPHIC PRIMITIVES

A. Asymmetric encryption

Definition 9 (Asymmetric encryption scheme [KL07]). An
asymmetric encryption scheme is a tuple of probabilistic
polynomial-time algorithms (Gen,Enc,Dec), such that:34

• Gen, denoted (pk , sk ,m) ← Gen(κ), inputs a security
parameter κ and outputs a key pair (pk , sk) and message
space m.

• Enc, denoted c ← Enc(pk ,m), inputs a public key pk
and message m ∈ m, and outputs a ciphertext c.

• Dec, denoted m ← Dec(sk , c), inputs a private key sk
and ciphertext c, and outputs a message m or an error
symbol. We assume Dec is deterministic.

Moreover, the scheme must be correct: there exists a negli-
gible function negl, such that for all security parameters κ
and messages m, we have Pr[(pk , sk ,m) ← Gen(κ); c ←
Enc(pk ,m) : m ∈ m ⇒ Dec(sk , c) = m] > 1 − negl(κ). A
scheme has perfect correctness if the probability is 1.

Definition 10 (Homomorphic encryption [SFC17]). An asym-
metric encryption scheme Γ = (Gen,Enc,Dec) is homo-
morphic, with respect to ternary operators �, ⊕, and ⊗,35

if there exists a negligible function negl, such that for
all security parameters κ, we have the following.36 First,
for all messages m1 and m2 we have Pr[(pk , sk ,m) ←
Gen(κ); c1 ← Enc(pk ,m1); c2 ← Enc(pk ,m2) : m1,m2 ∈
m ⇒ Dec(sk , c1 ⊗pk c2) = Dec(sk , c1) �pk Dec(sk , c2)] >
1 − negl(κ). Secondly, for all messages m1 and m2, and
all coins r1 and r2, we have Pr[(pk , sk ,m) ← Gen(κ) :
m1,m2 ∈ m ⇒ Enc(pk ,m1; r1) ⊗pk Enc(pk ,m2; r2) =
Enc(pk ,m1 �pk m2; r1 ⊕pk r2)] > 1 − negl(κ). We say Γ
is additively homomorphic, if for all security parameters κ,
key pairs pk , sk , and message spaces m, such that there exists
coins r and (pk , sk ,m) = Gen(κ; r), we have �pk is the
addition operator in group (m,�pk).

Definition 11 (IND-CPA [BDPR98]). Let Π = (Gen,Enc,
Dec) be an asymmetric encryption scheme, A be an adversary,
κ be the security parameter, and IND-CPA(Π,A, κ) be the
following game.37

IND-CPA(Π,A, κ) =

(pk , sk ,m)← Gen(κ);
(m0,m1)← A(pk ,m, κ);
β ←R {0, 1};
c← Enc(pk ,mβ);
g ← A(c);
return g = β;

In the above game, we insist m0,m1 ∈ m and |m0| =
|m1|. We say Γ satisfies IND-CPA, if for all probabilistic
polynomial-time adversaries A, there exists a negligible func-
tion negl, such that for all security parameters κ, we have
Succ(IND-CPA(Π,A, κ)) ≤ 1/2 + negl(κ).

Definition 12 (IND-PA0 [BS99]). Let Π = (Gen,Enc,Dec) be
an asymmetric encryption scheme, A be an adversary, κ be the
security parameter, and IND-PA0(Π,A, κ) be the following
game.

IND-PA0(Π,A, κ) =

(pk , sk ,m)← Gen(κ);
(m0,m1)← A(pk ,m, κ);
β ←R {0, 1};
c← Enc(pk ,mβ);
c← A(c);
m← (Dec(sk , c[1]), . . . ,Dec(sk , c[|c|]);
g ← A(m);
return g = β ∧

∧
1≤i≤|c| c 6= c[i];

In the above game, we insist m0,m1 ∈ m and |m0| =
|m1|. We say Γ satisfies IND-PA0, if for all probabilistic
polynomial-time adversaries A, there exists a negligible func-
tion negl, such that for all security parameters κ, we have
Succ(IND-PA0(Π,A, κ)) ≤ 1/2 + negl(κ).

B. Proof systems

Definition 13 (Sigma protocol [SFC17], [Dam10], [HL10]).
A sigma protocol for a relation R is a tuple (Comm,Chal,
Resp,Verify) of probabilistic polynomial-time algorithms such
that:
• Comm, denoted (comm, t) ← Comm(s, w, κ), is exe-

cuted by a prover. Comm takes a statement s, witness
w and security parameter k as input, and outputs a
commitment comm and some state information t.

• Chal, denoted chal ← Chal(s, comm, κ), is executed by
a verifier. Chal takes a statement s, a commitment comm

34. Our definition differs from Katz and Lindell’s original definition [KL07,
Definition 10.1] in that we formally state the plaintext space.
35. Henceforth, we implicitly bind ternary operators, i.e., we write Γ is a

homomorphic asymmetric encryption scheme as opposed to the more verbose
Γ is a homomorphic asymmetric encryption scheme, with respect to ternary
operators �, ⊕, and ⊗.
36. We write X ◦pk Y for the application of ternary operator ◦ to inputs X ,
Y , and pk . We occasionally abbreviate X ◦pk Y as X ◦Y , when pk is clear
from the context.
37. Our definition of an asymmetric encryption scheme explicitly defines the

plaintext space, whereas, Bellare et al. [BDPR98] leave the plaintext space
implicit; this change is reflected in our definition of IND-CPA. Moreover,
we provide the adversary with the message space and security parameter. We
adapt IND-PA0 similarly.

11

and a security parameter k as input, and outputs a string
chal.

• Resp, denoted resp ← Resp(chal, t, κ), is executed by a
prover. Resp takes a challenge chal, state information t
and security parameter k as input, and outputs a response
resp.

• Verify, denoted v ← Verify(s, (comm, chal, resp), κ) is
executed by a verifier. Verify takes a statement s, a
transcript (comm, chal, resp) and a security parameter k
as input, and outputs a bit v, which is 1 if the transcript
successfully verifies and 0 otherwise. We assume Verify
is deterministic.

Moreover, the sigma protocol must be complete: there ex-
ists a negligible function negl, such that for all state-
ments and witnesses (s, w) ∈ R and security parame-
ters k, we have Pr[(comm, t) ← Comm(s, w, κ); chal ←
Chal(s, comm, κ); resp ← Resp(chal, t, κ) : Verify(s, (comm,
chal, resp), κ) = 1] > 1− negl(κ).

Definition 14 (Non-interactive proof system [SFC17]). A
non-interactive proof system for a relation R is a tuple of
algorithms (Prove,Verify), such that:
• Prove, denoted σ ← Prove(s, w, κ), is executed by a

prover to prove (s, w) ∈ R.
• Verify, denoted v ← Verify(s, σ, κ), is executed by

anyone to check the validity of a proof. We assume Verify
is deterministic.

Moreover, the system must be complete: there exists a negligi-
ble function negl, such that for all statement and witnesses
(s, w) ∈ R and security parameters κ, we have Pr[σ ←
Prove(s, w, κ) : Verify(s, σ, κ) = 1] > 1− negl(κ).

Definition 15 (Fiat-Shamir transformation [FS87]). Given a
sigma protocol Σ = (Comm,Chal,Resp,VerifyΣ) for relation
R and a hash function H, the Fiat-Shamir transformation,
denoted FS(Σ,H), is the tuple (Prove,Verify) of algorithms,
defined as follows:

Prove(s, w, κ) =

(comm, t)← Comm(s, w, κ);
chal← H(comm, s);
resp← Resp(chal, t, κ);
return (comm, resp);

Verify(s, (comm, resp), κ) =

chal← H(comm, s);
return VerifyΣ(s, (comm, chal, resp), κ);

Definition 16 (Zero-knowledge [QS16]). Let ∆ =
(Prove,Verify) be a non-interactive proof system for a relation
R, derived by application of the Fiat-Shamir transforma-
tion [FS87] to a random oracle H and a sigma protocol.
Moreover, let S be an algorithm, A be an adversary, κ be
a security parameter, and ZK(∆,A,H,S, κ) be the following
game.

ZK(∆,A,H,S, κ) =

β ←R {0, 1};
g ← AH,P(κ);
return g = β;

Oracle P is defined on inputs (s, w) ∈ R as follows:
• P(s, w) computes if β = 0 then σ ← Prove(s, w, κ)

else σ ← S(s, κ) and outputs σ.
And algorithm S can patch random oracle H.38 We say
∆ satisfies zero-knowledge, if there exists a probabilistic
polynomial-time algorithm S, such that for all probabilistic
polynomial-time algorithm adversaries A, there exists a neg-
ligible function negl, and for all security parameters κ, we
have Succ(ZK(∆,A,H,S, κ)) ≤ 1

2 + negl(κ). An algorithm
S for which zero-knowledge holds is called a simulator for
(Prove,Verify).

Definition 17 (Simulation sound extractability [SFC17],
[BPW12a], [Gro06]). Suppose Σ is a sigma protocol for
relation R, H is a random oracle, and (Prove,Verify) is a
non-interactive proof system, such that FS(Σ,H) = (Prove,
Verify). Further suppose S is a simulator for (Prove,Verify)
and H can be patched by S. Proof system (Prove,Verify)
satisfies simulation sound extractability if there exists a prob-
abilistic polynomial-time algorithm K, such that for all proba-
bilistic polynomial-time adversariesA and coins r, there exists
a negligible function negl, such that for all security parameters
κ, we have:39

Pr[P← ();Q← AH,P(—; r);W← KA
′
(H,P,Q) :

|Q| 6= |W| ∨ ∃j ∈ {1, . . . , |Q|} . (Q[j][1],W[j]) 6∈ R ∧
∀(s, σ) ∈ Q, (t, τ) ∈ P . Verify(s, σ, κ) = 1 ∧ σ 6= τ] ≤ negl(κ)

where A(—; r) denotes running adversary A with an empty
input and coins r, where H is a transcript of the random
oracle’s input and output, and where oracles A′ and P are
defined below:
• A′(). Computes Q′ ← A(—; r), forwarding any of A’s

oracle queries to K, and outputs Q′. By running A(—; r),
K is rewinding the adversary.

• P(s). Computes σ ← S(s);P ← (P[1], . . . ,P[|P|],
(s, σ)) and outputs σ.

Algorithm K is an extractor for (Prove,Verify).

Theorem 13 (from [BPW12a]). Let Σ be a sigma protocol
for relation R, and let H be a random oracle. Suppose Σ
satisfies special soundness and special honest verifier zero-
knowledge. Non-interactive proof system FS(Σ,H) satisfies
zero-knowledge and simulation sound extractability.

The Fiat-Shamir transformation can be generalised to in-
clude an optional string in the hashes produced by functions
Prove and Verify. Simulators can be generalised to include an
optional string m too. We write S(s,m, κ) for invocations of
simulator S which include an optional string. Theorem 13 can
be extended to this generalisation.

The Fiat-Shamir transformation can be generalised to in-
clude an optional string m in the hashes produced by functions
Prove and Verify. We write Prove(s, w,m, κ) and Verify(s,

38. Random oracles can be programmed or patched. We will not need the
details of how patching works, so we omit them here; see Bernhard et
al. [BPW12a] for a formalisation.
39. We extend set membership notation to vectors: we write x ∈ x if x is

an element of the set {x[i] : 1 ≤ i ≤ |x|}.

12

(comm, resp),m, k) for invocations of Prove and Verify which
include an optional string. When m is provided, it is included
in the hashes in both algorithms. That is, given FS(Σ,H) =
(Prove,Verify), the hashes are computed as follows in both
algorithms: chal← H(comm, s,m). Simulators can be gener-
alised to include an optional string m too. We write S(s,m, κ)
for invocations of simulator S which include an optional
string. Theorem 13 can be extended to this generalisation.

APPENDIX B
PROOFS

A. Proof of Proposition 3

We present a construction (Definition 18) for encryp-
tion schemes (Lemma 14) which are clearly not secure
(Lemma 15). Nevertheless, the construction produces encryp-
tion schemes that are sufficient for ballot secrecy (Lemma 16).
The proof of Proposition 3 follows from Lemmata 14–16.

Definition 18. Given an asymmetric encryption scheme Π =
(Gen,Enc,Dec) and a constant symbol ω, let Leak(Π, ω) =
(Gen,Enc,Dec′), such that Dec′(sk , c) proceeds as follows: if
c = ω, then output sk , otherwise, compute m ← Dec(sk , c)
and output m.

Lemma 14. Given an asymmetric encryption scheme Π and
a constant symbol ω, such that Π’s ciphertext space does not
contain ω, we have Leak(Π, ω) is an asymmetric encryption
scheme.

Proof sketch. The proof follows immediately from correctness
of the underlying encryption scheme, because constant symbol
ω does not appear in the scheme’s ciphertext space.

Lemma 15. Given an asymmetric encryption scheme Π and
a constant symbol ω, such that Π’s ciphertext space does
not contain ω and Π’s message space is larger than one for
some security parameter, we have Leak(Π, ω) does not satisfy
IND-PA0.

Proof sketch. The proof is trivial: an adversary can output two
distinct messages and a vector containing constant symbol ω
during the first two adversary calls, learn the private key from
the parallel decryption, and use the key to recover the plaintext
from the challenge ciphertext, which allows the adversary to
win the game.

Lemma 16. Let Π = (Gen,Enc,Dec) be an asymmetric
encryption scheme and ω be a constant symbol. Suppose Π’s
ciphertext space does not contain ω and Π’s message space
is smaller than the private key. Further suppose Enc2Vote(Π)
satisfies Ballot-Secrecy. We have Enc2Vote(Leak(Π, ω)) sat-
isfies Ballot-Secrecy.

Proof. Let Enc2Vote(Π) = (Setup,Vote,Tally) and let
Enc2Vote(Leak(Π, ω)) = (Setup,Vote,Tally). By definition
of Enc2Vote and Leak, we have Setup = Setup and Vote =
Vote. Suppose m is Π’s message space. By definition of Leak,
we have m is Leak(Π, ω)’s message space too. Moreover, since
|m| is smaller than the private key, we have for all security

parameters κ, bulletin boards bb, and number of candidates
nc, that nc ≤ |m| implies

Pr[(pk , sk ,m)← Gen(κ); (v, pf)← Tally(sk , bb,nc, κ);

(v, pf)← Tally(sk , bb,nc, κ) : v = v ∧ pf = pf] = 1,

because Enc2Vote ensures that v is not influenced by de-
crypting ω (witness that decrypting ω outputs sk such
that sk > |m| ≥ nc) and pf is a constant sym-
bol. It follows for all adversaries A and security pa-
rameters κ that games Ballot-Secrecy(Enc2Vote(Π),A, κ)
and Ballot-Secrecy(Enc2Vote(Leak(Π, ω)),A, κ) are equiva-
lent, hence, we have Succ(Ballot-Secrecy(Enc2Vote(Π),A,
κ)) = Succ(Ballot-Secrecy(Enc2Vote(Leak(Π, ω)),A, κ)).
Moreover, since Enc2Vote(Π) satisfies Ballot-Secrecy, it
follows that Enc2Vote(Leak(Π, ω)) satisfies Ballot-Secrecy
too.

Proof of Proposition 3. Let Π be an asymmetric encryption
scheme and ω be a constant symbol. Suppose Π’s ciphertext
space does not contain ω. Further suppose Π’s message
space is larger than one for some security parameter, but
smaller than the private key. We have Enc2Vote(Leak(Π, ω))
is an asymmetric encryption scheme (Lemma 14) such that
Enc2Vote(Leak(Π, ω)) satisfies Ballot-Secrecy (Lemma 16),
but Leak(Π, ω) does not satisfy IND-PA0 (Lemma 15), con-
cluding our proof.

B. Proof of Theorem 4

For the if implication, suppose Γ does not satisfy
CNM-CVA, hence, there exists a probabilistic polynomial-time
adversary A, such that for all negligible functions negl, there
exists a security parameter κ and Succ(cnm-cva(Γ,A, κ))
− Succ(cnm-cva-$(Γ,A, κ)) > negl(κ). We construct an
adversary B against game IND-CVA from adversary A.

• B(pk , κ) computes (V,nc)← A(pk , κ); v, v′ ←R V and
outputs (v, v′,nc).

• B(b) computes (R, bb)← A(b) and outputs bb.
• B(v) outputs 0 if R(v, v) holds and 1 otherwise.

If the challenger selects β = 0 in IND-CVA(Γ,B,
κ), then adversary B simulates A’s challenger to A in
cnm-cva(Γ,A, κ) and B’s success (which requires R(v, v)
to hold) is Succ(cnm-cva(Γ,A, κ)). Otherwise (β = 1),
adversary B simulates A’s challenger to A in cnm-cva-$(
Γ,A, κ) and, since B will evaluate R(v, v), B’s success
(which requires R(v, v) not to hold) is 1 − Succ(cnm-cva-$(
Γ,A, κ)). It follows that Succ(IND-CVA(Γ,A, κ)) =
1/2 · (Succ(cnm-cva(Γ,A, κ)) + 1 − Succ(cnm-cva-$(Γ,A,
κ))) and, therefore, 2 · Succ(IND-CVA(Γ,A, κ)) − 1 =
Succ(cnm-cva(Γ,A, κ))−Succ(cnm-cva-$(Γ,A, κ)). Since Γ
does not satisfy CNM-CVA and a function that doubles the
output of a negligible function is a negligible function, we
have Succ(cnm-cva(Γ,A, κ)) − Succ(cnm-cva-$(Γ,A, κ)) >
2 · negl(κ). It follows that 2 · Succ(IND-CVA(Γ,A, κ))− 1 >
2 · negl(κ), hence, Succ(IND-CVA(Γ,A, κ)) > 1/2 + negl(κ),
concluding our proof.

13

For the only if implication, suppose Γ does not satisfy
IND-CVA, hence, there exists a probabilistic polynomial-
time adversary A, such that for all negligible functions negl,
there exists a security parameter κ and Succ(IND-CVA(Γ,A,
κ)) > 1/2 + negl(κ). We construct an adversary B against
CNM-CVA from adversary A.
• B(pk , κ) computes (v0, v1,nc) ← A(pk , κ) and outputs

({v0, v1},nc).
• B(b) computes bb ← A(b), picks coins r uniformly at

random, derives a relation R such that R(v, v) holds if
there exists a bit g such that v = vg ∧ g = A(v; r) and
fails otherwise, and outputs (R, bb).

Adversary B simulatesA’s challenger toA in game IND-CVA(
Γ,A, κ). Indeed, the challenge ballot is equivalently computed.
As is the election outcome. The computation A(v; r) is not
black-box, but this does not matter: it is still invoked exactly
one time in the game. Let use consider adversary B’s success
in cnm-cva(Γ,B, κ) and cnm-cva-$(Γ,B, κ).
• Game cnm-cva(Γ,B, κ) samples a single vote v from V .

By inspection of cnm-cva(Γ,B, κ) and IND-CVA(Γ,A,
κ), we have Succ(cnm-cva(Γ,B, κ)) = Succ(IND-CVA(
Γ,A, κ)), hence, Succ(cnm-cva(Γ,B, κ)) − 1/2 >
negl(κ).

• Game cnm-cva-$(Γ,B, κ) samples votes v and v′ from
V . Vote v is independent of A’s perspective, indeed,
an equivalent formulation of cnm-cva-$(Γ,B, κ) could
sample v after A has terminated and immediately be-
fore evaluating the adversary’s relation. By inspection
of cnm-cva-$(Γ,B, κ) and IND-CVA(Γ,A, κ), we have
Succ(cnm-cva-$(Γ,B, κ)) = 1/2 · Succ(IND-CVA(Γ,A,
κ)) + 1/2 · (1− Succ(IND-CVA(Γ,A, κ))) = 1/2.

It follows that Succ(cnm-cva(Γ,B, κ)) − Succ(cnm-cva-$(Γ,
B, κ)) > negl(κ).

C. Proof of Theorem 7
Suppose Γ does not satisfy ballot independence, hence,

there exists a probabilistic polynomial-time adversary A, such
that for all negligible functions negl, there exists a security
parameter κ and Succ(IND-CVA(Γ,A, κ)) > 1/2 + negl(κ).
We construct a ballot secrecy adversary B from the ballot
independence adversary A.
• B(pk , κ) computes (v0, v1,nc) ← A(pk , κ) and outputs

nc.
• B() computes b ← O(v0, v1); bb ← A(b) and outputs

bb.
• B(v, pf) computes g ← A(v) and outputs g.

Adversary B simulates A’s challenger to A. Indeed, the chal-
lenge ballot and election outcome are equivalently computed.
Moreover, the challenge ballot does not appear on the bulletin
board, hence, the bulletin board is balanced. It follows that
Succ(IND-CVA(Γ,A, κ)) = Succ(Ballot-Secrecy(Γ,B, κ)),
hence, Succ(Ballot-Secrecy(Γ,B, κ)) > 1/2 + negl(κ), con-
cluding our proof.

D. Proof of Proposition 9
In essence, the proof follows from Theorem 10. Albeit,

formally, a few extra steps are required. In particular, the

definition of an election scheme with zero-knowledge proofs
demands that tallying proofs must be constructed by a
zero-knowledge non-interactive proof system, but an election
scheme without tallying proofs need not construct proofs with
such a system. Thus, we must introduce an election scheme
with zero-knowledge proofs and prove that it is equivalent to
the election scheme without proofs. This is trivial, so we do
not pursue the details.

E. Proof of Theorem 10

Let BS-0, respectively BS-1, be the game derived from
Ballot-Secrecy by replacing β ←R {0, 1} with β ← 0,
respectively β ← 1. These games are trivially related to
Ballot-Secrecy, namely, Succ(Ballot-Secrecy(Γ,A, κ)) = 1

2 ·
Succ(BS-0(Γ,A, κ)) + 1

2 ·Succ(BS-1(Γ,A, κ)). Moreover, let
BS-1:0 be the game derived from BS-1 by replacing g = β
with g = 0. We relate game BS-1:0 to BS-1, and games
BS-0 and BS-1:0 to the hybrid games G0,G1, . . . introduced
in Definition 19. We prove Theorem 10 using these relations.

Lemma 17. Given an adversary A that wins game
Ballot-Secrecy against election scheme Γ, we have
Succ(BS-1(Γ,A, κ)) = 1 − Succ(BS-1:0(Γ,A, κ)) for
all security parameters κ.

Definition 19. Let Γ = (Setup,Vote,Tally) be an election
scheme with zero-knowledge tallying proofs, A be an ad-
versary, and κ be a security parameter. Moreover, let S be
the simulator for the zero-knowledge non-interactive proof
system used by algorithm Tally to construct tallying proofs.
We introduce games G0,G1, . . . , defined as follows.

Gj(Γ,A, κ) =

(pk , sk ,mb,mc)← Setup(κ);
nc ← A(pk , κ);
L← ∅;
bb← AO();
(v, pf)← Tally(sk , bb \ {b | (b, v0, v1) ∈ L},nc, κ);

for b ∈ bb ∧ (b, v0, v1) ∈ L do
v[v0]← v[v0] + 1;

pf ← S((pk ,nc, bb, v), κ);
g ← A(v, pf);
return g = 0 ∧ balanced(bb,nc, L) ∧ 1 ≤ nc ≤ mc ∧
|bb| ≤ mb;

Oracle O is defined such that O(v0, v1) computes, on inputs
v0, v1 ∈ {1, ...,nc}, the following:

if |L| < j then
b← Vote(pk , v1,nc, κ);

else
b← Vote(pk , v0,nc, κ);

L← L ∪ {(b, v0, v1)};
return b;

Games G0,G1, . . . are distinguished from games BS-0 and
BS-1:0 by their left-right oracles and tallying procedures. In
particular, the first j left-right oracle queries in Gj com-
pute ballots for the oracle’s “left” input and any remaining
queries compute ballots for the oracle’s “right” input, whereas

14

the left-right oracle in BS-0, respectively BS-1:0, always
computes ballots for the oracle’s “left,” respectively “right,”
input. Moreover, the tallying procedure in Gj computes the
outcome by tallying the ballots on the bulletin board that were
constructed by the adversary and by simulating the tallying of
any remaining ballots (i.e., ballots constructed by the oracle).
And the tallying proof is simulated in Gj . By comparison, the
outcome and tallying proof are computing by tallying all the
ballots on the bulletin board in both BS-0 and BS-1:0.

Lemma 18. Let Γ be an election scheme, A be
an adversary, and κ be a security parameter. If Γ
satisfies HB-Tally-Soundness, then Succ(BS-0(Γ,A,
κ)) = Succ(G0(Γ,A, κ)) and Succ(BS-1:0(Γ,A,
κ)) = Succ(Gq(Γ,A, κ)), where q is an upper-bound
on A’s left-right oracle queries.

Proof. The challengers in games BS-0 and G0, respectively
BS-1:0 and Gq , both construct public keys using the same
algorithm and provide those keys, along with the security
parameter, as input to the first adversary call, thus, these inputs
and corresponding outputs are equivalent.

Left-right oracles queries O(v0, v1) in games BS-0 and
G0 output ballots for vote v0, hence, the bulletin boards are
equivalent in both games. The bulletin boards in BS-1:0 and
Gq are similarly equivalent, in particular, left-right oracles
queries O(v0, v1) in both games output ballots for vote v1,
because q is an upper-bound on the left-right oracle queries,
therefore, |L| < q in Gq . Thus, the bulletin board output
by the second adversary call is equivalent in BS-0 and G0,
respectively BS-1:0 and Gq .

It follows that 1 ≤ nc ≤ mc ∧ |bb| ≤ mb in BS-0 iff
1 ≤ nc ≤ mc∧|bb| ≤ mb in G0, and similarly for BS-1:0 and
Gq . Moreover, predicate balanced is satisfied in BS-0 iff it is
satisfied in G0, and similarly for BS-1:0 and Gq . Hence, if 1 ≤
nc ≤ mc ∧ |bb| ≤ mb is not satisfied or predicate balanced is
not satisfied, then Succ(BS-0(Γ,A, κ)) = Succ(G0(Γ,A, κ))
and Succ(BS-1:0(Γ,A, κ)) = Succ(Gq(Γ,A, κ)), concluding
our proof. Otherwise, it suffices to show that the outcome
and tallying proof are equivalently computed in BS-0 and G0,
respectively BS-1:0 and Gq , since this ensures the inputs to
the third adversary call are equivalent, thus the corresponding
outputs are equivalent too, which suffices to conclude.

In BS-0, respectively BS-1:0, the outcome is computed by
tallying the bulletin board. By comparison, in G0, respectively
Gq , the outcome is computed by tallying the ballots on
the bulletin board that were constructed by the adversary
(i.e., ballots in bb \ {b | (b, v0, v1) ∈ L}, where bb is the
bulletin board and L is the set constructed by the oracle),
and by simulating the tallying of any remaining ballots
(i.e., ballots constructed by the oracle, namely, ballots in
bb ∩ {b | (b, v0, v1) ∈ L}). Suppose (pk , sk ,mb,mc) is an
output of Setup(κ) and nc is an integer such that nc ≤ mc.
Since Γ satisfies HB-Tally-Soundness, computing v as

(v, pf)← Tally(sk , bb,nc, κ);

is equivalent to computing v as

(v, pf)← Tally(sk , bb \ {b | (b, v0, v1) ∈ L},nc, κ);
(v′, pf ′)← Tally(sk , bb ∩ {b | (b, v0, v1) ∈ L},nc, κ);
v← v + v′;

and as

(v, pf)← Tally(sk , bb \ {b | (b, v0, v1) ∈ L},nc, κ);
for b ∈ bb ∧ (b, v0, v1) ∈ L do

(v′, pf ′)← Tally(sk , {b},nc, κ);
v← v + v′;

Thus, to prove the outcome is computed equivalently in BS-0
and G0, respectively BS-1:0 and Gq , it suffices to prove
that the simulations are valid, i.e., computing the above is
equivalent to computing

(v, pf)← Tally(sk , bb \ {b | (b, v0, v1) ∈ L},nc, κ);
for b ∈ bb ∧ (b, v0, v1) ∈ L do

v[v0]← v[v0] + 1;

In G0, respectively Gq , we have for all (b, v0, v1) ∈ L
that b is an output of Vote(pk , v0,nc, κ), respectively
Vote(pk , v1,nc, κ), such that v0, v1 ∈ {1, ...,nc}. Moreover,
by correctness of Γ, we have Tally(sk , {b},nc, κ) outputs
(v′, pf ′) such that v′ is a zero-filled vector, except for index
v0, respectively v1, which contains one. Hence, the simulation
is valid in G0. Furthermore, since predicate balanced holds in
Gq , we have for all v ∈ {1, . . . ,nc} that |{b | b ∈ bb ∧ ∃v1 .
(b, v, v1) ∈ L}| = |{b | b ∈ bb∧∃v0 . (b, v0, v) ∈ L}|. Hence,
in Gq , computing

for b ∈ bb ∧ (b, v0, v1) ∈ L do v[v0]← v[v0] + 1

is equivalent to computing

for b ∈ bb ∧ (b, v0, v1) ∈ L do v[v1]← v[v1] + 1

Thus, the simulation is valid in Gq too.
In BS-0, respectively BS-1:0, the tallying proof is com-

puted by tallying the bulletin board. By comparison, in G0,
respectively Gq , the tallying proof is computed by simulator
S. Since Γ has zero-knowledge tallying proofs, there exists
a non-interactive proof system (Prove,Verify) such that for
all (v, pf) output by Tally(sk , bb,nc, κ), we have pf =
Prove((pk , bb,nc, v), sk , κ; r), such that coins r are chosen
uniformly at random by Tally. Moreover, since S is a simulator
for (Prove,Verify), proofs output by Prove((pk ,nc, bb, v), w
, κ) are indistinguishable from outputs of S((pk ,nc, bb, v),
κ). Thus, tallying proofs are equivalently computed in BS-0
and G0, respectively BS-1:0 and Gq , thereby concluding our
proof.

Proof of Theorem 10. By Theorem 7, it suffices to prove that
ballot independence implies ballot secrecy. Suppose Γ does
not satisfy ballot secrecy, hence, there exists a probabilistic
polynomial-time adversary A, such that for all negligible
functions negl, there exists a security parameter κ and

1

2
+ negl(κ) < Succ(Ballot-Secrecy(Γ,A, κ))

15

By definition of BS-0 and BS-1, we have

=
1

2
· (Succ(BS-0(Γ,A, κ)) + Succ(BS-1(Γ,A, κ)))

And, by Lemma 17, we have

=
1

2
· (Succ(BS-0(Γ,A, κ)) + 1− Succ(BS-1:0(Γ,A, κ)))

=
1

2
+

1

2
· (Succ(BS-0(Γ,A, κ))− Succ(BS-1:0(Γ,A, κ)))

Let q be an upper-bound on A’s left-right oracle queries.
Hence, by Lemma 18, we have

=
1

2
+

1

2
· (Succ(G0(Γ,A, κ))− Succ(Gq(Γ,A, κ)))

which can be rewritten as the telescoping series

=
1

2
+

1

2
·
∑

1≤j≤q

Succ(Gj−1(Γ,A, κ))− Succ(Gj(Γ,A, κ))

Let j ∈ {1, . . . , q} be such that Succ(Gj−1(Γ,A, κ)) −
Succ(Gj(Γ,A, κ)) is the largest term in that series. Hence,

≤ 1

2
+

1

2
· q · (Succ(Gj−1(Γ,A, κ))− Succ(Gj(Γ,A, κ)))

Thus,

1

2
+

1

q
· negl(κ)

≤ 1

2
+

1

2
· (Succ(Gj−1(Γ,A, κ))− Succ(Gj(Γ,A, κ)))

From A, we construct an adversary B against IND-CVA
whose success is at least 1

2 + 1
2 · (Succ(Gj−1(Γ,A, κ)) −

Succ(Gj(Γ,A, κ))).
Let Γ = (Setup,Vote,Tally). Since Γ has zero-knowledge

tallying proofs, tallying proofs output by Tally are constructed
by a zero-knowledge non-interactive proof system. Let algo-
rithm S be the simulator for that proof system. We define B
as follows.
• B(pk , κ) computes nc ← A(pk , κ);L ← ∅ and runs
AO(), handling A’s oracle queries O(v0, v1) as follows:
if |L| < j, then compute b ← Vote(pk , v1,nc, κ);
L← L∪ {b, v0, v1} and return b to A, otherwise, assign
vc0 ← v0; vc1 ← v1, and output (v0, v1,nc).

• B(b) assigns L ← L ∪ {(b, vc0, vc1)}; returns b to A and
handles any further oracle queries O(v0, v1) as follows,
namely, compute b ← Vote(pk , v0,nc, κ);L ← L ∪
{(b, v0, v1)} and return b to A; assigns A’s output to
bb; and outputs bb \ {b | (b, v0, v1) ∈ L}.

• B(v) computes for b ∈ bb ∧ (b, v0, v1) ∈ L do v[v0]←
v[v0] + 1, and pf ← S((pk ,nc, bb, v), κ); g ← A(v, pf),
and outputs g.

We prove that B wins IND-CVA.
Suppose (pk , sk ,mb,mc) is an output of Setup(κ). Further

suppose we run B(pk , κ). It is straightforward to see that B
simulates the challenger and oracle in both Gj−1 and Gj to A.
In particular, B simulates query O(v0, v1) by computing b←
Vote(pk , v1,nc, κ) for the first j− 1 queries. Since Gj−1 and

Gj are equivalent to adversaries that make fewer than j left-
right oracle queries, adversary A must make at least j queries
to ensure Succ(Gj−1(Γ,A, κ)) − Succ(Gj(Γ,A, κ)) is non-
negligible. Hence, B(pk , κ) terminates with non-negligible
probability. Suppose adversary B terminates by outputting
(v0, v1,nc), where v0, v1 correspond to the inputs of the
jth oracle query by A. Further suppose b is an output of
Vote(pk , vβ ,nc, κ), where β is a bit. If β = 0, then B(b)
simulates the oracle in Gj−1 to A, otherwise, B(b) simulates
the oracle in Gj to A. In particular, B(b) responds to the
jth oracle query with ballot b for vβ , thus simulating the
challenger in Gj−1 when β = 0, respectively Gj when β = 1.
And B(b) responds to any further oracle queries O(v0, v1)
with ballots for v0. Suppose bb is an output of A, thus B(b)
outputs bb \ {b | (b, v0, v1) ∈ L}. Further suppose (v, pf) is
an output of Tally(sk , bb \ {b | (b, v0, v1) ∈ L},nc, κ) and g
is an output of B(v). It is trivial to see that B(v) simulates
A’s challenger. Thus, either

1) β = 0 and B simulates Gj−1 to A, thus, g = β with at
least the probability that A wins Gj−1; or

2) β = 1 and B simulates Gi to A, thus, g 6= 0 with at
least the probability that B looses Gi and, since A wins
game Ballot-Secrecy, we have g is a bit, hence, g = β.

It follows that the success of adversary B is at least 1
2 ·

Succ(Gj−1(Γ,A, κ)) + 1
2 · (1 − Succ(Gj(Γ,A, κ))), thus we

conclude our proof.

APPENDIX C
UNIVERSAL VERIFIABILITY IMPLIES HB-Tally-Soundness

We extend our syntax for election schemes (Definition 1)
to include a probabilistic polynomial-time algorithm Verify:
• Verify, denoted s ← Verify(pk , bb,nc, v, pf , κ), is run

to audit an election. It takes as input a public key pk ,
some number of candidates nc, a bulletin board bb, an
election outcome v, a proof pf , and a security parameter
κ. It outputs a bit s, which is 1 if the election verifies
successfully or 0 otherwise.

We previously omitted algorithm Verify, because we did not
consider verifiability in the main body.

For universal verifiability, anyone must be able to check
whether the election outcome represents the votes used to con-
struct ballots on the bulletin board. And the formal definition
of universal verifiability by Smyth, Frink & Clarkson [SFC17]
requires algorithm Verify to accept if and only if the election
outcome is correct.

The notion of a correct election outcome is captured us-
ing function correct-outcome, which is defined such that
for all pk , nc, bb, κ, `, and v ∈ {1, . . . ,nc}, we have
correct-outcome(pk ,nc, bb, κ)[v] = ` iff ∃=`b ∈ bb \ {⊥} :
∃r : b = Vote(pk , v,nc, κ; r),40 and the vector produced
by correct-outcome is of length nc. Hence, component v of
vector correct-outcome(pk ,nc, bb, κ) equals ` iff there exist
` ballots on the bulletin board that are votes for candidate v.

40. Function correct-outcome uses a counting quantifier [Sch05] denoted
∃=. Predicate (∃=`x : P (x)) holds exactly when there are ` distinct values
for x such that P (x) is satisfied. Variable x is bound by the quantifier, whereas
` is free.

16

The function requires ballots to be interpreted for only one
candidate, which can be ensured by injectivity.

Definition 20 (Injectivity [SFC17]). An election scheme
(Setup,Vote,Tally,Verify) satisfies injectivity, if for all se-
curity parameters κ, integers nc, and votes v and v′, such
that v 6= v′, we have Pr[(pk , sk ,mb,mc) ← Setup(κ); b ←
Vote(pk , v,nc, κ); b′ ← Vote(pk , v′,nc, κ) : b 6= ⊥ ∧ b′ 6=
⊥ ⇒ b 6= b′] = 1.

The if requirement of universal verifiability is captured by
completeness (Definition 21), which stipulates that election
outcomes produced by algorithm Tally will actually be ac-
cepted by algorithm Verify. And the only if requirement is
captured by soundness (Definition 22), which challenges an
adversary to concoct a scenario in which algorithm Verify
accepts, but the election outcome is not correct. We take
these definitions together to formulate universal verifiability
(Definition 23).

Definition 21 (Completeness [SFC17]). An election scheme
(Setup,Vote,Tally,Verify) satisfies completeness, if there ex-
ists a negligible function negl, such that for all security
parameters κ, bulletin boards bb, and integers nc, we have
Pr[(pk , sk ,mb,mc) ← Setup(κ); (v, pf) ← Tally(sk , bb,nc,
κ) : |bb| ≤ mb ∧ nc ≤ mc ⇒ Verify(pk , bb,nc, v, pf , κ) =
1] > 1− negl(κ).

Definition 22 (Soundness [SFC17]). Let Γ = (Setup,
Vote,Tally,Verify) be an election scheme satisfying injec-
tivity, A be an adversary, κ be a security parameter, and
game Exp-UV-Ext(Γ,A, κ) = (pk ,nc, bb, v, pf) ← A(κ);
return v 6= correct-outcome(pk ,nc, bb, κ) ∧ Verify(pk , bb,
nc, v, pf , κ) = 1. We say Γ satisfies soundness, if for all
probabilistic polynomial-time adversaries A, there exists a
negligible function negl, such that for all security parameters
κ, we have Succ(Exp-UV-Ext(Γ,A, κ)) ≤ negl(κ).

Definition 23 (UV [SFC17]). An election scheme Γ satisfies
universal verifiability (UV), if completeness, injectivity and
soundness are satisfied.

We show that universally verifiable election schemes sat-
isfy HB-Tally-Soundness (Proposition 20). This is useful to
simplify applications of Theorem 10. Indeed, our proof that
Helios’16 satisfies Ballot-Secrecy makes use of this result.

Lemma 19. Given an election scheme (Setup,Vote,Tally),
there exists a negligible function negl, such that for all security
parameters κ, integers nc, and votes v ∈ {1, . . . ,nc}, we have
Pr[(pk , sk ,mb,mc) ← Setup(κ); b ← Vote(pk , v,nc, κ) :
1 ≤ mb ∧ nc ≤ mc ⇒ b 6= ⊥] > 1− negl(κ).

Proof. Suppose κ is a security parameter and nc and v
are integers, such that v ∈ {1, . . . ,nc}. Further sup-
pose (pk , sk ,mb,mc) is an output of Setup(κ), b is an
output of Vote(pk , v,nc, κ), and (v, pf) is an output of
Tally(sk , {b},nc, κ), such that 1 ≤ mb∧nc ≤ mc. By correct-
ness, we have v is a zero-filled vector of length nc, except for
index v which contains integer 1, with overwhelming probabil-
ity. Given that Tally(sk , {b},nc, κ) and Tally(sk , {b, b},nc, κ)
input the same set {b}, correctness ensures the probability of

Vote(pk , v,nc, κ) outputting two identical ballots is upper-
bounded by a negligible function. It follows that the proba-
bility of Vote(pk , v,nc, κ) outputting error symbol ⊥ twice
is upper-bounded by a negligible function too. Moreover,
the probability of Vote(pk , v,nc, κ) outputting error symbol
⊥ is also upper-bounded by a negligible function, thereby
concluding our proof.

Proposition 20 (UV ⇒ HB-Tally-Soundness). If election
scheme Γ satisfies UV, then Γ satisfies HB-Tally-Soundness.

Proof. Let Γ = (Setup,Vote,Tally,Verify). Suppose Γ does
not satisfy HB-Tally-Soundness, hence, there exists a proba-
bilistic polynomial-time adversary A, such that for all negli-
gible functions negl, there exists a security parameter κ and
negl(κ) < Succ(HB-Tally-Soundness(Γ,A, κ)). We construct
an adversary B against UV from A. We define B as follows.

B(κ) =

(pk , sk ,mb,mc)← Setup(κ);
(v,nc, bb0)← A(pk , κ);
(v0, pf 0)← Tally(sk , bb0,nc, κ);
β ←R {0, 1};
if β = 1 then

b← Vote(pk , v,nc, κ);
bb1 ← bb ∪ {b};
(v1, pf 1)← Tally(sk , bb1,nc, κ);

return (pk ,nc, bbβ , vβ , pf β);

We prove that B wins UV with non-negligible probability.
Suppose (pk , sk ,mb,mc) is an output of Setup(κ), (v,nc,

bb0) is an output of A(pk , κ), b is an output of Vote(pk , v,
nc, κ), (v0, pf 0) is an output of Tally(sk , bb0,nc, κ), and (v1,
pf 1) is an output of Tally(sk , bb1,nc, κ), where bb1 = bb0 ∪
{b}. Let v∗ ← (v0[1], . . . , v0[v − 1], v0[v] + 1, v0[v + 1], . . . ,
v0[|v0|]). Since A is a winning adversary, we have v∗ 6= v1 ∧
b 6∈ bb0 ∧ 1 ≤ v ≤ nc ≤ mc ∧ |bb0 ∪ {b}| ≤ mb, with
probability greater than negl(κ).

Suppose β is a bit chosen uniformly at random. By com-
pleteness, we have Verify(pk , bbβ ,nc, vβ , pf β , κ) = 1, with
overwhelming probability. Hence, it suffices to prove that
vβ 6= correct-outcome(pk ,nc, bbβ , κ), with non-negligible
probability. Let δ0, respectively δ1, be the probability that
v0 6= correct-outcome(pk ,nc, bb0, κ), respectively v1 6=
correct-outcome(pk ,nc, bb1, κ). It follows that Succ(UV(Γ,
B, κ)) = 1

2 ·δ0+ 1
2 ·δ1 and it remains to show that δ0+δ1 is non-

negligible. It suffices to prove that v0 = correct-outcome(pk ,
nc, bb0, κ) ∧ v1 = correct-outcome(pk ,nc, bb1, κ) is false
with overwhelming probability.

Suppose v0 = correct-outcome(pk ,nc, bb0, κ). By defini-
tion of function correct-outcome, we have ∃=v0[v]b′ ∈ bb0 \
{⊥} : ∃r : b′ = Vote(pk , v,nc, κ; r). Since 1 ≤ |bb0 ∪{b}| ≤
mb, we have b 6= ⊥ by Lemma 19, with overwhelming
probability. Given that b is an output of Vote(pk , v,nc, κ),
b 6∈ bb0, and v∗[v] = v0[v] + 1, it follows that ∃=v∗[v]b′ ∈
bb0 ∪ {b} \ {⊥} : ∃r : b′ = Vote(pk , v,nc, κ; r). Moreover,
by injectivity, b is not an output of Vote(pk , v′,nc, κ) for all
v′ ∈ {1, . . . , |v∗|} \ {v}. Thus, for all v′ ∈ {1, . . . , |v∗|} \ {v}
we have ∃=v∗[v′]b′ ∈ bb0 ∪ {b} \ {⊥} : ∃r : b′ =

17

Vote(pk , v′,nc, κ; r). Given that bb1 = bb0 ∪ {b}, we have
v∗ = correct-outcome(pk ,nc, bb1, κ). Moreover, given that
v∗ 6= v1, we have v1 6= correct-outcome(pk ,nc, bb1, κ)
with overwhelming probability, which suffices to conclude our
proof.

APPENDIX D
HELIOS

Smyth, Frink & Clarkson [SFC17] formalise a generic
construction for Helios-like election schemes (Definition 25),
which is parameterised on the choice of homomorphic encryp-
tion scheme and sigma protocols for the relations introduced
in the following definition.

Definition 24 (from [SFC17]). Let (Gen,Enc,Dec) be a
homomorphic asymmetric encryption scheme and Σ be a
sigma protocol for a binary relation R.41

• Σ proves correct key construction if a ((κ, pk ,m), (sk ,
s)) ∈ R⇔ (pk , sk ,m) = Gen(κ; s).

Further, suppose that (pk , sk ,m) is the output of Gen(κ; s),
for some security parameter κ and coins s.
• Σ proves plaintext knowledge in a subspace if ((pk , c,

m′), (m, r)) ∈ R⇔ c = Enc(pk ,m; r)∧m ∈ m′ ∧m′ ⊆
m.

• Σ proves correct decryption if ((pk , c,m), sk) ∈ R ⇔
m = Dec(sk , c).

Definition 25 (Generalised Helios [SFC17]). Suppose Π =
(Gen,Enc,Dec) is an additively homomorphic asymmetric
encryption scheme with a message space that, for suffi-
ciently large security parameters, includes {0, 1}, Σ1 proves
correct key construction, Σ2 proves plaintext knowledge
in a subspace, Σ3 proves correct decryption, and H is
a hash function. Let FS(Σ1,H) = (ProveKey,VerKey),
FS(Σ2,H) = (ProveCiph,VerCiph), and FS(Σ3,H) =
(ProveDec,VerDec). We define election scheme generalised
Helios, denoted Helios(Π,Σ1,Σ2,Σ3,H) = (Setup,Vote,
Tally,Verify), as follows.42

• Setup(κ). Select coins s uniformly at random, compute
(pk , sk ,m) ← Gen(κ; s); ρ ← ProveKey((κ, pk ,m), (sk ,
s), κ);PK T ← (pk ,m, ρ);SK T ← (pk , sk), let m be
the largest integer such that {0, . . . ,m} ⊆ m, and output
(PK T ,SK T ,m,m).

• Vote(PK T , v,nc, κ). Parse PK T as a vector (pk ,m, ρ).
Output ⊥ if parsing fails or VerKey((κ, pk ,m),
ρ, κ) 6= 1 ∨ v 6∈ {1, . . . ,nc}. Select coins r1, . . . , rnc−1

uniformly at random and compute:

for 1 ≤ j ≤ nc − 1 do
if j = v then mj ← 1; else mj ← 0;
cj ← Enc(pk ,mj ; rj);
σj ← ProveCiph((pk , cj , {0, 1}), (mj , rj), j, κ);

c← c1 ⊗ · · · ⊗ cnc−1;
m← m1 � · · · �mnc−1;
r ← r1 ⊕ · · · ⊕ rnc−1;
σnc ← ProveCiph((pk , c, {0, 1}), (m, r),nc, κ);

Output ballot (c1, . . . , cnc−1, σ1, . . . , σnc).

• Tally(SK T , bb,nc, κ). Initialise vectors v of length nc
and pf of length nc − 1. Compute for 1 ≤ j ≤ nc do
v[j]← 0. Parse SK T as a vector (pk , sk). Output (v, pf)
if parsing fails. Let {b1, . . . , b`} be the largest subset of
bb such that b1 < · · · < b` and for all 1 ≤ i ≤ ` we have
bi is a vector of length 2·nc−1 and

∧nc−1
j=1 VerCiph((pk ,

bi[j], {0, 1}), bi[j + nc − 1], j, κ) = 1 ∧ VerCiph((pk ,
bi[1]⊗ · · · ⊗ bi[nc − 1], {0, 1}), bi[2 · nc − 1],nc, κ) = 1.
If {b1, . . . , b`} = ∅, then output (v, pf), otherwise,
compute:

for 1 ≤ j ≤ nc − 1 do
c← b1[j]⊗ · · · ⊗ b`[j];
v[j]← Dec(sk , c);
pf [j]← ProveDec((pk , c, v[j]), sk , κ);

v[nc]← `−
∑nc−1
j=1 v[j];

Output (v, pf).
• Verify(PK T , bb,nc, v, pf , κ). Parse v as a vector of

length nc, parse pf as a vector of length nc − 1, parse
PK T as a vector (pk ,m, ρ). Output 0 if parsing fails
or VerKey((κ, pk ,m), ρ, κ) 6= 1. Let {b1, . . . , b`} be the
largest subset of bb satisfying the conditions given by the
tally algorithm and let mb be the largest integer such that
{0, . . . ,mb} ⊆ m. If {b1, . . . , b`} = ∅∧

∧nc
j=1 v[j] = 0 or∧nc−1

j=1 VerDec((pk , b1[j] ⊗ · · · ⊗ b`[j], v[j]), pf [j], κ) =

1 ∧ v[nc] = ` −
∑nc−1
j=1 v[j] ∧ 1 ≤ ` ≤ mb, then output

1, otherwise, output 0.
The above algorithms assume nc > 1. Smyth, Frink &
Clarkson define special cases of Vote, Tally and Verify when
nc = 1. We omit those cases for brevity and, henceforth,
assume nc is always greater than one.

Instantiations of generalised Helios work as follows [SFC17].
• Setup generates the tallier’s key pair. The public key

includes a non-interactive proof demonstrating that the
key pair is correctly constructed.

• Vote takes a vote v ∈ {1, . . . ,nc} and outputs ciphertexts
c1, . . . , cnc−1 such that if v < nc, then ciphertext cv
contains plaintext 1 and the remaining ciphertexts contain
plaintext 0, otherwise, all ciphertexts contain plaintext 0.
Vote also outputs proofs σ1, ..., σnc so that this can be
verified. In particular, proof σj demonstrates ciphertext
cj contains 0 or 1, for all 1 ≤ j ≤ nc − 1. And proof
σnc demonstrates that the homomorphic combination of
ciphertexts c1 ⊗ · · · ⊗ cnc−1 contains 0 or 1. (It follows
that the voter’s ballot contains a vote for exactly one
candidate.)

• Tally homomorphically combines ciphertexts represent-
ing votes for a particular candidate and decrypts the
homomorphic combinations. The number of votes for a
candidate v ∈ {1, . . . ,nc−1} is simply the homomorphic
combination of ciphertexts representing votes for that

41. Given a binary relation R, we write ((s1, . . . , sl), (w1, . . . , wk)) ∈
R⇔ P (s1, . . . , sl, w1, . . . , wk) for (s, w) ∈ R⇔ P (s1, . . . , sl, w1, . . . ,
wk)∧ s = (s1, . . . , sl)∧w = (w1, . . . , wk), hence, R is only defined over
pairs of vectors of lengths l and k.
42. We omit algorithm Verify for brevity.

18

candidate. The number of votes for candidate nc is equal
to the number of votes for all other candidates subtracted
from the total number of valid ballots on the bulletin
board.

• Verify checks that each of the above steps has been
performed correctly.

The generic construction can be instantiated to derive He-
lios’16.

Definition 26 (Helios’16 [SFC17]). Election scheme He-
lios’16 is Helios(Π,Σ1,Σ2,Σ3,H), where Π is additively
homomorphic El Gamal [CGS97, §2], Σ1 is the sigma protocol
for proving knowledge of discrete logarithms by Chaum et
al. [CEGP87, Protocol 2], Σ2 is the sigma protocol for proving
knowledge of disjunctive equality between discrete logarithms
by Cramer et al. [CFSY96, Figure 1], Σ3 is the sigma protocol
for proving knowledge of equality between discrete logarithms
by Chaum & Pedersen [CP93, §3.2], and H is a random
oracle.

Although Helios actually uses SHA-256 [NIS12], we assume
that H is a random oracle to prove Theorem 12. Moreover,
we assume the sigma protocols used by Helios’16 satisfy
the preconditions of generalised Helios, that is, [CEGP87,
Protocol 2] is a sigma protocol for proving correct key
construction, [CFSY96, Figure 1] is a sigma protocol for
proving plaintext knowledge in a subspace, and [CP93, §3.2]
is a sigma protocol for proving decryption. We leave formally
proving this assumption as future work.

APPENDIX E
HELIOS SATISFIES BALLOT SECRECY

The construction for Helios-like schemes produces election
schemes with zero-knowledge tallying proofs (Lemma 21)
that satisfy universal verifiability [SFC17] and, thus, honest-
ballot tally soundness (Proposition 20). They also satisfy ballot
independence (Proposition 22). Hence, they satisfy ballot
secrecy too (Theorem 10). We show that Helios’16 satisfies
ballot secrecy.

Henceforth, we assume Π, Σ1, Σ2 and Σ3 satisfy the
preconditions of Definition 25, and H is a random oracle. Let
Helios(Π,Σ1,Σ2,Σ3,H) = (Setup,Vote,Tally,Verify) and
Π = (Gen,Enc,Dec). Moreover, let FS(Σ1,H) = (ProveKey,
VerKey), FS(Σ2,H) = (ProveCiph,VerCiph), and FS(Σ3,
H) = (ProveDec,VerDec).

Lemma 21. If (ProveDec,VerDec) is zero-knowledge, then
Helios(Π,Σ1,Σ2,Σ3,H) has zero-knowledge tallying proofs.

Proof sketch. Suppose A is an adversary and κ is a security
parameter. Further suppose (pk , sk ,mb,mc) is an output of
Setup(κ), (nc, bb) is an output of A(pk , κ), and (v, pf) is an
output of Tally(sk , bb,nc, κ), such that |bb| ≤ mb∧nc ≤ mc.
By inspection of algorithm Tally, tallying proof pf is a
vector of proofs produced by ProveDec. Thus, there trivially
exists a non-interactive proof system that could construct
pf , moreover, that proof system is zero-knowledge because
(ProveDec,VerDec) is zero-knowledge, which concludes our
proof.

Proposition 22. Suppose Π is perfectly correct and sat-
isfies IND-CPA. Further suppose (ProveKey,VerKey) and
(ProveCiph,VerCiph) satisfy special soundness and special
honest verifier zero-knowledge. We have Helios(Π,Σ1,Σ2,Σ3,
H) satisfies IND-CVA.

Proof. By Theorem 13, the proof systems have extrac-
tors and simulators. Let SimProveKey be the simulator for
(ProveKey,VerKey). And let ExtProveCiph be the extractor
for (ProveCiph,VerCiph).

Let IND-CPA∗ be a variant of IND-CPA in which: 1) the
adversary outputs two vectors of messages m0 and m1 such
that |m0| = |m1| and for all 1 ≤ i ≤ |m0| we have
|m0[i]| = |m1[i]| and m0[i] and m1[i] are from the encryp-
tion scheme’s message space, and 2) the challenger computes
c1 ← Enc(pk ,mβ [1]); . . . ; c|mβ | ← Enc(pk ,mβ [|mβ |]) and
inputs c1, . . . , c|mβ | to the adversary. We have Π satisfies
IND-CPA∗ [KL07, §10.2.2].

Suppose Helios(Π,Σ1,Σ2,Σ3,H) does not satisfy
IND-CVA. Hence, there exists a probabilistic polynomial-time
adversary A, such that for all negligible functions negl, there
exists a security parameter κ and 1/2 + negl(κ) < IND-CVA(
Γ,A, κ). Since A is a winning adversary, we have A(PK T , κ)
outputs (v0, v1,nc) such that v0 6= v1 with non-negligible
probability, hence, either v0 < v1 or v1 < v0. For brevity, we
suppose v0 < v1. (Our proof can be adapted to consider cases
such that v1 < v0, but these details provide little value, so we
do not pursue them.) We construct the following adversary B
against IND-CPA∗ from A:

• B(pk ,m, κ) outputs ((1, 0), (0, 1)).
• B(c) proceeds as follows. First, compute:

ρ← SimProveKey((κ, pk ,m), κ);
PK T ← (pk ,m, ρ);
(v0, v1,nc)← A(PK T , κ);

Secondly, select coins r1, . . . , rnc−1 uniformly at random
and compute:

for j ∈ {1, . . . ,nc − 1} \ {v0, v1} do
cj ← Enc(pk , 0; rj);
σj ← ProveCiph((pk , cj , {0, 1}), (0, rj), j, κ);

cv0 ← c[1];
σv0 ← SimProveCiph((pk , cv0 , {0, 1}), v0, κ);
if v1 6= nc then

cv1 ← c[2];
σv1 ← SimProveCiph((pk , cv1 , {0, 1}), v1, κ);

c← c1 ⊗ · · · ⊗ cnc−1;
σnc ← SimProveCiph((pk , c, {0, 1}),nc, κ);
b← (c1, . . . , cnc−1, σ1, . . . , σnc);
bb← A(b);

Thirdly, compute {b1, . . . , b`} as the largest subset of
bb satisfying the conditions of algorithm Tally. Fourthly,
initialise H as a transcript of the random oracle’s input
and output, P as a transcript of simulated proofs, Q as
a vector of length nc − 1, and v as a zero-filled vector
of length nc. Fifthly, compute:

19

Q←
(((

pk , b1[1], {0, 1}
)
, b1[nc]

)
, . . . ,((

pk , b`[1], {0, 1}
)
, b`[nc]

)
, . . . ,((

pk , b1[nc − 1], {0, 1}
)
, b1[2 · (nc − 1)]

)
, . . . ,((

pk , b`[nc − 1], {0, 1}
)
, b`[2 · (nc − 1)]

))
;

W← ExtProveCiph(H,P,Q);
v← (Σ`i=1W[i][1], . . . , Σ

`·(nc−1)
i=`·(nc−2)+1W[i][1], `−

Σnc−1
j=1 v[j]);

g ← A(v);

Finally, output g.
We prove that B wins IND-CPA∗.

Suppose (pk , sk ,m) is an output of Gen(κ) and (m0,m1)
is an output of B(pk ,m, κ). Let β ∈ {0, 1}. Further suppose
c1 is an output of Enc(pk ,mβ [1]) and c2 is an output of
Enc(pk ,mβ [2]). Let c = (c1, c2). Moreover, suppose ρ
is an output of SimProveKey((κ, pk ,m), κ). Let PK T =
(pk ,m, ρ). Suppose (v0, v1,nc) is an output of A(PK T , κ).
Since SimProveKey is a simulator for (ProveKey,VerKey), we
have B simulates the challenger in IND-CVA to A(PK T , κ).
In particular, PK T is a triple containing a public key and
corresponding message space generated Gen, and a (simulated)
proof of correct construction. Suppose B computes b and bb is
an output of A(b). Further suppose B computes v, and g is an
output of A(v). The following claims prove that B simulates
the challenger in IND-CVA to A(b) and A(v), hence, g = β,
with at least the probability that A wins IND-CVA, concluding
our proof.

Claim 23. Adversary B’s computation of b is equivalent to
computing b as b← Vote(PK T , vβ ,nc, κ).

Proof of Claim 23. We have PK T parses as a vector
(pk ,m, ρ). Moreover, since (pk , sk ,m) is an output of Gen(κ),
there exist coins r such that (pk , sk ,m) = Gen(κ; r). Hence,
(sk , r) is a witness for statement (κ, pk ,m). Furthermore,
since SimProveKey is a simulator for (ProveKey,VerKey) and
proofs output by ProveKey are indistinguishable from outputs
of SimProveKey, we have VerKey((κ, pk ,m), ρ, κ) = 1, with
non-negligible probability. In addition, since B is a winning
adversary, we have v0, v1 ∈ {1, . . . ,nc}, with non-negligible
probability. It follows that Vote(PK T , vβ ,nc, κ) does not
output ⊥, with non-negligible probability. Indeed, computation
b ← Vote(PK T , vβ ,nc, κ) is equivalent to the following.
Select coins r1, . . . , rnc−1 uniformly at random and compute:

for 1 ≤ j ≤ nc − 1 do
if j = vβ then mj ← 1; else mj ← 0;
cj ← Enc(pk ,mj ; rj);
σj ← ProveCiph((pk , cj , {0, 1}), (mj , rj), j, κ);

c← c1 ⊗ · · · ⊗ cnc−1;
m← m1 � · · · �mnc−1;
r ← r1 ⊕ · · · ⊕ rnc−1;
σnc ← ProveCiph((pk , c, {0, 1}), (m, r),nc, κ);
b← (c1, . . . , cnc−1, σ1, . . . , σnc);

Since vβ ∈ {v0, v1}, ciphertexts computed by the above for-
loop all contain plaintext 0, except (possibly) ciphertext cv0

and, if defined, ciphertext cv1 . (Ciphertext cv1 only exists if
v1 < nc.) Given that v0 < v1 ≤ nc, ciphertext cv0 contains
1 − β, i.e., if β = 0, then cv0 contains 1, otherwise (β = 1),
cv0 contains 0. If v1 < nc, then ciphertext cv1 contains β.
Moreover, since � is the addition operator in group (m,�)
and 0 is the identity element in that group, if v1 = nc,
then plaintext m computed by the above algorithm is 1 − β,
otherwise, m = 1 − β � β = 1. Hence, the above algorithm
is equivalent to selecting coins r1, . . . , rnc−1 uniformly at
random and computing:

for j ∈ {1, . . . ,nc − 1} \ {v0, v1} do
cj ← Enc(pk , 0; rj);
σj ← ProveCiph((pk , cj , {0, 1}), (0, rj), j, κ);

cv0 ← Enc(pk , 1− β; rv0);
σv0 ← ProveCiph((pk , cv0 , {0, 1}), (1− β, rv0), v0, κ);
if v1 6= nc then

cv1 ← Enc(pk , β; rv1);
σv1 ← ProveCiph((pk , cv1 , {0, 1}), (β, rv1), v1, κ);

c← c1 ⊗ · · · ⊗ cnc−1;
if v1 = nc then m← 1− β; else m← 1;

r ← r1 ⊕ · · · ⊕ rnc−1;
σnc ← ProveCiph((pk , c, {0, 1}), (m, r),nc, κ);
b← (c1, . . . , cnc−1, σ1, . . . , σnc);

Computation cv0 ← Enc(pk , 1−β; rv0) is equivalent to cv0 ←
c[1], because if β = 0, then c[1] contains plaintext 1, otherwise
(β = 1), c[1] contains plaintext 0. Similarly, if v1 6= nc, then
computation cv1 ← Enc(pk , β; rv1) is equivalent to cv1 ←
c[1]. Moreover, proof ProveCiph((pk , cv0 , {0, 1}), (1 − β,
rv0), v0, κ), respectively ProveCiph((pk , cv1 , {0, 1}), (β, rv1),
v1, κ), can be simulated by SimProveCiph((pk , cv0 , {0, 1}),
v0, κ), respectively SimProveCiph((pk , cv1 , {0, 1}), v1, κ).
Furthermore,

c← c1 ⊗ · · · ⊗ cnc−1;
if v1 = nc then m← 1− β; else m← 1;
r ← r1 ⊕ · · · ⊕ rnc−1;
σnc ← ProveCiph((pk , c, {0, 1}), (m, r),nc, κ);

can be simulated by

c← c1 ⊗ · · · ⊗ cnc−1;
σnc ← SimProveCiph((pk , c, {0, 1}),nc, κ);

Hence, we conclude the proof of this claim.

Claim 24. Adversary B’s computation of v is equivalent
to computing v as (v, pf) ← Tally(SK T , bb,nc, κ), where
SK T = (pk , sk).

Proof of Claim 24. Let {b1, . . . , b`} be the largest subset of
bb satisfying the conditions of algorithm Tally. It is trivial to
see that the claim holds when {b1, . . . , b`} = ∅, because v is
computed as a zero-filled vector of length nc in both cases.
We prove the claim also holds when {b1, . . . , b`} 6= ∅.

By simulation sound extractability, for all 1 ≤ i ≤ ` and
1 ≤ j ≤ nc−1, there exists a message mi,j ∈ {0, 1} and coins
ri,j and ri,j+nc−1 such that bi[j] = Enc(pk ,mi,j ; ri,j) and
bi[j + nc − 1] = ProveCiph((pk , bi[j], {0, 1}), (mi,j , ri,j), j,
κ; ri,j+nc−1), with overwhelming probability. Suppose Q and

20

W are computed by B. We have for all 1 ≤ i ≤ ` and 1 ≤ j ≤
nc−1 that Q[`·(j−1)+i] = ((pk , bi[j], {0, 1}), bi[j+nc−1])
and W[` · (j − 1) + i] is a witness for (pk , bi[j], {0, 1}), i.e.,
(mi,j , ri,j), and W[` ·(j−1)+ i][1] = mi,j . Hence, adversary
B’s computation of v is equivalent to computing v as:

v← (Σ`i=1mi,1, . . . , Σ`i=1mi,nc−1, `− Σnc−1
j=1 v[j])

Moreover, computing v as (v, pf) ← Tally(SK T , bb,nc, κ)
is equivalent to initialising v as a zero-filled vector of length
nc and computing

for 1 ≤ j ≤ nc − 1 do
c← b1[j]⊗ · · · ⊗ b`[j];
v[j]← Dec(sk , c);

v[nc]← `−
∑nc−1
j=1 v[j];

Since Π is a homomorphic encryption scheme, we have
for all 1 ≤ j ≤ nc − 1 that b1[j] ⊗ · · · ⊗ b`[j] is a
ciphertext with overwhelming probability. And although ci-
phertext b1[j] ⊗ · · · ⊗ b`[j] may not have been constructed
using coins chosen uniformly at random, we nevertheless
have Dec(sk , b1[j] ⊗ · · · ⊗ b`[j]) = m1,j � · · · � m`,j with
overwhelming probability, because Π is perfectly correct. It
follows that v = (m1,1 � · · · �m`,1, . . . , m1,nc−1 � · · · �
m`,nc−1, ` −

∑nc−1
j=1 v[j]), with overwhelming probability.

Let mb be the largest integer such that {0, . . . ,mb} ⊆ m.
Since A is a winning adversary, we have ` ≤ mb. Moreover,
since m1,j , . . . ,m`,j ∈ {0, 1} for all 1 ≤ j ≤ nc − 1
and � is the addition operator in group (m,�), we have
m1,j � · · · �m`,j =

∑`
i=1mi,j , which suffices to conclude

the proof of this claim.

For Helios’16, encryption scheme Π is additively homomor-
phic El Gamal [CGS97, §2]. Moreover, (ProveKey,VerKey),
respectively (ProveCiph,VerCiph) and (ProveDec,VerDec),
is the non-interactive proof system derived by application
of the Fiat-Shamir transformation [FS87] to a random or-
acle H and the sigma protocol for proving knowledge of
discrete logarithms by Chaum et al. [CEGP87, Protocol 2],
respectively the sigma protocol for proving knowledge of
disjunctive equality between discrete logarithms by Cramer
et al. [CFSY96, Figure 1] and the sigma protocol for proving
knowledge of equality between discrete logarithms by Chaum
& Pedersen [CP93, §3.2].

Bernhard, Pereira & Warinschi [BPW12a, §4] remark that
the sigma protocols underlying non-interactive proof systems
(ProveKey,VerKey) and (ProveCiph,VerCiph) both satisfy
special soundness and special honest verifier zero-knowledge,
hence, Theorem 13 is applicable. Bernhard, Pereira &
Warinschi also remark that the sigma protocol underlying
(ProveDec,VerDec) satisfies special soundness and “almost
special honest verifier zero-knowledge” and argue that “we
could fix this[, but] it is easy to see that ... all relevant theorems
[including Theorem 13] still hold.” We adopt the same position
and assume that Theorem 13 is applicable.

Proof of Theorem 12. Helios’16 has zero-knowledge tallying
proofs (Lemma 21), subject to the applicability of Theorem 13

to the sigma protocol underlying (ProveDec,VerDec). More-
over, since Helios’16 satisfies UV [SFC17], we have Helios’16
satisfies HB-Tally-Soundness (Proposition 20). Furthermore,
since El Gamal satisfies IND-CPA [TY98], [KL07] and is
perfectly correct, and since non-interactive proof systems
(ProveKey,VerKey) and (ProveCiph,VerCiph) satisfy special
soundness and special honest verifier zero-knowledge, we
have Helios’16 satisfies IND-CVA (Proposition 22). Hence,
Helios’16 satisfies Ballot-Secrecy too (Theorem 10).

REFERENCES

[ABR12] Myrto Arapinis, Sergiu Bursuc, and Mark Ryan. Reduction of
Equational Theories for Verification of Trace Equivalence: Re-
encryption, Associativity and Commutativity. In POST’12: First
Conference on Principles of Security and Trust, volume 7215
of LNCS, pages 169–188. Springer, 2012.

[Adi14] Ben Adida. Helios v4 Verification Specs. Helios documen-
tation, http://documentation.heliosvoting.org/verification-specs/
helios-v4 (accessed 19 Jan 2017), 2014. A snap-
shot of the specification on 5 May 2016 is avail-
able from https://web.archive.org/web/20160505163104/http://
documentation.heliosvoting.org/verification-specs/helios-v4..

[AH10] R. Michael Alvarez and Thad E. Hall. Electronic Elections: The
Perils and Promises of Digital Democracy. Princeton University
Press, 2010.

[AMPQ09] Ben Adida, Olivier de Marneffe, Olivier Pereira, and Jean-
Jacques Quisquater. Electing a University President Us-
ing Open-Audit Voting: Analysis of Real-World Use of He-
lios. In EVT/WOTE’09: Electronic Voting Technology Work-
shop/Workshop on Trustworthy Elections. USENIX Association,
2009.

[AN06] Ben Adida and C. Andrew Neff. Ballot casting assurance.
In EVT’06: Electronic Voting Technology Workshop. USENIX
Association, 2006.

[BCG+15a] David Bernhard, Véronique Cortier, David Galindo, Olivier
Pereira, and Bogdan Warinschi. A comprehensive analysis
of game-based ballot privacy definitions. Cryptology ePrint
Archive, Report 2015/255 (version 20150319:100626), 2015.

[BCG+15b] David Bernhard, Véronique Cortier, David Galindo, Olivier
Pereira, and Bogdan Warinschi. SoK: A comprehensive analysis
of game-based ballot privacy definitions. In S&P’15: 36th Se-
curity and Privacy Symposium, pages 499–516. IEEE Computer
Society, 2015.

[BCP+11] David Bernhard, Véronique Cortier, Olivier Pereira, Ben Smyth,
and Bogdan Warinschi. Adapting Helios for provable ballot pri-
vacy. In ESORICS’11: 16th European Symposium on Research
in Computer Security, volume 6879 of LNCS, pages 335–354.
Springer, 2011.

[BDJR97] Mihir Bellare, Anand Desai, E. Jokipii, and Phillip Rogaway.
A Concrete Security Treatment of Symmetric Encryption. In
FOCS’97: 38th Annual Symposium on Foundations of Computer
Science, pages 394–403. IEEE Computer Society, 1997.

[BDPR98] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip
Rogaway. Relations Among Notions of Security for Public-
Key Encryption Schemes. In CRYPTO’98: 18th International
Cryptology Conference, volume 1462 of LNCS, pages 26–45.
Springer, 1998.

[Ben96] Josh Benaloh. Verifiable Secret-Ballot Elections. PhD thesis,
Department of Computer Science, Yale University, 1996.

[Ber14] David Bernhard. Zero-Knowledge Proofs in Theory and Prac-
tice. PhD thesis, Department of Computer Science, University
of Bristol, 2014.

[BGP11] Philippe Bulens, Damien Giry, and Olivier Pereira. Running
Mixnet-Based Elections with Helios. In EVT/WOTE’11: Elec-
tronic Voting Technology Workshop/Workshop on Trustworthy
Elections. USENIX Association, 2011.

21

[Bow07] Debra Bowen. Secretary of State Debra Bowen Moves
to Strengthen Voter Confidence in Election Security
Following Top-to-Bottom Review of Voting Systems.
California Secretary of State, press release DB07:042 http:
//admin.cdn.sos.ca.gov/press-releases/prior/2007/DB07 111.pdf
(accessed 19 Jan 2017), August 2007. A snapshot
of the press release on 6 February 2008 is available
from https://web.archive.org/web/20080206210142/http:
//www.sos.ca.gov/elections/voting systems/ttbr/db07 042 ttbr
system decisions release.pdf..

[BPW12a] David Bernhard, Olivier Pereira, and Bogdan Warinschi. How
Not to Prove Yourself: Pitfalls of the Fiat-Shamir Heuristic and
Applications to Helios. In ASIACRYPT’12: 18th International
Conference on the Theory and Application of Cryptology and
Information Security, volume 7658 of LNCS, pages 626–643.
Springer, 2012.

[BPW12b] David Bernhard, Olivier Pereira, and Bogdan Warinschi. On
Necessary and Sufficient Conditions for Private Ballot Sub-
mission. Cryptology ePrint Archive, Report 2012/236 (version
20120430:154117b), 2012.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practi-
cal: A paradigm for designing efficient protocols. In CCS’93: 1st
ACM Conference on Computer and Communications Security,
pages 62–73. ACM, 1993.

[BR05] Mihir Bellare and Phillip Rogaway. Symmetric Encryp-
tion. In Introduction to Modern Cryptography, chap-
ter 4. 2005. http://cseweb.ucsd.edu/∼mihir/cse207/w-se.pdf.
A snapshot of the chapter on 21 Mar 2015 is avail-
able from https://web.archive.org/web/20150321170845/http://
cseweb.ucsd.edu/∼mihir/cse207/w-se.pdf..

[BS99] Mihir Bellare and Amit Sahai. Non-malleable Encryption:
Equivalence between Two Notions, and an Indistinguishability-
Based Characterization. In CRYPTO’99: 19th International
Cryptology Conference, volume 1666 of LNCS, pages 519–536.
Springer, 1999.

[BS15] David Bernhard and Ben Smyth. Ballot secrecy with malicious
bulletin boards. Cryptology ePrint Archive, Report 2014/822
(version 20150413:170300), 2015.

[BS16] Bruno Blanchet and Ben Smyth. Automated reasoning for
equivalences in the applied pi calculus with barriers. In CSF’16:
29th Computer Security Foundations Symposium, pages 310–
324. IEEE Computer Society, 2016.

[BSCS16] Bruno Blanchet, Ben Smyth, Vincent Cheval, and Marc
Sylvestre. ProVerif 1.96: Automatic Cryptographic Protocol
Verifier, User Manual and Tutorial, 2016.

[BT94] Josh Cohen Benaloh and Dwight Tuinstra. Receipt-free secret-
ballot elections. In STOC’94: 26th Theory of computing
Symposium, pages 544–553. ACM Press, 1994.

[BVQ10] Josh Benaloh, Serge Vaudenay, and Jean-Jacques Quisquater.
Final Report of IACR Electronic Voting Committee. Interna-
tional Association for Cryptologic Research. http://www.iacr.
org/elections/eVoting/finalReportHelios 2010-09-27.html, Sept
2010.

[BY86] Josh Benaloh and Moti Yung. Distributing the Power of a
Government to Enhance the Privacy of Voters. In PODC’86: 5th
Principles of Distributed Computing Symposium, pages 52–62.
ACM Press, 1986.

[CCFG16] Pyrros Chaidos, Véronique Cortier, Georg Fuschbauer, and
David Galido. BeleniosRF: A Non-interactive Receipt-Free
Electronic Voting Scheme. In CCS’16: 23rd ACM Conference
on Computer and Communications Security, pages 1614–1625.
ACM Press, 2016.

[CE16] Nicholas Chang-Fong and Aleksander Essex. The Cloudier
Side of Cryptographic End-to-end Verifiable Voting: A Security
Analysis of Helios. In ACSAC’16: 32nd Annual Conference on
Computer Security Applications, pages 324–335. ACM Press,
2016.

[CEGP87] David Chaum, Jan-Hendrik Evertse, Jeroen van de Graaf, and
René Peralta. Demonstrating Possession of a Discrete Loga-
rithm Without Revealing It. In CRYPTO’86: 6th International
Cryptology Conference, volume 263 of LNCS, pages 200–212.
Springer, 1987.

[CF85] Josh Daniel Cohen and Michael J. Fischer. A Robust and Veri-
fiable Cryptographically Secure Election Scheme. In FOCS’85:
26th Symposium on Foundations of Computer Science, pages
372–382. IEEE Computer Society, 1985.

[CFSY96] Ronald Cramer, Matthew K. Franklin, Berry Schoenmakers, and
Moti Yung. Multi-Autority Secret-Ballot Elections with Linear
Work. In EUROCRYPT’96: 15th International Conference
on the Theory and Applications of Cryptographic Techniques,
volume 1070 of LNCS, pages 72–83. Springer, 1996.

[CGGI13a] Veronique Cortier, David Galindo, Stephane Glondu, and Ma-
lika Izabachene. A generic construction for voting correctness
at minimum cost - Application to Helios. Cryptology ePrint
Archive, Report 2013/177 (version 20130521:145727), 2013.

[CGGI13b] Véronique Cortier, David Galindo, Stéphane Glondu, and Ma-
lika Izabachene. Distributed elgamal à la pedersen: Application
to helios. In WPES’13: Workshop on Privacy in the Electronic
Society, pages 131–142. ACM Press, 2013.

[CGMA85] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awer-
buch. Verifiable Secret Sharing and Achieving Simultaneity
in the Presence of Faults. In FOCS’85: 26th Foundations of
Computer Science Symposium, pages 383–395. IEEE Computer
Society, 1985.

[CGS97] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers.
A Secure and Optimally Efficient Multi-Authority Election
Scheme. In EUROCRYPT’97: 16th International Conference
on the Theory and Applications of Cryptographic Techniques,
volume 1233 of LNCS, pages 103–118. Springer, 1997.

[Cha81] David L. Chaum. Untraceable electronic mail, return addresses,
and digital pseudonyms. Communications of the ACM, 24:84–
90, 1981.

[CP93] David Chaum and Torben P. Pedersen. Wallet Databases with
Observers. In CRYPTO’92: 12th International Cryptology
Conference, volume 740 of LNCS, pages 89–105. Springer,
1993.

[CR87] Benny Chor and Michael O. Rabin. Achieving Independence in
Logarithmic Number of Rounds. In PODC’87: 6th Principles of
Distributed Computing Symposium, pages 260–268. ACM Press,
1987.

[CS11] Véronique Cortier and Ben Smyth. Attacking and fixing Helios:
An analysis of ballot secrecy. In CSF’11: 24th Computer Secu-
rity Foundations Symposium, pages 297–311. IEEE Computer
Society, 2011.

[CS13] Véronique Cortier and Ben Smyth. Attacking and fixing Helios:
An analysis of ballot secrecy. Journal of Computer Security,
21(1):89–148, 2013.

[CSD+17] Véronique Cortier, Benedikt Schmidt, Constantin Cătălin
Drăgan, Pierre-Yves Strub, Francois Dupressoir, and Bogdan
Warinschi. Machine-Checked Proofs of Privacy for Electronic
Voting Protocols. In S&P’17: 37th IEEE Symposium on Security
and Privacy. IEEE Computer Society, 2017. To appear.

[Dam10] Ivan Damgård. On Σ-protocols, 2010. Available from http:
//www.daimi.au.dk/∼ivan/Sigma.pdf.

[DC12] Yvo Desmedt and Pyrros Chaidos. Applying Divertibility to
Blind Ballot Copying in the Helios Internet Voting System.
In ESORICS’12: 17th European Symposium on Research in
Computer Security, volume 7459 of LNCS, pages 433–450.
Springer, 2012.

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-Malleable
Cryptography. In STOC’91: 23rd Theory of computing Sympo-
sium, pages 542–552. ACM Press, 1991.

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable
Cryptography. Journal on Computing, 30(2):391–437, 2000.

22

[DJN10] Ivan Damgård, Mads Jurik, and Jesper Buus Nielsen. A Gen-
eralization of Paillier’s Public-Key System with Applications
to Electronic Voting. International Journal of Information
Security, 9(6):371–385, 2010.

[DK05] Yvo Desmedt and Kaoru Kurosawa. Electronic Voting: Starting
Over? In ISC’05: International Conference on Information
Security, volume 3650 of LNCS, pages 329–343. Springer, 2005.

[DKR09] Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Verifying
privacy-type properties of electronic voting protocols. Journal
of Computer Security, 17(4):435–487, July 2009.

[DKRS11] Stéphanie Delaune, Steve Kremer, Mark D. Ryan, and Graham
Steel. Formal analysis of protocols based on TPM state registers.
In CSF’11: 24th Computer Security Foundations Symposium,
pages 66–80. IEEE Computer Society, 2011.

[DRS08] Stéphanie Delaune, Mark D. Ryan, and Ben Smyth. Automatic
verification of privacy properties in the applied pi-calculus. In
IFIPTM’08: 2nd Joint iTrust and PST Conferences on Privacy,
Trust Management and Security, volume 263 of International
Federation for Information Processing (IFIP), pages 263–278.
Springer, 2008.

[FS87] Amos Fiat and Adi Shamir. How To Prove Yourself: Prac-
tical Solutions to Identification and Signature Problems. In
CRYPTO’86: 6th International Cryptology Conference, volume
263 of LNCS, pages 186–194. Springer, 1987.

[Gen95] Rosario Gennaro. Achieving independence efficiently and se-
curely. In PODC’95: 14th Principles of Distributed Computing
Symposium, pages 130–136. ACM Press, 1995.

[Gen00] Rosario Gennaro. A Protocol to Achieve Independence in Con-
stant Rounds. IEEE Transactions on Parallel and Distributed
Systems, 11(7):636–647, 2000.

[GGR09] Ryan W. Gardner, Sujata Garera, and Aviel D. Rubin. Coercion
Resistant End-to-end Voting. In FC’09: 13th International Con-
ference on Financial Cryptography and Data Security, volume
5628 of LNCS, pages 344–361. Springer, 2009.

[GH07] Rop Gonggrijp and Willem-Jan Hengeveld. Studying the
Nedap/Groenendaal ES3B Voting Computer: A Computer Se-
curity Perspective. In EVT’07: Electronic Voting Technology
Workshop. USENIX Association, 2007.

[Gro04] Jens Groth. Efficient maximal privacy in boardroom voting and
anonymous broadcast. In FC’04: 8th International Conference
on Financial Cryptography, volume 3110 of LNCS, pages 90–
104. Springer, 2004.

[Gro06] Jens Groth. Simulation-Sound NIZK Proofs for a Practical Lan-
guage and Constant Size Group Signatures. In ASIACRYPT’02:
12th International Conference on the Theory and Application
of Cryptology and Information Security, volume 4284 of LNCS,
pages 444–459. Springer, 2006.

[Gum05] Andrew Gumbel. Steal This Vote: Dirty Elections and the Rotten
History of Democracy in America. Nation Books, 2005.

[HBH10] Stuart Haber, Josh Benaloh, and Shai Halevi. The He-
lios e-Voting Demo for the IACR. International Association
for Cryptologic Research. http://www.iacr.org/elections/eVoting/
heliosDemo.pdf, May 2010.

[Hir10] Martin Hirt. Receipt-Free K-out-of-L Voting Based on ElGamal
Encryption. In David Chaum, Markus Jakobsson, Ronald L.
Rivest, and Peter Y. A. Ryan, editors, Towards Trustworthy
Elections: New Directions in Electronic Voting, volume 6000
of LNCS, pages 64–82. Springer, 2010.

[HK02] Alejandro Hevia and Marcos A. Kiwi. Electronic Jury Voting
Protocols. In LATIN’02: Theoretical Informatics, volume 2286
of LNCS, pages 415–429. Springer, 2002.

[HK04] Alejandro Hevia and Marcos A. Kiwi. Electronic jury voting
protocols. Theoretical Computer Science, 321(1):73–94, 2004.

[HL10] Carmit Hazay and Yehuda Lindell. Sigma protocols and effi-
cient zero-knowledge. In Efficient Secure Two-Party Protocols,
Information Security and Cryptography, chapter 6, pages 147–
175. Springer Berlin Heidelberg, 2010.

[HRZ10] Fao Hao, Peter Y. A. Ryan, and Piotr Zieliński. Anonymous
voting by two-round public discussion. Journal of Information
Security, 4(2):62 – 67, 2010.

[HS00] Martin Hirt and Kazue Sako. Efficient Receipt-Free Voting
Based on Homomorphic Encryption. In EUROCRYPT’06: 25th
International Conference on the Theory and Applications of
Cryptographic Techniques, volume 1807 of LNCS, pages 539–
556. Springer, 2000.

[JCJ05] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-
Resistant Electronic Elections. In WPES’05: 4th Workshop on
Privacy in the Electronic Society, pages 61–70. ACM Press,
2005. See also http://www.rsa.com/rsalabs/node.asp?id=2860.

[KL07] Jonathan Katz and Yehuda Lindell. Introduction to Modern
Cryptography. Chapman & Hall/CRC, 2007.

[KSRH12] Dalia Khader, Ben Smyth, Peter Y. A. Ryan, and Feng Hao. A
Fair and Robust Voting System by Broadcast. In EVOTE’12:
5th International Conference on Electronic Voting, volume 205
of Lecture Notes in Informatics, pages 285–299. Gesellschaft
für Informatik, 2012.

[KTV12] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. A Game-
Based Definition of Coercion-Resistance and its Applications.
Journal of Computer Security, 20(6):709–764, 2012.

[KY02] Aggelos Kiayias and Moti Yung. Self-tallying elections and
perfect ballot secrecy. In PKC’01: 3rd International Workshop
on Practice and Theory in Public Key Cryptography, volume
2274 of LNCS, pages 141–158. Springer, 2002.

[KZZ15] Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang.
End-to-end verifiable elections in the standard model. In
EUROCRYPT’15: 34th International Conference on the Theory
and Applications of Cryptographic Techniques, volume 9057 of
LNCS, pages 468–498. Springer, 2015.

[MH96] Markus Michels and Patrick Horster. Some Remarks on
a Receipt-Free and Universally Verifiable Mix-Type Voting
Scheme. In ASIACRYPT’96: International Conference on the
Theory and Application of Cryptology and Information Security,
volume 1163 of LNCS, pages 125–132. Springer, 1996.

[MN06] Tal Moran and Moni Naor. Receipt-Free Universally-Verifiable
Voting with Everlasting Privacy. In CRYPTO’06: 26th Inter-
national Cryptology Conference, volume 4117 of LNCS, pages
373–392. Springer, 2006.

[MS16] Maxime Meyer and Ben Smyth. An attack against the he-
lios election system that violates eligibility. arXiv, Report
1612.04099, 2016.

[MSQ14] Adam McCarthy, Ben Smyth, and Elizabeth A. Quaglia. Hawk
and Aucitas: e-auction schemes from the Helios and Civitas
e-voting schemes. In FC’14: 18th International Conference
on Financial Cryptography and Data Security, volume 8437
of LNCS, pages 51–63. Springer, 2014.

[NIS12] NIST. Secure Hash Standard (SHS). FIPS PUB 180-4, Infor-
mation Technology Laboratory, National Institute of Standards
and Technology, March 2012.

[OAS69] American Convention on Human Rights, “Pact of San Jose,
Costa Rica”, 1969.

[OSC90] Document of the Copenhagen Meeting of the Conference on
the Human Dimension of the CSCE, 1990.

[PB12] Miriam Paiola and Bruno Blanchet. Verification of Security
Protocols with Lists: From Length One to Unbounded Length.
In POST’12: First Conference on Principles of Security and
Trust, volume 7215 of LNCS, pages 69–88. Springer, 2012.

[Per16] Olivier Pereira. Internet Voting with Helios. In Real-World Elec-
tronic Voting: Design, Analysis and Deployment, chapter 11.
CRC Press, 2016.

[Pfi94] Birgit Pfitzmann. Breaking Efficient Anonymous Channel. In
EUROCRYPT’94: 11th International Conference on the Theory
and Applications of Cryptographic Techniques, volume 950 of
LNCS, pages 332–340. Springer, 1994.

23

[PP89] Birgit Pfitzmann and Andreas Pfitzmann. How to Break the
Direct RSA-Implementation of Mixes. In EUROCRYPT’89:
6th International Conference on the Theory and Applications
of Cryptographic Techniques, volume 434 of LNCS, pages 373–
381. Springer, 1989.

[QS16] Elizabeth A. Quaglia and Ben Smyth. Constructing secret,
verifiable auction schemes from election schemes. Cryptology
ePrint Archive, Report 2015/1204 (version 20160524:130412),
2016.

[QS17] Elizabeth A. Quaglia and Ben Smyth. A short introduction to se-
crecy and verifiability for elections. arXiv, Report 1702.03168,
2017.

[SAR13] Ben Smyth, Myrto Arapinis, and Mark D Ryan. Translating
between equational theories for automated reasoning. FCS’13:
Workshop on Foundations of Computer Security, 2013.

[SB13a] Ben Smyth and David Bernhard. Ballot secrecy and ballot inde-
pendence coincide. In ESORICS’13: 18th European Symposium
on Research in Computer Security, volume 8134 of LNCS, pages
463–480. Springer, 2013.

[SB13b] Ben Smyth and David Bernhard. Ballot secrecy and ballot
independence coincide. Cryptology ePrint Archive, Report
2013/235 (version 20130618:102144), 2013.

[SB14] Ben Smyth and David Bernhard. Ballot secrecy and ballot
independence: definitions and relations. Cryptology ePrint
Archive, Report 2013/235 (version 20141010:082554), 2014.

[SC11] Ben Smyth and Véronique Cortier. A note on replay attacks that
violate privacy in electronic voting schemes. Technical Report
RR-7643, INRIA, June 2011. http://hal.inria.fr/inria-00599182/.

[Sch99] Berry Schoenmakers. A simple publicly verifiable secret sharing
scheme and its application to electronic voting. In CRYPTO’99:
19th International Cryptology Conference, volume 1666 of
LNCS, pages 148–164. Springer, 1999.

[Sch05] Nicole Schweikardt. Arithmetic, first-order logic, and count-
ing quantifiers. ACM Transactions on Computational Logic,
6(3):634–671, July 2005.

[SFC17] Ben Smyth, Steven Frink, and Michael R. Clarkson. Election
Verifiability: Cryptographic Definitions and an Analysis of
Helios and JCJ. Cryptology ePrint Archive, Report 2015/233
(version 20170111:122701), 2017.

[SFD+14] Drew Springall, Travis Finkenauer, Zakir Durumeric, Jason
Kitcat, Harri Hursti, Margaret MacAlpine, and J. Alex Hal-
derman. Security Analysis of the Estonian Internet Voting
System. In CCS’14: 21st ACM Conference on Computer and
Communications Security, pages 703–715. ACM Press, 2014.

[SHM15] Ben Smyth, Yoshikazu Hanatani, and Hirofumi Muratani. NM-
CPA secure encryption with proofs of plaintext knowledge. In
IWSEC’15: 10th International Workshop on Security, volume
9241 of LNCS, pages 115–134. Springer, 2015.

[SK94] Kazue Sako and Joe Kilian. Secure Voting Using Partially Com-
patible Homomorphisms. In CRYPTO’94: 14th International
Cryptology Conference, volume 839 of LNCS, pages 411–424.
Springer, 1994.

[SK95] Kazue Sako and Joe Kilian. Receipt-Free Mix-Type Voting
Scheme: A practical solution to the implementation of a voting
booth. In EUROCRYPT’95: 12th International Conference
on the Theory and Applications of Cryptographic Techniques,
volume 921 of LNCS, pages 393–403. Springer, 1995.

[Smy11] Ben Smyth. Formal verification of cryptographic protocols with
automated reasoning. PhD thesis, School of Computer Science,
University of Birmingham, 2011.

[Smy12] Ben Smyth. Replay attacks that violate ballot secrecy in Helios.
Technical report, 2012.

[Smy14] Ben Smyth. Ballot secrecy with malicious bulletin
boards. Cryptology ePrint Archive, Report 2014/822 (version
20141012:004943), 2014.

[Smy15] Ben Smyth. Secrecy and independence for election
schemes. Cryptology ePrint Archive, Report 2015/942 (version
20150928:195428), 2015.

[Smy16] Ben Smyth. Secrecy and independence for election
schemes. Cryptology ePrint Archive, Report 2015/942 (version
20160713:142934), 2016.

[Smy17] Ben Smyth. First-past-the-post suffices for
ranked voting. https://bensmyth.com/publications/
2017-FPTP-suffices-for-ranked-voting/, 2017.

[SP13] Ben Smyth and Alfredo Pironti. Truncating TLS Connections to
Violate Beliefs in Web Applications. In WOOT’13: 7th USENIX
Workshop on Offensive Technologies. USENIX Association,
2013. (First appeared at Black Hat USA 2013.).

[SP15] Ben Smyth and Alfredo Pironti. Truncating TLS Connections
to Violate Beliefs in Web Applications. Technical Report hal-
01102013, INRIA, 2015.

[Sta14] CACM Staff. ACM’s 2014 General Election: Please Take This
Opportunity to Vote. Communications of the ACM, 57(5):9–17,
May 2014.

[TY98] Yiannis Tsiounis and Moti Yung. On the Security of ElGamal
Based Encryption. In PKC’98: First International Workshop on
Practice and Theory in Public Key Cryptography, volume 1431
of LNCS, pages 117–134. Springer, 1998.

[UMQ10] Dominique Unruh and Jörn Müller-Quade. Universally Com-
posable Incoercibility. In CRYPTO’10: 30th International
Cryptology Conference, volume 6223 of LNCS, pages 411–428.
Springer, 2010.

[UN48] Universal Declaration of Human Rights, 1948.
[Wik06] Douglas Wikström. Simplified Submission of Inputs to Proto-

cols. Cryptology ePrint Archive, Report 2006/259, 2006.
[Wik08] Douglas Wikström. Simplified Submission of Inputs to Pro-

tocols. In SCN’08: 6th International Conference on Security
and Cryptography for Networks, volume 5229 of LNCS, pages
293–308. Springer, 2008.

[Wik16] Douglas Wikström. Verificatum: How to Implement a Stand-
alone Verifier for the Verificatum Mix-Net (VMN Version 3.0.2),
2016. http://www.verificatum.com/files/vmnum-3.0.2.pdf.

[WWH+10] Scott Wolchok, Eric Wustrow, J. Alex Halderman, Hari K.
Prasad, Arun Kankipati, Sai Krishna Sakhamuri, Vasavya Ya-
gati, and Rop Gonggrijp. Security Analysis of India’s Electronic
Voting Machines. In CCS’10: 17th ACM Conference on Com-
puter and Communications Security, pages 1–14. ACM Press,
2010.

[WWIH12] Scott Wolchok, Eric Wustrow, Dawn Isabel, and J. Alex Halder-
man. Attacking the Washington, D.C. Internet Voting System. In
FC’12: 16th International Conference on Financial Cryptogra-
phy and Data Security, volume 7397 of LNCS, pages 114–128.
Springer, 2012.

