
Ballot secrecy: Security definition, sufficient

conditions, and analysis of Helios

Ben Smyth

Interdisciplinary Centre for Security, Reliability and
Trust, University of Luxembourg, Luxembourg

January 17, 2018

Abstract

We propose a definition of ballot secrecy as an indistinguishability
game in the computational model of cryptography. Our definition builds
upon and strengthens earlier definitions to ensure ballot secrecy is pre-
served in the presence of an adversary that controls ballot collection. We
also propose definitions of ballot independence as adaptations of non-
malleability and indistinguishability games for asymmetric encryption.
We prove relations between our definitions. In particular, we prove bal-
lot independence is sufficient for ballot secrecy in voting systems with
zero-knowledge tallying proofs. Moreover, we prove that building voting
systems from non-malleable asymmetric encryption schemes suffices for
ballot secrecy, thereby eliminating the expense of ballot-secrecy proofs for
a class of encryption-based voting systems. We demonstrate applicability
of our results by analysing the Helios voting system and its mixnet vari-
ant. Our analysis reveals that Helios does not satisfy ballot secrecy in the
presence of an adversary that controls ballot collection. The vulnerability
could not have been detected by earlier definitions, because they do not
consider such adversaries. We adopt non-malleable ballots as a fix and
prove that the fixed system satisfies ballot secrecy.

Keywords. Anonymity, democracy, elections, Helios, independence,
non-malleability, privacy, provable security, secrecy, voting.

1 Introduction

An election is a decision-making procedure to choose representatives [LG84,
Saa95, Gum05, AH10]. Choices should be made by voters with equal influence,
and this must be ensured by voting systems, as prescribed by the United Na-
tions [UN48], the Organisation for Security & Cooperation in Europe [OSC90],
and the Organization of American States [OAS69]. Historically, “Americans

1

1 INTRODUCTION 2

[voted] with their voices – viva voce – or with their hands or with their feet.
Yea or nay. Raise your hand. All in favor of Jones, stand on this side of the
town common; if you support Smith, line up over there” [Lep08]. Thus, ensur-
ing that only voters voted and did so with equal influence was straightforward.
Indeed, the election outcome could be determined by anyone present, simply by
considering at most one vote per voter and disregarding non-voters. Yet, voting
systems must also ensure choices are made freely, as prescribed by the aforemen-
tioned organisations [UN48,OSC90,OAS69]. Mill eloquently argues that choices
cannot be expressed freely in public: “The unfortunate voter is in the power of
some opulent man; the opulent man informs him how he must vote. Conscience,
virtue, moral obligation, religion, all cry to him, that he ought to consult his
own judgement, and faithfully follow its dictates. The consequences of pleasing,
or offending the opulent man, stare him in the face; ... the moral obligation is
disregarded, a faithless, a prostitute, a pernicious vote is given” [Mil30].

The need for free-choice started a movement towards voting as a private
act, i.e., “when numerous social constraints in which citizens are routinely
and universally enmeshed – community of religious allegiances, the patronage
of big men, employers or notables, parties, ‘political machines’ – are kept at
bay,” and “this idea has become the current doxa of democracy-builders world-
wide” [BBP07]. The most widely used embodiment of this idea is the Australian
system, which demands that votes be marked on uniform ballots in polling
booths and deposited into ballot boxes. Uniformity is intended to enable free-
choice during distribution and collection of ballots, and the isolation of polling
booths is intended to facilitate free-choice whilst marking.1 Moreover, the Aus-
tralian system can assure that only voters vote and do so with equal influence.
Indeed, anyone can check that ballots are only distributed to voters and at most
one ballot is deposited by each voter, furthermore, anyone can check that spoiled
ballots are discarded and that votes expressed in the remaining ballots corre-
spond to the election outcome. Albeit, assurance is limited by an observer’s
ability to monitor and the ability to transfer that assurance is limited to the
observer’s “good word or sworn testimony” [NA03].

Many electronic voting systems – including systems that have been used
in large-scale, binding elections – rely on art, rather than science, to ensure
that votes are freely made, with equal influence. Such systems build upon
creativity and skill, rather than scientific foundations. These systems are typ-
ically broken in ways that violate free-choice, e.g., [KSRW04, GH07, Bow07,
WWH+10, WWIH12, SFD+14], or permit non-voters to unduly influence the
selection of representatives, e.g., [KSRW04,UK07,Bow07,Ger09, JS12]. Breaks
can be avoided by carefully formulating rigorous and precise security definitions
that capture notions of voters voting freely with equal influence, and proving
that systems satisfy these definitions. Universal verifiability formalises a no-
tion of checking whether voters voted with equal influence, and we focus on a
definition that captures voters voting freely. Our definition is presented in the

1Earlier systems merely required ballots to be marked in polling booths and deposited into
ballot boxes, which permitted non-uniform ballots, including ballots of different colours and
sizes, that could be easily identified as party tickets [Bre06].

1 INTRODUCTION 3

computational model of cryptography as a game, whereby a benign challenger,
a malicious adversary and a voting system engage in a series of interactions
which task the adversary to break security.

Ballot secrecy formalises a notion of free-choice, assuming ballots are con-
structed and tallied in the prescribed manner.2

• Ballot secrecy. A voter’s vote is not revealed to anyone.

We capture ballot secrecy as a game that proceeds as follows. First, the ad-
versary picks a pair of votes v0 and v1. Secondly, the challenger constructs
a ballot for vote vβ , in the manner prescribed by the voting system, where β
is a bit chosen uniformly at random. That ballot is given to the adversary.
The adversary and challenger repeat the process to construct further ballots,
using the same bit β. Thirdly, the adversary constructs a set of ballots, which
may include ballots constructed by the adversary and ballots constructed by
the challenger. Thus, the game captures a setting where the adversary casts
ballots on behalf of some voters and controls the distribution of votes cast by
the remaining voters. Fourthly, the challenger tallies the set of ballots, in the
manner prescribed by the voting system, to determine the election outcome,
which is given to the adversary. Finally, the adversary is tasked with deter-
mining if β = 0 or β = 1. To avoid trivial distinctions, we require that the
aforementioned distribution of votes cast (which the adversary controls) re-
mains constant regardless of whether β = 0 or β = 1. If the adversary wins,
then a voter’s vote can be revealed, otherwise, it cannot, i.e., the voting system
provides ballot secrecy. Our game builds upon and strengthens games by Bern-
hard et al. [BCP+11,BPW12b,SB13,SB14,BCG+15b] to ensure ballot secrecy is
preserved in the presence of an adversary that controls ballot collection (i.e., the
bulletin board and the communication channel), whereas games by Bernhard et
al. do not.

We introduce two voting systems to demonstrate how ballot secrecy and
universal verifiability can be achieved. The first (Nonce) instructs each voter to
pair their vote with a nonce and instructs the tallier to publish the distribution
of votes. The second (Enc2Vote) instructs each voter to encrypt their vote
using an asymmetric encryption scheme and instructs the tallier to decrypt the
encrypted votes and publish the distribution of votes. Universal verifiability is
ensured by the former voting system. But, ballot secrecy is not, because all votes
are revealed. By comparison, secrecy is ensured by the latter system, because
asymmetric encryption can ensure that votes cannot be recovered from ballots
and the tallying procedure ensures that individual votes are not revealed. But,
universal verifiability is not ensured. Indeed, spurious election outcomes need
not correspond to the encrypted votes. More advanced voting systems must
satisfy both secrecy and verifiability, and we will consider the Helios voting
system.

2Ballot secrecy and privacy occasionally appear as synonyms in the literature. We favour
ballot secrecy to avoid confusion with other privacy notions, such as receipt-freeness and
coercion resistance.

1 INTRODUCTION 4

Helios is an open-source, web-based electronic voting system,3 which has
been used in binding elections. In particular, the International Association of
Cryptologic Research (IACR) has used Helios annually since 2010 to elect board
members [BVQ10, HBH10],4 the ACM used Helios for their 2014 general elec-
tion [Sta14], the Catholic University of Louvain used Helios to elect their uni-
versity president in 2009 [AMPQ09], and Princeton University has used Helios
since 2009 to elect student governments.5,6 Helios is intended to satisfy univer-
sal verifiability whilst maintaining ballot secrecy. For ballot secrecy, each voter
is instructed to encrypt their vote using a homomorphic encryption scheme.
Encrypted votes are homomorphically combined and the homomorphic combi-
nation is decrypted to reveal the outcome [AMPQ09]. Alternatively, a mixnet
is applied to the encrypted votes and the mixed encrypted votes are decrypted
to reveal the outcome [Adi08,BGP11]. We refer to the former voting system as
Helios and the latter as Helios Mixnet. For universal verifiability, the encryption
step is accompanied by a non-interactive zero-knowledge proof demonstrating
correct computation. This prevents an adversarial voter encrypting a message
that could be combined with legitimate ballots to derive an election outcome
in the voter’s favour. (E.g., votes might be switched between candidates.) The
decryption step is similarly accompanied by a non-interactive zero-knowledge
proof to prevent spurious outcomes.

Contribution and structure. Section 3 briefly explains the pitfalls of ex-
isting ballot secrecy definitions, introduces our game-based definition of ballot
secrecy, adapts formalisations of non-malleability and indistinguishability for
asymmetric encryption to derive two equivalent game-based definitions of bal-
lot independence, and proves relations between definitions. In particular, ballot
independence is shown to be sufficient for ballot secrecy in a class of voting sys-
tems with zero-knowledge tallying proofs, and it is shown to be necessary, but
not sufficient, in general. Section 4 shows how our definition of ballot secrecy can
be used to identify a known vulnerability in Helios; discovers that its patched
successors do not defend against that vulnerability in the presence of an ad-
versary that controls ballot collection; explains why earlier definitions of ballot
secrecy by Bernhard et al. could not detect that vulnerability; identifies a new
exploit that enables an adversary to determine if a voter did not vote for the ad-
versary’s preferred candidate; discusses non-malleable ballots as a fix; and uses
our sufficient condition to prove that secrecy is satisfied when the fix is applied.
Section 5 proves ballot independence cannot be harmed by tallying, if all bal-
lots are tallied correctly; shows that universally-verifiable voting systems tally
ballots correctly; proves Enc2Vote satisfies ballot independence, assuming the
underlying asymmetric encryption scheme is non-malleable; and combines those
results to show that proofs of ballot secrecy are trivial for a class of universally-

3https://vote.heliosvoting.org, accessed 21 Sep 2017.
4https://www.iacr.org/elections/, accessed 21 Sep 2017.
5http://heliosvoting.wordpress.com/2009/10/13/helios-deployed-at-princeton/,

accessed 21 Sep 2017.
6https://princeton.heliosvoting.org/, accessed 21 Sep 2017.

2 ELECTION SCHEME SYNTAX 5

verifiable, encryption-based voting systems. Section 6 presents an analysis of
Helios Mixnet and demonstrates that our results do indeed make proofs of bal-
lot secrecy trivial, by showing that the combination of universal verifiability
and non-malleable encryption suffice for ballot secrecy in Helios Mixnet. The
remaining sections present syntax (§2), related work (§7), and a brief conclusion
(§8); Figure 1 introduces game-based security definitions and recalls notation;
and the appendices define cryptographic primitives and relevant security def-
initions (Appendix A) and present further supplementary material. (Readers
familiar with games might like to skip Figure 1, and some readers might like to
study the related work before our definition of ballot secrecy.)

2 Election scheme syntax

We recall election scheme syntax (Definition 1) from Smyth, Frink & Clark-
son [SFC17]. Election schemes capture voting systems that consist of the fol-
lowing three steps. First, a tallier generates a key pair. Secondly, each voter
constructs and casts a ballot for their vote. These ballots are recorded on a
bulletin board. Finally the tallier tallies the recorded ballots and announces an
outcome, i.e., a distribution of votes.7

Definition 1 (Election scheme [SFC17]). An election scheme is a tuple of
probabilistic polynomial-time algorithms (Setup,Vote,Tally) such that:8

Setup, denoted (pk , sk ,mb,mc) ← Setup(κ), is run by the tallier. The algo-
rithm takes a security parameter κ as input and outputs a key pair pk , sk,
a maximum number of ballots mb, and a maximum number of candidates
mc.

Vote, denoted b← Vote(pk , v,nc, κ), is run by voters. The algorithm takes as
input a public key pk, a voter’s vote v, some number of candidates nc, and
a security parameter κ. Vote v should be selected from a sequence 1, . . . ,nc
of candidates. The algorithm outputs a ballot b or error symbol ⊥.

Tally, denoted (v, pf)← Tally(sk , bb,nc, κ), is run by the tallier. The algorithm
takes as input a private key sk, a bulletin board bb, some number of can-
didates nc, and a security parameter κ, where bb is a set. And outputs an
election outcome v and a non-interactive tallying proof pf demonstrating
that the outcome corresponds to votes expressed in ballots on the bulletin
board. The election outcome v should be a vector of length nc such that
v[v] indicates the number of votes for candidate v.

7Smyth, Frink & Clarkson use the syntax to model first-past-the-post voting sys-
tems [SFC17] and Smyth shows ranked-choice voting systems can be modelled too [Smy17].
Both works consider a single tallier and we discuss distributing the tallier’s role in Section 7.

8The syntax bounds the number of ballots mb, respectively candidates mc, to broaden the
correctness definition’s scope (indeed, Helios requires mb and mc to be less than or equal to
the size of the underlying encryption scheme’s message space); represents votes as integers,
rather than alphanumeric strings, for brevity; and omits algorithm Verify, because we focus
on ballot secrecy, not verifiability.

2 ELECTION SCHEME SYNTAX 6

Figure 1 Preliminaries: Games and notation

A game formulates a series of interactions between a benign challenger, a mali-
cious adversary, and a cryptographic scheme. The adversary wins by complet-
ing a task that captures an execution of the scheme in which security is broken,
i.e., what the adversary should not be able to achieve. Tasks can generally
be expressed as indistinguishability or reachability requirements. For example,
universal verifiability can be expressed as the inability to reach a state that
causes a voting system’s checks to succeed for invalid election outcomes, or fail
for valid outcomes. Moreover, ballot secrecy can be expressed as the inability
to distinguish between an instance of a voting system in which voters cast some
votes, from another instance in which the voters cast a permutation of those
votes.
Formally, games are probabilistic algorithms that output booleans. We let
A(x1, . . . , xn; r) denote the output of probabilistic algorithm A on inputs
x1, . . . , xn and random coins r, and we let A(x1, . . . , xn) denote A(x1, . . . , xn; r),
where coins r are chosen uniformly at random. Moreover, we let x← T denote
assignment of T to x, and x←R S denote assignment to x of an element chosen
uniformly at random from set S. Hence, we can formulate a game Exp(H,S,A)
that tasks an adversary A to distinguish between a function H and a simulator
S as follows: m← A();β ←R {0, 1}; if β = 0 then x← H(m); else x← S(m);
g ← A(x); return g = β. Adversaries are stateful, i.e., information persists
across invocations of an adversaryin a game. In particular, adversaries can ac-
cess earlier assignments. For instance, the adversary’s second instantiation in
game Exp has access to any assignments made during its first instantiation. An
adversary wins a game by causing it to output true (>) and the adversary’s suc-
cess in a game Exp(·), denoted Succ(Exp(·)), is the probability that the adversary
wins, that is, Succ(Exp(·)) = Pr[x← Exp(·) : x = >]. We generally require that
the adversary’s success is negligible for reachability tasks and negligibly better
than guessing for indistinguishability tasks.
Game Exp captures a single interaction between the challenger and adversary.
We extend games with oracles to capture arbitrarily many interactions. Hence,
we can formulate a strengthening of Exp as follows: β ←R {0, 1}; g ← AO(x);
return g = β, where AO denotes A’s access to oracle O and O(m) computes if
β = 0 then x ← H(m); else x ← S(m); return x. Oracles may access game
parameters such as bit β.
Beyond the above notation, we let x[i] denote component i of vector x and let
|x| denote the length of vector x. Moreover, we write (x1, . . . , x|T |) ← T for
x ← T ;x1 ← x[1]; . . . ;x|T | ← x[|T |], when T is a vector, and x, x′ ←R S for
x←R S;x′ ←R S.

3 PRIVACY 7

Election schemes must satisfy correctness: there exists a negligible function
negl, such that for all security parameters κ, integers nb and nc, and votes
v1, . . . , vnb ∈ {1, . . . ,nc}, it holds that, given a zero-filled vector v of length nc,
we have:

Pr[(pk , sk ,mb,mc)← Setup(κ);

for 1 ≤ i ≤ nb do
bi ← Vote(pk , vi,nc, κ);
v[vi]← v[vi] + 1;

(v′, pf)← Tally(sk , {b1, . . . , bnb},nc, κ) :
nb ≤ mb ∧ nc ≤ mc ⇒ v = v′] > 1− negl(κ).

The syntax provides a language to express voting systems and their properties.

3 Privacy

Some scenarios inevitably reveal voters’ votes: Unanimous election outcomes
reveal how everyone voted and, more generally, election outcomes can be cou-
pled with partial knowledge on the distribution of voters’ votes to deduce voters’
votes. For example, suppose Alice, Bob and Mallory participate in a referen-
dum and the outcome has frequency two for ‘yes’ and one for ‘no.’ Mallory and
Alice can deduce Bob’s vote by pooling knowledge of their own votes. Similarly,
Mallory and Bob can deduce Alice’s vote. Furthermore, Mallory can deduce
that Alice and Bob both voted yes, if she voted no. For simplicity, our infor-
mal definition of ballot secrecy (§1) deliberately omitted side-conditions which
exclude these inevitable revelations and which are necessary for satisfiability.9

We now refine that definition as follows:

A voter’s vote is not revealed to anyone, except when the vote can
be deduced from the election outcome and any partial knowledge on
the distribution of votes.

This refinement ensures the aforementioned examples are not violations of ballot
secrecy. By comparison, if Mallory votes yes and she can deduce the vote of
Alice, without knowledge of Bob’s vote, then ballot secrecy is violated.

We could formulate ballot secrecy as the following game: First, the adversary
picks a pair of votes v0 and v1. Secondly, the challenger constructs a ballot b1
for vote vβ and a second ballot b2 for v1−β , where β is a bit chosen uniformly
at random. Those ballots are given to the adversary. Thirdly, the adversary
constructs ballots b3, . . . , bn. Fourthly, the challenger tallies all the ballots (i.e.,
b1, . . . , bn) to the determine the election outcome, which the adversary is given.
Finally, the adversary is tasked with determining bit β. This game challenges
the adversary to determine if the first ballot is for v0 and the second is for v1, or

9Voting systems that announce chosen representatives (e.g., [BY86, HK02, HK04, DK05]),
rather than distributions of votes, could offer stronger notions of privacy.

3 PRIVACY 8

vice-versa. Intuitively, a losing adversary cannot distinguish ballots; seemingly
suggesting that Alice voting ‘yes’ is indistinguishable from Bob voting ‘no.’

The first release of Helios is not secure with respect to the aforementioned
game, due to a vulnerability identified by Cortier & Smyth [CS13, CS11]. In-
deed, an adversary can observe a ballot constructed by the challenger, compute
a meaningfully related ballot (from a malleable Helios ballot), and exploit the
relation to win the game. This vulnerability can be attributed to tallying mean-
ingfully related ballots; omitting such ballots from tallying, i.e., ballot weeding, is
postulated as a defence [CS11,SC11,Smy12,CS13,SB13,BCG+15b,BCG+15a].
Variants of Helios with ballot weeding seem secure with respect to this game.
Unfortunately, ballot weeding mechanisms can be subverted by intercepting bal-
lots or by re-ordering ballots. For instance, Smyth, Frink & Clarkson show how
re-ordering ballots can subvert weeding mechanisms in a manner that violates
universal verifiability [SFC17], and we will see that ballot secrecy can be violated
too (§4.3). Given that current definitions cannot detect such vulnerabilities (§7),
we should conclude that they are unsuitable. Indeed, the challenger tallying all
ballots introduces an implicit trust assumption: ballots are recorded-as-cast, i.e.,
cast ballots are preserved with integrity through the ballot collection process.10

Thus, vulnerabilities that manipulate the ballot collection process cannot be de-
tected, including vulnerabilities that can be exploited to distinguish Alice voting
‘yes’ from Bob voting ‘no.’ To overcome this shortcoming, we formulate a new
definition of ballot secrecy in which the adversary controls the ballot collection
process, i.e., the bulletin board and the communication channel.

3.1 Ballot secrecy

We formalise ballot secrecy as the indistinguishability game described in Sec-
tion 1.

Definition 2 (Ballot-Secrecy). Let Γ = (Setup,Vote,Tally) be an election scheme,
A be an adversary, κ be a security parameter, and Ballot-Secrecy(Γ,A, κ) be the
following game.

Ballot-Secrecy(Γ,A, κ) =

(pk , sk ,mb,mc)← Setup(κ);
nc ← A(pk , κ);
β ←R {0, 1};
L← ∅;
bb← AO();
(v, pf)← Tally(sk , bb,nc, κ);
g ← A(v, pf);
return g = β ∧ balanced(bb,nc, L) ∧ 1 ≤ nc ≤ mc ∧ |bb| ≤ mb;

Predicate balanced(bb,nc, L) holds when: for all votes v ∈ {1, . . . ,nc} we have
|{b | b ∈ bb ∧ ∃v1 . (b, v, v1) ∈ L}| = |{b | b ∈ bb ∧ ∃v0 . (b, v0, v) ∈ L}|. And
oracle O is defined as follows:

10The recorded-as-cast notion was introduced by Adida & Neff [AN06, §2].

3 PRIVACY 9

• O(v0, v1) computes b← Vote(pk , vβ ,nc, κ);L← L ∪ {(b, v0, v1)} and out-
puts b, where v0, v1 ∈ {1, ...,nc}.

We say Γ satisfies Ballot-Secrecy, if for all probabilistic polynomial-time ad-
versaries A, there exists a negligible function negl, such that for all security
parameters κ, we have Succ(Ballot-Secrecy(Γ,A, κ)) ≤ 1

2 + negl(κ).

Game Ballot-Secrecy captures a setting in which the tallier generates a key pair
using the scheme’s Setup algorithm, publishes the public key, and only uses the
private key to compute the election outcome and tallying proof.

In our game, the adversary has access to a left-right oracle which can con-
struct ballots on the adversary’s behalf.11 The oracle constructs ballots in two
ways, corresponding to a bit β chosen uniformly at random by the challenger.
If β = 0, then, given a pair of votes v0, v1, the oracle constructs a ballot for v0

and outputs the ballot to the adversary. Otherwise (β = 1), the oracle outputs
a ballot for v1. The adversary computes a bulletin board, which may include
ballots constructed by the oracle. Thus, the game captures a setting where the
bulletin board is computed by an adversary that casts ballots on behalf of some
voters and controls the distribution of votes cast by the remaining voters. The
challenger tallies the adversary’s bulletin board to derive an election outcome
and tallying proof. The adversary is given the outcome and proof, and wins by
determining whether β = 0 or β = 1. Intuitively, if the adversary wins, then
there exists a strategy to distinguish ballots, otherwise, the adversary is unable
to distinguish between a ballot for vote v0 and a ballot for vote v1, therefore,
voters’ votes cannot be revealed.

Our notion of ballot secrecy considers election schemes which reveal the
number of votes for each candidate (i.e., the election outcome). Hence, to avoid
trivial distinctions in our ballot secrecy game, we require that the game is bal-
anced : “left” and “right” inputs to the left-right oracle are equivalent, when the
corresponding outputs appear on the bulletin board. For example, suppose the
inputs to the left-right oracle are (v1,0, v1,1), . . . , (vn,0, vn,1) and the correspond-
ing outputs are b1, . . . , bn, further suppose the bulletin board is {b1, . . . , b`} such
that ` ≤ n. That game is balanced if the “left” inputs v1,0, . . . , v`,0 are a per-
mutation of the “right” inputs v1,1, . . . , v`,1. The balanced condition prevents
trivial distinctions.12 For instance, an adversary that computes a bulletin board
containing only the ballot output by a left-right oracle query with input (1, 2)
cannot win the game, because it is unbalanced. Albeit, that adversary could
trivially determine whether β = 0 or β = 1, given the tally of that bulletin
board.

Proving ballot secrecy is time consuming. Indeed, Quaglia & Smyth’s ballot-
secrecy proof for our simple Enc2Vote scheme consumes over six and a half

11Bellare et al. introduced left-right oracles in the context of symmetric encryp-
tion [BDJR97] and Bellare & Rogaway provide a tutorial on their use [BR05].

12A weaker balanced condition might be sufficient for alternative formalisations of election
schemes. For instance, voting systems which only announce the winning candidate could be
analysed using a balanced condition asserting that the winning candidate was input on both
the “left” and “right.”

3 PRIVACY 10

pages [QS17a, Appendix C.6]. Thus, sufficient conditions for ballot secrecy
should be sought, and we will see that ballot independence suffices.

3.2 Ballot independence

Ballot independence [Gen95, CS13, CGMA85] is seemingly related to ballot se-
crecy.

• Ballot independence. Observing another voter’s interaction with the vot-
ing system does not allow a voter to cast a meaningfully related vote.

Our informal definition essentially states that an adversary is unable to construct
a ballot meaningfully related to a non-adversarial ballot, i.e., ballots are non-
malleable. Hence, we can formalise ballot independence using non-malleability:
We formalise non-malleability for election schemes as a straightforward adap-
tation of the non-malleability definition for asymmetric encryption by Bellare
& Sahai [BS99].13 Such a formalisation captures an intuitive notion of ballot
independence, but the definition is complex and proofs of non-malleability are
relatively difficult. Bellare & Sahai observe similar complexities and show that
their definition is equivalent to a simpler, indistinguishability game [BS99]. In
a similar direction, we derive a simpler, equivalent definition of ballot indepen-
dence as a straightforward adaptation of that indistinguishability game.

3.2.1 Non-malleability game

We formalise ballot independence as a non-malleability game, called comparison
based non-malleability under chosen vote attack (CNM-CVA).

Definition 3 (CNM-CVA). Let Γ = (Setup,Vote,Tally) be an election scheme,
A be an adversary, κ be a security parameter, and cnm-cva(Γ,A, κ) and cnm-
cva-$(Γ,A, κ) be the following games.

cnm-cva(Γ,A, κ) =

(pk , sk ,mb,mc)← Setup(κ);
(V,nc)← A(pk , κ);
v ←R V ;
b← Vote(pk , v,nc, κ);
(R, bb)← A(b);
(v, pf)← Tally(sk , bb,nc, κ);
return R(v, v) ∧ b 6∈ bb
∧ V ⊆ {1, . . . ,nc}
∧ 1 ≤ nc ≤ mc ∧ |bb| ≤ mb;

cnm-cva-$(Γ,A, κ) =

(pk , sk ,mb,mc)← Setup(κ);
(V,nc)← A(pk , κ);
v, v′ ←R V ;
b← Vote(pk , v′,nc, κ);
(R, bb)← A(b);
(v, pf)← Tally(sk , bb,nc, κ);
return R(v, v) ∧ b 6∈ bb
∧ V ⊆ {1, . . . ,nc}
∧ 1 ≤ nc ≤ mc ∧ |bb| ≤ mb;

13Non-malleability was first formalised by Dolev, Dwork & Naor in the context of asymmet-
ric encryption [DDN91, DDN00]; the definition by Bellare & Sahai builds upon their results
and results by Bellare et al. [BDPR98].

3 PRIVACY 11

In the above games, we require that relation R is computable in polynomial
time. We say Γ satisfies comparison based non-malleability under chosen vote
attack (CNM-CVA), if for all probabilistic polynomial-time adversaries A, there
exists a negligible function negl, such that for all security parameters κ, we have
Succ(cnm-cva(Γ,A, κ))− Succ(cnm-cva-$(Γ,A, κ)) ≤ negl(κ).

Similarly to game Ballot-Secrecy, games cnm-cva and cnm-cva-$ capture: key
generation using algorithm Setup, publication of the public key, and only using
the private key to compute the election outcome and tallying proof.

CNM-CVA is satisfied if no adversary can distinguish between games cnm-
cva and cnm-cva-$. That is, for all adversaries, the adversary wins cnm-cva
iff the adversary loses cnm-cva-$, with negligible probability. The first three
steps of games cnm-cva and cnm-cva-$ are identical, thus, these steps cannot
be distinguished. Then, game cnm-cva-$ performs an additional step: the chal-
lenger samples a second vote v′ from vote space V . Thereafter, game cnm-
cva, respectively game cnm-cva-$, proceeds as follows: the challenger constructs
a challenge ballot b for v, respectively v′; the adversary is given ballot b and
computes a relation R and bulletin board bb; and the challenger tallies bb to de-
rive election outcome v and evaluates whether R(v, v) holds. Hence, CNM-CVA
is satisfied if there is no advantage of the relation computed by an adversary
given a challenge ballot for v, over the relation computed by the adversary given
a challenge ballot for v′. That is, for all adversaries, we have with negligible
probability that the relation evaluated by the challenger in cnm-cva holds iff the
relation evaluated in cnm-cva-$ does not hold. It follows that no adversary can
meaningfully relate ballots. On the other hand, if CNM-CVA is not satisfied,
then there exists a strategy to construct related ballots.

CNM-CVA avoids crediting the adversary for trivial and unavoidable relations
which hold if the challenge ballot appears on the bulletin board. For example,
suppose the adversary is given a challenge ballot for v in cnm-cva, respectively
v′ in cnm-cva-$. This adversary could output a bulletin board containing only
the challenge ballot and a relation R such that R(v, v) holds if v[v] = 1, hence,
the relation evaluated in cnm-cva holds, whereas the relation evaluated in cnm-
cva-$ does not hold, but the adversary loses in both games because the challenge
ballot appears on the bulletin board. By contrast, if the adversary can derive
a ballot meaningfully related to the challenge ballot, then the adversary can
win the game. For instance, Cortier & Smyth [CS13, CS11] identify a class of
vulnerabilities against voting systems, which can be exploited as follows: an
adversary observes a voter’s ballot, casts a meaningfully related ballot, and
abuses the relation to recover the voter’s vote from the election outcome.

Comparing CNM-CVA and CNM-CPA. The main distinction between non-
malleability for asymmetric encryption (CNM-CPA) and non-malleability for
election schemes (CNM-CVA) is as follows: CNM-CPA performs a parallel de-
cryption, whereas CNM-CVA performs a single tally. Hence, non-malleability
for encryption reveals plaintexts corresponding to ciphertexts, whereas non-
malleability for elections reveals the number of votes for each candidate.

3 PRIVACY 12

3.2.2 Indistinguishability game

We formalise an alternative definition of ballot independence as an indistin-
guishability game, called indistinguishability under chosen vote attack (IND-
CVA).

Definition 4 (IND-CVA). Let Γ = (Setup,Vote,Tally) be an election scheme,
A be an adversary, κ be the security parameter, and IND-CVA(Γ,A, κ) be the
following game.

IND-CVA(Γ,A, κ) =

β ←R {0, 1};
b← Vote(pk , vβ ,nc, κ);
bb← A(b);
(v, pf)← Tally(sk , bb,nc, κ);
g ← A(v);
return g = β ∧ b 6∈ bb ∧ 1 ≤ v0, v1 ≤ nc ≤ mc ∧ |bb| ≤ mb;

We say Γ satisfies indistinguishability under chosen vote attack (IND-CVA),
if for all probabilistic polynomial-time adversaries A, there exists a negligible
function negl, such that for all security parameters κ, we have IND-CVA(Γ,A,
κ) ≤ 1

2 + negl(κ).

IND-CVA is satisfied if the adversary cannot determine whether the challenge
ballot b is for one of two possible votes v0 and v1. In addition to the challenge
ballot, the adversary is given the election outcome derived by tallying a bulletin
board computed by the adversary. To avoid trivial distinctions, the adversary’s
bulletin board should not contain the challenge ballot. Intuitively, the adversary
wins if there exists a strategy to construct related ballots, since this strategy
enables the adversary to construct a ballot b′, related to the challenge ballot b,
and determine if b is for v0 or v1 from the outcome derived by tallying a bulletin
board containing b′.

Comparing IND-CVA and IND-PA0. Unsurprisingly, the distinction between
indistinguishability for asymmetric encryption (IND-PA0) and indistinguisha-
bility for election schemes (IND-CVA) is similar to the distinction between non-
malleability for asymmetric encryption and non-malleability for election schemes
(§3.2.1), namely, IND-PA0 performs a parallel decryption, whereas IND-CVA per-
forms a single tally.

3.2.3 Equivalence between games

Our ballot independence games are adaptations of standard security definitions
for asymmetric encryption: CNM-CVA is based on non-malleability for encryp-
tion and IND-CVA is based on indistinguishability for encryption. Bellare &
Sahai [BS99] have shown that non-malleability is equivalent to indistinguisha-
bility for encryption and their proof can be adapted to show that CNM-CVA
and IND-CVA are equivalent.

3 PRIVACY 13

Theorem 1 (CNM-CVA = IND-CVA). Given an election scheme Γ, we have Γ
satisfies CNM-CVA iff Γ satisfies IND-CVA.

A proof of Theorem 1 and all further proofs, except where otherwise stated,
appear in Appendix B.

3.3 Secrecy and independence coincide

The main distinctions between our ballot secrecy (Ballot-Secrecy) and ballot
independence (IND-CVA) games are as follows.

1. The challenger produces one challenge ballot for the adversary in our bal-
lot independence game, whereas the left-right oracle produces arbitrarily
many challenge ballots for the adversary in our ballot secrecy game.

2. The adversary in our ballot secrecy game has access to a tallying proof,
but the adversary in our ballot independence game does not.

3. The winning condition in our ballot secrecy game requires the bulletin
board to be balanced, whereas the bulletin board must not contain the
challenge ballot in our ballot independence game.

The second point distinguishes our games and shows ballot secrecy is at least
as strong as ballot independence. Hence, non-malleable ballots are necessary in
election schemes satisfying ballot secrecy.

Theorem 2 (Ballot-Secrecy⇒ IND-CVA). Given an election scheme Γ satisfy-
ing Ballot-Secrecy, we have Γ satisfies IND-CVA.

Tallying proofs may reveal voters’ votes. For example, a variant of Enc2Vote
might define tallying proofs that map ballots to votes. Since proofs are available
to the adversary in our ballot secrecy game, but not in our ballot independence
game, it follows that ballot secrecy is strictly stronger than ballot independence.

Proposition 3 (IND-CVA 6⇒ Ballot-Secrecy). There exists an election scheme
Γ such that Γ satisfies IND-CVA, but not Ballot-Secrecy.

Proposition 3 follows from our informal reasoning and we omit a formal proof.
Secrecy game Ballot-Secrecy is generally stronger than independence game

IND-CVA. Nonetheless, we show that our definitions of ballot independence
and ballot secrecy coincide for election schemes without tallying proofs (Def-
inition 5), assuming a soundness condition (Definition 6), which asserts that
adding a ballot for vote v to a bulletin board (computed by an adversary), ef-
fects the election outcome by exactly vote v, hence, honestly constructed ballots
are tallied correctly.

Definition 5. An election scheme Γ = (Setup,Vote,Tally) is without tallying
proofs, if there exists a constant symbol ε such that for all multisets bb we have:
Pr[(pk , sk ,mb,mc)← Setup(κ); (v, pf)← Tally(sk , bb,nc, κ) : pf = ε] = 1.

4 CASE STUDY I: HELIOS 14

Definition 6 (HB-Tally-Soundness). Let Γ = (Setup,Vote,Tally) be an elec-
tion scheme, A be an adversary, κ be a security parameter, and HB-Tally-
Soundness(Γ,A, κ) be the following game.

HB-Tally-Soundness(Γ,A, κ) =

(pk , sk ,mb,mc)← Setup(κ);
(v,nc, bb0)← A(pk , κ);
b← Vote(pk , v,nc, κ);
(v0, pf 0)← Tally(sk , bb0,nc, κ);
(v1, pf 1)← Tally(sk , bb0 ∪ {b},nc, κ);
v∗ ← (v0[1], . . . , v0[v − 1], v0[v] + 1, v0[v + 1], . . . , v0[|v0|]);
return v∗ 6= v1 ∧ b 6∈ bb0 ∧ 1 ≤ v ≤ nc ≤ mc ∧ |bb0 ∪ {b}| ≤ mb;

We say Γ satisfies honest-ballot tally soundness (HB-Tally-Soundness), if for
all probabilistic polynomial-time adversaries A, there exists a negligible function
negl, such that for all security parameters κ, we have Succ(HB-Tally-Soundness(Γ,
A, κ)) ≤ negl(κ).

Proposition 4 (Ballot-Secrecy = IND-CVA, without proofs). Let Γ be an elec-
tion scheme without tallying proofs. Suppose Γ satisfies HB-Tally-Soundness.
We have Γ satisfies Ballot-Secrecy iff Γ satisfies IND-CVA.

Our equivalence result generalises to election schemes with zero-knowledge
tallying proofs, i.e., schemes that compute proofs using non-interactive zero-
knowledge proof systems.

Definition 7 (Zero-knowledge tallying proofs). Let Γ = (Setup,Vote,Tally) be
an election scheme. We say Γ has zero-knowledge tallying proofs, if there exists
a non-interactive zero-knowledge proof system (Prove,Verify), such that for all
security parameters κ, integers nc, bulletin boards bb, outputs (pk , sk ,mb,mc)
of Setup(κ), and outputs (v, pf) of Tally(sk , bb,nc, κ), we have pf = Prove((pk ,
bb,nc, v), sk , κ; r), such that coins r are chosen uniformly at random by Tally.

Theorem 5 (Ballot-Secrecy = IND-CVA, with ZK proofs). Let Γ be an elec-
tion scheme with zero-knowledge tallying proofs. Suppose Γ satisfies HB-Tally-
Soundness. We have Γ satisfies Ballot-Secrecy iff Γ satisfies IND-CVA.

Honest-ballot tally soundness is implied by universal verifiability (Lemmata 10
& 29). Thus, a special case of Theorem 5 requires the election scheme to satisfy
universal verifiability, which is useful to simplify its application. Indeed, we
exploit this result in the following section to prove Ballot-Secrecy.

4 Case study I: Helios

Helios can be informally modelled as the following election scheme:

Setup generates a key pair for an asymmetric homomorphic encryption scheme,
proves correct key generation in zero-knowledge, and outputs the key pair
and proof.

4 CASE STUDY I: HELIOS 15

Vote enciphers the vote to a ciphertext, proves in zero-knowledge that the
ciphertext is correctly constructed and that the vote is selected from the
sequence of candidates, and outputs the ciphertext coupled with the proof.

Tally selects ballots from a bulletin board for which proofs hold, homomorphi-
cally combines the ciphertexts in those ballots, decrypts the homomorphic
combination to reveal the election outcome, and announces the outcome,
along with a zero-knowledge proof of correct decryption.

Helios was first released in 2009 as Helios 2.0,14 the current release is He-
lios 3.1.4,15 and a new release is planned.16 Henceforth, we’ll refer to the
planned release as Helios’12.

4.1 Helios 2.0

Cortier & Smyth show that Helios 2.0 does not satisfy ballot secrecy (§3). Thus,
we would not expect Ballot-Secrecy to hold. Indeed, we adopt a formal descrip-
tion of Helios 2.0 by Smyth, Frink & Clarkson [SFC17] (Appendix C) and use
that description to prove that secrecy does not hold.

Theorem 6. Helios 2.0 does not satisfy Ballot-Secrecy.

Proof sketch. Suppose an adversary queries the left-right oracle with inputs v0

and v1 to derive a ballot for vβ , where bit β is chosen by the challenger. Further
suppose the adversary abuses malleability to derive a related ballot b for vβ
and outputs bulletin board {b}. The board is balanced, because it does not
contain the ballot output by the oracle. Suppose the adversary performs the
following computation on input of election outcome v: if v[v0] = 1, then output
0, otherwise, output 1. Since b is a ballot for vβ , it follows by correctness that
v[v0] = 1 iff β = 0, and v[v1] = 1 iff β = 1, hence, the adversary wins the
game.

For simplicity, our proof sketch considers an adversary that omits ballots from
the bulletin board. Voters might detect such an adversary, because Helios satis-
fies individual verifiability, hence, voters can discover if their ballot is omitted.
Our proof sketch can be extended to avoid such detection: Let b1 be the ballot
output by the left-right oracle in the proof sketch and suppose b2 is the ballot
output by a (second) left-right oracle query with inputs v1 and v0. Further
suppose the adversary outputs (the balanced) bulletin board {b, b1, b2} and per-
forms the following computation on input of election outcome v: if v[v0] = 2,
then output 0, otherwise, output 1. Hence, the adversary wins the game. More-
over, we will see that the vulnerability is not eliminated by ballot weeding (§4.3).

14https://github.com/benadida/helios/releases/tag/2.0, released 25 Jul 2009, accessed
21 Sep 2017.

15https://github.com/benadida/helios-server/releases/tag/v3.1.4, released 10 Mar
2011, last patched 27 Oct 2017, accessed 17 Jan 2018.

16http://documentation.heliosvoting.org/verification-specs/helios-v4, published c.
2012, accessed 21 Sep 2017.

4 CASE STUDY I: HELIOS 16

Cortier & Smyth attribute the vulnerability to tallying meaningfully related
ballots. Indeed, Helios 2.0 uses malleable ballots: A vote v selected from candi-
dates 1, . . . ,nc is enciphered to a tuple of ciphertexts c1, . . . , cnc−1 such that if
v < nc, then ciphertext cv contains plaintext 1 and the remaining ciphertexts
contain plaintext 0, otherwise, all ciphertexts contain plaintext 0. Moreover,
correct ciphertext construction is shown using proofs σ1, . . . , σnc such that proof
σj demonstrates ciphertext cj contains 0 or 1, where 1 ≤ j ≤ nc − 1, and proof
σnc demonstrates that the homomorphic combination of ciphertexts c1 ⊗ · · · ⊗
cnc−1 contains 0 or 1. Hence, given a ballot c1, . . . , cnc−1, σ1, . . . , σnc , we have
cχ(1), . . . , cχ(nc−1), σχ(1), . . . , σχ(nc−1), σnc is a ballot for all permutations χ on
{1, . . . ,nc − 1}. Thus, ballots are malleable, which is incompatible with ballot
secrecy (§3.3).

4.2 Helios 3.1.4

Chang-Fong & Essex [CE16] showed that Helios 3.1.4 did not satisfy ballot
secrecy (prior to patching). They attributed the vulnerability to not check-
ing the suitability of cryptographic parameters nor checking that ballots are
constructed from such parameters. The vulnerability was mitigated against by
patching Helios 3.1.4 to perform the necessary checks.17 Nonetheless, ballots re-
main malleable, hence, Helios 3.1.4 does not satisfy ballot secrecy, and we prove
that Ballot-Secrecy is not satisfied, using a formal description of Helios 3.1.4
that we derive from our description of Helios 2.0 (Appendix C).

Corollary 7. Helios 3.1.4 does not satisfy Ballot-Secrecy.

A proof of Corollary 7 follows from Theorem 6, because Helios 3.1.4 does not
address issues arising from related ballots.

4.3 Helios’12

Bernhard, Pereira & Warinschi [BPW12a] show that Helios 3.1.4 does not sat-
isfy universal verifiability.18 They attribute vulnerabilities to application of the
Fiat–Shamir transformation without inclusion of statements in hashes (i.e.,
weak Fiat–Shamir), and including statements in hashes (i.e., applying the Fiat–
Shamir transformation) is postulated as a defence. Helios’12 is intended to
mitigate against vulnerabilities. In particular, the specification incorporates
the Fiat–Shamir transformation (rather than weak Fiat–Shamir), and there are
plans to incorporate ballot weeding.19

Bernhard, Pereira & Warinschi [BPW12a], Bernhard [Ber14, §6.11] and
Bernhard et al. [BCG+15a, §D.3] show that Helios’12 satisfies various notions
of ballot secrecy. These notions all assume ballots are recorded-as-cast. Unfor-
tunately, ballot secrecy is not satisfied without this assumption, because Helios

17https://github.com/benadida/helios-server/pull/133, accessed 21 Sep 2017.
18Beyond secrecy and verifiability, eligibility is known not to be satisfied [SP13,SP15,MS17].
19Cf. https://github.com/benadida/helios-server/issues/8 and https://github.com/

benadida/helios-server/issues/35, accessed 21 Sep 2017.

4 CASE STUDY I: HELIOS 17

2.0, Helios 3.1.4 and Helios’12 all use malleable ballots in elections with more
than two candidates.20

Remark 8. Helios’12 does not satisfy Ballot-Secrecy.

Proof sketch. Neither ballot weeding nor the Fiat–Shamir transformation elim-
inate the vulnerability we identified in Helios 3.1.4, because related ballots need
not be tallied (as shown in the proof sketch of Theorem 6).21 Hence, we conclude
by Corollary 7.

A formal proof of Remark 8 would require a formal description of Helios’12.
Such a description can be derived as a straightforward variant of Helios 3.1.4
that uses ballot weeding and applies the Fiat–Shamir transformation (rather
than the weak Fiat–Shamir transformation). These details provide little value,
so we do not pursue them.

The proof sketch of Remark 8 shows that Helios’12 does not defend against
a known Helios 2.0 vulnerability, in the presence of an adversary that con-
trols ballot collection. We also derive a new exploit (as the following example
demonstrates) by extrapolating from the proof sketch of Theorem 6 and Cortier
& Smyth’s permutation attack, which asserts: given a ballot b for vote v, we
can abuse malleability to derive a ballot b′ for vote v′ [CS13, §3.2.2]. Suppose
Alice, Bob and Charlie are voters, and Mallory is an adversary that wants to
convince herself that Alice did not vote for a candidate v. Further suppose
Alice casts a ballot b1 for vote v1, Bob casts a ballot b2, and Charlie casts a
ballot b3. Moreover, suppose that either Bob or Charlie vote for v. (Thereby
avoiding scenarios without any votes for candidate v, i.e., scenarios which in-
evitably permit Mallory to convince herself that Alice did not vote for candidate
v.) Let us assume that votes for v′ are not expected. Mallory proceeds as fol-
lows: she intercepts ballot b1, abuses malleability to derive a ballot b such that
v = v1 implies b is a vote for v′, and casts ballot b. It follows that the tallier
will compute the election outcome from bulletin board {b, b2, b3}. (Omitting
meaningfully related ballots before tallying does not eliminate the vulnerabil-
ity, because none of the tallied ballots are related.) If the outcome does not
contain any votes for v′, then Mallory is convinced that Alice did not vote for
v. Notions of ballot secrecy used by Bernhard, Pereira & Warinschi [BPW12a],
Bernhard [Ber14, §6.11] and Bernhard et al. [BCG+15a, §D.3] cannot detect
this new exploit nor the known Helios 2.0 vulnerability (in the presence of an
adversary that controls ballot collection), because interception is not possible
when ballots are recorded-as-cast.22

20Proofs by Bernhard, Pereira & Warinschi and Bernhard et al. are limited to two candidate
elections, for which Helios’12 uses non-malleable ballots.

21The proof sketch of Theorem 6 violates the recorded-as-cast assumption, since the ballot
output by the left-right oracle does not appear on the bulletin board.

22This observation suggests that recorded-as-cast is unsatisfiable: An adversary that can
intercept ballots can always prevent the collection of ballots. Nevertheless, the definition of
recorded-as-cast is informal, thus ambiguity should be expected and some interpretation of
the definition should be satisfiable.

4 CASE STUDY I: HELIOS 18

The exploit is reliant on a particular candidate not receiving any votes.
This is trivial to capture in the context of our ballot secrecy game, because
the bulletin board is computed by an adversary that casts ballots on behalf of
some voters and controls the distribution of votes cast by the remaining voters.
Beyond the game, candidates will presumably vote for themselves. Thus, for
first-past-the-post elections, the exploit’s practicality is probably limited to elec-
tions in which voters vote in constituencies and each polling station announces
its own outcome (cf. Cortier & Smyth [CS13, §3.3]).

Ballot weeding. Ballot weeding mechanisms have been proposed, e.g., [CS11,
SC11,Smy12,CS13,SB13,BW14,BCG+15b,BCG+15a], but the specification for
Helios’12 does not yet define a particular mechanism. One candidate mecha-
nism omits any ballot containing a previously observed hash from the tallying
procedure. Another – already in use by the IACR – omits any ballot contain-
ing a previously observed hash from the bulletin board.23 (More precisely, the
mechanism stores the hashes used by non-interactive zero-knowledge proofs in
a hashtable and any ballot containing a previously stored hash is omitted from
the bulletin board.) These mechanisms can be subverted by excluding ballots
(Remark 8). Moreover, similarly to our extended proof sketch of Theorem 6
(§4.1), we can extend our proof sketch of Remark 8 to avoid voter detection,
because the former mechanism includes all ballots on the bulletin board and
(silently) omits ballots during tallying, and the latter can be disregarded by an
adversary that controls ballot collection (hence, the bulletin board).

4.4 Helios’16

We have seen that non-malleable ballots are necessary for ballot secrecy (§3.3),
hence, future Helios releases should adopt non-malleable ballots. Smyth, Frink
& Clarkson make progress in this direction by proposing Helios’16 [SFC17], a
variant of Helios which satisfies verifiability and is intended, but not proven, to
use non-malleable ballots. We recall their formal description in Appendix C,
and using that formalisation we prove that Helios’16 satisfies secrecy.

Theorem 9. Helios’16 satisfies Ballot-Secrecy.

Proof sketch. We prove that Helios’16 has zero-knowledge tallying proofs and,
since universal verifiability is satisfied [SFC17], we have HB-Tally-Soundness too
(Lemmata 10 & Lemma 29). Hence, by Theorem 5, it suffices to show that
Helios’16 satisfies IND-CVA, which we prove by reduction to the security of the
underlying encryption scheme (namely, IND-CPA of El Gamal).

A formal proof of Theorem 9 appears in Appendix C. The proof assumes the
random oracle model [BR93]. This proof, coupled with the proof of verifiability
by Smyth, Frink & Clarkson [SFC17], provides strong motivation for future

23David Bernhard, email communication, c. 2014 and 19 Sep 2017.

5 SIMPLIFYING BALLOT-SECRECY PROOFS 19

Helios releases being based upon Helios’16, since it is the only variant of Helios
which is proven to satisfy both ballot secrecy and verifiability.24

5 Simplifying ballot-secrecy proofs

We have seen that our definitions of ballot secrecy and ballot independence
coincide when tallying proofs are zero-knowledge and honestly constructed bal-
lots are tallied correctly (Theorem 5). Building upon this result and Propo-
sition 11, we show that tallying cannot harm secrecy when all ballots are tal-
lied correctly. That is, (Setup,Vote,Tally) satisfies Ballot-Secrecy if and only if
(Setup,Vote,Tally′) does, assuming algorithms Tally and Tally′ both tally ballots
correctly.25

Smyth, Frink & Clarkson [SFC17] capture the notion of tallying ballots
correctly using function correct-outcome. That function uses a counting quan-
tifier [Sch05]: A predicate (∃=`x : P (x)) that holds exactly when there are
` distinct values for x such that P (x) is satisfied. (Variable x is bound by
the quantifier and integer ` is free.) Using the counting quantifier, function
correct-outcome is defined such that correct-outcome(pk ,nc, bb, κ)[v] = ` iff
∃=`b ∈ bb\{⊥} : ∃r : b = Vote(pk , v,nc, κ; r), where correct-outcome(pk ,nc, bb, κ)
is a vector of length nc and 1 ≤ v ≤ nc. Hence, component v of vector
correct-outcome(pk ,nc, bb, κ) equals ` iff there exist ` ballots for vote v on
the bulletin board. The function requires ballots be interpreted for only one
candidate, which can be ensured by injectivity.

Definition 8 (HK-Injectivity). An election scheme (Setup,Vote,Tally) satisfies
honest-key injectivity (HK-Injectivity), if for all probabilistic polynomial-time
adversaries A and security parameters κ, we have Pr[(pk , sk ,mb,mc)← Setup(
κ); (nc, v, v′) ← A(pk , κ); b ← Vote(pk ,nc, v, κ); b′ ← Vote(pk ,nc, v′, κ) : v 6=
v′ ∧ b 6= ⊥ ∧ b′ 6= ⊥ ⇒ b 6= b′] = 1.

Equipped with notions of injectivity and of tallying ballots correctly, we
formalise a soundness condition asserting that an election scheme tallies ballots
correctly (Definition 9), which allows us to formally state that tallying cannot
harm ballot independence when all ballots are tallied correctly (Proposition 11).

Definition 9 (Tally-Soundness). Let Γ = (Setup,Vote,Tally) be an election
scheme, A be an adversary, κ be a security parameter, and Tally-Soundness(Γ,
A, κ) be the following game.

24Earlier versions of Helios have been shown to satisfy definitions of ballot secrecy by Bern-
hard et al., but not notions of verifiability (the analysis by Küsters et al. [KTV12b] does not
detect vulnerabilities identified by Bernhard et al. [BPW12a] and Chang-Fong & Essex [CE16],
possibly because their analysis “does not formalize all the cryptographic primitives used by
Helios” [SFC17, §9]).

25A more general result also holds: (Setup,Vote,Tally) satisfies ballot secrecy iff (Setup,Vote,
Tally′) satisfies ballot secrecy, assuming algorithms Tally and Tally′ are indistinguishable, i.e.,
they tally ballots in the same way. However, election schemes that tally ballots incorrectly
are not useful, so we forgo generality for practicality.

5 SIMPLIFYING BALLOT-SECRECY PROOFS 20

Tally-Soundness(Γ,A, κ) =

(pk , sk ,mb,mc)← Setup(κ);
(nc, bb)← A(pk , κ);
(v, pf)← Tally(sk , bb,nc, κ);
return v 6= correct-outcome(pk ,nc, bb, κ) ∧ |bb| ≤ mb ∧ nc ≤ mc;

We say Γ satisfies tally soundness (Tally-Soundness), if Γ satisfies HK-Injectivity
and for all probabilistic polynomial-time adversaries A, there exists a negligi-
ble function negl, such that for all security parameters κ, we have Succ(Tally-
Soundness(Γ,A, κ)) ≤ negl(κ).

Lemma 10. Tally-Soundness implies HB-Tally-Soundness.

Proposition 11. Let Γ = (Setup,Vote,Tally) and Γ′ = (Setup,Vote,Tally′) be
election schemes. Suppose Γ and Γ′ satisfy Tally-Soundness. We have Γ satisfies
IND-CVA iff Γ′ satisfies IND-CVA.

Proof. Tally soundness assures us that algorithms Tally and Tally′ produce in-
distinguishable election outcomes, thus they are interchangeable in the context
of game IND-CVA.

It follows from Proposition 11 that tally soundness suffices for ballot inde-
pendence of scheme (Setup,Vote,Tally), if there exists an algorithm Tally′ such
that (Setup,Vote,Tally′) is an election scheme satisfying tally soundness and
ballot independence. We demonstrate the existence of such an algorithm with
respect to election scheme Enc2Vote,26 thereby showcasing the applicability of
Proposition 11 for a class of encryption-based election schemes.

Definition 10 (Enc2Vote). Given an asymmetric encryption scheme Π = (Gen,
Enc,Dec), we define Enc2Vote(Π) = (Setup,Vote,Tally) such that:

• Setup(κ) computes (pk , sk ,m) ← Gen(κ); pk ′ ← (pk ,m); sk ′ ← (pk , sk),
derives mc as the largest integer such that {0, . . . ,mc} ⊆ {0} ∪ m, and
outputs (pk ′, sk ′, p(κ),mc), where p is a polynomial function.

• Vote(pk ′, v,nc, κ) parses pk ′ as vector (pk ,m), outputting ⊥ if parsing
fails or v 6∈ {1, . . . ,nc} ∨ {1, . . . ,nc} 6⊆ m, computes b ← Enc(pk , v), and
outputs b.

• Tally(sk ′, bb,nc, κ) parses sk ′ as vector (pk , sk), outputting ⊥ if parsing
fails, initialises v as a zero-filled vector of length nc, computes for b ∈ bb
do v ← Dec(sk , b); if 1 ≤ v ≤ nc then v[v]← v[v] + 1, and outputs (v, ε),
where ε is a constant symbol.

26Our presentation of Enc2Vote extends the presentation by Quaglia & Smyth [QS17a,
Definition 7] to make the plaintext space explicit. We also embed the public key inside the
private key. (Quaglia & Smyth’s formalisation of Enc2Vote builds upon constructions by
Bernhard et al. [SB14,SB13,BPW12b,BCP+11].)

5 SIMPLIFYING BALLOT-SECRECY PROOFS 21

Lemma 12. Given an asymmetric encryption scheme Π, we have Enc2Vote(Π)
is an election scheme. Moreover, if Π has perfect correctness, then Enc2Vote(Π)
satisfies HK-Injectivity.

A proof of Lemma 12 follows from [QS17a, Lemma 2].27

Intuitively, given a non-malleable asymmetric encryption scheme Π, election
scheme Enc2Vote(Π) derives ballot secrecy from Π until tallying and tallying
maintains ballot secrecy by returning only the number of votes for each candi-
date. A formal proof of ballot secrecy follows from Quaglia & Smyth, in par-
ticular, they show that a stronger notion of ballot secrecy is satisfied [QS17a,
Proposition 6], hence, our notion of ballot secrecy is satisfied too, as is ballot
independence.

Corollary 13. Given an asymmetric encryption scheme Π satisfying IND-PA0,
we have Enc2Vote(Π) satisfies IND-CVA.

The reverse implication of Corollary 13 does not hold. Indeed, we have the
following (stronger) result.

Proposition 14. There exists an asymmetric encryption scheme Π such that
election scheme Enc2Vote(Π) satisfies Ballot-Secrecy, but Π does not satisfy
IND-PA0.

To capitalise on Proposition 11, we demonstrate that Enc2Vote produces
election schemes satisfying tallying soundness (Lemma 15), assuming “ill-formed”
ciphertexts are distinguishable from “well-formed” ciphertexts, and combine our
results to derive Theorem 16.

Definition 11. Given an asymmetric encryption scheme Π = (Gen,Enc,Dec),
we say Π satisfies well-definedness, if for all probabilistic polynomial-time ad-
versaries A, there exists a negligible function negl, such that for all security
parameters κ, we have Pr[(pk , sk ,m) ← Gen(κ); c ← A(pk ,m, κ) : Dec(sk , c) 6=
⊥ ⇒ ∃m, r . m ∈ m ∧ c = Enc(pk ,m; r) ∧ c 6= ⊥] > 1− negl(κ).

Lemma 15. Given a perfectly-correct asymmetric encryption scheme Π satis-
fying well-definedness, we have Enc2Vote(Π) satisfies Tally-Soundness.

Theorem 16. Let Π be an asymmetric encryption scheme, Enc2Vote(Π) =
(Setup,Vote,Tally), and Γ = (Setup,Vote,Tally′) for some algorithm Tally′ such
that Γ is an election scheme with zero-knowledge tallying proofs. Suppose Π is
perfectly correct and satisfies IND-PA0 and well-definedness. Further suppose Γ
satisfies Tally-Soundness. We have Γ satisfies Ballot-Secrecy.

Proof. Election scheme Enc2Vote(Π) satisfies Tally-Soundness (Lemma 15) and
IND-CVA (Corollary 13). Thus, Γ satisfies IND-CVA (Proposition 11) and Ballot-
Secrecy (Theorem 5 & Lemma 10).

27Quaglia & Smyth only consider asymmetric encryption schemes with perfect correctness,
because they require election schemes to satisfy a slightly stronger notion of HK-Injectivity, and
perfect correctness is used to show that Enc2Vote(Π) satisfies that notion. Nonetheless, perfect
correctness is not required to ensure the construction produces election schemes. Indeed, the
proof by Quaglia & Smyth [QS17a] can trivially be adapted to prove Lemma 12.

6 CASE STUDY II: HELIOS MIXNET 22

We show that tally soundness is implied by universal verifiability in Appendix D.
Thus, a special case of Theorem 16 requires universal verifiability rather than
tally soundness. It follows that ballot secrecy is satisfied by verifiable election
schemes that produce ballots by encrypting votes with asymmetric encryption
schemes satisfying well-definedness and IND-PA0. Thereby making proofs of
ballot secrecy trivial for a class of encryption-based election schemes. Indeed,
we exploit this result in the following section to show that the combination of
non-malleable encryption and universal verifiability suffice for ballot secrecy.

6 Case study II: Helios Mixnet

Helios Mixnet can be informally modelled as the following election scheme:

Setup generates a key pair for an asymmetric homomorphic encryption scheme,
proves correct key generation in zero-knowledge, and outputs the key pair
and proof.

Vote enciphers a vote to a ciphertext, proves correct ciphertext construction
in zero-knowledge, and outputs the ciphertext coupled with the proof.

Tally selects ballots from a bulletin board for which proofs hold, mixes the
ciphertexts in those ballots, decrypts the ciphertexts output by the mix to
reveal the election outcome (i.e., the distribution of votes), and announces
that outcome, along with zero-knowledge proofs demonstrating correct
decryption.

Neither Adida [Adi08] nor Bulens, Giry & Pereira [BGP11] have released an
implementation of Helios Mixnet.28 Tsoukalas et al. [TPLT13] released Zeus as
a fork of Helios spliced with mixnet code to derive an implementation,29 and
Yingtong Li released helios-server-mixnet as an extension of Zeus with thresh-
old asymmetric encryption and some other minor changes.30 We discussed the
problem of malleable ballots (§4) with the developers of Zeus and helios-server-
mixnet, and they explained that their systems use non-malleable ballots.31Email
communication, Oct & Dec 2017.

We can treat Helios Mixnet as Enc2Vote instantiated with Π = (Gen,Enc,
Dec), where algorithm Gen proves correct key generation and algorithm Enc
verifies such proofs, enciphers plaintexts to ciphertexts using a second encryp-
tion scheme, proves correct ciphertext construction, and outputs the ciphertext
coupled with the proof. However, a blight arises when Enc2Vote is instanti-
ated with encryption schemes that prove correct key generation. To avoid this

28The planned implementation of Helios Mixnet (http://documentation.heliosvoting.
org/verification-specs/mixnet-support, published c. 2010, accessed 19 Dec 2017, &
https://web.archive.org/web/20110119223848/http://documentation.heliosvoting.org/

verification-specs/helios-v3-1, published Dec 2010, accessed 15 Sep 2017) has not been
released.

29https://github.com/grnet/zeus, accessed 15 Sep 2017.
30https://github.com/RunasSudo/helios-server-mixnet, accessed 15 Sep 2017.

7 RELATED WORK 23

blight, we extend Enc2Vote with such proofs and show that results in Section 5
still hold (Appendix E). This leads us to treat our extension as an election
scheme built from asymmetric encryption schemes Π = (Gen,Enc,Dec) and
Π0 = (Gen,Enc′,Dec′) such that:

• Setup(κ) selects coins s uniformly at random, computes (pk , sk ,m) ←
Gen(κ; s) and a proof ρ of correct key generation using sk and s as the
witness, derives mc as the largest integer such that {0, . . . ,mc} ⊆ {0}∪m,
computes pk ′ ← (pk ,m, ρ); sk ′ ← (pk , sk), and outputs (pk ′, sk ′, p(κ),mc),
where p is a polynomial function.

• Vote(pk , v,nc, κ) parses pk ′ as a vector (pk ,m, ρ), outputting ⊥ if parsing
fails, ρ does not verify, v 6∈ {1, . . . ,nc}, or {0, . . . ,nc} 6⊆ m, computes
b← Enc(pk , v), and outputs b.

where

• Enc(pk , v) selects coins r uniformly at random, computes ciphertext c ←
Enc′(pk , v; r) and a proof σ of correct ciphertext construction using v and
r as the witness, and outputs (c, σ).

• Dec(sk , b) parses b as a pair (c, σ), outputting ⊥ if parsing fails or σ does
not verify, computes v ← Dec′(sk , c), and outputs v.

It follows that our results can be applied: it is known that Π is a non-malleable
encryption scheme [BPW12a, Theorem 2], assuming the proof system used by
algorithm Enc satisfies simulation sound extractability and Π0 satisfies IND-CPA.
Moreover, we have Π satisfies well-definedness, by the former assumption. Fur-
thermore, Smyth has shown that universal verifiability is satisfied [Smy18],
hence, Tally-Soundness is satisfied too. Thus, Ballot-Secrecy is satisfied. Thereby
providing evidence that our results do indeed make ballot-secrecy proofs trivial.

To formally state our ballot secrecy result, we adopt a construction for elec-
tion schemes similar to Helios Mixnet, define a set HeliosM′17 of election schemes
using that construction, and prove ballot secrecy for every scheme in that set.

Theorem 17. Each election scheme in HeliosM′17 satisfies Ballot-Secrecy.

A proof of Theorem 17 along with a definition of HeliosM′17 appear in Ap-
pendix F.

7 Related work

Discussion of ballot secrecy originates from Chaum [Cha81] and the earliest
definitions of ballot secrecy are due to Benaloh et al. [BY86, BT94, Ben96].32

More recently, Bernhard et al. propose a series of ballot secrecy definitions:

32Quaglia & Smyth present a tutorial-style introduction to modelling ballot secrecy [QS17b],
and Bernhard et al. survey ballot secrecy definitions [BCG+15b,BCG+15a].

7 RELATED WORK 24

They consider election schemes without tallying proofs [BCP+11,BPW12b] and,
subsequently, schemes with tallying proofs [BPW12a, SB13, SB14, BCG+15b].
The definition of ballot secrecy by Bernhard, Pereira & Warinschi computes
tallying proofs using algorithm Tally or a simulator [BPW12a], but the re-
sulting definition is too weak [BCG+15b, §3.4] and some strengthening is re-
quired [BCG+15b, §4]. (Cortier et al. [CGGI13a, CGGI13b] propose a variant
of the ballot secrecy definition by Bernhard, Pereira & Warinschi. That vari-
ant is also too weak [BCG+15b].) By comparison, the definition by Smyth
& Bernhard computes tallying proofs using only algorithm Tally [SB13], but
the resulting definition is too strong [BCG+15b, §3.5] and a weakening is re-
quired [SB14]. The relative merits of ballot secrecy definitions due to Smyth &
Bernhard [SB14, Definition 5] and Bernhard et al. [BCG+15b, Definition 7] are
unknown, in particular, it is unknown whether one definition is stronger than
the other.

Discussion of ballot independence originates from Gennaro [Gen95] and the
apparent relationship between ballot secrecy and ballot independence has been
considered. In particular, Benaloh [Ben96, §2.9] shows that a simplified version
of his voting system allows the administrator’s private key to be recovered by
an adversary who casts a ballot as a function of other voters’ ballots. More
generally, Sako & Kilian [SK95, §2.4], Michels & Horster [MH96, §3], Wik-
ström [Wik06, Wik08, Wik16] and Cortier & Smyth [CS13, CS11] discuss how
malleable ballots can be abused to compromise ballot secrecy. The first defini-
tion of ballot independence seems to be due to Smyth & Bernhard [SB13,SB14].
Moreover, Smyth & Bernhard formally prove relations between their definitions
of ballot secrecy and ballot independence. Independence has also been studied
beyond elections, e.g., [CGMA85], and the possibility of compromising security
in the absence of independence has been considered, e.g., [CR87, PP89, Pfi94,
DDN91,DDN00,Gen00].

All of the ballot secrecy definitions by Bernhard et al. [BCP+11, BPW12b,
BPW12a, SB13, SB14, BCG+15b] and the ballot independence definition by
Smyth & Bernhard [SB13,SB14] focus on detecting vulnerabilities exploitable by
adversaries that control some voters. Vulnerabilities that require control of the
bulletin board or the communication channel are not detected, i.e., the bulletin
board is implicitly assumed to operate in accordance with the election scheme’s
rules and the communication channel is implicitly assumed to be secure. This
introduces a trust assumption. Under this assumption, Smyth & Bernhard prove
that non-malleable ballots are not necessary for ballot secrecy [SB13, §4.3], and
Bernhard, Pereira & Warinschi [BPW12a], Bernhard [Ber14] and Bernhard et
al. [BCG+15a,BCG+15b] prove that Helios’12 satisfies various notions of ballot
secrecy. By comparison, we prove that non-malleable ballots are necessary for
ballot secrecy without this trust assumption. Hence, Helios’12 does not satisfy
our definition of ballot secrecy. Thus, our definition of ballot secrecy improves
upon definitions by Bernhard et al. by detecting more vulnerabilities.

Confidence in our ballot secrecy definition might be improved by proving
equivalence with a simulation-based definition of ballot secrecy. However, it
is unclear how to formulate a suitable simulation-based definition. Bernhard

7 RELATED WORK 25

et al. propose an ideal functionality that “collects all votes from the voters,
then computes and announces the [election outcome]” [BCG+15b, §1],33 but
a voting system satisfying ballot secrecy need not be equivalent, because bal-
lot secrecy does not guarantee correct computation of the election outcome.
Equivalence can perhaps be shown between their ideal functionality and vot-
ing systems satisfying ballot secrecy and some soundness condition (e.g., Tally-
Soundness). Albeit, voting systems that bound the number of ballots or candi-
dates, e.g., Helios, may not be equivalent, because soundness conditions (such
as Tally-Soundness) need only provide guarantees when operating within the
aforementioned bounds. Thus, developing an appropriate ideal functionality is
non-trivial. Moreover, voting systems must be careful cast into a real function-
ality that appropriately captures the adversary, which is also non-trivial.34 We
leave further exploration of simulation-based definitions of ballot secrecy as an
extension for future work.

Bulens, Giry & Pereira pose the investigation of voting systems which allow
submission of meaningfully related ballots, whilst preserving ballot secrecy, as
an interesting research question [BGP11, §3.2]. Desmedt & Chaidos claim to
provide such a system [DC12]. Smyth & Bernhard critique their work and argue
that the security results do not support their claims [SB13, §5.1]. We have shown
that meaningfully related ballots and ballot secrecy are incompatible, providing
negative results for the question posed by Bulens, Giry & Pereira.

Some of the ideas presented in this paper previously appeared in a technical
report by Smyth [Smy14] and an extended version of that technical report by
Bernhard & Smyth [BS15]. In particular, the limitations of ballot secrecy defi-
nitions by Bernhard et al. were identified by Smyth [Smy14]. And Definition 2
is based upon the definition of ballot secrecy proposed by Smyth [Smy14, Def-
inition 3]. The main distinction between Definition 2 and the earlier definition
is syntax: this paper adopts syntax for election schemes from Smyth, Frink
& Clarkson [SFC17], whereas the earlier definition adopts syntax by Smyth &
Bernhard [SB14,SB13]. The change in syntax is motivated by the superiority of
syntax by Smyth, Frink & Clarkson. Unfortunately, the change has a drawback:
we cannot immediately prove that the definition of ballot secrecy proposed in
this paper is strictly stronger than the definition proposed by Smyth & Bern-
hard [SB14, SB13]. By comparison, the technical reports contain such proofs.
Nevertheless, the advantages of the syntax change outweigh the disadvantages.
Moreover, we can capitalise upon results by Smyth, Frink & Clarkson [SFC17]
and Quaglia & Smyth [QS17a].

Following the initial release of these results [Smy15, Smy16], Cortier et al.
[CSD+17] presented a machine-checked proof that variants of Helios satisfy the
notion of ballot secrecy by Bernhard et al. [BCG+15b]. As discussed above, that

33In the context of voting systems that announce the chosen representative (rather than the
distribution of votes), a stronger ideal functionality might announce the chosen representative.

34The real functionality by Bernhard et al. does not capture adversaries that control ballot
collection. Thus, the relation they prove between their game-based and simulation-based
definitions of ballot secrecy does not preclude vulnerabilities exploitable by such adversaries.
Indeed, proving such relations does not guarantee the absence of vulnerabilities.

7 RELATED WORK 26

notion is too weak. In particular, vulnerabilities that require control of ballot
collection are not detected. Thus, our proof is more appropriate. Nonetheless,
their proof builds upon similar ideas. In particular, their proof is dependent
upon non-malleable ballots and zero-knowledge tallying proofs.

Beyond the computational model of security, Delaune, Kremer & Ryan
formulate a definition of ballot secrecy in the applied pi calculus [DKR09]
and Smyth et al. show that this definition is amenable to automated rea-
soning [DRS08, Smy11, BS16, BS17]. An alternative definition is proposed by
Cremers & Hirschi, along with sufficient conditions which are also amenable
to automated reasoning [CH17]. Albeit, the scope of automated reasoning is
limited by analysis tools (e.g., ProVerif [BSCS16]), because the function sym-
bols and equational theory used to model cryptographic primitives might not
be suitable for automated analysis (cf. [DKRS11,PB12,ABR12]).

Ballot secrecy formalises a notion of free-choice assuming ballots are con-
structed and tallied in the prescribed manner. Moreover, our definition of
ballot secrecy assumes the adversary’s capabilities are limited to casting bal-
lots on behalf of some voters and controlling the distribution of votes cast
by the remaining voters. We have seen that Helios’16 satisfies our defini-
tion, but ballot secrecy does not ensure free-choice when adversaries are able to
communicate with voters nor when voters deviate from the prescribed voting
procedure to follow instructions provided by adversaries. Indeed, the coins
used for encryption serve as proof of how a voter voted in Helios and the
voter may communicate those coins to the adversary. Stronger notions of
free-choice, such as receipt-freeness [MN06, KZZ15, CCFG16] and coercion re-
sistance [JCJ05, GGR09, UM10, KTV12a], are needed in the presence of such
adversaries.

Ballot secrecy does not provide assurances when deviations from the pre-
scribed tallying procedure are possible. Indeed, ballots can be tallied individ-
ually to reveal votes. Hence, the tallier must be trusted. Alternatively, we
can design election schemes that distribute the tallier’s role amongst several
talliers and ensure free-choice assuming at least one tallier tallies ballots in
the prescribed manner. Extending our results in this direction is an opportu-
nity for future work. Ultimately, we would prefer not to trust talliers. Un-
fortunately, this is only known to be possible for decentralised voting systems,
e.g., [Sch99,KY02,Gro04,HRZ10,KSRH12], which are designed such that ballots
cannot be individually tallied, but are unsuitable for large-scale elections.

McCarthy, Smyth & Quaglia [MSQ14] have shown that auction schemes can
be constructed from election schemes, and Quaglia & Smyth [QS17a] provide
a generic construction for auction schemes from election schemes. Moreover,
Quaglia & Smyth adapt our definition of ballot secrecy to a definition of bid
secrecy, and prove that auction schemes produced by their construction satisfy
bid secrecy. (Similarly, they adapt the definition of verifiability by Smyth, Frink
& Clarkson [SFC17] to a definition of verifiability for auctions, and prove that
their construction produces schemes satisfying verifiability.) Thus, this research
has applications beyond voting.

8 CONCLUSION 27

8 Conclusion

This work was initiated by a desire to eliminate the trust assumptions placed
upon the bulletin board and the communication channel in definitions of ballot
secrecy by Bernhard et al. and the definition of ballot independence by Smyth
& Bernhard. This necessitated the introduction of new security definitions. The
definition of ballot secrecy was largely constructed from intuition, with inspi-
ration from indistinguishability games for asymmetric encryption and existing
definitions of ballot secrecy. Moreover, the definition was guided by the desire to
strengthen existing definitions of ballot secrecy. The definition of ballot indepen-
dence was inspired by the realisation that independence requires non-malleable
ballots. This enabled definitions of ballot independence to be constructed as
straightforward adaptations of non-malleability and indistinguishability defini-
tions for asymmetric encryption. The former adaptation being a more natural
formulation of ballot independence and the latter being simpler.

Relationships between security definitions aid our understanding and offer in-
sights that facilitate the construction of secure election schemes. This prompted
the study of relations between our definitions of ballot secrecy and ballot inde-
pendence, resulting in a proof that non-malleable ballots are necessary for ballot
secrecy. We also proved non-malleable ballots are sufficient for ballot secrecy in
election schemes with zero-knowledge tallying proofs. Moreover, we established
a separation result demonstrating that our ballot secrecy definition is strictly
stronger than our ballot independence definition.

In light of the revelation that non-malleable ballots are necessary for bal-
lot secrecy, and in the knowledge that ballots are malleable in Helios, it was
discovered that Helios 3.1.4 does not defend against the vulnerability identified
by Cortier & Smyth. Moreover, it was discovered that ballot weeding does not
offer a defence. Consequently, Helios’12 is also vulnerable. We also revealed a
new exploit against Helios’12 that allows an adversary to determine if a voter
did not vote for the adversary’s preferred candidate. This naturally led to the
consideration of whether definitions of ballot secrecy by Bernhard et al. could
have detected these vulnerabilities and to the conclusion that they could not,
because the vulnerabilities require the adversary to control ballot collection,
which is prohibited by those definitions.

We have considered vulnerabilities that are only exploitable by an adver-
sary that controls ballot collection. Hence, the vulnerability in Helios’12 can be
vacuously eliminated by trusting the tallier to collect ballots. However, Smyth,
Frink & Clarkson have shown that Helios’12 does not satisfy universal verifia-
bility, which requires election outcomes to represent votes expressed in collected
ballots, without trusting the tallier. Thus, even if we are willing to accept ad-
ditional trust assumptions to ensure ballot secrecy, we cannot accept such trust
assumptions to ensure universal verifiability, because they defy the purpose of
verifiability. An alternative solution is necessary and non-malleable ballots are
proposed. Moreover, we prove that Helios’16 uses non-malleable ballots and a
proof that Helios’16 satisfies ballot secrecy follows from our results. This proof
is particularly significant due to the use of Helios in binding elections, and we

A CRYPTOGRAPHIC PRIMITIVES 28

encourage developers to base future releases on this variant, since it is the only
variant of Helios which is proven to satisfy both ballot secrecy and verifiability.

Proving ballot secrecy is expensive: It requires a significant devotion of time
by experts. Indeed, Cortier et al. devoted one person-year to their machine-
checked proof. Thus, sufficient conditions for ballot secrecy are highly desirable.
We have established that non-malleable ballots are sufficient for ballot secrecy
in election schemes with zero-knowledge tallying proofs and this simplified our
ballot-secrecy proof for Helios’16. We have also established that building elec-
tion schemes from non-malleable asymmetric encryption schemes suffices for
ballot secrecy if ballots are tallied correctly (a condition implied by verifiabil-
ity), and this trivialised our ballot-secrecy proof for Helios Mixnet. Thereby
demonstrating the possibility of simple, inexpensive proofs.

This paper delivers a definition of ballot secrecy that has been useful in
detecting subtle vulnerabilities in voting systems, and has led to the develop-
ment of election schemes that are proven secure. Thereby demonstrating the
necessity of appropriate security definitions and accompanying analysis to en-
sure security of voting systems, especially those used in binding elections. I
hope this paper will simplify future proofs of ballot secrecy and, ultimately, aid
democracy-builders in deploying their systems securely.

Acknowledgements

I am grateful to David Bernhard and to Elizabeth Quaglia for extensive dis-
cussions that helped improve this paper and, more generally, my knowledge
of cryptography. In addition, I am grateful to Constantin Cătălin Drăgan for
explaining subtleties of his work, to Maxime Meyer for his careful proofread-
ing, and to the anonymous reviewers who provided constructive criticism. This
work was performed in part at INRIA, with support from the European Re-
search Council under the European Union’s Seventh Framework Programme
(FP7/2007-2013) / ERC project CRYSP (259639).

A Cryptographic primitives

A.1 Asymmetric encryption

Definition 12 (Asymmetric encryption scheme [KL07]). An asymmetric en-
cryption scheme is a tuple of probabilistic polynomial-time algorithms (Gen,Enc,
Dec), such that:35

• Gen, denoted (pk , sk ,m) ← Gen(κ), inputs a security parameter κ and
outputs a key pair (pk , sk) and message space m.

• Enc, denoted c← Enc(pk ,m), inputs a public key pk and message m ∈ m,
and outputs a ciphertext c.

35Our definition differs from Katz and Lindell’s original definition [KL07, Definition 10.1]
in that we formally state the plaintext space.

A CRYPTOGRAPHIC PRIMITIVES 29

• Dec, denoted m ← Dec(sk , c), inputs a private key sk and ciphertext c,
and outputs a message m or an error symbol. We assume Dec is deter-
ministic.

Moreover, the scheme must be correct: there exists a negligible function negl,
such that for all security parameters κ and messages m, we have Pr[(pk , sk ,m)←
Gen(κ); c ← Enc(pk ,m) : m ∈ m ⇒ Dec(sk , c) = m] > 1 − negl(κ). A scheme
has perfect correctness if the probability is 1.

Definition 13 (Homomorphic encryption [SFC17]). An asymmetric encryption
scheme Π = (Gen,Enc,Dec) is homomorphic, with respect to ternary operators
�, ⊕, and ⊗,36 if there exists a negligible function negl, such that for all security
parameters κ, we have the following.37 First, for all messages m1 and m2 we
have Pr[(pk , sk ,m) ← Gen(κ); c1 ← Enc(pk ,m1); c2 ← Enc(pk ,m2) : m1,m2 ∈
m ⇒ Dec(sk , c1 ⊗pk c2) = Dec(sk , c1) �pk Dec(sk , c2)] > 1 − negl(κ). Secondly,
for all messages m1 and m2, and all coins r1 and r2, we have Pr[(pk , sk ,m)←
Gen(κ) : m1,m2 ∈ m ⇒ Enc(pk ,m1; r1) ⊗pk Enc(pk ,m2; r2) = Enc(pk ,m1 �pk

m2; r1 ⊕pk r2)] > 1 − negl(κ). We say Π is additively homomorphic, if for all
security parameters κ, key pairs pk , sk, and message spaces m, such that there
exists coins r and (pk , sk ,m) = Gen(κ; r), we have �pk is the addition operator
in group (m,�pk).

Definition 14 (IND-CPA [BDPR98]). Let Π = (Gen,Enc,Dec) be an asymmet-
ric encryption scheme, A be an adversary, κ be the security parameter, and
IND-CPA(Π,A, κ) be the following game.38

IND-CPA(Π,A, κ) =

(pk , sk ,m)← Gen(κ);
(m0,m1)← A(pk ,m, κ);
β ←R {0, 1};
c← Enc(pk ,mβ);
g ← A(c);
return g = β;

In the above game, we require m0,m1 ∈ m and |m0| = |m1|. We say Π sat-
isfies IND-CPA, if for all probabilistic polynomial-time adversaries A, there ex-
ists a negligible function negl, such that for all security parameters κ, we have
Succ(IND-CPA(Π,A, κ)) ≤ 1

2 + negl(κ).

Definition 15 (IND-PA0 [BS99]). Let Π = (Gen,Enc,Dec) be an asymmet-
ric encryption scheme, A be an adversary, κ be the security parameter, and
IND-PA0(Π,A, κ) be the following game.

36Henceforth, we implicitly bind ternary operators, i.e., we write Π is a homomorphic asym-
metric encryption scheme as opposed to the more verbose Π is a homomorphic asymmetric
encryption scheme, with respect to ternary operators �, ⊕, and ⊗.

37We write X ◦pk Y for the application of ternary operator ◦ to inputs X, Y , and pk . We
occasionally abbreviate X ◦pk Y as X ◦ Y , when pk is clear from the context.

38Our definition of an asymmetric encryption scheme explicitly defines the plaintext space,
whereas Bellare et al. [BDPR98] leave the plaintext space implicit; this change is reflected in
our definition of IND-CPA. Moreover, we provide the adversary with the message space and
security parameter. We adapt IND-PA0 similarly.

A CRYPTOGRAPHIC PRIMITIVES 30

IND-PA0(Π,A, κ) =

(pk , sk ,m)← Gen(κ);
(m0,m1)← A(pk ,m, κ);
β ←R {0, 1};
c← Enc(pk ,mβ);
c← A(c);
m← (Dec(sk , c[1]), . . . ,Dec(sk , c[|c|]);
g ← A(m);
return g = β ∧

∧
1≤i≤|c| c 6= c[i];

In the above game, we require m0,m1 ∈ m and |m0| = |m1|. We say Π sat-
isfies IND-PA0, if for all probabilistic polynomial-time adversaries A, there ex-
ists a negligible function negl, such that for all security parameters κ, we have
Succ(IND-PA0(Π,A, κ)) ≤ 1

2 + negl(κ).

A.2 Proof systems

Definition 16 (Non-interactive proof system [SFC17]). A non-interactive proof
system for a relation R is a tuple of algorithms (Prove,Verify), such that:

• Prove, denoted σ ← Prove(s, w, κ), is executed by a prover to prove
(s, w) ∈ R.

• Verify, denoted v ← Verify(s, σ, κ), is executed by anyone to check the
validity of a proof. We assume Verify is deterministic.

Moreover, the system must be complete: there exists a negligible function negl,
such that for all statement and witnesses (s, w) ∈ R and security parameters κ,
we have Pr[σ ← Prove(s, w, κ) : Verify(s, σ, κ) = 1] > 1− negl(κ). A system has
perfect completeness if the probability is 1.

Definition 17 (Fiat-Shamir transformation [FS87]). Given a sigma protocol
Σ = (Comm,Chal,Resp,VerifyΣ) for relation R and a hash function H, the Fiat-
Shamir transformation, denoted FS(Σ,H), is the non-interactive proof system
(Prove,Verify), defined as follows:

Prove(s, w, κ) =

(comm, t)← Comm(s, w, κ);
chal← H(comm, s);
resp← Resp(chal, t, κ);
return (comm, resp);

Verify(s, (comm, resp), κ) =

chal← H(comm, s);
return VerifyΣ(s, (comm, chal, resp), κ);

A string m can be included in the hashes computed by algorithms Prove and
Verify. That is, the hashes are computed in both algorithms as chal← H(comm,
s,m). We write Prove(s, w,m, κ) and Verify(s, (comm, resp),m, k) for invoca-
tions of Prove and Verify which include string m.

A CRYPTOGRAPHIC PRIMITIVES 31

Definition 18 (Zero-knowledge [QS17a]). Let ∆ = (Prove,Verify) be a non-
interactive proof system for a relation R, derived by application of the Fiat-
Shamir transformation [FS87] to a random oracle H and a sigma protocol.
Moreover, let S be an algorithm, A be an adversary, κ be a security param-
eter, and ZK(∆,A,H,S, κ) be the following game.

ZK(∆,A,H,S, κ) =

β ←R {0, 1};
g ← AH,P(κ);
return g = β;

Oracle P is defined on inputs (s, w) ∈ R as follows:

• P(s, w) computes if β = 0 then σ ← Prove(s, w, κ) else σ ← S(s, κ) and
outputs σ.

And algorithm S can patch random oracle H.39 We say ∆ satisfies zero-
knowledge, if there exists a probabilistic polynomial-time algorithm S, such
that for all probabilistic polynomial-time algorithm adversaries A, there ex-
ists a negligible function negl, and for all security parameters κ, we have
Succ(ZK(∆,A,H,S, κ)) ≤ 1

2 +negl(κ). An algorithm S for which zero-knowledge
holds is called a simulator for (Prove,Verify).

Definition 19 (Simulation sound extractability [SFC17,BPW12a,Gro06]). Sup-
pose Σ is a sigma protocol for relation R, H is a random oracle, and (Prove,
Verify) is a non-interactive proof system, such that FS(Σ,H) = (Prove,Verify).
Further suppose S is a simulator for (Prove,Verify) and H can be patched by
S. Proof system (Prove,Verify) satisfies simulation sound extractability if there
exists a probabilistic polynomial-time algorithm K, such that for all probabilis-
tic polynomial-time adversaries A and coins r, there exists a negligible function
negl, such that for all security parameters κ, we have:40

Pr[P← (); Q← AH,P(—; r); W← KA
′
(H,P,Q) :

|Q| 6= |W| ∨ ∃j ∈ {1, . . . , |Q|} . (Q[j][1],W[j]) 6∈ R ∧
∀(s, σ) ∈ Q, (t, τ) ∈ P . Verify(s, σ, κ) = 1 ∧ σ 6= τ] ≤ negl(κ)

where A(—; r) denotes running adversary A with an empty input and coins r,
where H is a transcript of the random oracle’s input and output, and where
oracles A′ and P are defined below:

• A′(). Computes Q′ ← A(—; r), forwarding any of A’s oracle queries to
K, and outputs Q′. By running A(—; r), K is rewinding the adversary.

• P(s). Computes σ ← S(s, κ); P ← (P[1], . . . ,P[|P|], (s, σ)) and outputs
σ.

39Random oracles can be programmed or patched. We will not need the details of how
patching works, so we omit them here; see Bernhard et al. [BPW12a] for a formalisation.

40We extend set membership notation to vectors: we write x ∈ x if x is an element of the
set {x[i] : 1 ≤ i ≤ |x|}.

B PROOFS 32

Algorithm K is an extractor for (Prove,Verify).

Theorem 18 (from [BPW12a]). Let Σ be a sigma protocol for relation R, and
let H be a random oracle. Suppose Σ satisfies special soundness and special
honest verifier zero-knowledge. Non-interactive proof system FS(Σ,H) satisfies
zero-knowledge and simulation sound extractability.

The Fiat-Shamir transformation may include a string in the hashes computed
by functions Prove and Verify. Simulators can be generalised to include such
a string too. We write S(s,m, κ) for invocations of simulator S which include
string m. And remark that Theorem 18 can be extended to this generalisation.

B Proofs

B.1 Proof of Theorem 1

For the if implication, suppose Γ does not satisfy CNM-CVA, hence, there ex-
ists a probabilistic polynomial-time adversary A, such that for all negligible
functions negl, there exists a security parameter κ and Succ(cnm-cva(Γ,A, κ))
− Succ(cnm-cva-$(Γ,A, κ)) > negl(κ). We construct an adversary B against
game IND-CVA from A.

• B(pk , κ) computes (V,nc)← A(pk , κ); v, v′ ←R V and outputs (v, v′,nc).

• B(b) computes (R, bb)← A(b) and outputs bb.

• B(v) outputs 0 if R(v, v) holds and 1 otherwise.

If the challenger selects β = 0 in game IND-CVA, then adversary B simulates
A’s challenger to A in cnm-cva and B’s success (which requires R(v, v) to hold)
is Succ(cnm-cva(Γ,A, κ)). Otherwise (β = 1), adversary B simulates A’s chal-
lenger to A in cnm-cva-$ and, since B will evaluate R(v, v), B’s success (which
requires R(v, v) not to hold) is 1−Succ(cnm-cva-$(Γ,A, κ)). It follows that Succ(
IND-CVA(Γ,B, κ)) = 1

2 ·(Succ(cnm-cva(Γ,A, κ))+1−Succ(cnm-cva-$(Γ,A, κ))),
therefore, 2 · Succ(IND-CVA(Γ,B, κ))− 1 = Succ(cnm-cva(Γ,A, κ))− Succ(cnm-
cva-$(Γ,A, κ)). Thus, Succ(IND-CVA(Γ,B, κ)) > 1

2 + 1
2 · negl(κ), concluding our

proof of the if implication.
For the only if implication, suppose Γ does not satisfy IND-CVA, hence, there

exists a probabilistic polynomial-time adversary A, such that for all negligible
functions negl, there exists a security parameter κ and Succ(IND-CVA(Γ,A,
κ)) > 1

2 + negl(κ). We construct an adversary B against CNM-CVA from A.

• B(pk , κ) computes (v0, v1,nc)← A(pk , κ) and outputs ({v0, v1},nc).

• B(b) computes bb ← A(b), picks coins r uniformly at random, derives a
relation R such that R(v, v) holds if there exists a bit g such that v =
vg ∧ g = A(v; r) and fails otherwise, and outputs (R, bb).

B PROOFS 33

Adversary B simulates A’s challenger to A in game IND-CVA. Indeed, the
challenge ballot is equivalently computed. As is the election outcome. The
computation A(v; r) is not black-box, but this does not matter: it is still invoked
exactly once in the game. Let us consider adversary B’s success against cnm-
cva and cnm-cva-$.

• Game cnm-cva samples a single vote v from V . By inspection of cnm-cva
and IND-CVA, we have Succ(cnm-cva(Γ,B, κ)) = Succ(IND-CVA(Γ,A, κ)),
hence, Succ(cnm-cva(Γ,B, κ))− 1

2 > negl(κ).

• Game cnm-cva-$ samples votes v and v′ from V . Vote v is independent
of A’s perspective, indeed, an equivalent formulation of cnm-cva-$ could
sample v after A has terminated and immediately before evaluating the
adversary’s relation. By inspection of cnm-cva-$ and IND-CVA, we have
Succ(cnm-cva-$(Γ,B, κ)) = 1

2 ·Succ(IND-CVA(Γ,A, κ))+ 1
2 · (1−Succ(IND-

CVA(Γ,A, κ))) = 1
2 .

It follows that Succ(cnm-cva(Γ,B, κ))− Succ(cnm-cva-$(Γ,B, κ)) > negl(κ).

B.2 Proof of Theorem 2

Suppose Γ does not satisfy ballot independence, hence, there exists a proba-
bilistic polynomial-time adversary A, such that for all negligible functions negl,
there exists a security parameter κ and Succ(IND-CVA) > 1

2 + negl(κ). We
construct an adversary B against Ballot-Secrecy from A.

• B(pk , κ) computes (v0, v1,nc)← A(pk , κ) and outputs nc.

• B() computes b← O(v0, v1); bb← A(b) and outputs bb.

• B(v, pf) computes g ← A(v) and outputs g.

Adversary B simulates A’s challenger to A. Indeed, the challenge ballot and
election outcome are equivalently computed. Moreover, the challenge ballot
does not appear on the bulletin board, hence, the bulletin board is balanced.
It follows that Succ(IND-CVA(Γ,A, κ)) = Succ(Ballot-Secrecy(Γ,B, κ)), hence,
Succ(Ballot-Secrecy(Γ,B, κ)) > 1

2 + negl(κ), concluding our proof.

B.3 Proof of Proposition 4

In essence, the proof follows from Theorem 5. Albeit, formally, a few extra
steps are required. In particular, the definition of an election scheme with
zero-knowledge proofs demands that tallying proofs must be computed by a
zero-knowledge non-interactive proof system, but an election scheme without
tallying proofs need not compute proofs with such a system. Thus, we must
introduce an election scheme with zero-knowledge proofs and prove that it is
equivalent to the election scheme without proofs. This is trivial, so we do not
pursue the details.

B PROOFS 34

B.4 Proof of Theorem 5

Let BS-0, respectively BS-1, be the game derived from Ballot-Secrecy by replac-
ing β ←R {0, 1} with β ← 0, respectively β ← 1. These games are trivially
related to Ballot-Secrecy, namely, Succ(Ballot-Secrecy(Γ,A, κ)) = 1

2 · Succ(BS-0(
Γ,A, κ))+ 1

2 ·Succ(BS-1(Γ,A, κ)). Moreover, let BS-1:0 be the game derived from
BS-1 by replacing g = β with g = 0. We relate game BS-1:0 to BS-1, and games
BS-0 and BS-1:0 to the hybrid games G0,G1, . . . introduced in Definition 20.
We prove Theorem 5 using these relations.

Lemma 19. Given an adversary A that wins game Ballot-Secrecy against elec-
tion scheme Γ, we have Succ(BS-1(Γ,A, κ)) = 1− Succ(BS-1:0(Γ,A, κ)) for all
security parameters κ.

Definition 20. Let Γ = (Setup,Vote,Tally) be an election scheme with zero-
knowledge tallying proofs, A be an adversary, and κ be a security parameter.
Moreover, let S be the simulator for the non-interactive zero-knowledge proof
system used by algorithm Tally to compute tallying proofs. We introduce games
G0,G1, . . . , defined as follows.

Gj(Γ,A, κ) =

(pk , sk ,mb,mc)← Setup(κ);
nc ← A(pk , κ);
L← ∅;
bb← AO();
(v, pf)← Tally(sk , bb \ {b | (b, v0, v1) ∈ L},nc, κ);

for b ∈ bb ∧ (b, v0, v1) ∈ L do
v[v0]← v[v0] + 1;

pf ← S((pk ,nc, bb, v), κ);
g ← A(v, pf);
return g = 0 ∧ balanced(bb,nc, L) ∧ 1 ≤ nc ≤ mc ∧ |bb| ≤ mb;

Oracle O is defined such that O(v0, v1) computes, on inputs v0, v1 ∈ {1, ...,nc},
the following:

if |L| < j then
b← Vote(pk , v1,nc, κ);

else
b← Vote(pk , v0,nc, κ);

L← L ∪ {(b, v0, v1)};
return b;

Games G0,G1, . . . are distinguished from games BS-0 and BS-1:0 by their
left-right oracles and tallying procedures. In particular, the first j left-right
oracle queries in Gj construct ballots for the oracle’s “left” input and any re-
maining queries construct ballots for the oracle’s “right” input, whereas the
left-right oracle in BS-0, respectively BS-1:0, always constructs ballots for the
oracle’s “left,” respectively “right,” input. Moreover, the tallying procedure in

B PROOFS 35

Gj computes the outcome by tallying the ballots on the bulletin board that were
constructed by the adversary and by simulating the tallying of any remaining
ballots (i.e., ballots constructed by the oracle). And the tallying proof is simu-
lated in Gj . By comparison, the outcome and tallying proof are computing by
tallying all the ballots on the bulletin board in both BS-0 and BS-1:0.

Lemma 20. Let Γ be an election scheme, A be an adversary, and κ be a
security parameter. If Γ satisfies HB-Tally-Soundness, then Succ(BS-0(Γ,A,
κ)) = Succ(G0(Γ,A, κ)) and Succ(BS-1:0(Γ,A, κ)) = Succ(Gq(Γ,A, κ)), where q
is an upper-bound on A’s left-right oracle queries.

Proof. The challengers in games BS-0 and G0, respectively BS-1:0 and Gq, both
compute public keys using the same algorithm and provide those keys, along
with the security parameter, as input to the first adversary call, thus, these
inputs and corresponding outputs are equivalent.

Left-right oracles queries O(v0, v1) in games BS-0 and G0 output ballots for
vote v0, hence, the bulletin boards are equivalent in both games. The bulletin
boards in BS-1:0 and Gq are similarly equivalent, in particular, left-right oracles
queries O(v0, v1) in both games output ballots for vote v1, because q is an
upper-bound on the left-right oracle queries, therefore, |L| < q in Gq. Thus, the
bulletin board output by the second adversary call is equivalent in BS-0 and G0,
respectively BS-1:0 and Gq.

It follows that 1 ≤ nc ≤ mc ∧ |bb| ≤ mb in BS-0 iff 1 ≤ nc ≤ mc ∧
|bb| ≤ mb in G0, and similarly for BS-1:0 and Gq. Moreover, predicate balanced
is satisfied in BS-0 iff it is satisfied in G0, and similarly for BS-1:0 and Gq.
Hence, if 1 ≤ nc ≤ mc ∧ |bb| ≤ mb is not satisfied or predicate balanced is
not satisfied, then Succ(BS-0(Γ,A, κ)) = Succ(G0(Γ,A, κ)) and Succ(BS-1:0(Γ,
A, κ)) = Succ(Gq(Γ,A, κ)), concluding our proof. Otherwise, it suffices to show
that the outcome and tallying proof are equivalently computed in BS-0 and G0,
respectively BS-1:0 and Gq, since this ensures the inputs to the third adversary
call are equivalent, thus the corresponding outputs are equivalent too, which
suffices to conclude.

In BS-0, respectively BS-1:0, the outcome is computed by tallying the bul-
letin board. By comparison, in G0, respectively Gq, the outcome is computed
by tallying the ballots on the bulletin board that were constructed by the ad-
versary (i.e., ballots in bb \ {b | (b, v0, v1) ∈ L}, where bb is the bulletin board
and L is the set constructed by the oracle), and by simulating the tallying of
any remaining ballots (i.e., ballots constructed by the oracle, namely, ballots in
bb ∩ {b | (b, v0, v1) ∈ L}). Suppose (pk , sk ,mb,mc) is an output of Setup(κ)
and nc is an integer such that nc ≤ mc. Since Γ satisfies HB-Tally-Soundness,
computing v as

(v, pf)← Tally(sk , bb,nc, κ);

is equivalent to computing v as

(v, pf)← Tally(sk , bb \ {b | (b, v0, v1) ∈ L},nc, κ);
(v′, pf ′)← Tally(sk , bb ∩ {b | (b, v0, v1) ∈ L},nc, κ);
v← v + v′;

B PROOFS 36

and as
(v, pf)← Tally(sk , bb \ {b | (b, v0, v1) ∈ L},nc, κ);
for b ∈ bb ∧ (b, v0, v1) ∈ L do

(v′, pf ′)← Tally(sk , {b},nc, κ);
v← v + v′;

Thus, to prove the outcome is computed equivalently in BS-0 and G0, respec-
tively BS-1:0 and Gq, it suffices to prove that the simulations are valid, i.e.,
computing the above is equivalent to computing

(v, pf)← Tally(sk , bb \ {b | (b, v0, v1) ∈ L},nc, κ);
for b ∈ bb ∧ (b, v0, v1) ∈ L do

v[v0]← v[v0] + 1;

In G0, respectively Gq, we have for all (b, v0, v1) ∈ L that b is an output of
Vote(pk , v0,nc, κ), respectively Vote(pk , v1,nc, κ), such that v0, v1 ∈ {1, ...,nc}.
Moreover, by correctness of Γ, we have Tally(sk , {b},nc, κ) outputs (v′, pf ′) such
that v′ is a zero-filled vector, except for index v0, respectively v1, which contains
one. Hence, the simulation is valid in G0. Furthermore, since predicate balanced
holds in Gq, we have for all v ∈ {1, . . . ,nc} that |{b | b ∈ bb ∧ ∃v1 . (b, v, v1) ∈
L}| = |{b | b ∈ bb ∧ ∃v0 . (b, v0, v) ∈ L}|. Hence, in Gq, computing

for b ∈ bb ∧ (b, v0, v1) ∈ L do v[v0]← v[v0] + 1;

is equivalent to computing

for b ∈ bb ∧ (b, v0, v1) ∈ L do v[v1]← v[v1] + 1;

Thus, the simulation is valid in Gq too.
In BS-0, respectively BS-1:0, the tallying proof is computed by tallying the

bulletin board. By comparison, in G0, respectively Gq, the tallying proof is
computed by simulator S. Since Γ has zero-knowledge tallying proofs, there
exists a non-interactive proof system (Prove,Verify) such that for all (v, pf)
output by Tally(sk , bb,nc, κ), we have pf = Prove((pk , bb,nc, v), sk , κ; r), such
that coins r are chosen uniformly at random by Tally. Moreover, since S is
a simulator for (Prove,Verify), proofs output by Prove((pk ,nc, bb, v), w, κ) are
indistinguishable from outputs of S((pk ,nc, bb, v), κ). Thus, tallying proofs are
equivalently computed in BS-0 and G0, respectively BS-1:0 and Gq, thereby
concluding our proof.

Proof of Theorem 5. By Theorem 2, it suffices to prove that ballot independence
implies ballot secrecy. Suppose Γ does not satisfy ballot secrecy, hence, there
exists a probabilistic polynomial-time adversary A, such that for all negligible
functions negl, there exists a security parameter κ and

1

2
+ negl(κ) < Succ(Ballot-Secrecy(Γ,A, κ))

By definition of BS-0 and BS-1, we have

=
1

2
· (Succ(BS-0(Γ,A, κ)) + Succ(BS-1(Γ,A, κ)))

B PROOFS 37

And, by Lemma 19, we have

=
1

2
· (Succ(BS-0(Γ,A, κ)) + 1− Succ(BS-1:0(Γ,A, κ)))

=
1

2
+

1

2
· (Succ(BS-0(Γ,A, κ))− Succ(BS-1:0(Γ,A, κ)))

Let q be an upper-bound on A’s left-right oracle queries. Hence, by Lemma 20,
we have

=
1

2
+

1

2
· (Succ(G0(Γ,A, κ))− Succ(Gq(Γ,A, κ)))

which can be rewritten as the telescoping series

=
1

2
+

1

2
·
∑

1≤j≤q

Succ(Gj−1(Γ,A, κ))− Succ(Gj(Γ,A, κ))

Let j ∈ {1, . . . , q} be such that Succ(Gj−1(Γ,A, κ)) − Succ(Gj(Γ,A, κ)) is the
largest term in that series. Hence,

≤ 1

2
+

1

2
· q · (Succ(Gj−1(Γ,A, κ))− Succ(Gj(Γ,A, κ)))

Thus,

1

2
+

1

q
· negl(κ) ≤ 1

2
+

1

2
· (Succ(Gj−1(Γ,A, κ))− Succ(Gj(Γ,A, κ)))

From A, we construct an adversary B against IND-CVA whose success is at least
1
2 + 1

2 · (Succ(Gj−1(Γ,A, κ))− Succ(Gj(Γ,A, κ))).
Let Γ = (Setup,Vote,Tally). Since Γ has zero-knowledge tallying proofs, tal-

lying proofs output by Tally are computed by a non-interactive zero-knowledge
proof system. Let algorithm S be the simulator for that proof system. We
define B as follows.

• B(pk , κ) computes nc ← A(pk , κ);L ← ∅ and runs AO(), handling A’s
oracle queries O(v0, v1) as follows: if |L| < j, then compute b← Vote(pk ,
v1,nc, κ);L ← L ∪ {b, v0, v1} and return b to A, otherwise, assign vc0 ←
v0; vc1 ← v1, and output (v0, v1,nc).

• B(b) assigns L← L∪ {(b, vc0, vc1)}; returns b to A and handles any further
oracle queriesO(v0, v1) as follows, namely, compute b← Vote(pk , v0,nc, κ);
L ← L ∪ {(b, v0, v1)} and return b to A; assigns A’s output to bb; and
outputs bb \ {b | (b, v0, v1) ∈ L}.

• B(v) computes for b ∈ bb ∧ (b, v0, v1) ∈ L do v[v0] ← v[v0] + 1, and
pf ← S((pk ,nc, bb, v), κ); g ← A(v, pf), and outputs g.

B PROOFS 38

We prove that B wins IND-CVA.
Suppose (pk , sk ,mb,mc) is an output of Setup(κ). Further suppose we run

B(pk , κ). It is straightforward to see that B simulates the challenger and oracle
in both Gj−1 and Gj to A. In particular, B simulates query O(v0, v1) by comput-
ing b← Vote(pk , v1,nc, κ) for the first j−1 queries. Since Gj−1 and Gj are equiv-
alent to adversaries that make fewer than j left-right oracle queries, adversary A
must make at least j queries to ensure Succ(Gj−1(Γ,A, κ))− Succ(Gj(Γ,A, κ))
is non-negligible. Hence, B(pk , κ) terminates with non-negligible probability.
Suppose adversary B terminates by outputting (v0, v1,nc), where v0, v1 corre-
spond to the inputs of the jth oracle query by A. Further suppose b is an output
of Vote(pk , vβ ,nc, κ), where β is a bit. If β = 0, then B(b) simulates the oracle
in Gj−1 to A, otherwise, B(b) simulates the oracle in Gj to A. In particular,
B(b) responds to the jth oracle query with ballot b for vβ , thus simulating the
challenger in Gj−1 when β = 0, respectively Gj when β = 1. And B(b) responds
to any further oracle queries O(v0, v1) with ballots for v0. Suppose bb is an
output of A, thus B(b) outputs bb \ {b | (b, v0, v1) ∈ L}. Further suppose (v, pf)
is an output of Tally(sk , bb \ {b | (b, v0, v1) ∈ L},nc, κ) and g is an output of
B(v). It is trivial to see that B(v) simulates A’s challenger. Thus, either

1. β = 0 and B simulates Gj−1 to A, thus, g = β with at least the probability
that A wins Gj−1; or

2. β = 1 and B simulates Gj to A, thus, g 6= 0 with at least the probability
that B looses Gj and, since A wins game Ballot-Secrecy, we have g is a bit,
hence, g = β.

It follows that the success of adversary B is at least 1
2 ·Succ(Gj−1(Γ,A, κ)) + 1

2 ·
(1− Succ(Gj(Γ,A, κ))), thus we conclude our proof.

B.5 Proof of Lemma 10

Lemma 21. Given an election scheme (Setup,Vote,Tally), there exists a neg-
ligible function negl, such that for all security parameters κ, integers nc, and
votes v ∈ {1, . . . ,nc}, we have Pr[(pk , sk ,mb,mc) ← Setup(κ); b ← Vote(pk , v,
nc, κ) : 1 ≤ mb ∧ nc ≤ mc ⇒ b 6= ⊥] > 1− negl(κ).

Proof. Suppose κ is a security parameter and nc and v are integers, such that
v ∈ {1, . . . ,nc}. Further suppose (pk , sk ,mb,mc) is an output of Setup(κ), b is
an output of Vote(pk , v,nc, κ), and (v, pf) is an output of Tally(sk , {b},nc, κ),
such that 1 ≤ mb ∧ nc ≤ mc. By correctness, we have v is a zero-filled vector
of length nc, except for index v which contains integer 1, with overwhelm-
ing probability. Given that Tally(sk , {b},nc, κ) and Tally(sk , {b, b},nc, κ) input
the same set {b}, correctness ensures the probability of Vote(pk , v,nc, κ) out-
putting two identical ballots is upper-bounded by a negligible function. It fol-
lows that the probability of Vote(pk , v,nc, κ) outputting error symbol ⊥ twice
is upper-bounded by a negligible function too. Moreover, the probability of
Vote(pk , v,nc, κ) outputting error symbol ⊥ is also upper-bounded by a negli-
gible function, thereby concluding our proof.

B PROOFS 39

Proof of Lemma 10. Let Γ = (Setup,Vote,Tally). Suppose Γ does not satisfy
HB-Tally-Soundness, hence, there exists a probabilistic polynomial-time adver-
sary A, such that for all negligible functions negl, there exists a security pa-
rameter κ and negl(κ) < Succ(HB-Tally-Soundness(Γ,A, κ)). We construct an
adversary B against Tally-Soundness from A. We define B as follows.

B(pk , κ) =

(v,nc, bb0)← A(pk , κ);
(v0, pf 0)← Tally(sk , bb0,nc, κ);
β ←R {0, 1};
if β = 1 then

b← Vote(pk , v,nc, κ);
bb1 ← bb ∪ {b};
(v1, pf 1)← Tally(sk , bb1,nc, κ);

return (nc, bbβ);

We prove that B wins Tally-Soundness.
Suppose (pk , sk ,mb,mc) is an output of Setup(κ), (v,nc, bb0) is an out-

put of A(pk , κ), b is an output of Vote(pk , v,nc, κ), (v0, pf 0) is an output of
Tally(sk , bb0,nc, κ), and (v1, pf 1) is an output of Tally(sk , bb1,nc, κ), where
bb1 = bb0 ∪ {b}. Let v∗ = (v0[1], . . . , v0[v − 1], v0[v] + 1, v0[v + 1], . . . , v0[|v0|]).
Since A is a winning adversary, we have v∗ 6= v1 ∧ b 6∈ bb0 ∧ 1 ≤ v ≤ nc ≤ mc ∧
|bb0 ∪ {b}| ≤ mb, with probability greater than negl(κ).

Suppose β is a bit chosen uniformly at random. It suffices to prove that
vβ 6= correct-outcome(pk ,nc, bbβ , κ), with non-negligible probability. Let δ0,
respectively δ1, be the probability that v0 6= correct-outcome(pk ,nc, bb0, κ),
respectively v1 6= correct-outcome(pk ,nc, bb1, κ). It follows that Succ(Tally-
Soundness(Γ,B, κ)) = 1

2 · δ0 + 1
2 · δ1 and it remains to show that 1

2 · δ0 + 1
2 · δ1

is non-negligible. It suffices to prove that v0 = correct-outcome(pk ,nc, bb0,
κ)∧v1 = correct-outcome(pk ,nc, bb1, κ) is false with overwhelming probability.

Suppose v0 = correct-outcome(pk ,nc, bb0, κ). By definition of function
correct-outcome, we have ∃=v0[v]b′ ∈ bb0 \ {⊥} : ∃r : b′ = Vote(pk , v,nc, κ; r).
Since 1 ≤ |bb0 ∪ {b}| ≤ mb, we have b 6= ⊥ by Lemma 21, with overwhelming
probability. Given that b is an output of Vote(pk , v,nc, κ), b 6∈ bb0, and v∗[v] =
v0[v]+1, it follows that ∃=v∗[v]b′ ∈ bb0∪{b}\{⊥} : ∃r : b′ = Vote(pk , v,nc, κ; r).
Moreover, by HK-Injectivity, b is not an output of Vote(pk , v′,nc, κ) for all
v′ ∈ {1, . . . , |v∗|} \ {v}. Thus, for all v′ ∈ {1, . . . , |v∗|} \ {v} we have ∃=v∗[v′]b′ ∈
bb0 ∪ {b} \ {⊥} : ∃r : b′ = Vote(pk , v′,nc, κ; r). Given that bb1 = bb0 ∪ {b},
we have v∗ = correct-outcome(pk ,nc, bb1, κ). Moreover, given that v∗ 6= v1, we
have v1 6= correct-outcome(pk ,nc, bb1, κ) with overwhelming probability, which
suffices to conclude our proof.

B.6 Proof of Proposition 14

We present a construction (Definition 21) for encryption schemes (Lemma 22)
which are clearly not secure (Lemma 23). Nevertheless, the construction pro-

B PROOFS 40

duces encryption schemes that are sufficient for ballot secrecy (Lemma 24). The
proof of Proposition 14 follows from Lemmata 22–24.

Definition 21. Given an asymmetric encryption scheme Π = (GenΠ,EncΠ,DecΠ)
and a constant symbol ω, let Leak(Π, ω) = (GenΠ,EncΠ,Dec) such that Dec(sk , c)
proceeds as follows: if c = ω, then output sk, otherwise, compute m← DecΠ(sk , c)
and output m.

Lemma 22. Given an asymmetric encryption scheme Π and a constant symbol
ω such that Π’s ciphertext space does not contain ω, we have Leak(Π, ω) is an
asymmetric encryption scheme.

Proof sketch. The proof follows immediately from correctness of the underlying
encryption scheme, because constant symbol ω does not appear in the scheme’s
ciphertext space.

Lemma 23. Given an asymmetric encryption scheme Π and a constant symbol
ω such that Π’s ciphertext space does not contain ω and Π’s message space is
larger than one for some security parameter, we have Leak(Π, ω) does not satisfy
IND-PA0.

Proof sketch. The proof is trivial: an adversary can output two distinct mes-
sages and a vector containing constant symbol ω during the first two adversary
calls, learn the private key from the parallel decryption, and use the key to
recover the plaintext from the challenge ciphertext, which allows the adversary
to win the game.

Lemma 24. Let Π = (Gen,Enc,Dec) be an asymmetric encryption scheme and
ω be a constant symbol. Suppose Π’s ciphertext space does not contain ω and
Π’s message space is smaller than the private key. Further suppose Enc2Vote(Π)
satisfies Ballot-Secrecy. We have Enc2Vote(Leak(Π, ω)) satisfies Ballot-Secrecy.

Proof. Let Enc2Vote(Π) = (Setup,Vote,Tally) and let Enc2Vote(Leak(Π, ω)) =
(Setup′,Vote′,Tally′). By definition of Enc2Vote(Π) and Leak, we have Setup =
Setup′ and Vote = Vote′. Suppose m is Π’s message space. By definition of Leak,
we have m is Leak(Π, ω)’s message space too. Moreover, since |m| is smaller than
the private key, we have for all security parameters κ, bulletin boards bb, and
number of candidates nc, that nc ≤ |m| implies

Pr[(pk , sk ,m)← Gen(κ); (v, pf)← Tally(sk , bb,nc, κ);

(v′, pf ′)← Tally′(sk , bb,nc, κ) : v = v′ ∧ pf = pf ′] = 1,

because Enc2Vote(Π) ensures that v′ is not influenced by decrypting ω (witness
that decrypting ω outputs sk such that sk > |m| ≥ nc) and pf is a constant sym-
bol. It follows for all adversaries A and security parameters κ that games Ballot-
Secrecy(Enc2Vote(Π),A, κ) and Ballot-Secrecy(Enc2Vote(Leak(Π, ω)),A, κ) are
equivalent, hence, we have Succ(Ballot-Secrecy(Enc2Vote(Π),A, κ)) = Succ(
Ballot-Secrecy(Enc2Vote(Leak(Π, ω),A, κ)). Moreover, since Enc2Vote(Π) sat-
isfies Ballot-Secrecy, it follows that Enc2Vote(Leak(Π, ω)) satisfies Ballot-Secrecy
too.

B PROOFS 41

Proof of Proposition 14. Let Π be an asymmetric encryption scheme and ω be
a constant symbol. Suppose Π’s ciphertext space does not contain ω. Further
suppose Π’s message space is larger than one for some security parameter, but
smaller than the private key. We have Enc2Vote(Leak(Π, ω)) is an asymmetric
encryption scheme (Lemma 22) such that Enc2Vote(Leak(Π, ω)) satisfies Ballot-
Secrecy (Lemma 24), but Leak(Π, ω) does not satisfy IND-PA0 (Lemma 23),
concluding our proof.

B.7 Proof of Lemma 15

Let Π = (Gen,Enc,Dec) and Enc2Vote(Π) = (Setup,Vote,Tally). Election scheme
Enc2Vote(Π) satisfies HK-Injectivity (Lemma 12). Suppose Enc2Vote(Π) does
not satisfy Tally-Soundness, hence, there exists a probabilistic polynomial-time
adversary A, such that for all negligible functions negl, there exists a secu-
rity parameter κ and negl(κ) < Succ(Tally-Soundness(Enc2Vote(Π),A, κ)). Fur-
ther suppose (pk ′, sk ,mb,mc) is an output of Setup(κ), (nc, bb) is an output of
A(pk , κ), and (v, pf) is an output of Tally(sk , bb,nc, κ). By definition of algo-
rithm Setup, we have pk ′ is a vector (pk ,m) such that (pk , sk ,m) is an output of
Gen(κ), and mc is the largest integer such that {0, . . . ,mc} ⊆ {0}∪m. Moreover,
since A is a winning adversary, we have nc ≤ mc. By definition of algorithm
Tally, we have v is initialised as a zero-filled vector of length nc and updated by
computing for b ∈ bb do v ← Dec(sk , b); if 1 ≤ v ≤ nc then v[v] ← v[v] + 1.
Since Π satisfies well-definedness and error symbol ⊥ is not an integer, that
computation is equivalent to

for b ∈ bb ∧ ∃m, r . m ∈ m ∧ b = Enc(pk ,m; r) ∧ b 6= ⊥ do
v ← Dec(sk , b);
if 1 ≤ v ≤ nc then

v[v]← v[v] + 1;

with overwhelming probability. Although each ciphertext Enc(pk ,m; r) ∈ bb
may not have been computed using coins r chosen uniformly at random, we
nonetheless have Dec(sk ,Enc(pk ,m; r)) = m, because Π is perfectly correct.
Hence, the above computation is equivalent to

for b ∈ bb ∧ ∃v, r . v ∈ m ∧ b = Enc(pk , v; r) ∧ b 6= ⊥ do
if 1 ≤ v ≤ nc then

v[v]← v[v] + 1;

Thus, for all v ∈ {1, . . . ,nc}, we have v[v] = ` if and only if ∃=`b ∈ bb \ {⊥} :
∃r : b = Enc(pk , v; r), with overwhelming probability. It follows by definition of
Vote that for all v ∈ {1, . . . ,nc} we have

v[v] = ` iff ∃=`b ∈ bb \ {⊥} : ∃r : b = Vote(pk , v,nc, κ; r)

with overwhelming probability. Thereby contradicting our assumption that A is
a winning adversary, since v = correct-outcome(pk ,nc, bb, κ), with overwhelm-
ing probability, which concludes our proof.

C HELIOS 42

C Helios

Smyth, Frink & Clarkson [SFC17] formalise a generic construction for Helios-like
election schemes (Definition 23), which is parameterised on the choice of homo-
morphic encryption scheme and sigma protocols for the relations introduced in
the following definition.

Definition 22 (from [SFC17]). Let (Gen,Enc,Dec) be a homomorphic asym-
metric encryption scheme and Σ be a sigma protocol for a binary relation R.41

• Σ proves correct key generation if a ((κ, pk ,m), (sk , s)) ∈ R ⇔ (pk , sk ,
m) = Gen(κ; s).

Further, suppose that (pk , sk ,m) is the output of Gen(κ; s), for some security
parameter κ and coins s.

• Σ proves plaintext knowledge in a subspace if ((pk , c,m′), (m, r)) ∈ R ⇔
c = Enc(pk ,m; r) ∧m ∈ m′ ∧m′ ⊆ m.

• Σ proves correct decryption if ((pk , c,m), sk) ∈ R⇔ m = Dec(sk , c).

Definition 23 (Generalised Helios [SFC17]). Suppose Π = (Gen,Enc,Dec) is an
additively homomorphic asymmetric encryption scheme, Σ1 is a sigma protocol
that proves correct key generation, Σ2 is a sigma protocol that proves plaintext
knowledge in a subspace, Σ3 is a sigma protocol that proves correct decryption,
and H is a hash function. Let FS(Σ1,H) = (ProveKey,VerKey), FS(Σ2,H) =
(ProveCiph,VerCiph), and FS(Σ3,H) = (ProveDec,VerDec). We define elec-
tion scheme generalised Helios, denoted Helios(Π,Σ1,Σ2,Σ3,H) = (Setup,Vote,
Tally), as follows.42

• Setup(κ). Select coins s uniformly at random, compute (pk , sk ,m) ←
Gen(κ; s); ρ ← ProveKey((κ, pk ,m), (sk , s), κ); pk ′ ← (pk ,m, ρ); sk ′ ← (pk ,
sk), let m be the largest integer such that {0, . . . ,m} ⊆ {0}∪m, and output
(pk ′, sk ′,m,m).

• Vote(pk ′, v,nc, κ). Parse pk ′ as a vector (pk ,m, ρ). Output ⊥ if pars-
ing fails or VerKey((κ, pk ,m), ρ, κ) 6= 1 ∨ v 6∈ {1, . . . ,nc}. Select coins
r1, . . . , rnc−1 uniformly at random and compute:

for 1 ≤ j ≤ nc − 1 do
if j = v then mj ← 1; else mj ← 0;
cj ← Enc(pk ,mj ; rj);
σj ← ProveCiph((pk , cj , {0, 1}), (mj , rj), j, κ);

c← c1 ⊗ · · · ⊗ cnc−1;
m← m1 � · · · �mnc−1;
r ← r1 ⊕ · · · ⊕ rnc−1;
σnc ← ProveCiph((pk , c, {0, 1}), (m, r),nc, κ);

41Given a binary relation R, we write ((s1, . . . , sl), (w1, . . . , wk)) ∈ R ⇔ P (s1, . . . , sl, w1,
. . . , wk) for (s, w) ∈ R ⇔ P (s1, . . . , sl, w1, . . . , wk) ∧ s = (s1, . . . , sl) ∧ w = (w1, . . . , wk),
hence, R is only defined over pairs of vectors of lengths l and k.

42We omit algorithm Verify for brevity.

C HELIOS 43

Output ballot (c1, . . . , cnc−1, σ1, . . . , σnc).

• Tally(sk ′, bb,nc, κ). Initialise vectors v of length nc and pf of length nc−1.
Compute for 1 ≤ j ≤ nc do v[j] ← 0. Parse sk ′ as a vector (pk , sk).
Output (v, pf) if parsing fails. Let {b1, . . . , b`} be the largest subset of bb
such that b1 < · · · < b` and for all 1 ≤ i ≤ ` we have bi is a vector of
length 2 · nc− 1 and

∧nc−1
j=1 VerCiph((pk , bi[j], {0, 1}), bi[j+ nc− 1], j, κ) =

1 ∧ VerCiph((pk , bi[1]⊗ · · · ⊗ bi[nc − 1], {0, 1}), bi[2 · nc − 1],nc, κ) = 1. If
{b1, . . . , b`} = ∅, then output (v, pf), otherwise, compute:

for 1 ≤ j ≤ nc − 1 do
c← b1[j]⊗ · · · ⊗ b`[j];
v[j]← Dec(sk , c);
pf [j]← ProveDec((pk , c, v[j]), sk , κ);

v[nc]← `−
∑nc−1
j=1 v[j];

Output (v, pf).

The above algorithms assume nc > 1. Smyth, Frink & Clarkson define special
cases of Vote and Tally when nc = 1. We omit those cases for brevity and,
henceforth, assume nc is always greater than one.

The generic construction can be instantiated to derive Helios 2.0 and Helios’16.

Definition 24 (Weak Fiat-Shamir transformation [BPW12a]). The weak Fiat-
Shamir transformation is a function wFS that is identical to FS, except that it
excludes statement s in the hashes computed by Prove and Verify, as follows:
chal← H(comm).

Definition 25 (Helios 2.0 [SFC17]). Let Ĥelios be Helios after replacing all in-
stances of the Fiat-Shamir transformation with the weak Fiat-Shamir transfor-
mation and excluding the (optional) messages input to ProveCiph, i.e., ProveCiph

should be used as a ternary function. Helios 2.0 is Ĥelios(Π,Σ1,Σ2,Σ3,H),
where Π is additively homomorphic El Gamal [CGS97, §2], Σ1 is the sigma pro-
tocol for proving knowledge of discrete logarithms by Chaum et al. [CEGP87,
Protocol 2], Σ2 is the sigma protocol for proving knowledge of disjunctive equal-
ity between discrete logarithms by Cramer et al. [CFSY96, Figure 1], Σ3 is the
sigma protocol for proving knowledge of equality between discrete logarithms by
Chaum and Pedersen [CP93, §3.2], and H is SHA-256 [NIS12].

Definition 26 (Helios 3.1.4 [SFC17]). Election scheme Helios 3.1.4 is Helios
2.0 after modifying the sigma protocols to perform the checks proposed by Chang-
Fong & Essex [CE16, §4].

Definition 27 (Helios’16 [SFC17]). Election scheme Helios’16 is Helios(Π,Σ1,
Σ2,Σ3,H), where Π is additively homomorphic El Gamal [CGS97, §2], Σ1 is
the sigma protocol for proving knowledge of discrete logarithms by Chaum et
al. [CEGP87, Protocol 2], Σ2 is the sigma protocol for proving knowledge of

C HELIOS 44

disjunctive equality between discrete logarithms by Cramer et al. [CFSY96, Fig-
ure 1], Σ3 is the sigma protocol for proving knowledge of equality between discrete
logarithms by Chaum & Pedersen [CP93, §3.2], and H is a random oracle.

Although Helios actually uses SHA-256 [NIS12], we assume that H is a random
oracle to prove Theorem 9. Moreover, we assume the sigma protocols used
by Helios’16 satisfy the preconditions of generalised Helios, that is, [CEGP87,
Protocol 2] is a sigma protocol for proving correct key generation, [CFSY96,
Figure 1] is a sigma protocol for proving plaintext knowledge in a subspace,
and [CP93, §3.2] is a sigma protocol for proving decryption. We leave formally
proving this assumption as future work.

C.1 Proof of Theorem 9

The construction for Helios-like schemes produces election schemes with zero-
knowledge tallying proofs (Lemma 25) that satisfy universal verifiability [SFC17]
and, thus, honest-ballot tally soundness (Lemma 29). They also satisfy ballot
independence (Proposition 26). Hence, they satisfy ballot secrecy too (Theo-
rem 5). We show that Helios’16 satisfies ballot secrecy.

Henceforth, we assume Π, Σ1, Σ2 and Σ3 satisfy the preconditions of Defini-
tion 23, and H is a random oracle. Let Helios(Π,Σ1,Σ2,Σ3,H) = (Setup,Vote,
Tally) and Π = (Gen,Enc,Dec). Moreover, let FS(Σ1,H) = (ProveKey,VerKey),
FS(Σ2,H) = (ProveCiph,VerCiph), and FS(Σ3,H) = (ProveDec,VerDec).

Lemma 25. If (ProveDec,VerDec) is zero-knowledge, then Helios(Π,Σ1,Σ2,Σ3,
H) has zero-knowledge tallying proofs.

Proof sketch. Suppose A is an adversary and κ is a security parameter. Fur-
ther suppose (pk , sk ,mb,mc) is an output of Setup(κ), (nc, bb) is an output
of A(pk , κ), and (v, pf) is an output of Tally(sk , bb,nc, κ), such that |bb| ≤
mb ∧ nc ≤ mc. By inspection of algorithm Tally, tallying proof pf is a vector of
proofs produced by ProveDec. Thus, there trivially exists a non-interactive proof
system that could compute pf , moreover, that proof system is zero-knowledge
because (ProveDec,VerDec) is zero-knowledge, which concludes our proof.

Proposition 26. Suppose Π is perfectly correct and satisfies IND-CPA. Further
suppose (ProveKey,VerKey) and (ProveCiph,VerCiph) satisfy special soundness
and special honest verifier zero-knowledge. We have Helios(Π,Σ1,Σ2,Σ3,H)
satisfies IND-CVA.

Proof. By Theorem 18, the proof systems have extractors and simulators. Let
SimProveKey, respectively SimProveCiph, be the simulator for (ProveKey,VerKey),
respectively (ProveCiph,VerCiph). And let ExtProveCiph be the extractor for
(ProveCiph,VerCiph).

Let IND-CPA∗ be a variant of IND-CPA in which: 1) the adversary out-
puts two vectors of messages m0 and m1 such that |m0| = |m1| and for
all 1 ≤ i ≤ |m0| we have |m0[i]| = |m1[i]| and m0[i] and m1[i] are from
the encryption scheme’s message space, and 2) the challenger computes c1 ←

C HELIOS 45

Enc(pk ,mβ [1]); . . . ; c|mβ | ← Enc(pk ,mβ [|mβ |]) and inputs c1, . . . , c|mβ | to the
adversary. We have Π satisfies IND-CPA∗ [KL07, §10.2.2].

Suppose Helios(Π,Σ1,Σ2,Σ3,H) does not satisfy IND-CVA. Hence, there
exists a probabilistic polynomial-time adversary A, such that for all negligible
functions negl, there exists a security parameter κ and 1

2 +negl(κ) < IND-CVA(Γ,
A, κ). SinceA is a winning adversary, we haveA(pk ′, κ) outputs (v0, v1,nc) such
that v0 6= v1 with non-negligible probability, hence, either v0 < v1 or v1 < v0.
For brevity, we suppose v0 < v1. (Our proof can be adapted to consider cases
such that v1 < v0, but these details provide little value, so we do not pursue
them.) We construct the following adversary B against IND-CPA∗ from A:

• B(pk ,m, κ) outputs ((1, 0), (0, 1)).

• B(c) proceeds as follows. First, compute:

ρ← SimProveKey((κ, pk ,m), κ);
pk ′ ← (pk ,m, ρ);
(v0, v1,nc)← A(pk ′, κ);

Secondly, select coins r1, . . . , rnc−1 uniformly at random and compute:

for j ∈ {1, . . . ,nc − 1} \ {v0, v1} do
cj ← Enc(pk , 0; rj);
σj ← ProveCiph((pk , cj , {0, 1}), (0, rj), j, κ);

cv0 ← c[1];
σv0 ← SimProveCiph((pk , cv0 , {0, 1}), v0, κ);
if v1 6= nc then

cv1 ← c[2];
σv1 ← SimProveCiph((pk , cv1 , {0, 1}), v1, κ);

c← c1 ⊗ · · · ⊗ cnc−1;
σnc ← SimProveCiph((pk , c, {0, 1}),nc, κ);
b← (c1, . . . , cnc−1, σ1, . . . , σnc);
bb← A(b);

Thirdly, compute {b1, . . . , b`} as the largest subset of bb satisfying the
conditions of algorithm Tally. Fourthly, initialise H as a transcript of the
random oracle’s input and output, P as a transcript of simulated proofs,
Q as a vector of length nc − 1, and v as a zero-filled vector of length nc.
Fifthly, compute:

C HELIOS 46

Q←
(((

pk , b1[1], {0, 1}
)
, b1[nc]

)
, . . . ,((

pk , b`[1], {0, 1}
)
, b`[nc]

)
, . . . ,((

pk , b1[nc − 1], {0, 1}
)
, b1[2 · (nc − 1)]

)
, . . . ,((

pk , b`[nc − 1], {0, 1}
)
, b`[2 · (nc − 1)]

))
;

W← ExtProveCiph(H,P,Q);

v← (Σ`i=1W[i][1], . . . , Σ
`·(nc−1)
i=`·(nc−2)+1W[i][1], `− Σnc−1

j=1 v[j]);

g ← A(v);

Finally, output g.

We prove that B wins IND-CPA∗.
Suppose (pk , sk ,m) is an output of Gen(κ) and (m0,m1) is an output of

B(pk ,m, κ). Let β ∈ {0, 1}. Further suppose c1 is an output of Enc(pk ,mβ [1])
and c2 is an output of Enc(pk ,mβ [2]). Let c = (c1, c2). Moreover, suppose
ρ is an output of SimProveKey((κ, pk ,m), κ). Let pk ′ = (pk ,m, ρ). Suppose
(v0, v1,nc) is an output of A(pk ′, κ). Since SimProveKey is a simulator for
(ProveKey,VerKey), we have B simulates the challenger in IND-CVA to A(pk ′, κ).
In particular, pk ′ is a triple containing a public key and corresponding message
space generated Gen, and a (simulated) proof of correct key generation. Suppose
B computes b and bb is an output of A(b). Further suppose B computes v, and g
is an output of A(v). The following claims prove that B simulates the challenger
in IND-CVA to A(b) and A(v), hence, g = β, with at least the probability that
A wins IND-CVA, concluding our proof.

Claim 27. Adversary B’s computation of b is equivalent to computing b as
b← Vote(pk ′, vβ ,nc, κ).

Proof of Claim 27. We have pk ′ parses as a vector (pk ,m, ρ). Moreover, since
(pk , sk ,m) is an output of Gen(κ), there exist coins r such that (pk , sk ,m) =
Gen(κ; r). Hence, (sk , r) is a witness for statement (κ, pk ,m). Furthermore,
since SimProveKey is a simulator for (ProveKey,VerKey) and proofs output by
ProveKey are indistinguishable from outputs of SimProveKey, we have VerKey((κ,
pk ,m), ρ, κ)κ, pk ,mρ = 1, with non-negligible probability. In addition, since B
is a winning adversary, we have v0, v1 ∈ {1, . . . ,nc}, with non-negligible proba-
bility. It follows that Vote(pk ′, vβ ,nc, κ) does not output ⊥, with non-negligible
probability. Indeed, computation b ← Vote(pk ′, vβ ,nc, κ) is equivalent to the
following. Select coins r1, . . . , rnc−1 uniformly at random and compute:

C HELIOS 47

for 1 ≤ j ≤ nc − 1 do
if j = vβ then mj ← 1; else mj ← 0;
cj ← Enc(pk ,mj ; rj);
σj ← ProveCiph((pk , cj , {0, 1}), (mj , rj), j, κ);

c← c1 ⊗ · · · ⊗ cnc−1;
m← m1 � · · · �mnc−1;
r ← r1 ⊕ · · · ⊕ rnc−1;
σnc ← ProveCiph((pk , c, {0, 1}), (m, r),nc, κ);
b← (c1, . . . , cnc−1, σ1, . . . , σnc);

Since vβ ∈ {v0, v1}, ciphertexts computed by the above for-loop all contain
plaintext 0, except (possibly) ciphertext cv0 and, if defined, ciphertext cv1 . (Ci-
phertext cv1 only exists if v1 < nc.) Given that v0 < v1 ≤ nc, ciphertext cv0
contains 1 − β, i.e., if β = 0, then cv0 contains 1, otherwise (β = 1), cv0 con-
tains 0. If v1 < nc, then ciphertext cv1 contains β. Moreover, since � is the
addition operator in group (m,�) and 0 is the identity element in that group, if
v1 = nc, then plaintext m computed by the above algorithm is 1−β, otherwise,
m = 1− β � β = 1. Hence, the above algorithm is equivalent to selecting coins
r1, . . . , rnc−1 uniformly at random and computing:

for j ∈ {1, . . . ,nc − 1} \ {v0, v1} do
cj ← Enc(pk , 0; rj);
σj ← ProveCiph((pk , cj , {0, 1}), (0, rj), j, κ);

cv0 ← Enc(pk , 1− β; rv0);
σv0 ← ProveCiph((pk , cv0 , {0, 1}), (1− β, rv0), v0, κ);
if v1 6= nc then

cv1 ← Enc(pk , β; rv1);
σv1 ← ProveCiph((pk , cv1 , {0, 1}), (β, rv1), v1, κ);

c← c1 ⊗ · · · ⊗ cnc−1;
if v1 = nc then m← 1− β; else m← 1;
r ← r1 ⊕ · · · ⊕ rnc−1;
σnc ← ProveCiph((pk , c, {0, 1}), (m, r),nc, κ);
b← (c1, . . . , cnc−1, σ1, . . . , σnc);

Computation cv0 ← Enc(pk , 1 − β; rv0) is equivalent to cv0 ← c[1], because
if β = 0, then c[1] contains plaintext 1, otherwise (β = 1), c[1] contains
plaintext 0. Similarly, if v1 6= nc, then computation cv1 ← Enc(pk , β; rv1) is
equivalent to cv1 ← c[1]. Moreover, proof ProveCiph((pk , cv0 , {0, 1}), (1 − β,
rv0), v0, κ), respectively ProveCiph((pk , cv1 , {0, 1}), (β, rv1), v1, κ), can be sim-
ulated by SimProveCiph((pk , cv0 , {0, 1}), v0, κ), respectively SimProveCiph((pk ,
cv1 , {0, 1}), v1, κ). Furthermore,

c← c1 ⊗ · · · ⊗ cnc−1;
if v1 = nc then m← 1− β; else m← 1;
r ← r1 ⊕ · · · ⊕ rnc−1;
σnc ← ProveCiph((pk , c, {0, 1}), (m, r),nc, κ);

can be simulated by

C HELIOS 48

c← c1 ⊗ · · · ⊗ cnc−1;
σnc ← SimProveCiph((pk , c, {0, 1}),nc, κ);

Hence, we conclude the proof of this claim.

Claim 28. Adversary B’s computation of v is equivalent to computing v as
(v, pf)← Tally(sk ′, bb,nc, κ), where sk ′ = (pk , sk).

Proof of Claim 28. Let {b1, . . . , b`} be the largest subset of bb satisfying the
conditions of algorithm Tally. It is trivial to see that the claim holds when
{b1, . . . , b`} = ∅, because v is computed as a zero-filled vector of length nc in
both cases. We prove the claim also holds when {b1, . . . , b`} 6= ∅.

By simulation sound extractability, for all 1 ≤ i ≤ ` and 1 ≤ j ≤ nc − 1,
there exists a message mi,j ∈ {0, 1} and coins ri,j and ri,j+nc−1 such that
bi[j] = Enc(pk ,mi,j ; ri,j) and bi[j + nc − 1] = ProveCiph((pk , bi[j], {0, 1}), (mi,j ,
ri,j), j, κ; ri,j+nc−1), with overwhelming probability. Suppose Q and W are
computed by B. We have for all 1 ≤ i ≤ ` and 1 ≤ j ≤ nc − 1 that Q[` · (j −
1) + i] = ((pk , bi[j], {0, 1}), bi[j + nc − 1]) and W[` · (j − 1) + i] is a witness
for (pk , bi[j], {0, 1}), i.e., (mi,j , ri,j), and W[` · (j − 1) + i][1] = mi,j . Hence,
adversary B’s computation of v is equivalent to computing v as:

v← (Σ`i=1mi,1, . . . , Σ`i=1mi,nc−1, `− Σnc−1
j=1 v[j])

Moreover, computing v as (v, pf) ← Tally(sk ′, bb,nc, κ) is equivalent to initial-
ising v as a zero-filled vector of length nc and computing

for 1 ≤ j ≤ nc − 1 do
c← b1[j]⊗ · · · ⊗ b`[j];
v[j]← Dec(sk , c);

v[nc]← `−
∑nc−1
j=1 v[j];

Since Π is a homomorphic encryption scheme, we have for all 1 ≤ j ≤ nc−1 that
b1[j]⊗ · · · ⊗ b`[j] is a ciphertext with overwhelming probability. And although
ciphertext b1[j] ⊗ · · · ⊗ b`[j] may not have been computed using coins chosen
uniformly at random, we nevertheless have Dec(sk , b1[j]⊗ · · · ⊗ b`[j]) = m1,j �
· · · � m`,j with overwhelming probability, because Π is perfectly correct. It

follows that v = (m1,1�· · ·�m`,1, . . . , m1,nc−1�· · ·�m`,nc−1, `−
∑nc−1
j=1 v[j]),

with overwhelming probability. Let mb be the largest integer such that {0, . . . ,
mb} ⊆ m. Since A is a winning adversary, we have ` ≤ mb. Moreover, since
m1,j , . . . ,m`,j ∈ {0, 1} for all 1 ≤ j ≤ nc − 1 and � is the addition operator in

group (m,�), we have m1,j �· · ·�m`,j =
∑`
i=1mi,j , which suffices to conclude

the proof of this claim.

For Helios’16, encryption scheme Π is additively homomorphic El Gamal
[CGS97, §2]. Moreover, (ProveKey,VerKey), respectively (ProveCiph,VerCiph)
and (ProveDec,VerDec), is the non-interactive proof system derived by appli-
cation of the Fiat-Shamir transformation [FS87] to a random oracle H and
the sigma protocol for proving knowledge of discrete logarithms by Chaum et
al. [CEGP87, Protocol 2], respectively the sigma protocol for proving knowledge

D UNIVERSAL VERIFIABILITY IMPLIES TALLY SOUNDNESS 49

of disjunctive equality between discrete logarithms by Cramer et al. [CFSY96,
Figure 1] and the sigma protocol for proving knowledge of equality between
discrete logarithms by Chaum & Pedersen [CP93, §3.2].

Bernhard, Pereira & Warinschi [BPW12a, §4] remark that the sigma proto-
cols underlying non-interactive proof systems (ProveKey,VerKey) and (ProveCiph,
VerCiph) both satisfy special soundness and special honest verifier zero-knowledge,
hence, Theorem 18 is applicable. Bernhard, Pereira & Warinschi also remark
that the sigma protocol underlying (ProveDec,VerDec) satisfies special sound-
ness and “almost special honest verifier zero-knowledge” and argue that “we
could fix this[, but] it is easy to see that ... all relevant theorems [including
Theorem 18] still hold.” We adopt the same position and assume that Theo-
rem 18 is applicable.

Proof of Theorem 9. Helios’16 has zero-knowledge tallying proofs (Lemma 25),
subject to the applicability of Theorem 18 to the sigma protocol underlying
(ProveDec,VerDec). Moreover, since Helios’16 satisfies UV [SFC17], we have
Helios’16 satisfies HB-Tally-Soundness(Γ,A, κ) (Lemma 29). Furthermore, since
El Gamal satisfies IND-CPA [TY98,KL07] and is perfectly correct, and since non-
interactive proof systems (ProveKey,VerKey) and (ProveCiph,VerCiph) satisfy
special soundness and special honest verifier zero-knowledge, we have Helios’16
satisfies IND-CVA (Proposition 26). Hence, Helios’16 satisfies Ballot-Secrecy too
(Theorem 5).

D Universal verifiability implies tally soundness

We recall the definition of universal verifiability by Smyth, Frink & Clark-
son [SFC17] and show that verifiable election schemes satisfy Tally-Soundness
(Lemma 29). This is useful to simplify applications of Theorems 5, 16, & 31.
Indeed, our ballot-secrecy proofs for Helios and Helios Mixnet make use of this
result.

We extend our syntax for election schemes (Definition 1) to include a prob-
abilistic polynomial-time algorithm Verify:

• Verify, denoted s← Verify(pk , bb,nc, v, pf , κ), is run to audit an election.
It takes as input a public key pk , a bulletin board bb, some number of
candidates nc, an election outcome v, a tallying proof pf , and a security
parameter κ. It outputs a bit s, where 1 signifies success and 0 failure.

We previously omitted algorithm Verify, because we did not focus on verifiability
in the main body.

For universal verifiability, anyone must be able to check whether the election
outcome represents the votes used to construct ballots on the bulletin board.
The formal definition of universal verifiability by Smyth, Frink & Clarkson re-
quires algorithm Verify to accept if and only if the election outcome is correct.
The if requirement is captured by completeness (Definition 28), which stipulates
that election outcomes produced by algorithm Tally will actually be accepted

E ENCRYPTION-BASED VOTING SYSTEMS 50

by algorithm Verify. And the only if requirement is captured by soundness
(Definition 30), which challenges an adversary to concoct a scenario in which
algorithm Verify accepts, but the election outcome is not correct.

Definition 28 (Completeness [SFC17]). An election scheme (Setup,Vote,Tally,
Verify) satisfies completeness, if for all probabilistic polynomial-time adversaries
A, there exists a negligible function negl, such that for all security parame-
ters κ, we have Pr[(pk , sk ,mb,mc) ← Setup(κ); (bb,nc) ← A(pk , κ); (v, pf) ←
Tally(sk , bb,nc, κ) : |bb| ≤ mb ∧ nc ≤ mc ⇒ Verify(pk , bb,nc, v, pf , κ) = 1] >
1− negl(κ).

Definition 29 (Injectivity [Smy18, SFC17]). An election scheme (Setup,Vote,
Tally,Verify) satisfies injectivity, if for all probabilistic polynomial-time adver-
saries A, security parameters κ and computations (pk ,nc, v, v′) ← A(κ); b ←
Vote(pk , v,nc, κ); b′ ← Vote(pk , v′,nc, κ) such that v 6= v′ ∧ b 6= ⊥ ∧ b′ 6= ⊥, we
have b 6= b′.

Definition 30 (Soundness [SFC17]). An election scheme Γ = (Setup,Vote,
Tally,Verify) satisfies soundness, if Γ satisfies injectivity and for all probabilis-
tic polynomial-time adversaries A, there exists a negligible function negl, such
that for all security parameters κ, we have Pr[(pk ,nc, bb, v, pf) ← A(κ) : v 6=
correct-outcome(pk ,nc, bb, κ) ∧ Verify(pk , bb,nc, v, pf , κ) = 1] ≤ negl(κ).

Definition 31 (UV [Smy18,SFC17]). An election scheme Γ satisfies universal
verifiability (UV), if completeness, injectivity and soundness are satisfied.

Lemma 29. If election scheme Γ satisfies completeness and soundness, then Γ
satisfies Tally-Soundness.

Proof. Let Γ = (Setup,Vote,Tally,Verify). Suppose there exists a probabilistic
polynomial-time adversary A that wins Tally-Soundness against Γ. We construct
an adversary B against Exp-UV-Ext from A. We define B such that B(κ) =
(pk , sk ,mb,mc) ← Setup(κ); (nc, bb) ← A(pk , κ); (v, pf) ← Tally(sk , bb,nc, κ);
return(pk ,nc, bb, v, pf). Suppose (pk , sk ,mb,mc) is an output of Setup(κ), (nc,
bb) is an output of A(pk , κ), and (v, pf) is an output of Tally(sk , bb,nc, κ). Since
A is a winning adversary, we have v 6= correct-outcome(pk ,nc, bb, κ) ∧ |bb| ≤
mb ∧ nc ≤ mc, with non-negligible probability. And, by completeness, we
have Verify(pk , bb,nc, v, pf , κ) = 1, with overwhelming probability. Thereby
concluding our proof.

The reverse implication of Lemma 29 does not hold: Observe that Tally-Soundness
only ensures algorithm Tally tallies ballots correctly, whereas UV additionally
ensures that anyone can check whether ballots are tallied correctly.

E Encryption-based voting systems

We have seen that election scheme Enc2Vote(Π) satisfies HK-Injectivity, if Π
is perfectly correct (Lemma 12). But, HK-Injectivity assumes public keys are

E ENCRYPTION-BASED VOTING SYSTEMS 51

computed using the key generation algorithm. Thus, perfect correctness is in-
sufficient to ensure injectivity when public keys are controlled by an adversary.
Nonetheless, this can be ensured using proofs of correct key generation. A sub-
class of schemes generated by Enc2Vote prove correct key generation. Indeed,
we can consider schemes Enc2Vote(Π) such that Gen proves correct key genera-
tion and Enc verifies such proofs, where Π = (Gen,Enc,Dec). Alternatively, we
can couple Enc2Vote with proofs of correct key generation:

Definition 32 (Enc2Vote+ [Smy18]). Suppose Π = (Gen,Enc,Dec) is an asym-
metric encryption scheme, Σ is a sigma protocol that proves correct key genera-
tion, and H is a hash function. Let FS(Σ,H) = (ProveKey,VerKey). We define
Enc2Vote+(Π,Σ,H) = (Setup,Vote,Tally) such that:

• Setup(κ) selects coins s uniformly at random, computes (pk , sk ,m) ←
Gen(κ; s); ρ ← ProveKey((κ, pk ,m), (sk , s), κ); pk ′ ← (pk ,m, ρ); sk ′ ← (pk ,
sk), derives mc as the largest integer such that {0, . . . ,mc} ⊆ {0} ∪ m,
and outputs (pk ′, sk ′, p(κ),mc), where p is a polynomial function.

• Vote(pk ′, v,nc, κ) parses pk ′ as vector (pk ,m, ρ), outputting ⊥ if parsing
fails or VerKey((κ, pk ,m), ρ, κ) 6= 1 ∨ v 6∈ {1, . . . ,nc} ∨ {1, . . . ,nc} 6⊆ m,
computes b← Enc(pk , v), and outputs b.

• Tally(sk ′, bb,nc, κ) parses sk ′ as vector (pk , sk), outputting ⊥ if parsing
fails, initialises v as a zero-filled vector of length nc, computes for b ∈ bb
do v ← Dec(sk , b); if 1 ≤ v ≤ nc then v[v]← v[v] + 1, and outputs (v, ε),
where ε is a constant symbol.

Lemma 30. Given an asymmetric encryption scheme Π, a sigma protocol Σ
that proves correct key generation, and a hash function H, we have Enc2Vote+(
Π,Σ,H) is an election scheme.

A proof of Lemma 30 appears in [Smy18].
Although the set of election schemes produced by Enc2Vote+ is not a subset

of the schemes produced by Enc2Vote, there is nonetheless a straightforward
mapping from the former to the latter. Thus, the results in Section 5 also hold
for Enc2Vote+:

Theorem 31. Let Enc2Vote+(Π,Σ,H) = (Setup,Vote,Tally), where Π is an
asymmetric encryption scheme, Σ is a sigma protocol that proves correct key
generation, and H is a random oracle. Moreover, let Γ = (Setup,Vote,Tally′)
for some algorithm Tally′ such that Γ is an election scheme with zero-knowledge
tallying proofs. Suppose Π is perfectly correct and satisfies IND-PA0 and well-
definedness. Moreover, suppose Σ is perfectly complete and FS(Σ,H) satisfies
zero-knowledge. Further suppose Γ satisfies Tally-Soundness. We have Γ satisfies
Ballot-Secrecy.

Proof. Let FS(Σ,H) = (ProveKey,VerKey) and Π = (Gen,Enc,Dec). Moreover,
let asymmetric encryption scheme Π′ = (Gen′,Enc′,Dec) such that

F HELIOS MIXNET 52

• Gen′(κ) selects coins s uniformly at random, computes (pk , sk ,m) ←
Gen(κ; s); ρ ← ProveKey((κ, pk ,m), (sk , s), κ); pk ′ ← (pk ,m, ρ), and out-
puts (pk ′, sk ,m).

• Enc′(pk , v) parses pk ′ as a vector (pk ,m, ρ), outputting ⊥ if parsing fails
or VerKey((κ, pk ,m), ρ, κ) 6= 1, computes ciphertext c ← Enc(pk , v), and
outputs c.

Since Π is perfectly correct and Σ is perfectly complete, we have Π′ is perfectly
correct. Moreover, since Π satisfies well-definedness, we have Π′ does too. Fur-
thermore, since FS(Σ,H) satisfies zero-knowledge and Π satisfies IND-PA0, we
have Π′ satisfies IND-PA0. It follows that Enc2Vote(Π′) satisfies Tally-Soundness
and IND-CVA (Corollary 13 & Lemma 15).

We have Enc2Vote(Π′) = (Setup′,Vote′,Tally) such that Setup′ is Setup ex-
cept Setup outputs public key pk ′ as a vector (pk ,m, ρ), whereas Setup′ outputs
public key (pk ′,m). Moreover, Vote′ is Vote except Vote inputs public key pk ′

whereas Vote′ inputs public key (pk ′,m). (This blight motivated the inclusion of
this appendix.) Hence, it is straightforward to see that Enc2Vote+(Π,Σ,H) sat-
isfies Tally-Soundness and IND-CVA, because Enc2Vote(Π′) does. Thus, Γ satis-
fies IND-CVA (Proposition 11) and Ballot-Secrecy (Theorem 5 & Lemma 10).

F Helios Mixnet

We recall a generic construction for election schemes similar to Helios Mixnet
(Definition 34). The construction is parameterised on the choice of homomor-
phic encryption scheme and sigma protocols for the relations introduced in Def-
inition 22 and the following definition.

Definition 33 (from [SFC17]). Let (Gen,Enc,Dec) be a homomorphic asym-
metric encryption scheme and Σ be a sigma protocol for a binary relation R.
Suppose that (pk , sk) = Gen(κ; s), for some security parameter κ and coins s,
and m is the encryption scheme’s plaintext space.

• Σ proves plaintext knowledge if ((pk , c), (m, r)) ∈ R⇔ c = Enc(pk ,m; r) ∧
m ∈ m.

• Σ proves mixing if ((pk , c, c′), (r, χ)) ∈ R ⇔
∧

1≤i≤|c| c
′[i] = c[χ(i)] ⊗

Enc(pk , e; r[i]) ∧ |c| = |c′| = |r|, where c and c′ are both vectors of ci-
phertexts encrypted under pk, r is a vector of coins, χ is a permutation
on {1, . . . , |c|}, and e is an identity element of the encryption scheme’s
message space with respect to �.

Definition 34 (HeliosM [Smy18,QS17a]). Suppose Π0 = (Gen,Enc,Dec) is a ho-
momorphic asymmetric encryption algorithm, Σ1 is a sigma protocol that proves
correct key construction, Σ2 is a sigma protocol that proves plaintext knowledge,
and H is a hash function. Let FS(Σ1,H) = (ProveKey,VerKey) and FS(Σ2,
H) = (ProveCiph,VerCiph). Moreover, let π(Π,Σ2,H) = (Gen,Enc′,Dec′) be an
asymmetric encryption scheme such that:

F HELIOS MIXNET 53

• Enc′(pk , v) selects coins r uniformly at random, computes c← Enc(pk , v; r);
σ ← ProveCiph((pk , c), (v, r), κ), and outputs (c, σ).

• Dec′(sk , c′) parses c′ as (c, σ), outputting ⊥ if parsing fails or VerCiph((pk ,
c), σ, κ) 6= 1, computes v ← Dec(sk , c), and outputs v.

Let Enc2Vote+(π(Π,Σ2,H),Σ1,H) = (Setup,Vote,Tally′). Suppose Σ3 is a
sigma protocol that proves correct decryption and Σ4 is a sigma protocol that
proves mixing. Let FS(Σ3,H) = (ProveDec,VerDec) and FS(Σ4,H) = (ProveMix,
VerMix). We define HeliosM(Π,Σ1,Σ2,Σ3,Σ4,H) = (Setup,Vote,Tally), where
algorithm Tally is defined below.43

Tally(sk ′,nc, bb, κ) initialises v as a zero-filled vector of length nc; parses sk ′ as
a vector (pk , sk), outputting (v,⊥) if parsing fails; and proceeds as follows:

1. Remove invalid ballots. Let {b1, . . . , b`} be the largest subset of bb such that
for all 1 ≤ i ≤ ` we have bi is a pair and VerCiph((pk , bi[1]), bi[2], κ) = 1.
If {b1, . . . , b`} = ∅, then output (v,⊥).

2. Mix. Select a permutation χ on {1, . . . , `} uniformly at random, initialise
bb and r as a vector of length `, fill r with coins chosen uniformly at
random, and compute

for 1 ≤ i ≤ ` do
bb[i]← bχ(i)[1]⊗ Enc(pk , e; r[i]);

pf 1 ← ProveMix((pk , (b1[1], . . . , b`[1]),bb), (r, χ), κ);

where e is an identity element of Π’s message space with respect to �.

3. Decrypt. Initialise W and pf 2 as vectors of length ` and compute:

for 1 ≤ i ≤ ` do
W[i]← Dec(sk ,bb[i]);
pf 2[i]← ProveDec((pk ,bb[i],W[i]), sk , κ);
if 1 ≤W[i] ≤ nc then

v[W[i]]← v[W[i]] + 1;

Output (v, (bb, pf 1,W, pf 2)).

Definition 35 (HeliosM′17). HeliosM′17 is the set of election schemes that in-
cludes every HeliosM(Π0,Σ1,Σ2,Σ3,Σ4,H) such that Π0, Σ1, Σ2, Σ3, Σ4 and H
satisfy the preconditions of Definition 34, moreover, Π0 is perfectly correct and
Σ1 and Σ2 are perfectly complete, furthermore, Π0 satisfies IND-CPA, Σ1, Σ2,
Σ3 and Σ4 satisfy special soundness and special honest verifier zero-knowledge,
H is a random oracle, and HeliosM(Π0,Σ1,Σ2,Σ3,Σ4,H) satisfies UV.

Smyth has shown that there exists an election scheme in HeliosM′17 that satisfies
UV [Smy18]. Hence, set HeliosM′17 is not empty.

43We omit algorithm Verify for brevity.

REFERENCES 54

F.1 Proof of Theorem 17

Let election scheme Γ = HeliosM(Π0,Σ1,Σ2,Σ3,Σ4,H) = (Setup,Vote,Tally)
and asymmetric encryption scheme Π = π(Π0,Σ2,H). It follows that election
scheme Enc2Vote+(Π,Σ1,H) = (Setup,Vote,Tally′). Moreover, since Σ1 satisfies
special soundness and special honest verifier zero-knowledge, we have FS(Σ1,
H) satisfies zero-knowledge (Theorem 18). We use Theorem 31 to prove that
Γ ∈ HeliosM′17 satisfies Ballot-Secrecy.

Since Π0 is perfectly correct and Σ2 is perfectly complete, we have Π is
a perfectly correct. Moreover, since Σ2 satisfies special soundness and special
honest verifier zero-knowledge, we have FS(Σ2,H) satisfies simulation sound
extractability (Theorem 18), hence, Π satisfies CNM-CPA [BPW12a, Theorem 2]
and, equivalently, IND-PA0 [BS99].

To prove Π = (Gen,Enc,Dec) satisfies well-definedness, suppose A is a prob-
abilistic polynomial-time adversary, κ is a security parameter, (pk , sk ,m) is an
output of Gen(κ), and c is an output of A(pk ,m, κ) such that Dec(sk , c) 6= ⊥.
By definition of Dec, we have c is a pair (hence, c 6= ⊥) such that FS(Σ2,H)
can verify c[2] with respect to pk and c[1]. Since FS(Σ2,H) satisfies simula-
tion sound extractability, we have c[2] is a proof computed using FS(Σ2,H) and
there exists plaintext m ∈ m and coins r such that c[1] = Enc(pk ,m; r), with
overwhelming probability. Thus, Π satisfies well-definedness.

Since Σ3 and Σ4 satisfy special soundness and special honest verifier zero-
knowledge, we have FS(Σ3,H) and FS(Σ4,H) satisfy zero-knowledge (Theo-
rem 18), therefore, Γ has zero-knowledge tallying proofs by reasoning similar to
that given in the proof sketch of Lemma 25. Moreover, since Γ satisfies universal
verifiability, we have Γ satisfies Tally-Soundness (Lemma 29).

We conclude by Theorem 31.

References

[ABR12] Myrto Arapinis, Sergiu Bursuc, and Mark Ryan. Reduction of
Equational Theories for Verification of Trace Equivalence: Re-
encryption, Associativity and Commutativity. In POST’12: First
Conference on Principles of Security and Trust, volume 7215 of
LNCS, pages 169–188. Springer, 2012.

[Adi08] Ben Adida. Helios: Web-based Open-Audit Voting. In USENIX
Security’08: 17th USENIX Security Symposium, pages 335–348.
USENIX Association, 2008.

[AH10] R. Michael Alvarez and Thad E. Hall. Electronic Elections: The
Perils and Promises of Digital Democracy. Princeton University
Press, 2010.

[AMPQ09] Ben Adida, Olivier de Marneffe, Olivier Pereira, and Jean-Jacques
Quisquater. Electing a University President Using Open-Audit Vot-
ing: Analysis of Real-World Use of Helios. In EVT/WOTE’09:

REFERENCES 55

Electronic Voting Technology Workshop/Workshop on Trustworthy
Elections. USENIX Association, 2009.

[AN06] Ben Adida and C. Andrew Neff. Ballot casting assurance. In
EVT’06: Electronic Voting Technology Workshop. USENIX Asso-
ciation, 2006.

[BBP07] Romain Bertrand, Jean-Louis Briquet, and Peter Pels. Introduc-
tion: Towards a Historical Ethnography of Voting. In The Hidden
History of the Secret Ballot. Indiana University Press, 2007.

[BCG+15a] David Bernhard, Véronique Cortier, David Galindo, Olivier
Pereira, and Bogdan Warinschi. A comprehensive analysis of game-
based ballot privacy definitions. Cryptology ePrint Archive, Report
2015/255 (version 20150319:100626), 2015.

[BCG+15b] David Bernhard, Véronique Cortier, David Galindo, Olivier
Pereira, and Bogdan Warinschi. SoK: A comprehensive analysis
of game-based ballot privacy definitions. In S&P’15: 36th Security
and Privacy Symposium, pages 499–516. IEEE Computer Society,
2015.

[BCP+11] David Bernhard, Véronique Cortier, Olivier Pereira, Ben Smyth,
and Bogdan Warinschi. Adapting Helios for provable ballot pri-
vacy. In ESORICS’11: 16th European Symposium on Research in
Computer Security, volume 6879 of LNCS, pages 335–354. Springer,
2011.

[BDJR97] Mihir Bellare, Anand Desai, E. Jokipii, and Phillip Rogaway.
A Concrete Security Treatment of Symmetric Encryption. In
FOCS’97: 38th Annual Symposium on Foundations of Computer
Science, pages 394–403. IEEE Computer Society, 1997.

[BDPR98] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Ro-
gaway. Relations Among Notions of Security for Public-Key En-
cryption Schemes. In CRYPTO’98: 18th International Cryptology
Conference, volume 1462 of LNCS, pages 26–45. Springer, 1998.

[Ben96] Josh Benaloh. Verifiable Secret-Ballot Elections. PhD thesis, De-
partment of Computer Science, Yale University, 1996.

[Ber14] David Bernhard. Zero-Knowledge Proofs in Theory and Practice.
PhD thesis, Department of Computer Science, University of Bristol,
2014.

[BGP11] Philippe Bulens, Damien Giry, and Olivier Pereira. Running
Mixnet-Based Elections with Helios. In EVT/WOTE’11: Elec-
tronic Voting Technology Workshop/Workshop on Trustworthy
Elections. USENIX Association, 2011.

REFERENCES 56

[Bow07] Debra Bowen. Secretary of State Debra Bowen Moves to Strengthen
Voter Confidence in Election Security Following Top-to-Bottom Re-
view of Voting Systems. California Secretary of State, press release
DB07:042, August 2007.

[BPW12a] David Bernhard, Olivier Pereira, and Bogdan Warinschi. How Not
to Prove Yourself: Pitfalls of the Fiat-Shamir Heuristic and Appli-
cations to Helios. In ASIACRYPT’12: 18th International Confer-
ence on the Theory and Application of Cryptology and Information
Security, volume 7658 of LNCS, pages 626–643. Springer, 2012.

[BPW12b] David Bernhard, Olivier Pereira, and Bogdan Warinschi. On
Necessary and Sufficient Conditions for Private Ballot Submis-
sion. Cryptology ePrint Archive, Report 2012/236 (version
20120430:154117b), 2012.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical:
A paradigm for designing efficient protocols. In CCS’93: 1st ACM
Conference on Computer and Communications Security, pages 62–
73. ACM, 1993.

[BR05] Mihir Bellare and Phillip Rogaway. Symmetric Encryption. In
Introduction to Modern Cryptography, chapter 4. 2005. http://

cseweb.ucsd.edu/~mihir/cse207/w-se.pdf.

[Bre06] Peter Brent. The Australian ballot: Not the secret ballot. Aus-
tralian Journal of Political Science, 41(1):39–50, 2006.

[BS99] Mihir Bellare and Amit Sahai. Non-malleable Encryption: Equiv-
alence between Two Notions, and an Indistinguishability-Based
Characterization. In CRYPTO’99: 19th International Cryptology
Conference, volume 1666 of LNCS, pages 519–536. Springer, 1999.

[BS15] David Bernhard and Ben Smyth. Ballot secrecy with malicious bul-
letin boards. Cryptology ePrint Archive, Report 2014/822 (version
20150413:170300), 2015.

[BS16] Bruno Blanchet and Ben Smyth. Automated reasoning for equiv-
alences in the applied pi calculus with barriers. In CSF’16: 29th
Computer Security Foundations Symposium, pages 310–324. IEEE
Computer Society, 2016.

[BS17] Bruno Blanchet and Ben Smyth. Automated reasoning for equiva-
lences in the applied pi calculus with barriers. Journal of Computer
Security, 2017. To appear.

[BSCS16] Bruno Blanchet, Ben Smyth, Vincent Cheval, and Marc Sylvestre.
ProVerif 1.96: Automatic Cryptographic Protocol Verifier, User
Manual and Tutorial, 2016.

REFERENCES 57

[BT94] Josh Cohen Benaloh and Dwight Tuinstra. Receipt-free secret-
ballot elections. In STOC’94: 26th Theory of computing Sympo-
sium, pages 544–553. ACM Press, 1994.

[BVQ10] Josh Benaloh, Serge Vaudenay, and Jean-Jacques Quisquater.
Final Report of IACR Electronic Voting Committee. International
Association for Cryptologic Research. http://www.iacr.org/

elections/eVoting/finalReportHelios_2010-09-27.html,
Sept 2010.

[BW14] David Bernhard and Bogdan Warinschi. Cryptographic Voting —
A Gentle Introduction. In Foundations of Security Analysis and
Design VII, volume 8604 of LNCS, pages 167–211. Springer, 2014.

[BY86] Josh Benaloh and Moti Yung. Distributing the Power of a Govern-
ment to Enhance the Privacy of Voters. In PODC’86: 5th Prin-
ciples of Distributed Computing Symposium, pages 52–62. ACM
Press, 1986.

[CCFG16] Pyrros Chaidos, Véronique Cortier, Georg Fuschbauer, and David
Galido. BeleniosRF: A Non-interactive Receipt-Free Electronic
Voting Scheme. In CCS’16: 23rd ACM Conference on Computer
and Communications Security, pages 1614–1625. ACM Press, 2016.

[CE16] Nicholas Chang-Fong and Aleksander Essex. The Cloudier Side of
Cryptographic End-to-end Verifiable Voting: A Security Analysis
of Helios. In ACSAC’16: 32nd Annual Conference on Computer
Security Applications, pages 324–335. ACM Press, 2016.

[CEGP87] David Chaum, Jan-Hendrik Evertse, Jeroen van de Graaf, and
René Peralta. Demonstrating Possession of a Discrete Logarithm
Without Revealing It. In CRYPTO’86: 6th International Cryp-
tology Conference, volume 263 of LNCS, pages 200–212. Springer,
1987.

[CFSY96] Ronald Cramer, Matthew K. Franklin, Berry Schoenmakers, and
Moti Yung. Multi-Autority Secret-Ballot Elections with Linear
Work. In EUROCRYPT’96: 15th International Conference on the
Theory and Applications of Cryptographic Techniques, volume 1070
of LNCS, pages 72–83. Springer, 1996.

[CGGI13a] Veronique Cortier, David Galindo, Stephane Glondu, and Malika
Izabachene. A generic construction for voting correctness at min-
imum cost - Application to Helios. Cryptology ePrint Archive,
Report 2013/177 (version 20130521:145727), 2013.

[CGGI13b] Véronique Cortier, David Galindo, Stéphane Glondu, and Malika
Izabachene. Distributed elgamal à la pedersen: Application to he-
lios. In WPES’13: Workshop on Privacy in the Electronic Society,
pages 131–142. ACM Press, 2013.

REFERENCES 58

[CGMA85] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awer-
buch. Verifiable Secret Sharing and Achieving Simultaneity in the
Presence of Faults. In FOCS’85: 26th Foundations of Computer
Science Symposium, pages 383–395. IEEE Computer Society, 1985.

[CGS97] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A
Secure and Optimally Efficient Multi-Authority Election Scheme.
In EUROCRYPT’97: 16th International Conference on the The-
ory and Applications of Cryptographic Techniques, volume 1233 of
LNCS, pages 103–118. Springer, 1997.

[CH17] Cas Cremers and Lucca Hirschi. Improving Automated Symbolic
Analysis for E-voting Protocols: A Method Based on Sufficient
Conditions for Ballot Secrecy. arXiv, Report 1709.00194, Septem-
ber 2017.

[Cha81] David L. Chaum. Untraceable electronic mail, return addresses,
and digital pseudonyms. Communications of the ACM, 24:84–90,
1981.

[CP93] David Chaum and Torben P. Pedersen. Wallet Databases with
Observers. In CRYPTO’92: 12th International Cryptology Confer-
ence, volume 740 of LNCS, pages 89–105. Springer, 1993.

[CR87] Benny Chor and Michael O. Rabin. Achieving Independence in Log-
arithmic Number of Rounds. In PODC’87: 6th Principles of Dis-
tributed Computing Symposium, pages 260–268. ACM Press, 1987.

[CS11] Véronique Cortier and Ben Smyth. Attacking and fixing Helios:
An analysis of ballot secrecy. In CSF’11: 24th Computer Security
Foundations Symposium, pages 297–311. IEEE Computer Society,
2011.

[CS13] Véronique Cortier and Ben Smyth. Attacking and fixing Helios: An
analysis of ballot secrecy. Journal of Computer Security, 21(1):89–
148, 2013.

[CSD+17] Véronique Cortier, Benedikt Schmidt, Constantin Cătălin Drăgan,
Pierre-Yves Strub, Francois Dupressoir, and Bogdan Warinschi.
Machine-Checked Proofs of Privacy for Electronic Voting Proto-
cols. In S&P’17: 37th IEEE Symposium on Security and Privacy.
IEEE Computer Society, 2017.

[DC12] Yvo Desmedt and Pyrros Chaidos. Applying Divertibility to Blind
Ballot Copying in the Helios Internet Voting System. In ES-
ORICS’12: 17th European Symposium on Research in Computer
Security, volume 7459 of LNCS, pages 433–450. Springer, 2012.

REFERENCES 59

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-Malleable
Cryptography. In STOC’91: 23rd Theory of computing Sympo-
sium, pages 542–552. ACM Press, 1991.

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable Cryp-
tography. Journal on Computing, 30(2):391–437, 2000.

[DK05] Yvo Desmedt and Kaoru Kurosawa. Electronic Voting: Starting
Over? In ISC’05: International Conference on Information Secu-
rity, volume 3650 of LNCS, pages 329–343. Springer, 2005.

[DKR09] Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Verifying
privacy-type properties of electronic voting protocols. Journal of
Computer Security, 17(4):435–487, July 2009.

[DKRS11] Stéphanie Delaune, Steve Kremer, Mark D. Ryan, and Graham
Steel. Formal analysis of protocols based on TPM state registers.
In CSF’11: 24th Computer Security Foundations Symposium, pages
66–80. IEEE Computer Society, 2011.

[DRS08] Stéphanie Delaune, Mark D. Ryan, and Ben Smyth. Automatic
verification of privacy properties in the applied pi-calculus. In
IFIPTM’08: 2nd Joint iTrust and PST Conferences on Pri-
vacy, Trust Management and Security, volume 263 of Interna-
tional Federation for Information Processing (IFIP), pages 263–
278. Springer, 2008.

[FS87] Amos Fiat and Adi Shamir. How To Prove Yourself: Practical So-
lutions to Identification and Signature Problems. In CRYPTO’86:
6th International Cryptology Conference, volume 263 of LNCS,
pages 186–194. Springer, 1987.

[Gen95] Rosario Gennaro. Achieving independence efficiently and securely.
In PODC’95: 14th Principles of Distributed Computing Sympo-
sium, pages 130–136. ACM Press, 1995.

[Gen00] Rosario Gennaro. A Protocol to Achieve Independence in Constant
Rounds. IEEE Transactions on Parallel and Distributed Systems,
11(7):636–647, 2000.

[Ger09] Bundesverfassungsgericht (Germany’s Federal Constitutional
Court). Use of voting computers in 2005 Bundestag election
unconstitutional, March 2009. Press release 19/2009.

[GGR09] Ryan W. Gardner, Sujata Garera, and Aviel D. Rubin. Coercion
Resistant End-to-end Voting. In FC’09: 13th International Con-
ference on Financial Cryptography and Data Security, volume 5628
of LNCS, pages 344–361. Springer, 2009.

REFERENCES 60

[GH07] Rop Gonggrijp and Willem-Jan Hengeveld. Studying the
Nedap/Groenendaal ES3B Voting Computer: A Computer Secu-
rity Perspective. In EVT’07: Electronic Voting Technology Work-
shop. USENIX Association, 2007.

[Gro04] Jens Groth. Efficient maximal privacy in boardroom voting and
anonymous broadcast. In FC’04: 8th International Conference
on Financial Cryptography, volume 3110 of LNCS, pages 90–104.
Springer, 2004.

[Gro06] Jens Groth. Simulation-Sound NIZK Proofs for a Practical Lan-
guage and Constant Size Group Signatures. In ASIACRYPT’02:
12th International Conference on the Theory and Application of
Cryptology and Information Security, volume 4284 of LNCS, pages
444–459. Springer, 2006.

[Gum05] Andrew Gumbel. Steal This Vote: Dirty Elections and the Rotten
History of Democracy in America. Nation Books, 2005.

[HBH10] Stuart Haber, Josh Benaloh, and Shai Halevi. The Helios e-Voting
Demo for the IACR. International Association for Cryptologic Re-
search. http://www.iacr.org/elections/eVoting/heliosDemo.
pdf, May 2010.

[HK02] Alejandro Hevia and Marcos A. Kiwi. Electronic Jury Voting Pro-
tocols. In LATIN’02: Theoretical Informatics, volume 2286 of
LNCS, pages 415–429. Springer, 2002.

[HK04] Alejandro Hevia and Marcos A. Kiwi. Electronic jury voting pro-
tocols. Theoretical Computer Science, 321(1):73–94, 2004.

[HRZ10] Fao Hao, Peter Y. A. Ryan, and Piotr Zieliński. Anonymous voting
by two-round public discussion. Journal of Information Security,
4(2):62 – 67, 2010.

[JCJ05] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-
Resistant Electronic Elections. In WPES’05: 4th Workshop on
Privacy in the Electronic Society, pages 61–70. ACM Press, 2005.

[JS12] Douglas W. Jones and Barbara Simons. Broken Ballots: Will Your
Vote Count?, volume 204 of CSLI Lecture Notes. Center for the
Study of Language and Information, Stanford University, 2012.

[KL07] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryp-
tography. Chapman & Hall/CRC, 2007.

[KSRH12] Dalia Khader, Ben Smyth, Peter Y. A. Ryan, and Feng Hao. A Fair
and Robust Voting System by Broadcast. In EVOTE’12: 5th In-
ternational Conference on Electronic Voting, volume 205 of Lecture
Notes in Informatics, pages 285–299. Gesellschaft für Informatik,
2012.

REFERENCES 61

[KSRW04] Tadayoshi Kohno, Adam Stubblefield, Aviel D. Rubin, and Dan S.
Wallach. Analysis of an Electronic Voting System. In S&P’04: 25th
Security and Privacy Symposium, pages 27–40. IEEE Computer
Society, 2004.

[KTV12a] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. A Game-
Based Definition of Coercion-Resistance and its Applications. Jour-
nal of Computer Security, 20(6):709–764, 2012.

[KTV12b] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Clash At-
tacks on the Verifiability of E-Voting Systems. In S&P’12: 33rd
IEEE Symposium on Security and Privacy, pages 395–409. IEEE
Computer Society, 2012.

[KY02] Aggelos Kiayias and Moti Yung. Self-tallying elections and perfect
ballot secrecy. In PKC’01: 3rd International Workshop on Practice
and Theory in Public Key Cryptography, volume 2274 of LNCS,
pages 141–158. Springer, 2002.

[KZZ15] Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. End-
to-end verifiable elections in the standard model. In EURO-
CRYPT’15: 34th International Conference on the Theory and
Applications of Cryptographic Techniques, volume 9057 of LNCS,
pages 468–498. Springer, 2015.

[Lep08] Jill Lepore. Rock, Paper, Scissors: How we used to vote. Annals
of Democracy, The New Yorker, October 2008.

[LG84] Arend Lijphart and Bernard Grofman. Choosing an electoral sys-
tem: Issues and Alternatives. Praeger, 1984.

[MH96] Markus Michels and Patrick Horster. Some Remarks on a Receipt-
Free and Universally Verifiable Mix-Type Voting Scheme. In ASI-
ACRYPT’96: International Conference on the Theory and Applica-
tion of Cryptology and Information Security, volume 1163 of LNCS,
pages 125–132. Springer, 1996.

[Mil30] James Mill. The Ballot. In The Westminster Review, volume 13.
Robert Heward, 1830.

[MN06] Tal Moran and Moni Naor. Receipt-Free Universally-Verifiable
Voting with Everlasting Privacy. In CRYPTO’06: 26th Interna-
tional Cryptology Conference, volume 4117 of LNCS, pages 373–
392. Springer, 2006.

[MS17] Maxime Meyer and Ben Smyth. An attack against the helios elec-
tion system that exploits re-voting. arXiv, Report 1612.04099,
2017.

REFERENCES 62

[MSQ14] Adam McCarthy, Ben Smyth, and Elizabeth A. Quaglia. Hawk and
Aucitas: e-auction schemes from the Helios and Civitas e-voting
schemes. In FC’14: 18th International Conference on Financial
Cryptography and Data Security, volume 8437 of LNCS, pages 51–
63. Springer, 2014.

[NA03] C. Andrew Neff and Jim Adler. Verifiable e-Voting: Indisputable
electronic elections at polling places. Technical report, VoteHere,
2003.

[NIS12] NIST. Secure Hash Standard (SHS). FIPS PUB 180-4, Informa-
tion Technology Laboratory, National Institute of Standards and
Technology, March 2012.

[OAS69] Organization of American States. American Convention on Human
Rights, “Pact of San Jose, Costa Rica”, 1969.

[OSC90] Organization for Security and Co-operation in Europe. Document
of the Copenhagen Meeting of the Conference on the Human Di-
mension of the CSCE, 1990.

[PB12] Miriam Paiola and Bruno Blanchet. Verification of Security Pro-
tocols with Lists: From Length One to Unbounded Length. In
POST’12: First Conference on Principles of Security and Trust,
volume 7215 of LNCS, pages 69–88. Springer, 2012.

[Pfi94] Birgit Pfitzmann. Breaking Efficient Anonymous Channel. In EU-
ROCRYPT’94: 11th International Conference on the Theory and
Applications of Cryptographic Techniques, volume 950 of LNCS,
pages 332–340. Springer, 1994.

[PP89] Birgit Pfitzmann and Andreas Pfitzmann. How to Break the Direct
RSA-Implementation of Mixes. In EUROCRYPT’89: 6th Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques, volume 434 of LNCS, pages 373–381. Springer, 1989.

[QS17a] Elizabeth A. Quaglia and Ben Smyth. Secret, verifiable auctions
from elections. Cryptology ePrint Archive, Report 2015/1204 (ver-
sion 20171030:125012), 2017.

[QS17b] Elizabeth A. Quaglia and Ben Smyth. A short introduction to
secrecy and verifiability for elections. arXiv, Report 1702.03168,
2017.

[Saa95] Thomas Saalfeld. On Dogs and Whips: Recorded Votes. In Herbert
Döring, editor, Parliaments and Majority Rule in Western Europe,
chapter 16. St. Martin’s Press, 1995.

REFERENCES 63

[SB13] Ben Smyth and David Bernhard. Ballot secrecy and ballot inde-
pendence coincide. In ESORICS’13: 18th European Symposium
on Research in Computer Security, volume 8134 of LNCS, pages
463–480. Springer, 2013.

[SB14] Ben Smyth and David Bernhard. Ballot secrecy and ballot inde-
pendence: definitions and relations. Cryptology ePrint Archive,
Report 2013/235 (version 20141010:082554), 2014.

[SC11] Ben Smyth and Véronique Cortier. A note on replay attacks that
violate privacy in electronic voting schemes. Technical Report RR-
7643, INRIA, June 2011.

[Sch99] Berry Schoenmakers. A simple publicly verifiable secret sharing
scheme and its application to electronic voting. In CRYPTO’99:
19th International Cryptology Conference, volume 1666 of LNCS,
pages 148–164. Springer, 1999.

[Sch05] Nicole Schweikardt. Arithmetic, first-order logic, and counting
quantifiers. ACM Transactions on Computational Logic, 6(3):634–
671, July 2005.

[SFC17] Ben Smyth, Steven Frink, and Michael R. Clarkson. Election
Verifiability: Cryptographic Definitions and an Analysis of Helios
and JCJ. Cryptology ePrint Archive, Report 2015/233 (version
20170111:122701), 2017.

[SFD+14] Drew Springall, Travis Finkenauer, Zakir Durumeric, Jason Kitcat,
Harri Hursti, Margaret MacAlpine, and J. Alex Halderman. Secu-
rity Analysis of the Estonian Internet Voting System. In CCS’14:
21st ACM Conference on Computer and Communications Security,
pages 703–715. ACM Press, 2014.

[SK95] Kazue Sako and Joe Kilian. Receipt-Free Mix-Type Voting Scheme:
A practical solution to the implementation of a voting booth.
In EUROCRYPT’95: 12th International Conference on the The-
ory and Applications of Cryptographic Techniques, volume 921 of
LNCS, pages 393–403. Springer, 1995.

[Smy11] Ben Smyth. Formal verification of cryptographic protocols with au-
tomated reasoning. PhD thesis, School of Computer Science, Uni-
versity of Birmingham, 2011.

[Smy12] Ben Smyth. Replay attacks that violate ballot secrecy in Helios.
Cryptology ePrint Archive, Report 2012/185, 2012.

[Smy14] Ben Smyth. Ballot secrecy with malicious bulletin boards. Cryp-
tology ePrint Archive, Report 2014/822 (version 20141012:004943),
2014.

REFERENCES 64

[Smy15] Ben Smyth. Secrecy and independence for election schemes. Cryp-
tology ePrint Archive, Report 2015/942 (version 20150928:195428),
2015.

[Smy16] Ben Smyth. Secrecy and independence for election schemes. Cryp-
tology ePrint Archive, Report 2015/942 (version 20160713:142934),
2016.

[Smy17] Ben Smyth. First-past-the-post suffices for ranked voting.
https://bensmyth.com/publications/2017-FPTP-suffices-

for-ranked-voting/, 2017.

[Smy18] Ben Smyth. Verifiability of helios mixnet. Cryptology ePrint
Archive, Report 2018/017, 2018.

[SP13] Ben Smyth and Alfredo Pironti. Truncating TLS Connections to
Violate Beliefs in Web Applications. In WOOT’13: 7th USENIX
Workshop on Offensive Technologies. USENIX Association, 2013.
(First appeared at Black Hat USA 2013.).

[SP15] Ben Smyth and Alfredo Pironti. Truncating TLS Connections
to Violate Beliefs in Web Applications. Technical Report hal-
01102013, INRIA, 2015.

[Sta14] CACM Staff. ACM’s 2014 General Election: Please Take This
Opportunity to Vote. Communications of the ACM, 57(5):9–17,
May 2014.

[TPLT13] Georgios Tsoukalas, Kostas Papadimitriou, Panos Louridas, and
Panayiotis Tsanakas. From Helios to Zeus. Journal of Election
Technology and Systems, 1(1), 2013.

[TY98] Yiannis Tsiounis and Moti Yung. On the Security of ElGamal
Based Encryption. In PKC’98: First International Workshop on
Practice and Theory in Public Key Cryptography, volume 1431 of
LNCS, pages 117–134. Springer, 1998.

[UK07] UK Electoral Commission. Key issues and conclusions: May 2007
electoral pilot schemes, May 2007.

[UM10] Dominique Unruh and Jörn Müller-Quade. Universally Compos-
able Incoercibility. In CRYPTO’10: 30th International Cryptology
Conference, volume 6223 of LNCS, pages 411–428. Springer, 2010.

[UN48] United Nations. Universal Declaration of Human Rights, 1948.

[Wik06] Douglas Wikström. Simplified Submission of Inputs to Protocols.
Cryptology ePrint Archive, Report 2006/259, 2006.

REFERENCES 65

[Wik08] Douglas Wikström. Simplified Submission of Inputs to Protocols.
In SCN’08: 6th International Conference on Security and Cryptog-
raphy for Networks, volume 5229 of LNCS, pages 293–308. Springer,
2008.

[Wik16] Douglas Wikström. Verificatum: How to Implement a Stand-alone
Verifier for the Verificatum Mix-Net (VMN Version 3.0.2), 2016.
http://www.verificatum.com/files/vmnum-3.0.2.pdf.

[WWH+10] Scott Wolchok, Eric Wustrow, J. Alex Halderman, Hari K. Prasad,
Arun Kankipati, Sai Krishna Sakhamuri, Vasavya Yagati, and Rop
Gonggrijp. Security Analysis of India’s Electronic Voting Machines.
In CCS’10: 17th ACM Conference on Computer and Communica-
tions Security, pages 1–14. ACM Press, 2010.

[WWIH12] Scott Wolchok, Eric Wustrow, Dawn Isabel, and J. Alex Halder-
man. Attacking the Washington, D.C. Internet Voting System. In
FC’12: 16th International Conference on Financial Cryptography
and Data Security, volume 7397 of LNCS, pages 114–128. Springer,
2012.

