
Ballot secrecy: Security definition, sufficient
conditions, and analysis of Helios

Ben Smyth
School of Computer Science, University of Birmingham, UK

Abstract. We propose a definition of ballot secrecy as an indistinguishability game in the computational model of cryptography.
Our definition improves upon earlier definitions to ensure ballot secrecy is preserved in the presence of an adversary that
controls ballot collection. We also propose a definition of ballot independence as an adaptation of an indistinguishability game
for asymmetric encryption. We prove relations between our definitions. In particular, we prove ballot independence is sufficient
for ballot secrecy in voting systems with zero-knowledge tallying proofs. Moreover, we prove that building systems from non-
malleable asymmetric encryption schemes suffices for ballot secrecy, thereby eliminating the expense of ballot-secrecy proofs
for a class of encryption-based voting systems. We demonstrate applicability of our results by analysing the Helios voting
system and its mixnet variant. Our analysis reveals that Helios does not satisfy ballot secrecy in the presence of an adversary
that controls ballot collection. The vulnerability cannot be detected by earlier definitions of ballot secrecy, because they do not
consider such adversaries. We adopt non-malleable ballots as a fix and prove that the fixed system satisfies ballot secrecy.

Keywords: Anonymity, Democracy, Elections, Helios, Independence, Non-Malleability, Privacy, Secrecy, Voting

1. Introduction

An election is a decision-making procedure to choose representatives [1–4]. Choices should be made
by voters with equal influence, and this must be ensured by voting systems, as prescribed by the United
Nations [5], the Organisation for Security & Cooperation in Europe [6], and the Organization of Amer-
ican States [7]. Historically, “Americans [voted] with their voices – viva voce – or with their hands or
with their feet. Yea or nay. Raise your hand. All in favor of Jones, stand on this side of the town com-
mon; if you support Smith, line up over there" [8]. Thus, ensuring that only voters voted and did so
with equal influence was straightforward. Indeed, the election outcome could be determined by anyone
present, simply by considering at most one vote per voter and disregarding non-voters. Yet, voting sys-
tems must also ensure choices are made freely, as prescribed by the aforementioned organisations [5–7].
Mill eloquently argues that choices cannot be expressed freely in public: “The unfortunate voter is in the
power of some opulent man; the opulent man informs him how he must vote. Conscience, virtue, moral
obligation, religion, all cry to him, that he ought to consult his own judgement, and faithfully follow its
dictates. The consequences of pleasing, or offending the opulent man, stare him in the face...the moral
obligation is disregarded, a faithless, a prostitute, a pernicious vote is given" [9].

The need for free-choice started a movement towards voting as a private act, i.e., “when numerous
social constraints in which citizens are routinely and universally enmeshed – community of religious
allegiances, the patronage of big men, employers or notables, parties, ‘political machines’ – are kept
at bay," and “this idea has become the current doxa of democracy-builders worldwide" [10]. The most
widely used embodiment of this idea is the Australian system, which demands that votes be marked

on uniform ballots in polling booths and deposited into ballot boxes. Uniformity is intended to enable
free-choice during distribution, collection and tallying of ballots, and the isolation of polling booths is
intended to facilitate free-choice whilst marking.1 Moreover, the Australian system can assure that only
voters vote and do so with equal influence. Indeed, observers can check that ballots are only distributed
to voters and at most one ballot is deposited by each voter. Furthermore, observers can check that spoiled
ballots are discarded and that votes expressed in the remaining ballots correspond to the election out-
come. Albeit, assurance is limited by an observer’s ability to monitor [12–14] and the ability to transfer
that assurance is limited to the observer’s “good word or sworn testimony" [15].

Since the paper-based Australian system’s introduction, electronic voting systems have emerged. Un-
fortunately, these electronic systems are routinely broken in ways that violate free-choice, e.g., [16–21],
or permit undue influence, e.g., [16, 18, 22–24]. Breaks can be avoided by proving that systems satisfy
formal notions of voters voting freely and of detecting undue influence. Universal verifiability formalises
the latter notion, and we propose a definition of ballot secrecy that formalises the former. Our definition
is presented in the computational, game-based model of cryptography, whereby a benign challenger, a
malicious adversary and a voting system engage in a series of interactions which task the adversary to
break security.

Ballot secrecy formalises a notion of free-choice,2 assuming voters’ ballots are constructed and tallied
in the prescribed manner.

• Ballot secrecy. A voter’s vote is not revealed to anyone.

We capture ballot secrecy as a game that proceeds as follows. First, the adversary picks a pair of votes
v0 and v1. Secondly, the challenger constructs a ballot for vote vβ (in the manner prescribed by the
voting system), where β is a bit chosen uniformly at random. That ballot is given to the adversary. The
adversary and challenger repeat the process to construct further ballots, using the same bit β. Thirdly, the
adversary constructs a set of ballots, which may include ballots constructed by the adversary and ballots
constructed by the challenger. Thus, the game captures a setting where the adversary casts ballots on
behalf of some voters and controls the votes cast by the remaining voters. Fourthly, the challenger tallies
the set of ballots (in the manner prescribed by the voting system) to determine the election outcome,
which is given to the adversary. Finally, the adversary is tasked with determining if β = 0 or β = 1. To
avoid trivial distinctions, we require that the aforementioned votes (controlled by the adversary) remain
constant regardless of whether β = 0 or β = 1. If the adversary wins the game, then a voter’s vote can be
revealed, otherwise, it cannot, i.e., the voting system provides ballot secrecy. Our game improves upon
games by Bernhard et al. [25–29] to ensure ballot secrecy is preserved in the presence of an adversary
that controls ballot collection (i.e., the bulletin board and the communication channel), whereas games
by Bernhard et al. do not.

Beyond ballot secrecy, voting systems should satisfy properties including universal verifiability, which
requires systems to produce evidence that can be checked to determine whether votes expressed in bal-
lots correspond to the election outcome, thereby enabling the detection of undue influence. Smyth, Frink
& Clarkson [30] capture universal verifiability as a game that tasks the adversary to falsify evidence
that causes checks to succeed when the outcome does not correspond to the votes expressed in collected
ballots, or that cause checks to fail when the outcome does correspond to the votes expressed. Thus,

1Earlier systems merely required ballots to be marked in polling booths and deposited into ballot boxes, which permitted
non-uniform ballots, including ballots of different colours and sizes, that could be easily identified as party tickets [11].

2Ballot secrecy and privacy occasionally appear as synonyms in the literature. We favour ballot secrecy to avoid confusion
with other privacy notions, such as receipt-freeness and coercion resistance, which we will briefly discuss in Section 8.

winning the game signifies the existence of a scenario in which a spurious outcome will be accepted or a
legitimate outcome rejected. By comparison, when no winning adversary exists, anyone can determine
whether the election outcome is correct. Universal verifiability and ballot secrecy are orthogonal proper-
ties of voting systems that can be studied, formulated and analysed independently. We shall largely avoid
discussion of verifiability, except to introduce general concepts, to highlight features needed solely for
verifiability, and to simplify proofs.

We introduce two voting systems to demonstrate how ballot secrecy and universal verifiability can be
achieved. The first (Nonce) instructs each voter to cast a ballot comprising of their vote paired with a
nonce (which is collected and stored on a bulletin board) and instructs the tallier to publish the election
outcome corresponding to votes (stored on that board). The second (Enc2Vote) instructs voters to cast
asymmetric encryptions of their votes and instructs the tallier to decrypt the encrypted votes and pub-
lish the outcome corresponding to those votes. Universal verifiability is ensured by the former system,
because anyone can recompute the election outcome to check that it corresponds to votes expressed in
collected ballots. But, ballot secrecy is not, because voters’ votes are revealed. By comparison, secrecy is
ensured by the latter system, because asymmetric encryption can ensure that votes cannot be recovered
from ballots and the tallying procedure ensures that individual votes are not revealed. But, universal ver-
ifiability is not ensured. Indeed, spurious election outcomes need not correspond to the encrypted votes.
Thus, Enc2Vote ensures secrecy not verifiability, and Nonce achieves the reverse. More advanced vot-
ing systems must simultaneously satisfy both secrecy and verifiability, and we will consider the Helios
voting system.

Helios is an open-source, web-based electronic voting system [31], which has been used in binding
elections. In particular, the International Association of Cryptologic Research (IACR) has used Helios
annually since 2010 to elect board members [32, 33],3 the Association for Computing Machinery (ACM)
used Helios for their 2014 general election [34], the Catholic University of Louvain used Helios to elect
their university president in 2009 [31], and Princeton University has used Helios since 2009 to elect stu-
dent governments.4 Helios is intended to satisfy universal verifiability whilst maintaining ballot secrecy.
For ballot secrecy, each voter is instructed to encrypt their vote using an asymmetric homomorphic en-
cryption scheme. Encrypted votes are homomorphically combined and the homomorphic combination
is decrypted to reveal the outcome. Alternatively, a mixnet is applied to the encrypted votes and the
mixed encrypted votes are decrypted to reveal the outcome [35, 36]. We continue to refer to the former
voting system as Helios and, henceforth, refer to the latter variant as Helios Mixnet. For universal ver-
ifiability, the encryption step is accompanied by a non-interactive zero-knowledge proof demonstrating
correct computation. This ensures homomorphic combinations of encrypted votes and mixed encrypted
votes can be decrypted, hence, the outcome can be recovered. Helios additionally requires proof that ci-
phertexts encrypt votes. This prevents an adversarial voter crafting a ciphertext that could be combined
with others to derive an election outcome in the voter’s favour. (E.g., votes might be switched between
candidates.) The decryption step is similarly accompanied by a non-interactive zero-knowledge proof to
prevent spurious outcomes.

Contribution and structure. Contributions are summarised in the bullet points below and described in
detail by the surrounding text:

3https://www.iacr.org/elections/, accessed 29 Mar 2019.
4http://heliosvoting.wordpress.com/2009/10/13/helios-deployed-at-princeton/ and https://princeton.heliosvoting.org/, ac-

cessed 29 Mar 2019.

https://www.iacr.org/elections/
http://heliosvoting.wordpress.com/2009/10/13/helios-deployed-at-princeton/
https://princeton.heliosvoting.org/

• A definition of ballot secrecy that overcomes limitations of previous works by considering an ad-
versary that controls ballot collection.

Section 3 briefly explains the pitfalls of existing ballot secrecy definitions, introduces our game-based
definition of ballot secrecy, adapts formalisations of non-malleability and indistinguishability for asym-
metric encryption to derive two equivalent game-based definitions of ballot independence, and proves
relations between definitions. In particular, ballot independence is shown to be sufficient for ballot se-
crecy in a class of voting systems with zero-knowledge tallying proofs, and it is shown to be necessary,
but not sufficient, in general.

• A Helios case study that identifies an attack, which cannot be detected by previous work, and a
proof that secrecy is satisfied after applying a fix.

Section 4 shows that our definition of ballot secrecy can be used to identify a known vulnerability in
Helios, explains why earlier definitions of ballot secrecy by Bernhard et al. cannot detect that vulnera-
bility, discusses non-malleable ballots as a fix, and uses our sufficient condition to prove that secrecy is
satisfied when the fix is applied.

• A proof that voting systems built from non-malleable encryption satisfy ballot secrecy if tallying is
additive, which trivialises secrecy proofs.

Section 5 proves that ballot independence cannot be harmed by tallying, if all ballots are tallied cor-
rectly; shows that universally-verifiable voting systems tally ballots correctly; proves Enc2Vote satis-
fies ballot independence, assuming the underlying asymmetric encryption scheme is non-malleable; and
combines those results to show that proofs of ballot secrecy are trivial for a class of universally-verifiable,
encryption-based voting systems.

• A Helios Mixnet case study that demonstrates the triviality of ballot secrecy proofs for systems built
from non-malleable encryption.

Section 6 presents an analysis of Helios Mixnet and demonstrates that our results do indeed make proofs
of ballot secrecy trivial, by showing that the combination of universal verifiability and non-malleable
encryption suffice for ballot secrecy in Helios Mixnet. The remaining sections present syntax (§2), dis-
cussion, limitations, and directions for further research (§7), related work (§8), and a brief conclusion
(§9); Sidebar 1 introduces game-based security definitions and recalls notation; and the appendices de-
fine cryptographic primitives and relevant security definitions (Appendix A) and present further supple-
mentary material. (Readers familiar with games might like to skip Sidebar 1, and some readers might
like to study the related work before our definition of ballot secrecy.)

2. Election scheme syntax

We recall syntax (Definition 1) for voting systems that consist of the following three steps. First,
a tallier generates a key pair. Secondly, each voter constructs and casts a ballot for their vote. These
ballots are collected and recorded on a bulletin board. Finally, the tallier tallies the collected ballots and
announces the outcome as a frequency distribution of votes. The chosen representative is derived from
this distribution, e.g., as the candidate with the most votes.5

5Smyth, Frink & Clarkson use the syntax to model first-past-the-post voting systems [30] and Smyth shows ranked-choice
voting systems can be modelled too [37].

Sidebar 1 Preliminaries: Games and notation
A game formulates a series of interactions between a benign challenger, a malicious adversary, and a
cryptographic scheme. The adversary wins by completing a task that captures an execution of the scheme
in which security is broken, i.e., winning captures what should be unachievable. Tasks can generally be
expressed as indistinguishability or reachability requirements. For example, universal verifiability can
be expressed as the inability to reach a state that causes a voting system’s checks to succeed for invalid
election outcomes, or fail for valid outcomes. Moreover, ballot secrecy can be expressed as the inability
to distinguish between an instance of a voting system in which voters cast some votes, from another
instance in which the voters cast a permutation of those votes.
Formally, games are probabilistic algorithms that output booleans. We let A(x1, . . . , xn; r) denote the
output of probabilistic algorithm A on inputs x1, . . . , xn and coins r, and we let A(x1, . . . , xn) denote
A(x1, . . . , xn; r), where coins r are chosen uniformly at random from the coin space of algorithm A.
Moreover, we let x← T denote assignment of T to x, and x←R S denote assignment to x of an element
chosen uniformly at random from set S . Using our notation, we can formulate game Exp(H, S ,A) –
which tasks an adversary A to distinguish between a function H and a simulator S – as follows: m ←
A(); β←R {0, 1}; if β = 0 then x← H(m); else x← S (m); g← A(x); return g = β. Adversaries are
stateful, i.e., information persists across invocations of an adversary in a game. For instance, adversaries
can access earlier assignments, e.g., the adversary’s second instantiation in game Exp has access to
any assignments made during its first instantiation. An adversary wins a game by causing it to output
true (>) and the adversary’s success in a game Exp(·), denoted Succ(Exp(·)), is the probability that the
adversary wins, that is, Succ(Exp(·)) = Pr[Exp(·) = >]. We focus on computational security, rather than
information-theoretic security, and tolerate breaks by adversaries in non-polynomial time and breaks
with negligible success, since such breaks are infeasible in practice.
Game Exp captures a single interaction between the challenger and the adversary. We can extend games
with oracles to capture arbitrarily many interactions. For instance, we can formulate a strengthening of
Exp as follows: β ←R {0, 1}; g ← AO(x); return g = β, where AO denotes A’s access to oracle O
and O(m) computes if β = 0 then x ← H(m); else x ← S (m); return x. Oracles may access game
parameters such as bit β.
Beyond the above notation, we let x[i] denote component i of vector x and let |x| denote the length of
vector x. Moreover, we write (x1, . . . , x|T |) ← T for x ← T ; x1 ← x[1]; . . . ; x|T | ← x[|T |], when T is a
vector, and x, x′ ←R S for x←R S ; x′ ←R S .

Definition 1 (Election scheme [30]). An election scheme is a tuple of probabilistic polynomial-time
algorithms (Setup,Vote, Tally) such that:

Setup, denoted (pk, sk,mb,mc)← Setup(κ), is run by the tallier. The algorithm takes a security param-
eter κ as input and outputs a key pair pk, sk, a maximum number of ballots mb, and a maximum
number of candidates mc.

Vote, denoted b ← Vote(pk, v, nc, κ), is run by voters. The algorithm takes as input a public key pk, a
voter’s vote v, some number of candidates nc, and a security parameter κ. Vote v should be selected
from a sequence 1, . . . , nc of candidates. The algorithm outputs a ballot b or error symbol ⊥.

Tally, denoted (v, pf)← Tally(sk, bb, nc, κ), is run by the tallier. The algorithm takes as input a private
key sk, a bulletin board bb, some number of candidates nc, and a security parameter κ, where bb is
a set. The algorithm outputs an election outcome v and a non-interactive tallying proof pf , where
v is a vector of length nc and each index v of that vector should indicate the number of votes for
candidate v.

Election schemes must satisfy correctness, that is, there exists a negligible function negl, such that for
all security parameters κ, integers nb and nc, and votes v1, . . . , vnb ∈ {1, . . . , nc}, it holds that, given a
zero-filled vector v of length nc, we have:

Pr[(pk, sk,mb,mc)← Setup(κ);

for 1 6 i 6 nb do
bi ← Vote(pk, vi, nc, κ);
v[vi]← v[vi] + 1;

(v′, pf)← Tally(sk, {b1, . . . , bnb}, nc, κ) : nb 6 mb ∧ nc 6 mc⇒ v = v′] > 1− negl(κ).

The syntax provides a language to model voting systems and the correctness condition ensures that
such systems function, i.e., election outcomes correspond to votes expressed in ballots, when ballots are
constructed and tallied in the prescribed manner.

The syntax focuses on minimalism, rather than generality: Algorithm Setup naturally inputs a security
parameter and outputs a key pair. In addition, the algorithm outputs bounds on the number of ballots mb,
respectively candidates mc. These bounds broaden the correctness definition’s scope. Indeed, Enc2Vote
requires mc to be less than or equal to the size of the underlying encryption scheme’s message space
(otherwise decryption might not reveal voters’ votes). Helios additionally requires the same constraint
on mb (otherwise decryption of the homomorphic combination might not reveal the outcome). Algo-
rithm Vote naturally inputs a public key, a vote, and a security parameter, and outputs a ballot. The vote
is expressed as an integer, rather than alphanumeric strings, for brevity. Beyond those inputs, the algo-
rithm inputs a number of candidates nc, which is necessary in voting systems such as Helios, because
ballot construction depends on the number of candidates. Tallying is similarly dependent on the number
of candidates in Helios, hence the inputs and outputs to algorithm Tally are all natural. Finally, the syntax
restricts bulletin boards to sets, rather than multisets or lists. This is a limitation: Sets preclude the con-
struction of schemes vulnerable to attacks that arise due to duplicate ballots [38, §2.1 & §4.3]. Systems
vulnerable to such attacks cannot be modelled using the syntax: Analysts must not abstract away the de-
tails of lists or multisets and model them as sets, since any ensuing analysis will miss attacks. Analysts
may abstractly model lists or multisets as sets with some additional effort.

Election schemes may also include an algorithm Verify, which is used to audit an election. We omit
that algorithm from Definition 1, because we focus on ballot secrecy, rather than verifiability: Ballot se-
crecy must be upheld independently of auditing, since voters’ votes should not be revealed regardless of
whether an election outcome is correct (i.e., regardless of whether auditing succeeds). Hence, algorithm
Verify must not be used to achieve privacy and can be omitted. Nonetheless, algorithm Tally must output
the tallying proof (that would be input to algorithm Verify), since tallying proofs can harm privacy. (For
instance, as an extreme example, a tallying proof may include the private key, which can used to violate
every voter’s privacy.)

Voting systems must ensure that outcomes only include votes cast by voters, as opposed to non-voters,
and that only one vote of each voter has influence [39]. The former can be achieved by authentication.
Traditionally, the latter was achieved by permitting each voter to cast at most one ballot, whereas more
recent systems permit multiple ballots and count only the last. Our syntax is compatible with voting
systems, such as Helios, that rely on trusted external authentication services to ensure that collected bal-
lots satisfy these properties (i.e., collected ballots were cast by voters and contain at most one ballot per
voter), hence, election schemes need not achieve these properties directly. (An extension of the syntax is
compatible with voting systems that introduce voter credentials and use cryptography to achieve these

properties directly [30, 40, 41].) Here be dragons: The security of external authentication services must
be verified.

We will use our syntax to express a privacy property of election schemes, moreover, we will model and
analyse voting systems, including Helios (§4) and Helios Mixnet (§6). Beyond those systems, it also cap-
tures Helios-C [42] and the system by Juels, Catalano & Jakobsson [43] (once extended to include voter
credentials), so Belenios and Civitas should be included as well. These schemes are rather dominant in
the literature, so the class is interesting and rather general. Notable voting systems that are excluded
include: systems relying on features implemented with paper (e.g., [44–46]); systems which require par-
tially private ballots (e.g., [47]); and schemes relying on partially honest bulletin boards (e.g., [48]). We
also exclude distributed tallying. These limitations are further discussed in Section 7.

3. Privacy

Some scenarios inevitably reveal voters’ votes: Unanimous outcomes reveal how everyone voted and,
more generally, outcomes can be coupled with partial knowledge of voters’ votes to deduce voters’ votes.
For example, suppose Alice, Bob and Mallory participate in a referendum and the outcome has frequency
two for ‘yes’ and one for ‘no.’ Mallory and Alice can deduce Bob’s vote by pooling knowledge of
their own votes. Similarly, Mallory and Bob can deduce Alice’s vote. Furthermore, Mallory can deduce
that Alice and Bob both voted yes, if she voted no. For simplicity, our informal definition of ballot
secrecy (§1) deliberately omitted side-conditions which exclude these inevitable revelations and which
are necessary for satisfiability.6 We now refine that definition as follows:

A voter’s vote is not revealed to anyone, except when the vote can be deduced from the election
outcome and any partial knowledge of voters’ votes.

This refinement ensures the aforementioned examples are not violations of ballot secrecy. By compari-
son, if Mallory votes yes and she can deduce the vote of Alice, without knowledge of Bob’s vote, then
ballot secrecy is violated.

We could formulate ballot secrecy as the following game: First, the adversary picks a pair of votes
v0 and v1. Secondly, the challenger constructs a ballot b1 for vote vβ and a second ballot b2 for v1−β,
where β is a bit chosen uniformly at random. Those ballots are given to the adversary. Thirdly, the
adversary constructs ballots b3, . . . , bn. Fourthly, the challenger tallies all the ballots (i.e., b1, . . . , bn)
to the determine the election outcome, which the adversary is given. Finally, the adversary is tasked
with determining bit β. This game challenges the adversary to determine if the first ballot is for v0 and
the second is for v1, or vice-versa. Intuitively, a losing adversary cannot distinguish ballots; seemingly
suggesting that Alice voting ‘yes’ is indistinguishable from Bob voting ‘no.’

The first release of Helios is not secure with respect to the aforementioned game, due to a vulnera-
bility identified by Cortier & Smyth [53, 54]. Indeed, an adversary can observe a ballot constructed by
the challenger, compute a meaningfully related ballot (from a malleable Helios ballot), and exploit the
relation to win the game. This vulnerability can be attributed to tallying meaningfully related ballots;
omitting such ballots from tallying, i.e., ballot weeding, is postulated as a defence [27, 29, 53–57]. Vari-
ants of Helios with ballot weeding seem secure with respect to this game. Unfortunately, ballot weeding

6Voting systems that announce chosen representatives (e.g., [49–52]), rather than frequency distributions of votes, could offer
stronger notions of privacy.

mechanisms can be subverted by intercepting ballots or by re-ordering ballots. Given that current def-
initions cannot detect such vulnerabilities (§8), we should conclude that they are unsuitable. Indeed,
the challenger tallying all ballots introduces an implicit trust assumption: ballots are recorded-as-cast,
i.e., cast ballots are preserved with integrity through the ballot collection process.7 Thus, vulnerabilities
that manipulate the ballot collection process cannot be detected, including vulnerabilities that can be
exploited to distinguish Alice voting ‘yes’ from Bob voting ‘no.’ To overcome this shortcoming, we for-
mulate a new definition of ballot secrecy in which the adversary controls the ballot collection process,
i.e., the bulletin board and the communication channel.

3.1. Ballot secrecy

We formalise ballot secrecy (Definition 2) as a game that tasks the adversary to: select two lists of
votes; construct a bulletin board from ballots for votes in one of those lists, which list is decided by a
coin flip; and (non-trivially) determine the result of the coin flip from the resulting election outcome and
tallying proof. That is, the game tasks the adversary to distinguish between an instance of the voting
system for one list of votes, from another instance with the other list of votes, when the votes cast from
each list are permutations of each other (hence, the distinction is non-trivial). The game proceeds as
follows: The challenger generates a key pair (Line 1), the adversary chooses some number of candidates
(Line 2), and the challenger flips a coin (Line 3) and initialises a set to record lists of votes (Line 4). The
adversary computes a bulletin board from ballots for votes in one of two possible lists (Line 5), where the
lists are chosen by the adversary, the choice between lists is determined by the coin flip, and the ballots
(for votes in one of the lists) are constructed by an left-right oracle (further ballots may be constructed
by the adversary).8 The challenger tallies the bulletin board to derive the election outcome and tallying
proof (Line 6), which are given to the adversary and the adversary is tasked with determining the result
of the coin flip (Line 7 & 8).

Definition 2 (Ballot-Secrecy). Let Γ = (Setup,Vote, Tally) be an election scheme, A be an adversary, κ
be a security parameter, and Ballot-Secrecy be the following game.

Ballot-Secrecy(Γ,A, κ) =

1 (pk, sk,mb,mc)← Setup(κ);
2 nc← A(pk, κ);
3 β←R {0, 1};
4 L← ∅;
5 bb← AO();
6 (v, pf)← Tally(sk, bb, nc, κ);
7 g← A(v, pf);
8 return g = β ∧ balanced(bb, nc, L) ∧ 1 6 nc 6 mc ∧ |bb| 6 mb;

Predicate balanced and oracle O are defined as follows:

• balanced(bb, nc, L) holds if for all votes v ∈ {1, . . . , nc} we have |{b | b ∈ bb ∧ ∃v1 . (b, v, v1) ∈
L}| = |{b | b ∈ bb ∧ ∃v0 . (b, v0, v) ∈ L}|; and

7The recorded-as-cast notion was introduced by Adida & Neff [58, §2].
8Bellare et al. introduced left-right oracles in the context of symmetric encryption [59] and Bellare & Rogaway provide a

tutorial on their use [60].

• O(v0, v1) computes b ← Vote(pk, vβ, nc, κ); L ← L ∪ {(b, v0, v1)} and outputs b, where v0, v1 ∈
{1, ..., nc}.

We say Γ satisfies Ballot-Secrecy, if for all probabilistic polynomial-time adversaries A, there exists
a negligible function negl, such that for all security parameters κ, we have Succ(Ballot-Secrecy(Γ,A,
κ)) 6 1

2 + negl(κ).

An election scheme satisfies Ballot-Secrecy when algorithm Vote outputs ballots that do not reveal votes
and algorithm Tally outputs election outcomes and proofs that do not reveal the relation between votes
expressed in collected ballots and the outcome.

Game Ballot-Secrecy tasks the adversary to compute a bulletin board, from ballots constructed by
a left-right oracle for votes in one of two possible lists, and determine which list was used from the
election outcome and proof generated from tallying that board. The choice between lists is determined
by the result β of a coin flip, and the left-right oracle outputs a ballot for vote vβ on input of a pair of
votes v0, v1. Hence, the left-right oracle constructs ballots for votes in one of two possible lists, where
the lists are chosen by the adversary, and the bulletin board may contain those ballots in addition to
ballots constructed by the adversary.

Election schemes reveal the number of votes for each candidate (i.e., the election outcome). Hence, to
avoid trivial distinctions in game Ballot-Secrecy, we require that runs of the game are balanced: “left”
and “right” inputs to the left-right oracle are equivalent, when the corresponding outputs appear on the
bulletin board. For example, suppose the inputs to the left-right oracle are (v1,0, v1,1), . . . , (vn,0, vn,1)
and the corresponding outputs are b1, . . . , bn, further suppose the bulletin board is {b1, . . . , b`} such
that ` 6 n. That game is balanced if the “left” inputs v1,0, . . . , v`,0 are a permutation of the “right”
inputs v1,1, . . . , v`,1. The balanced condition prevents trivial distinctions.9 For instance, an adversary that
computes a bulletin board containing only the ballot output by a left-right oracle query with input (1, 2)
cannot win the game, because it is unbalanced. Albeit, that adversary could trivially determine whether
β = 0 or β = 1, given the tally of that board.

Intuitively, if the adversary wins game Ballot-Secrecy, then there exists a strategy to distinguish ballots.
Indeed, such an adversary can distinguish between an instance of the voting system in which voters cast
some votes, from another instance in which voters cast a permutation of those votes, thus, voters’ votes
are revealed. Otherwise, the adversary is unable to distinguish between a voter casting a ballot for vote
v0 and another voter casting a ballot for vote v1, hence, voters’ votes cannot be revealed.

Proving ballot secrecy is time consuming. Indeed, a proof for the simple Enc2Vote scheme consumes
around four and a half pages [61, Appendix C.6]. To reduce the expense of such proofs, we introduce
ballot independence (§3.2) and prove that it suffices for Ballot-Secrecy (§3.3). Using this sufficient con-
dition, the four and a half page proof can be reduced to around one page [62, §4.3].

3.2. Ballot independence

Ballot independence [53, 63, 64] is seemingly related to ballot secrecy.

• Ballot independence. Observing another voter’s interaction with the voting system does not allow a
voter to cast a meaningfully related vote.

9A weaker balanced condition might be sufficient for alternative formalisations of election schemes. For instance, voting
systems which only announce the winning candidate could be analysed using a balanced condition asserting that the winning
candidate was input on both the “left” and “right.”

Our informal definition essentially states that an adversary is unable to construct a ballot meaningfully
related to a non-adversarial ballot, i.e., ballots are non-malleable. Hence, we can formalise ballot inde-
pendence as a straightforward adaptation of the non-malleability definition for asymmetric encryption
by Bellare & Sahai [65].10 Such a formalisation captures an intuitive notion of ballot independence, but
it is complex and proofs of non-malleability are relatively difficult. Bellare & Sahai observe similar com-
plexities and show that their definition is equivalent to a simpler, indistinguishability notion. In a similar
direction, we derive a definition of ballot independence, called indistinguishability under chosen vote
attack (IND-CVA), as a straightforward adaptation of their indistinguishability notion for asymmetric
encryption.

Definition 3 (IND-CVA). Let Γ = (Setup,Vote, Tally) be an election scheme, A be an adversary, κ be
the security parameter, and IND-CVA be the following game.

IND-CVA(Γ,A, κ) =

(pk, sk,mb,mc)← Setup(κ);
(v0, v1, nc)← A(pk, κ);
β←R {0, 1};
b← Vote(pk, vβ, nc, κ);
bb← A(b);
(v, pf)← Tally(sk, bb, nc, κ);
g← A(v);
return g = β ∧ b 6∈ bb ∧ 1 6 v0, v1 6 nc 6 mc ∧ |bb| 6 mb;

We say Γ satisfies indistinguishability under chosen vote attack (IND-CVA), if for all probabilistic
polynomial-time adversaries A, there exists a negligible function negl, such that for all security pa-
rameters κ, we have Succ(IND-CVA(Γ,A, κ)) 6 1

2 + negl(κ).

Game IND-CVA is satisfied if the adversary cannot determine whether the challenge ballot b is for one
of two possible votes v0 and v1. In addition to the challenge ballot, the adversary is given the election
outcome derived by tallying a bulletin board computed by the adversary. To avoid trivial distinctions,
the adversary’s bulletin board should not contain the challenge ballot. Intuitively, the adversary wins if
there exists a strategy to construct related ballots, since this strategy enables the adversary to construct
a ballot b′, related to the challenge ballot b, and determine if b is for v0 or v1 from the outcome derived
by tallying a bulletin board containing b′.

Comparing IND-CVA and IND-PA0. The main distinction between indistinguishability for asymmetric
encryption (IND-PA0) and indistinguishability for election schemes (IND-CVA) is as follows: IND-PA0
performs a parallel decryption, whereas IND-CVA performs a single tally. Hence, indistinguishability
for encryption reveals plaintexts corresponding to ciphertexts, whereas indistinguishability for elections
reveals the number of votes for each candidate.

We present an alternative definition of ballot independence (Appendix B), based upon the definition of
non-malleability for asymmetric encryption by Bellare & Sahai, and prove that the definition is equiva-
lent to IND-CVA.

10Non-malleability was first formalised by Dolev, Dwork & Naor in the context of asymmetric encryption [66, 67]; the
definition by Bellare & Sahai builds upon their results and results by Bellare et al. [68].

3.3. Secrecy and independence coincide (for zero-knowledge tallying proofs)

The main distinctions between our ballot secrecy (Ballot-Secrecy) and ballot independence (IND-CVA)
games are as follows.

(1) The challenger produces one challenge ballot for the adversary in game IND-CVA, whereas the left-
right oracle produces arbitrarily many challenge ballots for the adversary in game Ballot-Secrecy.

(2) The adversary in game Ballot-Secrecy has access to a tallying proof, but the adversary in game
IND-CVA does not.

(3) The winning condition in game Ballot-Secrecy requires the bulletin board to be balanced, whereas
the bulletin board must not contain the challenge ballot in game IND-CVA.

The second point distinguishes our games and shows Ballot-Secrecy is at least as strong as IND-
CVA. Hence, non-malleable ballots are necessary in election schemes satisfying Ballot-Secrecy. (Non-
malleable ballots are not generally necessary: Privacy definitions are sound but incomplete, Section 7.)

Theorem 1 (Ballot-Secrecy ⇒ IND-CVA). Given an election scheme Γ satisfying Ballot-Secrecy, we
have Γ satisfies IND-CVA.

A proof of Theorem 1 and all further proofs, except where otherwise stated, appear in Appendix C.
Tallying proofs may reveal voters’ votes. For example, a variant of Enc2Vote might define tallying

proofs that map ballots to votes. Since proofs are available to the adversary in game Ballot-Secrecy, but
not in game IND-CVA, it follows that Ballot-Secrecy is strictly stronger than IND-CVA.

Proposition 2 (IND-CVA 6⇒ Ballot-Secrecy). An election scheme may satisfy IND-CVA, but not Ballot-
Secrecy.

Proposition 2 follows from our informal reasoning and we omit a formal proof.
Game Ballot-Secrecy is generally (strictly) stronger than game IND-CVA. Nonetheless, we show that

our games coincide for election schemes without tallying proofs (Definition 4), assuming tallying is
additive (Definition 5), that is, the sum of election outcomes derived by tallying distinct subsets of a
bulletin board is equivalent to the election outcome derived by tallying the union of those subsets.

Definition 4. An election scheme Γ = (Setup,Vote, Tally) is without tallying proofs, if there exists a
constant symbol ε such that for all private keys sk, sets bb, integers nc, security parameters κ, and
computations (v, pf)← Tally(sk, bb, nc, κ), we have pf = ε.

Definition 5 (Additivity). Let Γ = (Setup,Vote, Tally) be an election scheme, A be an adversary, κ be a
security parameter, and Additivity be the following game.

Additivity(Γ,A, κ) =

(pk, sk,mb,mc)← Setup(κ);
(nc, bb, bb′)← A(pk, κ);
(v, pf)← Tally(sk, bb, nc, κ);
(v0, pf 0)← Tally(sk, bb \ bb′, nc, κ);
(v1, pf 1)← Tally(sk, bb ∩ bb′, nc, κ);
return v = v0 + v1 ∧ nc 6 mc ∧ |bb| 6 mb;

We say Γ satisfies Additivity, if for all probabilistic polynomial-time adversariesA, there exists a negligi-
ble function negl, such that for all security parameters κ, we have Succ(Additivity(Γ,A, κ)) > 1−negl(κ).

Proposition 3 (Ballot-Secrecy = IND-CVA, without proofs). Let Γ be an election scheme without tally-
ing proofs. Suppose Γ satisfies Additivity. We have Γ satisfies Ballot-Secrecy iff Γ satisfies IND-CVA.

Our equivalence result generalises to election schemes with zero-knowledge tallying proofs (Defini-
tion 19), i.e., schemes that compute proofs using non-interactive zero-knowledge proof systems.

Theorem 4 (Ballot-Secrecy = IND-CVA, with ZK proofs). Let Γ be an election scheme with zero-
knowledge tallying proofs. Suppose Γ satisfies Additivity. We have Γ satisfies Ballot-Secrecy iff Γ satisfies
IND-CVA.

Proof sketch. Game Ballot-Secrecy computes the election outcome from ballots constructed by the or-
acle and ballots constructed by the adversary. Intuitively, such an outcome can be equivalently computed
as follows:

(v, pf)← Tally(sk, bb \ {b | (b, v0, v1) ∈ L}, nc, κ);
(v′, pf ′)← Tally(sk, bb ∩ {b | (b, v0, v1) ∈ L}, nc, κ);
v← v + v′;

Yet, a poorly designed tallying algorithm might not ensure equivalence. In particular, ballots constructed
by the adversary can cause the algorithm to behave unexpectedly. (Such algorithms are nonetheless
compatible with our correctness requirement, because correctness does not consider an adversary.) Our
Additivity property ensures equivalence. Moreover, our Additivity property ensures the above computation
is equivalent to the following:

(v, pf)← Tally(sk, bb \ {b | (b, v0, v1) ∈ L}, nc, κ);
for b ∈ bb ∧ (b, v0, v1) ∈ L do

(v′, pf ′)← Tally(sk, {b}, nc, κ);
v← v + v′;

Furthermore, by correctness of the election scheme, the above for-loop can be equivalently computed as
follows:

for b ∈ bb ∧ (b, v0, v1) ∈ L do
v[vβ]← v[vβ] + 1;

Indeed, for each b ∈ bb ∧ (b, v0, v1) ∈ L, we have b is an output of Vote(pk, vβ, nc, κ), hence,
Tally(sk, {b}, nc, κ) outputs (v, pf) such that v is a zero-filled vector, except for index vβ which con-
tains one, and this suffices to ensure equivalence. In addition, for any adversary that wins game Ballot-
Secrecy, we are assured that balanced(bb, nc, L) holds, hence, the above for-loop can be computed as

for b ∈ bb ∧ (b, v0, v1) ∈ L do
v[v0]← v[v0] + 1;

or
for b ∈ bb ∧ (b, v0, v1) ∈ L do

v[v1]← v[v1] + 1;

without weakening the game. Thus, perhaps surprisingly, tallying ballots constructed by the oracle does
not provide the adversary with an advantage (in determining whether β = 0 or β = 1) and we can omit
such ballots from tallying in game Ballot-Secrecy. Thus, game Ballot-Secrecy is equivalent to game
BS (Definition 20), which modifies the tallying procedure as described and simulates tallying proofs.
Thereafter, we proceed with a hybrid argument (for which Shoup presents a brief tutorial [69]). �

Additivity is implied by universal verifiability (Lemmata 8 & 28). Thus, a special case of Theorem 4
requires the election scheme to satisfy universal verifiability, which is useful to simplify its application.
Indeed, we exploit this result in the following section to prove Ballot-Secrecy.

4. Case study I: Helios

Helios can be informally modelled as the following election scheme (further details appear in Side-
bar 2):

Setup generates a key pair for an asymmetric additively-homomorphic encryption scheme, proves cor-
rect key generation in zero-knowledge, and outputs the key pair and proof.

Vote enciphers the vote’s bitstring encoding to a tuple of ciphertexts, proves in zero-knowledge that each
ciphertext is correctly constructed and that the vote is selected from the sequence of candidates,
and outputs the ciphertexts coupled with the proofs.

Tally selects ballots from the bulletin board for which proofs hold, homomorphically combines the ci-
phertexts in those ballots, decrypts the homomorphic combination to reveal the election outcome,
and announces the outcome, along with a zero-knowledge proof of correct decryption.

Helios was first released in 2009 as Helios 2.0,11 and the current release is Helios 3.1.4.12

4.1. Helios 2.0 & Helios 3.1.4

Cortier & Smyth show that Helios 2.0 does not satisfy ballot secrecy (§3) and neither does Helios
3.1.4.13 Thus, we would not expect our definition of ballot secrecy to hold. Indeed, we adopt formal
descriptions of Helios 2.0 and Helios 3.1.4 by Smyth, Frink & Clarkson [30] (Appendix D) and use
those descriptions to prove that Ballot-Secrecy is not satisfied.

Theorem 5. Neither Helios 2.0 nor Helios 3.1.4 satisfy Ballot-Secrecy.

Cortier & Smyth attribute the vulnerability to tallying meaningfully related ballots. Indeed, Helios
uses malleable ballots: Given a ballot c1, . . . , cnc−1, σ1, . . . , σnc, we have cχ(1), . . . , cχ(nc−1), σχ(1), . . . ,
σχ(nc−1), σnc is a ballot for all permutations χ on {1, . . . , nc − 1}. Thus, ballots are malleable, which is
incompatible with Ballot-Secrecy (§3.3).

11https://github.com/benadida/helios/releases/tag/2.0, released 25 Jul 2009, accessed 29 Mar 2019.
12https://github.com/benadida/helios-server/releases/tag/v3.1.4, released 10 Mar 2011, last patched 27 Oct 2017, accessed

29 Mar 2019.
13Helios 3.1.4 mitigates against a universal-verifiability vulnerability in Helios 2.0, by checking that tallied ballots are con-

structed from suitable cryptographic parameters [70, §4.1]. The vulnerabilities described herein use well-formed parameters,
hence, the additional checks do not preclude vulnerabilities and we refer the reader to the original description for details.

https://github.com/benadida/helios/releases/tag/2.0
https://github.com/benadida/helios-server/releases/tag/v3.1.4

Sidebar 2 Helios: Ballot construction and tallying
Algorithm Vote inputs a vote v selected from candidates 1, . . . , nc and computes ciphertexts c1, . . . , cnc−1

such that if v 6= nc, then ciphertext cv contains plaintext 1 and the remaining ciphertexts contain plaintext
0, otherwise, all ciphertexts contain plaintext 0. The algorithm also computes zero-knowledge proofs
σ1, . . . , σnc demonstrating correct computation. Proof σ j demonstrates that ciphertext c j contains 0 or 1,
where 1 6 j 6 nc − 1, and proof σnc demonstrates that the homomorphic combination of ciphertexts
c1 ⊗ · · · ⊗ cnc−1 contains 0 or 1. The algorithm outputs the ciphertexts and proofs.
Algorithm Tally inputs a bulletin board bb; selects all the ballots b1, . . . , bk ∈ bb for which proofs hold,
i.e., ballots bi = Enc(pk,mi,1), . . . ,Enc(pk,mi,nc−1), σi,1, . . . , σi,nc such that proofs σi,1, . . . , σi,nc hold,
where 1 6 i 6 k; forms a matrix of the encapsulated ciphertexts, i.e.,

Enc(pk,m1,1), . . . , Enc(pk,m1,nc−1)
...

...
Enc(pk,mk,1), . . . , Enc(pk,mk,nc−1);

homomorphically combines the ciphertexts in each column to derive the encrypted outcome, i.e.,

Enc(pk,Σk
i=1mi,1), . . . , Enc(pk,Σk

i=1mi,nc−1);

decrypts the homomorphic combinations to reveal the frequency of votes 1, . . . , nc− 1, i.e.,

Σk
i=1mi,1, . . . , Σk

i=1mi,nc−1;

computes the frequency of vote nc by subtracting the frequency of any other vote from the number of
ballots for which proofs hold, i.e., k−

∑nc−1
j=1

∑k
i=1 mi, j; and announces the outcome as those frequencies,

along with a zero-knowledge proof demonstrating correctness of decryption.

Proof sketch. Suppose an adversary queries the left-right oracle with (distinct) inputs v0, v1 ∈
{1, . . . , nc − 1} to derive a ballot for vβ, where integer nc > 3 is chosen by the adversary and bit β
is chosen by the challenger. Further suppose the adversary picks a permutation χ on {1, . . . , nc − 1},
abuses malleability to derive a related ballot b for χ(vβ), and outputs bulletin board {b}. The board is
balanced, because it does not contain the ballot output by the oracle. Suppose the adversary performs the
following computation on input of election outcome v: if v[χ(v0)] = 1, then output 0, otherwise, output
1. Since b is a ballot for χ(vβ), it follows by correctness that v[χ(v0)] = 1 iff β = 0, and v[χ(v1)] = 1 iff
β = 1, hence, the adversary wins the game. �

For simplicity, our proof sketch considers an adversary that omits ballots from the bulletin board. Voters
might detect such an adversary, because Helios satisfies individual verifiability, hence, voters can dis-
cover if their ballot is omitted. Detection does not invalidate Theorem 5, since the ability to detect an
attack after the fact does not eliminate the possibility of an attack. Our proof sketch can be extended to
avoid such detection: Let b1 be the ballot output by the left-right oracle in the proof sketch and suppose
b2 is the ballot output by a (second) left-right oracle query with inputs v1 and v0. Further suppose the
adversary outputs (the balanced) bulletin board {b, b1, b2} and performs the following computation on
input of election outcome v: if v corresponds to votes v0, v1, χ(v0), then output 0, otherwise, output 1,
where χ is the permutation chosen by the adversary. Hence, the adversary wins the game.

Notions of ballot secrecy used by Bernhard, Pereira & Warinschi [71], Bernhard [72, §6.11] and Bern-
hard et al. [57, §D.3] cannot detect the known Helios 2.0 vulnerability (in the presence of an adversary
that controls ballot collection), because interception is not possible when ballots are recorded-as-cast.14

Beyond ballot secrecy, Bernhard, Pereira & Warinschi show that Helios 3.1.4 does not satisfy uni-
versal verifiability [71].15 They attribute vulnerabilities to application of the Fiat-Shamir transformation
without inclusion of statements in hashes (i.e., weak Fiat-Shamir), and propose including statements in
hashes (i.e., applying the Fiat-Shamir transformation) as a defence.

4.2. Helios’16

We have seen that non-malleable ballots are necessary for Ballot-Secrecy (§3.3); future Helios releases
should adopt non-malleable ballots. The Fiat-Shamir transformation alone is insufficient to ensure non-
malleability, because permutations can be applied to a ballot’s ciphertexts: An ordering over ciphertexts
must be proved.16 Smyth, Frink & Clarkson formalise this idea in Helios’16 [30], a variant of He-
lios 3.1.4 that uses the Fiat-Shamir transformation and includes a ciphertext’s position (relative to other
ciphertexts) in hashes, which is intended, but not proven, to ensure non-malleable ballots. We recall their
formal description in Appendix D, and using that formalisation we prove that Helios’16 delivers secrecy.

Theorem 6. Helios’16 satisfies Ballot-Secrecy.

Proof sketch. We prove that Helios’16 has zero-knowledge tallying proofs and, since universal verifi-
ability is satisfied [30], we have Additivity too (Lemmata 8 & 28). Hence, by Theorem 4, it suffices to
show that Helios’16 satisfies IND-CVA, which we prove by reduction to the security of the underlying
encryption scheme, using an extractor that exists for the proof system used to construct ballots. �

A formal proof of Theorem 6 appears in Appendix D.1, assuming the random oracle model [75]. This
proof, coupled with the proof of verifiability by Smyth, Frink & Clarkson [30], provides strong motiva-
tion for future Helios releases being based upon Helios’16, since it is the only variant of Helios which
is proven to satisfy both ballot secrecy and verifiability.17 A new release of Helios, which we’ll call
Helios 4.0, has been long-planned.18 That version goes beyond the idea of merely proving an ordering
over ciphertexts, to include far more information in hashes, which should be useful when sharing keys
between elections (to prevent ballots from one election being cast in another, which could violate ballot
secrecy). Security results are summarised in Table 1. Once Helios 4.0 is finalised, future work could
consider whether our ballot secrecy proof and verifiability proofs by Smyth, Frink, & Clarkson can be
adapted to that scheme.

14This observation suggests that recorded-as-cast is unsatisfiable: An adversary that can intercept ballots can always prevent
the collection of ballots. Nevertheless, the definition of recorded-as-cast is informal, thus ambiguity should be expected and
some interpretation of the definition should be satisfiable.

15Beyond secrecy and verifiability, eligibility is not satisfied [39, 73, 74].
16I do not recall the exact origin of this idea: Email communication suggests both I (17 Dec 2010) and Olivier Pereira (27

Dec 2010) each independently conceived the need for a proven ordering over ciphertexts.
17Earlier versions of Helios have been shown to satisfy definitions of ballot secrecy by Bernhard et al., but not notions of

verifiability (the analysis by Küsters et al. [76] does not detect vulnerabilities identified by Bernhard et al. [71] and Chang-Fong
& Essex [70], possibly because their analysis “does not formalize all the cryptographic primitives used by Helios" [30, §9]).

18https://web.archive.org/web/20171026064140/http://documentation.heliosvoting.org/verification-specs/helios-v4, pub-
lished c. 2012, accessed 29 Mar 2019.

https://web.archive.org/web/20171026064140/http://documentation.heliosvoting.org/verification-specs/helios-v4

Helios 2.0 Helios 3.1.4 Helios’16 Helios 4.0
Secrecy 7 7 3 ?
Verifiability 7 7 3 ?

Cortier & Smyth identify a secrecy vulnerability in Helios 2.0 and Helios 3.1.4 [53]. Bernhard, Pereira & Warinschi [71] and
Bernhard et al. [57, §D.3] show that Helios 4.0 satisfies various notions of ballot secrecy in two candidate elections – a general
result is unknown. We have proved that Helios’16 satisfies ballot secrecy (Theorem 6). Bernhard, Pereira & Warinschi identify
universal-verifiability vulnerabilities in Helios 2.0 and Helios 3.1.4 [71] and Chang-Fong & Essex identify vulnerabilities in
Helios 2.0 [70]. Smyth, Frink, & Clarkson prove that Helios’16 satisfies individual and universal verifiability.

Table 1
Summary of Helios security results

4.3. Ballot weeding considered harmful

Ballot weeding mechanisms (that omit meaningfully related ballots from tallying) have been pro-
posed, e.g., [27, 29, 53–57, 77], to mitigate against the vulnerabilities in Helios 3.1.4.19 One candidate
mechanism omits any ballot containing a previously observed hash from the tallying procedure. Another
omits any ballot containing a previously observed hash from the bulletin board.20 (More precisely, the
mechanism stores the hashes used by non-interactive zero-knowledge proofs in a hashtable and any bal-
lot containing a previously stored hash is omitted from the bulletin board.) These mechanisms can be
subverted by excluding ballots (Remark 7). Moreover, similarly to our extended proof sketch of Theo-
rem 5 (§4.1), we can extend our proof sketch of Remark 7 to avoid voter detection, because the former
mechanism includes all ballots on the bulletin board and (silently) omits ballots during tallying, and the
latter can be disregarded by an adversary that controls ballot collection (hence, the bulletin board).

Remark 7. Variants of Helios 3.1.4 with the Fiat-Shamir transformation (rather than weak Fiat-Shamir)
and ballot weeding do not satisfy Ballot-Secrecy.

Proof sketch. Neither ballot weeding nor the Fiat-Shamir transformation eliminate the vulnerability we
identified in Helios 3.1.4, because related ballots need not be tallied, as shown in the proof sketch of
Theorem 5. Hence, we conclude by the proof of that theorem. �

We derive a new exploit (as the following example demonstrates) by extrapolating from the proof
sketch of Theorem 5 and an attack by Cortier & Smyth that asserts the following: given a ballot b for
vote v, we can abuse malleability to derive a ballot b′ for vote v′ [53, §3.2.2]. Suppose Alice, Bob and
Charlie are voters, and Mallory is an adversary that wants to convince herself that Alice did not vote
for a candidate v. Further suppose Alice casts a ballot b1 for vote v1, Bob casts a ballot b2, and Charlie
casts a ballot b3. Moreover, suppose that either Bob or Charlie vote for v. (Thereby avoiding scenarios
without any votes for candidate v, i.e., scenarios which inevitably permit Mallory to convince herself that
Alice did not vote for candidate v.) Let us assume that votes for v′ are not expected. Mallory proceeds
as follows: she intercepts ballot b1, abuses malleability to derive a ballot b such that v = v1 implies
b is a vote for v′, and casts ballot b. It follows that the tallier will compute the election outcome from
bulletin board {b, b2, b3}. (Omitting meaningfully related ballots before tallying does not eliminate the

19Cf. https://github.com/benadida/helios-server/issues/8 and https://github.com/benadida/helios-server/issues/35, accessed
29 Mar 2019.

20David Bernhard, email communication, c. 2014 and 19 Sep 2017.

https://github.com/benadida/helios-server/issues/8
https://github.com/benadida/helios-server/issues/35

vulnerability, because none of the tallied ballots are related.) If the outcome does not contain any votes
for v′, then Mallory is convinced that Alice did not vote for v.

The exploit is reliant on a particular candidate not receiving any votes. This is trivial to capture in the
context of game Ballot-Secrecy, because the bulletin board is computed by an adversary that casts ballots
on behalf of some voters and controls the votes cast by the remaining voters. Beyond the game, candi-
dates will presumably vote for themselves. Thus, for first-past-the-post elections, the exploit’s success is
probably limited to elections in which voters vote in constituencies and each polling station announces
its own outcome (cf. Cortier & Smyth [53, §3.3]).

We have seen that an attack is feasible. Consequently, we cannot prove Ballot-Secrecy. Whether at-
tacks are likely is subjective, and instead of offering an opinion, let us consider a tale of when an attack
might be used in the real-world: Alice meets Charlie, who Alice’s family believe is a supporter of a unde-
sirable party. Alice is torn; her love for Charlie is hurting her family. She devises a plan to ensure Charlie
is welcomed with open arms: She uses the attack to prove that Charlie did not support the undesirable
candidate in the town’s election. The concerns of Alice’s family are alleviated, Charlie is welcomed, and
Alice is finally content. (Content in love at least, she still has numerous manuscripts to finalise, a stack
of papers to review, and several meetings that-should-have-been-emails to attend.) Those that believe in
the existence of a real-world Alice will surely accept the attack as practical, because observation of a
real-world attack surely suffices to demonstrate practicality.

5. Simplifying ballot-secrecy proofs

We have seen that our definitions of ballot secrecy and ballot independence coincide when tally-
ing is additive and tallying proofs are zero-knowledge (Theorem 4). Building upon this result and
Proposition 9, we show that tallying cannot harm secrecy when ballots are tallied correctly and tal-
lying proofs are zero-knowledge. That is, (Setup,Vote, Tally) satisfies Ballot-Secrecy if and only if
(Setup,Vote, Tally′) does, assuming algorithms Tally and Tally′ both tally ballots correctly and tallying
proofs are zero-knowledge.21

Smyth, Frink & Clarkson capture the notion of tallying ballots correctly using function
correct-outcome [30]. That function uses a counting quantifier: A predicate (∃=`x : P(x)) that holds
exactly when there are ` distinct values for x such that P(x) is satisfied [78].22 Using the count-
ing quantifier, function correct-outcome is defined such that correct-outcome(pk, nc, bb, κ)[v] = ` iff
∃=`b ∈ bb \ {⊥} : ∃r : b = Vote(pk, v, nc, κ; r), where correct-outcome(pk, nc, bb, κ) is a vector of
length nc and 1 6 v 6 nc. Hence, component v of vector correct-outcome(pk, nc, bb, κ) equals ` iff
there exist ` ballots for vote v on the bulletin board. The function requires ballots be interpreted for only
one candidate, which can be ensured by injectivity.

Definition 6 (HK-Injectivity). An election scheme (Setup,Vote, Tally) satisfies honest-key injectivity (HK-
Injectivity), if for all probabilistic polynomial-time adversaries A, security parameters κ and computa-
tions (pk, sk,mb,mc)← Setup(κ); (nc, v, v′)← A(pk, κ); b← Vote(pk, nc, v, κ); b′ ← Vote(pk, nc, v′, κ)
such that v 6= v′ ∧ b 6= ⊥ ∧ b′ 6= ⊥, we have b 6= b′.

21A more general result also holds: (Setup,Vote, Tally) satisfies Ballot-Secrecy iff (Setup,Vote, Tally′) satisfies Ballot-
Secrecy, assuming algorithms Tally and Tally′ are indistinguishable, in particular, they tally ballots in the same way. However,
election schemes that tally ballots incorrectly are not useful, so we forgo generality for practicality.

22Variable x is bound by the quantifier and integer ` is free.

Equipped with notions of injectivity and of tallying ballots correctly, we formalise a soundness condi-
tion asserting that an election scheme tallies ballots correctly (Definition 7), which allows us to formally
state that tallying cannot harm ballot independence (Proposition 9).

Definition 7 (Tally-Soundness). Let Γ = (Setup,Vote, Tally) be an election scheme, A be an adversary,
κ be a security parameter, and Tally-Soundness be the following game.

Tally-Soundness(Γ,A, κ) =

(pk, sk,mb,mc)← Setup(κ);
(nc, bb)← A(pk, κ);
(v, pf)← Tally(sk, bb, nc, κ);
return v = correct-outcome(pk, nc, bb, κ) ∧ nc 6 mc ∧ |bb| 6 mb;

We say Γ satisfies tally soundness (Tally-Soundness), if Γ satisfies HK-Injectivity and for all probabilistic
polynomial-time adversaries A, there exists a negligible function negl, such that for all security param-
eters κ, we have Succ(Tally-Soundness(Γ,A, κ)) > 1− negl(κ).

Lemma 8. Tally-Soundness implies Additivity.

Proposition 9. Let Γ = (Setup,Vote, Tally) and Γ′ = (Setup,Vote, Tally′) be election schemes. Suppose
Γ and Γ′ satisfy Tally-Soundness. We have Γ satisfies IND-CVA iff Γ′ satisfies IND-CVA.

Proof. Tally soundness assures us that algorithms Tally and Tally′ produce indistinguishable election
outcomes, thus they are interchangeable in the context of game IND-CVA. �

It follows from Proposition 9 that tally soundness suffices for ballot independence of scheme (Setup,
Vote, Tally), if there exists an algorithm Tally′ such that (Setup,Vote, Tally′) is an election scheme satis-
fying tally soundness and ballot independence. We demonstrate the existence of such an algorithm with
respect to election scheme Enc2Vote,23 thereby showcasing the applicability of Proposition 9 for a class
of encryption-based election schemes.

Definition 8 (Enc2Vote). Given an asymmetric encryption scheme Π = (Gen,Enc,Dec), we define
Enc2Vote(Π) = (Setup,Vote, Tally) such that:

• Setup(κ) computes (pk, sk,m) ← Gen(κ); pk′ ← (pk,m); sk′ ← (pk, sk), derives mc as the largest
integer such that {0, . . . ,mc} ⊆ {0} ∪ m and for all m0,m1 ∈ {1, . . . ,mc} we have |m0| = |m1|,
and outputs (pk′, sk′, p(κ),mc), where p is a polynomial function.

• Vote(pk′, v, nc, κ) parses pk′ as pair (pk,m), outputting ⊥ if parsing fails or v 6∈ {1, . . . , nc} ∨ {1,
. . . , nc} 6⊆ m, computes b← Enc(pk, v), and outputs b.

• Tally(sk′, bb, nc, κ) initialises v as a zero-filled vector of length nc, parses sk′ as pair (pk, sk), out-
putting (v,⊥) if parsing fails, computes for b ∈ bb do v ← Dec(sk, b); if 1 6 v 6 nc then
v[v]← v[v] + 1, and outputs (v, ε), where ε is a constant symbol.

23Our presentation of Enc2Vote extends the presentation by Quaglia & Smyth [61, Definition 7] to make the plaintext space
explicit. We also embed the public key inside the private key. (Quaglia & Smyth’s formalisation of Enc2Vote builds upon
constructions by Bernhard et al. [25–28].)

To ensure Enc2Vote(Π) is an election scheme, we require asymmetric encryption scheme Π to produce
distinct ciphertexts with overwhelming probability [62, Lemma 3]. Hence, we must restrict the class of
asymmetric encryption schemes used to instantiate Enc2Vote. We consider a broad class of schemes that
produce distinct ciphertexts with overwhelming probability.

Lemma 10. Given an asymmetric encryption scheme Π satisfying IND-CPA, we have Enc2Vote(Π) is
an election scheme. Moreover, if Π has perfect correctness, then Enc2Vote(Π) satisfies HK-Injectivity.

A proof of Lemma 10 follows from Smyth’s correctness proof [62, Lemma 4] and Quaglia & Smyth’s
proof of a slightly stronger notion of HK-Injectivity [61, Lemma 2].

Intuitively, given a non-malleable asymmetric encryption scheme Π, election scheme Enc2Vote(Π)
derives ballot secrecy from Π until tallying and tallying maintains ballot secrecy by returning only the
number of votes for each candidate. Smyth presents a formal proof of ballot secrecy [62, Proposition 5],
hence, ballot independence is satisfied too (Theorem 1).

Corollary 11. Given an asymmetric encryption scheme Π satisfying IND-PA0, we have Enc2Vote(Π)
satisfies IND-CVA.

The reverse implication of Corollary 11 does not hold. Indeed, we have the following (stronger) result.

Proposition 12. There exists an asymmetric encryption scheme Π such that Enc2Vote(Π) satisfies
Ballot-Secrecy, but Π does not satisfy IND-PA0.

To capitalise on Proposition 9, we demonstrate that Enc2Vote produces election schemes satisfying tal-
lying soundness (Lemma 13), assuming “ill-formed” ciphertexts are distinguishable from “well-formed”
ciphertexts, and combine our results to derive Theorem 14.

Definition 9. Given an asymmetric encryption scheme Π = (Gen,Enc,Dec), we say Π satisfies well-
definedness, if for all probabilistic polynomial-time adversaries A, there exists a negligible function
negl, such that for all security parameters κ, we have Pr[(pk, sk,m) ← Gen(κ); c ← A(pk,m, κ) :
Dec(sk, c) 6= ⊥ ⇒ ∃m, r . m ∈ m ∧ c = Enc(pk,m; r) ∧ c 6= ⊥] > 1− negl(κ).

Tally-Soundness demands that every counted ballot be output by algorithm Vote, i.e., only “well-formed”
ballots are counted, “ill-formed” ballots are not. Election scheme Enc2Vote(Π) defines ballots as ci-
phertexts, hence, when Π satisfies well-definedness, we are assured that only “well-formed” ballots are
counted, as Tally-Soundness demands.

Lemma 13. Given a perfectly-correct asymmetric encryption scheme Π satisfying well-definedness and
IND-CPA, we have Enc2Vote(Π) satisfies Tally-Soundness.

Theorem 14. Let Π be an asymmetric encryption scheme, Enc2Vote(Π) = (Setup,Vote, Tally), and Γ =
(Setup,Vote, Tally′) for some algorithm Tally′ such that Γ is an election scheme with zero-knowledge tal-
lying proofs. Suppose Π is perfectly correct and satisfies IND-PA0 and well-definedness. Further suppose
Γ satisfies Tally-Soundness. We have Γ satisfies Ballot-Secrecy.

Proof. Election scheme Enc2Vote(Π) satisfies Tally-Soundness (Lemma 13) and IND-CVA (Corol-
lary 11). Thus, Γ satisfies IND-CVA (Proposition 9) and Ballot-Secrecy (Theorem 4 & Lemma 8). �

We show that tally soundness is implied by universal verifiability in Appendix E. Thus, a special case
of Theorem 14 requires universal verifiability rather than tally soundness. It follows that Ballot-Secrecy
is satisfied by verifiable election schemes that produce ballots by encrypting votes with asymmetric
encryption schemes satisfying well-definedness and IND-PA0. Thereby making proofs of ballot secrecy
trivial for a class of encryption-based election schemes. Indeed, we exploit this result in the following
section to show that the combination of non-malleable encryption and universal verifiability achieve
ballot secrecy.

6. Case study II: Helios Mixnet

Helios Mixnet can be informally modelled as the following election scheme:

Setup generates a key pair for an asymmetric homomorphic encryption scheme, proves correct key
generation in zero-knowledge, and outputs the key pair and proof.

Vote enciphers the vote to a ciphertext, proves correct ciphertext construction in zero-knowledge, and
outputs the ciphertext coupled with the proof.

Tally selects ballots from the bulletin board for which proofs hold, mixes the ciphertexts in those ballots,
decrypts the ciphertexts output by the mix to reveal the election outcome (i.e., the frequency dis-
tribution of votes), and announces that outcome, along with zero-knowledge proofs demonstrating
correct decryption.

Neither Adida [35] nor Bulens, Giry & Pereira [36] have released an implementation of Helios Mixnet.24

Tsoukalas et al. [79] released Zeus as a fork of Helios spliced with mixnet code to derive an implementa-
tion,25 and Yingtong Li released helios-server-mixnet as an extension of Zeus with threshold asymmetric
encryption and some other minor changes.26,27

We can derive Helios Mixnet from Enc2Vote(Π) by replacing its tallying algorithm, and by using an
asymmetric encryption scheme Π = (Gen,Enc,Dec), where algorithm Gen proves correct key genera-
tion, and algorithm Enc verifies such proofs, enciphers plaintexts to ciphertexts using a second encryp-
tion scheme, proves correct ciphertext construction, and outputs the ciphertext coupled with the proof.
However, a blight arises when Enc2Vote is instantiated with encryption schemes that prove correct key
generation.28 To avoid this blight, we extend Enc2Vote with such proofs and show that results in Sec-
tion 5 still hold (Appendix F). This leads us to treat Helios Mixnet as an election scheme built from
asymmetric encryption schemes Π = (Gen,Enc,Dec) and Π0 = (Gen,Enc′,Dec′) such that:

24The planned implementation of Helios Mixnet (https://web.archive.org/web/20160912182802/https://documentation.
heliosvoting.org/verification-specs/mixnet-support, published c. 2010, accessed 29 Mar 2019, & https://web.archive.org/web/
20110119223848/http://documentation.heliosvoting.org/verification-specs/helios-v3-1, published Dec 2010, accessed 29 Mar
2019) has not been released.

25https://github.com/grnet/zeus, accessed 29 Mar 2019.
26https://github.com/RunasSudo/helios-server-mixnet, accessed 29 Mar 2019.
27The problem of malleable Helios ballots (§4) was discussed with the developers of Zeus and helios-server-mixnet, and

they explained that their systems use non-malleable ballots (email communication, Oct & Dec 2017).
28Helios Mixnet defines public keys as triples comprising a public key and message space defined by the underlying asym-

metric encryption scheme, along with a proof of correct key generation. By comparison, Enc2Vote defines public keys as pairs
comprising a public key and message space defined by the underlying asymmetric encryption scheme (wherein the public key
defined by the encryption scheme incorporates some proof of correct key generation). Hence, Enc2Vote cannot be instantiated
to immediately derive Helios Mixnet – we have a slight mismatch of parameters, a minor blight.

https://web.archive.org/web/20160912182802/https://documentation.heliosvoting.org/verification-specs/mixnet-support
https://web.archive.org/web/20160912182802/https://documentation.heliosvoting.org/verification-specs/mixnet-support
https://web.archive.org/web/20110119223848/http://documentation.heliosvoting.org/verification-specs/helios-v3-1
https://web.archive.org/web/20110119223848/http://documentation.heliosvoting.org/verification-specs/helios-v3-1
https://github.com/grnet/zeus
https://github.com/RunasSudo/helios-server-mixnet

• Setup(κ) selects coins s uniformly at random, computes (pk, sk,m) ← Gen(κ; s) and a proof ρ of
correct key generation using sk and s as the witness, derives mc as the largest integer such that
{0, . . . ,mc} ⊆ {0}∪m, computes pk′ ← (pk,m, ρ); sk′ ← (pk, sk), and outputs (pk′, sk′, p(κ),mc),
where p is a polynomial function.

• Vote(pk, v, nc, κ) parses pk′ as a vector (pk,m, ρ), outputting ⊥ if parsing fails, ρ does not verify,
v 6∈ {1, . . . , nc}, or {0, . . . , nc} 6⊆ m, computes b← Enc(pk, v), and outputs b.

where

• Enc(pk, v) selects coins r uniformly at random, computes c ← Enc′(pk, v; r) and a proof σ of
correct ciphertext construction using v and r as the witness, and outputs (c, σ).

• Dec(sk, b) parses b as a pair (c, σ), outputting ⊥ if parsing fails or σ does not verify, computes
v← Dec′(sk, c), and outputs v.

It follows that our results (§5) can be applied to trivialise a ballot-secrecy proof: It is known that Π
is a non-malleable encryption scheme [71, Theorem 2], assuming the proof system used by algorithm
Enc satisfies simulation sound extractability and Π0 satisfies IND-CPA. Moreover, we have Π satisfies
well-definedness, by the former assumption. Furthermore, Smyth has shown that universal verifiabil-
ity is satisfied [80], hence, Tally-Soundness is satisfied too. Thus, Ballot-Secrecy is satisfied. Thereby
providing evidence that our results do indeed make ballot-secrecy proofs trivial.

To formally state our ballot secrecy result, we adopt a set HeliosM’17 of election schemes that includes
Helios Mixnet and prove ballot secrecy for every scheme in that set.

Theorem 15. Each election scheme in set HeliosM’17 satisfies Ballot-Secrecy.

A proof of Theorem 15 along with a definition of HeliosM’17 appear in Appendix G.

7. Discussion, limitations, and directions for further research

This article advances our understanding of ballot secrecy, establishing a foundation for discussion,
debate, and development, especially in terms of the following limitations.

Authentication, re-voting, and unforgeability. Voting systems have traditionally permitted voters to
cast at most one ballot. More recent systems permit multiple ballots [31, 39, 41, 43, 81–83], with only
the voter’s last having influence, enabling voters to change their vote, providing flexibility and aiding
education (since voters can “ask the help of anyone for submitting a random ballot, and then re-voting
privately afterwards" [31, §3.3]). Election schemes are reliant on external authentication services to
ensure that only the last ballot of each voter has influence. (E.g., Helios supports authentication via
Facebook, Google and Yahoo using OAuth [39].) Such services are assumed to be trusted, they are
not intended to exclude attacks that arise when services are subverted (to authenticate non-voter ballots
or to assert a ballot other than a voter’s last should have influence, for instance). Evaluating whether
trust is merited (including determining whether external authentication services ensure that only the last
choice of each voter has influence) is beyond the scope of our privacy definitions. Definitions could
be extended with an ideal authentication service and external authentication services could be proven
equivalent. Ultimately, a reliance on external authentication services introduces a trust assumption. That
assumption is eliminated by voting systems that use cryptography to implement their own authentica-
tion mechanisms, rendering authorised ballots unforgeable. (E.g., the voting system by Juels, Catalano &

Jakobsson uses a combination of encrypted nonces and plaintext equality tests for authentication [43].)
Extending definitions to include voting systems with their own cryptography-based authentication mech-
anisms and considering the interplay between privacy and re-voting, without trusting an authentication
service, would be an interesting direction for further research. The aforementioned extensions necessitate
changes to our balanced condition such that only the last choice of each voter is considered. This could
be achieved by keeping track of the number of ballots cast by each voter, for example, O(id, v0, v1)
could compute L ← L ∪ {(id, b, n, v0, v1)}, where id is a voter identifier, b is the constructed ballot,
and n = |{b′ | (id, b′, i, v′0, v

′
1) ∈ L}|, i.e., the number n of ballots previously cast with identifier

id. And by applying predicate balanced to a set containing only voters’ last votes, for instance, using
balanced(bb, nc, {b | (id, b, i, v0, v1) ∈ L ∧ ∀(id, b′, i′, v′0, v

′
1) ∈ L ∧ i > i′}) on the final line of game

Ballot-Secrecy. Further investigation of the details would be prudent.

Ballot secrecy notions and interplay with individual verifiability. We know some scenarios inevitably
reveal voters’ votes, which is why an exception is included in our informal definition of ballot secrecy
(a voter’s vote is not revealed to anyone, except when the vote can be deduced from the election out-
come and any partial knowledge of voters’ votes).29 That exception tolerates revelations in the following
example, namely, Alice, Bob and Mallory participate in a referendum, Mallory (who controls ballot col-
lection) discards Bob’s ballot, and the outcome has frequency one for each of ‘yes’ and ‘no,’ allowing
Mallory to deduce Alice’s vote. Such revelations are undesirable, but are tolerated by many voting sys-
tems and our definition of ballot secrecy. It is open to debate as to whether such voting systems should
be branded secret and whether my definition is sound. (I believe so: My definition should only tolerate
revelations deducible from outcomes and partial knowledge of votes. As I’ve asserted, it is open to de-
bate as to whether such tolerance is too broad.) Individual verifiability allows voters to check whether
their ballots are collected, allowing detection of some troublesome scenarios. Checks cannot, in them-
selves, preclude revelations. (Indeed, Bob discovering their ballot is absent, does not preclude revelation
of Alice’s vote.) Additional properties are necessary. The ability to attribute malice to a particular party
(cf. accountability [84]) and to recover from such malice may suffice. (Demanding inclusion of Bob’s
ballot can avoid revelation of Alice’s vote.) However, even with additional properties, there is a reliance
on voters performing checks, which few voters do [85, §2.1.6]. Regardless, ballot secrecy should be de-
livered without regard for privilege, without dependence on actions few are willing and able to perform.
Future research may consider such possibilities. Demanding delegatable individual-verifiability checks
may provide a fruitful advancement: Envisage voters leaving polling stations and handing over material
for checks to voting advocates, for instance.

Distributed tallying. Ballot secrecy does not provide assurances when deviations from the prescribed
tallying procedure are possible. Indeed, ballots can be tallied individually to reveal votes. Hence, the
tallier must be trusted. Consequently, an election scheme that leaks the ballot-vote relation during tal-
lying can satisfy ballot secrecy, because a trusted tallier will not disclose mappings. E.g., construction
Enc2Vote produces election schemes satisfying ballot secrecy, despite revealing such a map during tal-
lying. Additionally, the tallier cannot collude with the adversary, in particularly, they cannot post to the
bulletin board. We can design election schemes that distribute the tallier’s role amongst several talliers
and ensure free-choice assuming at least one tallier tallies ballots in the prescribed manner, other tal-
liers can collude with the adversary. Extending our results in this direction is an opportunity for further

29Some revelations are an artefact of announcing the outcome as a frequency distribution of votes (a functional requirement of
many nations, which comes at a privacy cost), rather than revealing less information, e.g., just the winning candidate [49, 51, 52].

research; as it stands, the definition is limited. This is a design decision: Distributed tallying adds com-
plexity, increasing the possibility of error; getting the “right” ballot-secrecy definition for a single tallier
seems the safer, preferable first step. Ultimately, we would prefer not to trust talliers. Unfortunately, this
is only known to be possible for decentralised voting systems, e.g., [86–91], which are designed such
that ballots cannot be tallied individually, but are unsuitable for large-scale elections.

Privacy definitions are incomplete: Controlled malleability is tolerable. We have seen that tallying
meaningfully related ballots introduces a vulnerability that can be exploited to violate secrecy. Non-
malleable ballots serve as a solution and are necessary in election schemes satisfying our definition.
More generally, non-malleable ballots are not necessary. Indeed, given an election scheme Γ with non-
malleable ballots, let Γ′ be derived from Γ by prepending a bit to Γ-ballots and disregarding any ballot
that is identical to another except for the first bit before tallying. Intuitively, election scheme Γ′ satisfies
ballot secrecy, if Γ does. Malleability cannot be exploited in a manner that causes meaningfully related
ballots to be tallied; related ballots can be tolerated, as long as they are not counted. Albeit, scheme
Γ′ cannot satisfy universal verifiability, because voters’ votes may be discarded when related ballots
are present. This makes a case for adopting non-malleable ballots. Nonetheless, further research could
consider a weakening of our ballot secrecy definition that is compatible with such malleability. Without
such a weakening, our definition is too strong: it will incorrectly brand some election schemes (with
malleable ballots) as insecure, as Γ′ demonstrates.

8. Related work

Discussion of ballot secrecy originates from Chaum [92] and the earliest definitions of ballot secrecy
are due to Benaloh et al. [49, 93, 94].30 More recently, Bernhard et al. propose a series of ballot secrecy
definitions: They consider election schemes without tallying proofs [25, 26] and, subsequently, schemes
with tallying proofs [27–29, 71]. The definition by Bernhard, Pereira & Warinschi computes tallying
proofs using algorithm Tally or a simulator [71], but that definition is too weak and some strengthening
is required [29, §3.4 & §4]. (Cortier et al. [96, 97] propose a variant of the ballot secrecy definition by
Bernhard, Pereira & Warinschi, which is also too weak [29].) By comparison, the definition by Smyth &
Bernhard computes tallying proofs using only algorithm Tally [27], but their definition is too strong [29,
§3.5] and a weakening is required [28]. We prove that our ballot secrecy definition is strictly stronger
than the weakened definition by Smyth & Bernhard (Appendix H). The relative merits of definitions by
Smyth & Bernhard [28, Definition 5] and by Bernhard et al. [29, Definition 7] are unknown, in particular,
it is unknown whether one definition is stronger than the other.

Discussion of ballot independence originates from Gennaro [63] and the apparent relationship between
ballot secrecy and ballot independence has been considered. In particular, Benaloh shows that a simpli-
fied version of his voting system allows the administrator’s private key to be recovered by an adversary
who casts a ballot as a function of other voters’ ballots [94, §2.9]. More generally, Sako & Kilian [98,
§2.4], Michels & Horster [99, §3], Wikström [100–102] and Cortier & Smyth [53, 54] discuss how mal-
leable ballots can be abused to compromise ballot secrecy. The first definition of ballot independence
seems to be due to Smyth & Bernhard [27, 28]. Moreover, Smyth & Bernhard formally prove relations
between their definitions of ballot secrecy and ballot independence. Independence has also been studied

30Quaglia & Smyth present a tutorial-style introduction to modelling ballot secrecy [95], and Bernhard et al. survey ballot
secrecy definitions [29, 57].

beyond elections, e.g., [64], and the possibility of compromising security in the absence of independence
has been considered, e.g., [66, 67, 103–106].

All of the ballot secrecy definitions by Bernhard et al. [25–29, 71] and the ballot independence defi-
nition by Smyth & Bernhard [27, 28] focus on detecting vulnerabilities exploitable by adversaries that
control some voters. Vulnerabilities that require control of the bulletin board or the communication
channel are not detected, i.e., the bulletin board is implicitly assumed to operate in accordance with the
election scheme’s rules and the communication channel is implicitly assumed to be secure. This intro-
duces a trust assumption. Under this assumption, Smyth & Bernhard prove that non-malleable ballots are
not necessary for ballot secrecy [27, §4.3]. By comparison, we prove that non-malleable ballots are nec-
essary for ballot secrecy without this trust assumption. Thus, our definition of ballot secrecy improves
upon definitions by Bernhard et al. by detecting more vulnerabilities.

Confidence in our ballot secrecy definition might be improved by proving equivalence with a
simulation-based definition of ballot secrecy. However, it is unclear how to formulate a suitable
simulation-based definition. Bernhard et al. propose an ideal functionality that “collects all votes from
the voters, then computes and announces the [election outcome]" [29, §1],31 but a voting system satisfy-
ing ballot secrecy need not be equivalent, because ballot secrecy does not guarantee correct computation
of the election outcome. Equivalence can perhaps be shown between their ideal functionality and voting
systems satisfying ballot secrecy and some soundness condition (e.g., Tally-Soundness). Albeit, voting
systems that bound the number of ballots or candidates, e.g., Helios, may not be equivalent, because
soundness conditions (such as Tally-Soundness) need only provide guarantees when operating within
the aforementioned bounds. Thus, bounds need to be taken into consideration. Moreover, no voting sys-
tem is equivalent to the ideal functionality by Bernhard et al. in the presence of an adversary that controls
the bulletin board, because such an adversary can discard ballots, which creates a trivial distinction.32

Nonetheless, equivalence can perhaps be shown for verifiable voting systems in cases where the number
of ballots and candidates are bounded, and all voters successfully verify the presence of their ballot, but
such a result has no practical relevance, because it is well-known that many voters do not perform checks
necessary for verifiability [85, §2.1.6]. Alternatively, the ideal functionality could be weakened such that
a discarded ballot in the real functionality corresponds to a discarded vote in the ideal functionality. We
leave further exploration of simulation-based definitions of ballot secrecy as a possible extension for
future work.

Bulens, Giry & Pereira pose the investigation of voting systems which allow casting of meaningfully
related ballots as a means for voters to delegate candidate selection, whilst preserving ballot secrecy, as
an interesting research question [36, §3.2]. Desmedt & Chaidos claim to provide such a system [107].
Smyth & Bernhard critique their work and argue that the security results do not support their claims [27,
§5.1]. We have shown that non-malleable ballots are necessary to satisfy Ballot-Secrecy (§3.3), providing
a negative result for the question posed by Bulens, Giry & Pereira.

Some of the ideas presented in this article previously appeared in my technical report [108] and an
extended version of that technical report by Bernhard & Smyth [38]. In particular, the limitations of
ballot secrecy definitions by Bernhard et al. were identified and Definition 2 is based upon my earlier
definition [108]. The main distinction between Definition 2 and the earlier definition [108, Definition 3]

31In the context of voting systems that announce the chosen representative (rather than the frequency distribution of votes),
a stronger ideal functionality might announce the chosen representative.

32The real functionality by Bernhard et al. does not capture adversaries that control ballot collection. Thus, the relation they
prove between their game-based and simulation-based definitions of ballot secrecy does not preclude vulnerabilities exploitable
by such adversaries. Indeed, proving such relations does not guarantee the absence of vulnerabilities.

is syntax: This article adopts syntax for election schemes from Smyth, Frink & Clarkson [30], whereas
the earlier definition adopts syntax by Smyth & Bernhard [27, 28]. The change in syntax is motivated
by the superiority of syntax by Smyth, Frink & Clarkson. Moreover, we can capitalise upon results by
Smyth, Frink & Clarkson [30] and Quaglia & Smyth [61].

Following the initial release of these results [109, 110], Cortier et al. [111] presented a machine-
checked proof that variants of Helios satisfy the notion of ballot secrecy by Bernhard et al. [29]. As
discussed above, that notion is too weak: It cannot detect vulnerabilities that require control of ballot
collection. Thus, our proof is more appropriate. Nonetheless, their proof builds upon similar ideas. In
particular, their proof is dependent upon non-malleable ballots and zero-knowledge tallying proofs.

Further to their earlier work [112], Smyth & Hanatani show that Helios’16-ballots are essentially
non-malleable ciphertexts and build upon this article to further simplify ballot-secrecy proofs [113],
presenting a proof in just two pages, compared to the five pages used here.

Quaglia & Smyth [40] extend game Ballot-Secrecy to syntax with voter credentials [30, Definition 6].
Moreover, they define a transformation to that syntax from our syntax (Definition 1) and prove that
their transformation preserves secrecy and verifiability. Furthermore, they apply their transformation to
Helios. The resulting scheme is similar Helios-C [42], albeit Quaglia & Smyth observe that Helios-C
does not satisfy ballot secrecy when the adversary controls ballot collection, whereas the scheme derived
by applying their transformation does.

Beyond the computational model of security, Delaune, Kremer & Ryan formulate a definition of ballot
secrecy in the applied pi calculus [114, 115] and Smyth et al. show that this definition is amenable to
automated reasoning [116–120]. An alternative definition is proposed by Cremers & Hirschi, along
with sufficient conditions which are also amenable to automated reasoning [121]. Albeit, the scope of
automated reasoning is limited by analysis tools (e.g., ProVerif [122]), because the function symbols and
equational theory used to model cryptographic primitives might not be suitable for automated analysis
(cf. [123–125]).

Ballot secrecy formalises a notion of free-choice assuming ballots are constructed and tallied in the
prescribed manner. Moreover, our definition of ballot secrecy assumes the adversary’s capabilities are
limited to casting ballots on behalf of some voters and controlling the votes cast by any remaining vot-
ers. We have seen that Helios’16 satisfies our definition, but ballot secrecy does not ensure free-choice
when an adversary is able to communicate with voters, nor when voters deviate from the prescribed
voting procedure to follow instructions provided by an adversary. Indeed, the coins used for encryp-
tion serve as proof of how a voter voted in Helios and the voter may communicate those coins to the
adversary. Stronger notions of free-choice, such as receipt-freeness [47, 114, 126–128] and coercion re-
sistance [129–133], are needed in the presence of such adversaries. Appendix I introduces these notions,
proves that our syntax cannot be used to construct (interesting) schemes satisfying them, and discusses
variants of our syntax that can.

McCarthy, Smyth & Quaglia [134] have shown that auction schemes can be constructed from election
schemes, and Quaglia & Smyth [61] provide a generic construction for auction schemes from election
schemes. Moreover, Quaglia & Smyth adapt our definition of ballot secrecy to a definition of bid secrecy,
and prove that auction schemes produced by their construction satisfy bid secrecy. (Similarly, they adapt
the definition of verifiability by Smyth, Frink & Clarkson [30] to a definition of verifiability for auc-
tions, and prove that their construction produces schemes satisfying verifiability.) Thus, this research
has applications beyond voting.

9. Conclusion

This work was initiated by a desire to eliminate the trust assumptions placed upon the bulletin board
and the communication channel in definitions of ballot secrecy by Bernhard et al. and the definition of
ballot independence by Smyth & Bernhard. This necessitated the introduction of new security defini-
tions. The definition of ballot secrecy was largely constructed from intuition, with inspiration from in-
distinguishability games for asymmetric encryption and existing definitions of ballot secrecy. Moreover,
the definition was guided by the desire to strengthen existing definitions of ballot secrecy. The definition
of ballot independence was inspired by the realisation that independence requires non-malleable bal-
lots, which enabled definitions to be constructed as straightforward adaptations of non-malleability and
indistinguishability definitions for asymmetric encryption. The former adaptation being a more natural
formulation of ballot independence and the latter being simpler.

Relationships between security definitions aid our understanding and offer insights that facilitate the
construction of secure schemes. This prompted the study of relations between our definitions of ballot
secrecy and ballot independence, resulting in a proof that non-malleable ballots are necessary for our
definitions. We also proved non-malleable ballots suffice for our definition of ballot secrecy in election
schemes with zero-knowledge tallying proofs. Moreover, we established a separation result demonstrat-
ing that our ballot secrecy definition is strictly stronger than our ballot independence definition.

We proved that Helios’16 uses non-malleable ballots and a proof that Helios’16 satisfies ballot se-
crecy follows from our results. This proof is particularly significant due to the use of Helios in binding
elections, and we encourage developers to base future releases on this variant, since it is the only variant
of Helios which is proven to satisfy both ballot secrecy and verifiability.

Proving ballot secrecy is expensive: It requires a significant devotion of time by experts. Indeed,
Cortier et al. devoted one person-year to their machine-checked proof. Thus, sufficient conditions for
ballot secrecy are highly desirable. We have established that non-malleable ballots are sufficient for our
definition of ballot secrecy in election schemes with zero-knowledge tallying proofs and this simplified
our ballot-secrecy proof for Helios’16. We have also established that building election schemes from
non-malleable asymmetric encryption schemes suffices for our definition of ballot secrecy if tallying
is additive (a condition implied by verifiability), and this trivialised our ballot-secrecy proof for Helios
Mixnet. Thereby demonstrating the possibility of simple, inexpensive proofs.

This article delivers a definition of ballot secrecy that has been useful in detecting subtle vulnera-
bilities in voting systems, and has led to the development of election schemes that are proven secure.
Thereby demonstrating the necessity of appropriate security definitions and accompanying analysis to
ensure security of voting systems, especially those used in binding elections. I hope this article will
simplify future proofs of ballot secrecy and, ultimately, aid democracy-builders in deploying their sys-
tems securely. There is still work to be done, especially in seeking definitions that consider distributed
tallying.

Acknowledgements

I am grateful to David Bernhard and to Elizabeth Quaglia for extensive discussions, feedback, and,
more generally, their help in extending my knowledge of cryptography. In addition, I am grateful to
Constantin Cătălin Drăgan for explaining subtleties of his work and to Maxime Meyer for his careful
proofreading. I am also grateful to JCS reviewers and editors: it’s clear from reviews that this article

has been thoroughly studied. I appreciate the detail that reviewers have gone to. I also appreciate the
actionable points listed by my associate editor, which expedited time required for revision. All efforts
have helped improve this article and any remaining issues are my own. This work received financial sup-
port from the European Research Council under the European Union’s Seventh Framework Programme
(FP7/2007-2013) / ERC project CRYSP (259639) and from the Luxembourg National Research Fund
(FNR) under the FNR-INTER-VoteVerif project (10415467). Work was partly performed at INRIA and
the University of Luxembourg.

References

[1] A. Lijphart and B. Grofman, Choosing an electoral system: Issues and Alternatives, Praeger, 1984.
[2] T. Saalfeld, On Dogs and Whips: Recorded Votes, in: Parliaments and Majority Rule in Western Europe, H. Döring, ed.,

St. Martin’s Press, 1995, Chapter 16.
[3] A. Gumbel, Steal This Vote: Dirty Elections and the Rotten History of Democracy in America, Nation Books, 2005.
[4] R.M. Alvarez and T.E. Hall, Electronic Elections: The Perils and Promises of Digital Democracy, Princeton University

Press, 2010.
[5] United Nations, Universal Declaration of Human Rights, 1948.
[6] Organization for Security and Co-operation in Europe, Document of the Copenhagen Meeting of the Conference on the

Human Dimension of the CSCE, 1990.
[7] Organization of American States, American Convention on Human Rights, “Pact of San Jose, Costa Rica”, 1969.
[8] J. Lepore, Rock, Paper, Scissors: How we used to vote, Annals of Democracy, The New Yorker (2008).
[9] J. Mill, The Ballot, in: The Westminster Review, Vol. 13, Robert Heward, 1830.

[10] R. Bertrand, J.-L. Briquet and P. Pels, Introduction: Towards a Historical Ethnography of Voting, in: The Hidden History
of the Secret Ballot, Indiana University Press, 2007.

[11] P. Brent, The Australian ballot: Not the secret ballot, Australian Journal of Political Science 41(1) (2006), 39–50.
[12] E.C. Bjornlund, Beyond Free and Fair: Monitoring Elections and Building Democracy, Woodrow Wilson Center Press /

Johns Hopkins University Press, 2004.
[13] J.G. Kelley, Monitoring Democracy: When International Election Observation Works, and Why It Often Fails, Princeton

University Press, 2012.
[14] P. Norris, Why Elections Fail, Cambridge University Press, 2015.
[15] C.A. Neff and J. Adler, Verifiable e-Voting: Indisputable electronic elections at polling places, Technical Report, Vote-

Here, 2003.
[16] T. Kohno, A. Stubblefield, A.D. Rubin and D.S. Wallach, Analysis of an Electronic Voting System, in: S&P’04: 25th

Security and Privacy Symposium, IEEE Computer Society, 2004, pp. 27–40.
[17] R. Gonggrijp and W.-J. Hengeveld, Studying the Nedap/Groenendaal ES3B Voting Computer: A Computer Security

Perspective, in: EVT’07: Electronic Voting Technology Workshop, USENIX Association, 2007.
[18] D. Bowen, Secretary of State Debra Bowen Moves to Strengthen Voter Confidence in Election Security Following Top-

to-Bottom Review of Voting Systems, 2007, California Secretary of State, press release DB07:042.
[19] S. Wolchok, E. Wustrow, J.A. Halderman, H.K. Prasad, A. Kankipati, S.K. Sakhamuri, V. Yagati and R. Gonggrijp,

Security Analysis of India’s Electronic Voting Machines, in: CCS’10: 17th ACM Conference on Computer and Commu-
nications Security, ACM Press, 2010, pp. 1–14.

[20] S. Wolchok, E. Wustrow, D. Isabel and J.A. Halderman, Attacking the Washington, D.C. Internet Voting System, in:
FC’12: 16th International Conference on Financial Cryptography and Data Security, LNCS, Vol. 7397, Springer, 2012,
pp. 114–128.

[21] D. Springall, T. Finkenauer, Z. Durumeric, J. Kitcat, H. Hursti, M. MacAlpine and J.A. Halderman, Security Analysis
of the Estonian Internet Voting System, in: CCS’14: 21st ACM Conference on Computer and Communications Security,
ACM Press, 2014, pp. 703–715.

[22] UK Electoral Commission, Key issues and conclusions: May 2007 electoral pilot schemes, 2007.
[23] Bundesverfassungsgericht (Germany’s Federal Constitutional Court), Use of voting computers in 2005 Bundestag elec-

tion unconstitutional, 2009, Press release 19/2009.
[24] D.W. Jones and B. Simons, Broken Ballots: Will Your Vote Count?, CSLI Lecture Notes, Vol. 204, Center for the Study

of Language and Information, Stanford University, 2012.
[25] D. Bernhard, V. Cortier, O. Pereira, B. Smyth and B. Warinschi, Adapting Helios for provable ballot privacy, in: ES-

ORICS’11: 16th European Symposium on Research in Computer Security, LNCS, Vol. 6879, Springer, 2011, pp. 335–
354.

[26] D. Bernhard, O. Pereira and B. Warinschi, On Necessary and Sufficient Conditions for Private Ballot Submission, 2012,
Cryptology ePrint Archive, Report 2012/236 (version 20120430:154117b).

[27] B. Smyth and D. Bernhard, Ballot secrecy and ballot independence coincide, in: ESORICS’13: 18th European Sympo-
sium on Research in Computer Security, LNCS, Vol. 8134, Springer, 2013, pp. 463–480.

[28] B. Smyth and D. Bernhard, Ballot secrecy and ballot independence: definitions and relations, 2014, Cryptology ePrint
Archive, Report 2013/235 (version 20141010:082554).

[29] D. Bernhard, V. Cortier, D. Galindo, O. Pereira and B. Warinschi, SoK: A comprehensive analysis of game-based ballot
privacy definitions, in: S&P’15: 36th Security and Privacy Symposium, IEEE Computer Society, 2015, pp. 499–516.

[30] B. Smyth, S. Frink and M.R. Clarkson, Election Verifiability: Cryptographic Definitions and an Analysis of Helios and
JCJ, 2017, Cryptology ePrint Archive, Report 2015/233 (version 20170213:132559).

[31] B. Adida, O. Marneffe, O. Pereira and J. Quisquater, Electing a University President Using Open-Audit Voting: Analysis
of Real-World Use of Helios, in: EVT/WOTE’09: Electronic Voting Technology Workshop/Workshop on Trustworthy
Elections, USENIX Association, 2009.

[32] J. Benaloh, S. Vaudenay and J. Quisquater, Final Report of IACR Electronic Voting Committee, 2010, International
Association for Cryptologic Research. http://www.iacr.org/elections/eVoting/finalReportHelios_2010-09-27.html.

[33] S. Haber, J. Benaloh and S. Halevi, The Helios e-Voting Demo for the IACR, 2010, International Association for Cryp-
tologic Research. http://www.iacr.org/elections/eVoting/heliosDemo.pdf.

[34] C. Staff, ACM’s 2014 General Election: Please Take This Opportunity to Vote, Communications of the ACM 57(5)
(2014), 9–17.

[35] B. Adida, Helios: Web-based Open-Audit Voting, in: USENIX Security’08: 17th USENIX Security Symposium, USENIX
Association, 2008, pp. 335–348.

[36] P. Bulens, D. Giry and O. Pereira, Running Mixnet-Based Elections with Helios, in: EVT/WOTE’11: Electronic Voting
Technology Workshop/Workshop on Trustworthy Elections, USENIX Association, 2011.

[37] B. Smyth, First-past-the-post suffices for ranked voting, 2017, https://bensmyth.com/publications/2017-FPTP-suffices-
for-ranked-voting/.

[38] D. Bernhard and B. Smyth, Ballot secrecy with malicious bulletin boards, 2015, Cryptology ePrint Archive, Report
2014/822 (version 20150413:170300).

[39] M. Meyer and B. Smyth, Exploiting re-voting in the Helios election system, Information Processing Letters (2019),
14–19.

[40] E.A. Quaglia and B. Smyth, Authentication with weaker trust assumptions for voting systems, in: AFRICACRYPT’18:
10th International Conference on Cryptology in Africa, LNCS, Springer, 2018.

[41] B. Smyth, Athena: A verifiable, coercion-resistant voting system with linear complexity, 2019.
[42] V. Cortier, D. Galindo, S. Glondu and M. Izabachène, Election Verifiability for Helios under Weaker Trust Assumptions,

in: ESORICS’14: 19th European Symposium on Research in Computer Security, LNCS, Vol. 8713, Springer, 2014,
pp. 327–344.

[43] A. Juels, D. Catalano and M. Jakobsson, Coercion-Resistant Electronic Elections, in: Towards Trustworthy Elections:
New Directions in Electronic Voting, D. Chaum, M. Jakobsson, R.L. Rivest and P.Y. Ryan, eds, LNCS, Vol. 6000,
Springer, 2010, pp. 37–63.

[44] C.A. Neff, Practical High Certainty Intent Verification for Encrypted Votes, Technical Report, VoteHere, 2004.
[45] D. Chaum, P.Y. Ryan and S. Schneider, A Practical Voter-Verifiable Election Scheme, in: ESORICS’05: 10th European

Symposium On Research In Computer Security, LNCS, Vol. 3679, Springer, 2005, pp. 118–139.
[46] D. Chaum, R. Carback, J. Clark, A. Essex, S. Popoveniuc, R.L. Rivest, P.Y.A. Ryan, E. Shen and A.T. Sherman,

Scantegrity II: End-to-end Verifiability for Optical Scan Election Systems Using Invisible Ink Confirmation Codes,
in: EVT’08: Electronic Voting Technology Workshop, USENIX Association, 2008.

[47] T. Moran and M. Naor, Receipt-Free Universally-Verifiable Voting with Everlasting Privacy, in: CRYPTO’06: 26th
International Cryptology Conference, LNCS, Vol. 4117, Springer, 2006, pp. 373–392.

[48] M. Clarkson, B. Hay, M. Inge, abhi shelat, D. Wagner and A. Yasinsac, Software Review and Security Analysis of Scytl
Remote Voting Software, http://election.dos.state.fl.us/voting-systems/pdf/FinalReportSept19.pdf.

[49] J. Benaloh and M. Yung, Distributing the Power of a Government to Enhance the Privacy of Voters, in: PODC’86: 5th
Principles of Distributed Computing Symposium, ACM Press, 1986, pp. 52–62.

[50] A. Hevia and M.A. Kiwi, Electronic Jury Voting Protocols, in: LATIN’02: Theoretical Informatics, LNCS, Vol. 2286,
Springer, 2002, pp. 415–429.

[51] A. Hevia and M.A. Kiwi, Electronic jury voting protocols, Theoretical Computer Science 321(1) (2004), 73–94.
[52] Y. Desmedt and K. Kurosawa, Electronic Voting: Starting Over?, in: ISC’05: International Conference on Information

Security, LNCS, Vol. 3650, Springer, 2005, pp. 329–343.
[53] V. Cortier and B. Smyth, Attacking and fixing Helios: An analysis of ballot secrecy, Journal of Computer Security 21(1)

(2013), 89–148.

http://www.iacr.org/elections/eVoting/finalReportHelios_2010-09-27.html
http://www.iacr.org/elections/eVoting/heliosDemo.pdf
https://bensmyth.com/publications/2017-FPTP-suffices-for-ranked-voting/
https://bensmyth.com/publications/2017-FPTP-suffices-for-ranked-voting/
http://election.dos.state.fl.us/voting-systems/pdf/FinalReportSept19.pdf

[54] V. Cortier and B. Smyth, Attacking and fixing Helios: An analysis of ballot secrecy, in: CSF’11: 24th Computer Security
Foundations Symposium, IEEE Computer Society, 2011, pp. 297–311.

[55] B. Smyth and V. Cortier, A note on replay attacks that violate privacy in electronic voting schemes, Technical Report,
RR-7643, INRIA, 2011.

[56] B. Smyth, Replay attacks that violate ballot secrecy in Helios, 2012, Cryptology ePrint Archive, Report 2012/185.
[57] D. Bernhard, V. Cortier, D. Galindo, O. Pereira and B. Warinschi, A comprehensive analysis of game-based ballot privacy

definitions, 2015, Cryptology ePrint Archive, Report 2015/255 (version 20150319:100626).
[58] B. Adida and C.A. Neff, Ballot Casting Assurance, in: EVT’06: Electronic Voting Technology Workshop, USENIX

Association, 2006.
[59] M. Bellare, A. Desai, E. Jokipii and P. Rogaway, A Concrete Security Treatment of Symmetric Encryption, in: FOCS’97:

38th Annual Symposium on Foundations of Computer Science, IEEE Computer Society, 1997, pp. 394–403.
[60] M. Bellare and P. Rogaway, Symmetric Encryption, in: Introduction to Modern Cryptography, 2005, Chapter 4. http:

//cseweb.ucsd.edu/~mihir/cse207/w-se.pdf.
[61] E.A. Quaglia and B. Smyth, Secret, verifiable auctions from elections, Theoretical Computer Science 730 (2018), 44–92.
[62] B. Smyth, A foundation for secret, verifiable elections, 2018, Cryptology ePrint Archive, Report 2018/225 (version

20180301:164045).
[63] R. Gennaro, Achieving independence efficiently and securely, in: PODC’95: 14th Principles of Distributed Computing

Symposium, ACM Press, 1995, pp. 130–136.
[64] B. Chor, S. Goldwasser, S. Micali and B. Awerbuch, Verifiable Secret Sharing and Achieving Simultaneity in the Pres-

ence of Faults, in: FOCS’85: 26th Foundations of Computer Science Symposium, IEEE Computer Society, 1985, pp. 383–
395.

[65] M. Bellare and A. Sahai, Non-malleable Encryption: Equivalence between Two Notions, and an Indistinguishability-
Based Characterization, in: CRYPTO’99: 19th International Cryptology Conference, LNCS, Vol. 1666, Springer, 1999,
pp. 519–536.

[66] D. Dolev, C. Dwork and M. Naor, Non-Malleable Cryptography, in: STOC’91: 23rd Theory of computing Symposium,
ACM Press, 1991, pp. 542–552.

[67] D. Dolev, C. Dwork and M. Naor, Nonmalleable Cryptography, Journal on Computing 30(2) (2000), 391–437.
[68] M. Bellare, A. Desai, D. Pointcheval and P. Rogaway, Relations Among Notions of Security for Public-Key Encryption

Schemes, in: CRYPTO’98: 18th International Cryptology Conference, LNCS, Vol. 1462, Springer, 1998, pp. 26–45.
[69] V. Shoup, Sequences of games: a tool for taming complexity in security proofs, 2004.
[70] N. Chang-Fong and A. Essex, The Cloudier Side of Cryptographic End-to-end Verifiable Voting: A Security Analysis of

Helios, in: ACSAC’16: 32nd Annual Conference on Computer Security Applications, ACM Press, 2016, pp. 324–335.
[71] D. Bernhard, O. Pereira and B. Warinschi, How Not to Prove Yourself: Pitfalls of the Fiat-Shamir Heuristic and Appli-

cations to Helios, in: ASIACRYPT’12: 18th International Conference on the Theory and Application of Cryptology and
Information Security, LNCS, Vol. 7658, Springer, 2012, pp. 626–643.

[72] D. Bernhard, Zero-Knowledge Proofs in Theory and Practice., PhD thesis, Department of Computer Science, University
of Bristol, 2014.

[73] B. Smyth and A. Pironti, Truncating TLS Connections to Violate Beliefs in Web Applications, in: WOOT’13: 7th
USENIX Workshop on Offensive Technologies, USENIX Association, 2013, (First appeared at Black Hat USA 2013.).

[74] B. Smyth and A. Pironti, Truncating TLS Connections to Violate Beliefs in Web Applications, Technical Report, hal-
01102013, INRIA, 2015.

[75] M. Bellare and P. Rogaway, Random Oracles Are Practical: A Paradigm for Designing Efficient Protocols, in: CCS’93:
1st ACM Conference on Computer and Communications Security, ACM, 1993, pp. 62–73. ISBN 0-89791-629-8.

[76] R. Küsters, T. Truderung and A. Vogt, Clash Attacks on the Verifiability of E-Voting Systems, in: S&P’12: 33rd IEEE
Symposium on Security and Privacy, IEEE Computer Society, 2012, pp. 395–409.

[77] D. Bernhard and B. Warinschi, Cryptographic Voting — A Gentle Introduction, in: Foundations of Security Analysis and
Design VII, LNCS, Vol. 8604, Springer, 2014, pp. 167–211.

[78] N. Schweikardt, Arithmetic, First-order Logic, and Counting Quantifiers, ACM Transactions on Computational Logic
6(3) (2005), 634–671.

[79] G. Tsoukalas, K. Papadimitriou, P. Louridas and P. Tsanakas, From Helios to Zeus, Journal of Election Technology and
Systems 1(1) (2013).

[80] B. Smyth, Verifiability of Helios Mixnet, in: Voting’18: 3rd Workshop on Advances in Secure Electronic Voting, LNCS,
Springer, 2018.

[81] E. Maaten, Towards remote e-voting: Estonian case, Electronic Voting in Europe-Technology, Law, Politics and Society
47 (2004), 83–100.

[82] K. Gjøsteen, The Norwegian Internet Voting Protocol, in: VoteID’11: 3rd international conference on e-voting and
identity, Springer, 2012, pp. 1–18.

http://cseweb.ucsd.edu/~mihir/cse207/w-se.pdf
http://cseweb.ucsd.edu/~mihir/cse207/w-se.pdf

[83] G.V. Post, Using re-voting to reduce the threat of coercion in elections, Electronic Government, an International Journal
7(2) (2010), 168–182.

[84] R. Küsters, T. Truderung and A. Vogt, Accountability: Definition and Relationship to Verifiability, in: CCS’10: 17th
ACM Conference on Computer and Communications Security, ACM Press, 2010, pp. 526–535.

[85] M. Bernhard, J. Benaloh, J.A. Halderman, R.L. Rivest, P.Y.A. Ryan, P.B. Stark, V. Teague, P.L. Vora and D.S. Wallach,
Public Evidence from Secret Ballots, in: E-Vote-ID’17: 10th International Conference for Electronic Voting, LNCS,
Springer, 2017, pp. 84–109.

[86] B. Schoenmakers, A Simple Publicly Verifiable Secret Sharing Scheme and its Application to Electronic Voting, in:
CRYPTO’99: 19th International Cryptology Conference, LNCS, Vol. 1666, Springer, 1999, pp. 148–164.

[87] A. Kiayias and M. Yung, Self-tallying Elections and Perfect Ballot Secrecy, in: PKC’01: 3rd International Workshop on
Practice and Theory in Public Key Cryptography, LNCS, Vol. 2274, Springer, 2002, pp. 141–158.

[88] J. Groth, Efficient Maximal Privacy in Boardroom Voting and Anonymous Broadcast, in: FC’04: 8th International
Conference on Financial Cryptography, LNCS, Vol. 3110, Springer, 2004, pp. 90–104.

[89] F. Hao, P.Y.A. Ryan and P. Zieliński, Anonymous voting by two-round public discussion, Journal of Information Security
4(2) (2010), 62–67.

[90] D. Khader, B. Smyth, P.Y.A. Ryan and F. Hao, A Fair and Robust Voting System by Broadcast, in: EVOTE’12: 5th
International Conference on Electronic Voting, Lecture Notes in Informatics, Vol. 205, Gesellschaft für Informatik,
2012, pp. 285–299.

[91] S. Khazaei and M. Rezaei-Aliabadi, A rigorous security analysis of a decentralized electronic voting protocol in the
universal composability framework, Journal of Information Security and Applications 43 (2018), 99–109.

[92] D.L. Chaum, Untraceable electronic mail, return addresses, and digital pseudonyms, Communications of the ACM 24
(1981), 84–90.

[93] J.C. Benaloh and D. Tuinstra, Receipt-free secret-ballot elections, in: STOC’94: 26th Theory of computing Symposium,
ACM Press, 1994, pp. 544–553.

[94] J. Benaloh, Verifiable Secret-Ballot Elections, PhD thesis, Department of Computer Science, Yale University, 1996.
[95] E.A. Quaglia and B. Smyth, A short introduction to secrecy and verifiability for elections, 2018, arXiv, Report

1702.03168.
[96] V. Cortier, D. Galindo, S. Glondu and M. Izabachene, A generic construction for voting correctness at minimum cost -

Application to Helios, 2013, Cryptology ePrint Archive, Report 2013/177 (version 20130521:145727).
[97] V. Cortier, D. Galindo, S. Glondu and M. Izabachene, Distributed ElGamal à la Pedersen: Application to Helios, in:

WPES’13: Workshop on Privacy in the Electronic Society, ACM Press, 2013, pp. 131–142.
[98] K. Sako and J. Kilian, Receipt-Free Mix-Type Voting Scheme: A practical solution to the implementation of a voting

booth, in: EUROCRYPT’95: 12th International Conference on the Theory and Applications of Cryptographic Tech-
niques, LNCS, Vol. 921, Springer, 1995, pp. 393–403.

[99] M. Michels and P. Horster, Some Remarks on a Receipt-Free and Universally Verifiable Mix-Type Voting Scheme,
in: ASIACRYPT’96: International Conference on the Theory and Application of Cryptology and Information Security,
LNCS, Vol. 1163, Springer, 1996, pp. 125–132.

[100] D. Wikström, Simplified Submission of Inputs to Protocols, 2006, Cryptology ePrint Archive, Report 2006/259.
[101] D. Wikström, Simplified Submission of Inputs to Protocols, in: SCN’08: 6th International Conference on Security and

Cryptography for Networks, LNCS, Vol. 5229, Springer, 2008, pp. 293–308.
[102] D. Wikström, Verificatum: How to Implement a Stand-alone Verifier for the Verificatum Mix-Net (VMN Version 3.0.2),

2016, http://www.verificatum.com/files/vmnum-3.0.2.pdf.
[103] B. Chor and M.O. Rabin, Achieving Independence in Logarithmic Number of Rounds, in: PODC’87: 6th Principles of

Distributed Computing Symposium, ACM Press, 1987, pp. 260–268.
[104] B. Pfitzmann and A. Pfitzmann, How to Break the Direct RSA-Implementation of Mixes, in: EUROCRYPT’89: 6th

International Conference on the Theory and Applications of Cryptographic Techniques, LNCS, Vol. 434, Springer, 1989,
pp. 373–381.

[105] B. Pfitzmann, Breaking Efficient Anonymous Channel, in: EUROCRYPT’94: 11th International Conference on the The-
ory and Applications of Cryptographic Techniques, LNCS, Vol. 950, Springer, 1994, pp. 332–340.

[106] R. Gennaro, A Protocol to Achieve Independence in Constant Rounds, IEEE Transactions on Parallel and Distributed
Systems 11(7) (2000), 636–647.

[107] Y. Desmedt and P. Chaidos, Applying Divertibility to Blind Ballot Copying in the Helios Internet Voting System, in:
ESORICS’12: 17th European Symposium on Research in Computer Security, LNCS, Vol. 7459, Springer, 2012, pp. 433–
450.

[108] B. Smyth, Ballot secrecy with malicious bulletin boards, 2014, Cryptology ePrint Archive, Report 2014/822 (version
20141012:004943).

[109] B. Smyth, Secrecy and independence for election schemes, 2015, Cryptology ePrint Archive, Report 2015/942 (version
20150928:195428).

http://www.verificatum.com/files/vmnum-3.0.2.pdf

[110] B. Smyth, Secrecy and independence for election schemes, 2016, Cryptology ePrint Archive, Report 2015/942 (version
20160713:142934).

[111] V. Cortier, B. Schmidt, C.C. Drăgan, P.-Y. Strub, F. Dupressoir and B. Warinschi, Machine-Checked Proofs of Privacy
for Electronic Voting Protocols, in: S&P’17: 37th IEEE Symposium on Security and Privacy, IEEE Computer Society,
2017.

[112] B. Smyth, Y. Hanatani and H. Muratani, NM-CPA secure encryption with proofs of plaintext knowledge, in: IWSEC’15:
10th International Workshop on Security, LNCS, Vol. 9241, Springer, 2015, pp. 115–134.

[113] B. Smyth and Y. Hanatani, Non-malleable encryption with proofs of plaintext knowledge and applications to voting,
International Journal of Security and Networks 14(4) (2019), 191–204.

[114] S. Delaune, S. Kremer and M. Ryan, Coercion-Resistance and Receipt-Freeness in Electronic Voting, in: CSFW’06: 19th
Computer Security Foundations Workshop, IEEE Computer Society, 2006, pp. 28–42.

[115] S. Delaune, S. Kremer and M.D. Ryan, Verifying privacy-type properties of electronic voting protocols, Journal of
Computer Security 17(4) (2009), 435–487.

[116] S. Delaune, M.D. Ryan and B. Smyth, Automatic verification of privacy properties in the applied pi-calculus, in:
IFIPTM’08: 2nd Joint iTrust and PST Conferences on Privacy, Trust Management and Security, International Feder-
ation for Information Processing (IFIP), Vol. 263, Springer, 2008, pp. 263–278.

[117] P. Klus, B. Smyth and M.D. Ryan, ProSwapper: Improved equivalence verifier for ProVerif, 2010, http://www.bensmyth.
com/proswapper.php.

[118] B. Smyth, Formal verification of cryptographic protocols with automated reasoning, PhD thesis, School of Computer
Science, University of Birmingham, 2011.

[119] B. Blanchet and B. Smyth, Automated reasoning for equivalences in the applied pi calculus with barriers, in: CSF’16:
29th Computer Security Foundations Symposium, IEEE Computer Society, 2016, pp. 310–324.

[120] B. Blanchet and B. Smyth, Automated reasoning for equivalences in the applied pi calculus with barriers, Journal of
Computer Security 26(3) (2018), 367–422.

[121] C. Cremers and L. Hirschi, Improving Automated Symbolic Analysis for E-voting Protocols: A Method Based on Suffi-
cient Conditions for Ballot Secrecy, 2017, arXiv, Report 1709.00194.

[122] B. Blanchet, B. Smyth, V. Cheval and M. Sylvestre, ProVerif 1.96: Automatic Cryptographic Protocol Verifier, User
Manual and Tutorial, 2016.

[123] S. Delaune, S. Kremer, M.D. Ryan and G. Steel, Formal analysis of protocols based on TPM state registers, in: CSF’11:
24th Computer Security Foundations Symposium, IEEE Computer Society, 2011, pp. 66–80.

[124] M. Paiola and B. Blanchet, Verification of Security Protocols with Lists: From Length One to Unbounded Length, in:
POST’12: First Conference on Principles of Security and Trust, LNCS, Vol. 7215, Springer, 2012, pp. 69–88.

[125] M. Arapinis, S. Bursuc and M. Ryan, Reduction of Equational Theories for Verification of Trace Equivalence: Re-
encryption, Associativity and Commutativity, in: POST’12: First Conference on Principles of Security and Trust, LNCS,
Vol. 7215, Springer, 2012, pp. 169–188.

[126] A. Kiayias, T. Zacharias and B. Zhang, End-to-End Verifiable Elections in the Standard Model, in: EUROCRYPT’15:
34th International Conference on the Theory and Applications of Cryptographic Techniques, LNCS, Vol. 9057, Springer,
2015, pp. 468–498.

[127] P. Chaidos, V. Cortier, G. Fuschbauer and D. Galindo, BeleniosRF: A Non-interactive Receipt-Free Electronic Voting
Scheme, in: CCS’16: 23rd ACM Conference on Computer and Communications Security, ACM Press, 2016, pp. 1614–
1625.

[128] A. Fraser, E.A. Quaglia and B. Smyth, A critique of game-based definitions of receipt-freeness for voting, in:
ProveSec’19: 13th International Conference on Provable and Practical Security, LNCS, Springer, 2019.

[129] A. Juels, D. Catalano and M. Jakobsson, Coercion-Resistant Electronic Elections, in: WPES’05: 4th Workshop on Pri-
vacy in the Electronic Society, ACM Press, 2005, pp. 61–70.

[130] R.W. Gardner, S. Garera and A.D. Rubin, Coercion Resistant End-to-end Voting, in: FC’09: 13th International Confer-
ence on Financial Cryptography and Data Security, LNCS, Vol. 5628, Springer, 2009, pp. 344–361.

[131] D. Unruh and J. Müller-Quade, Universally Composable Incoercibility, in: CRYPTO’10: 30th International Cryptology
Conference, LNCS, Vol. 6223, Springer, 2010, pp. 411–428.

[132] R. Küsters, T. Truderung and A. Vogt, A Game-Based Definition of Coercion-Resistance and its Applications, Journal
of Computer Security 20(6) (2012), 709–764.

[133] T. Haines and B. Smyth, Surveying definitions of coercion resistance, 2020.
[134] A. McCarthy, B. Smyth and E.A. Quaglia, Hawk and Aucitas: e-auction schemes from the Helios and Civitas e-voting

schemes, in: FC’14: 18th International Conference on Financial Cryptography and Data Security, LNCS, Vol. 8437,
Springer, 2014, pp. 51–63.

[135] J. Katz and Y. Lindell, Introduction to Modern Cryptography, Chapman & Hall/CRC, 2007.
[136] A. Fiat and A. Shamir, How To Prove Yourself: Practical Solutions to Identification and Signature Problems, in:

CRYPTO’86: 6th International Cryptology Conference, LNCS, Vol. 263, Springer, 1987, pp. 186–194.

http://www.bensmyth.com/proswapper.php
http://www.bensmyth.com/proswapper.php

[137] J. Groth, Simulation-Sound NIZK Proofs for a Practical Language and Constant Size Group Signatures, in: ASI-
ACRYPT’02: 12th International Conference on the Theory and Application of Cryptology and Information Security,
LNCS, Vol. 4284, Springer, 2006, pp. 444–459.

[138] R. Cramer, R. Gennaro and B. Schoenmakers, A Secure and Optimally Efficient Multi-Authority Election Scheme, in:
EUROCRYPT’97: 16th International Conference on the Theory and Applications of Cryptographic Techniques, LNCS,
Vol. 1233, Springer, 1997, pp. 103–118.

[139] D. Chaum, J. Evertse, J. van de Graaf and R. Peralta, Demonstrating Possession of a Discrete Logarithm Without Re-
vealing It, in: CRYPTO’86: 6th International Cryptology Conference, LNCS, Vol. 263, Springer, 1987, pp. 200–212.

[140] R. Cramer, M.K. Franklin, B. Schoenmakers and M. Yung, Multi-Authority Secret-Ballot Elections with Linear Work, in:
EUROCRYPT’96: 15th International Conference on the Theory and Applications of Cryptographic Techniques, LNCS,
Vol. 1070, Springer, 1996, pp. 72–83.

[141] D. Chaum and T.P. Pedersen, Wallet Databases with Observers, in: CRYPTO’92: 12th International Cryptology Confer-
ence, LNCS, Vol. 740, Springer, 1993, pp. 89–105.

[142] NIST, Secure Hash Standard (SHS), FIPS PUB, 180-4, Information Technology Laboratory, National Institute of Stan-
dards and Technology, 2012.

[143] Y. Tsiounis and M. Yung, On the Security of ElGamal Based Encryption, in: PKC’98: First International Workshop on
Practice and Theory in Public Key Cryptography, LNCS, Vol. 1431, Springer, 1998, pp. 117–134.

[144] B. Smyth, Verifiability of Helios Mixnet, 2018, Cryptology ePrint Archive, Report 2018/017.
[145] J. Heather and S. Schneider, A formal framework for modelling coercion resistanc and receipt freeness, in: FM’12: 18th

International Symposium on Formal Methods, LNCS, Springer, 2012, pp. 217–231.

Appendix A. Cryptographic primitives

A.1. Asymmetric encryption

Definition 10 (Asymmetric encryption scheme [135]). An asymmetric encryption scheme is a tuple of
probabilistic polynomial-time algorithms (Gen,Enc,Dec), such that:33

• Gen, denoted (pk, sk,m) ← Gen(κ), inputs a security parameter κ and outputs a key pair (pk, sk)
and message space m.

• Enc, denoted c← Enc(pk,m), inputs a public key pk and message m ∈ m, and outputs a ciphertext
c.

• Dec, denoted m← Dec(sk, c), inputs a private key sk and ciphertext c, and outputs a message m or
an error symbol. We assume Dec is deterministic.

Moreover, the scheme must be correct: there exists a negligible function negl, such that for all secu-
rity parameters κ and messages m, we have Pr[(pk, sk,m) ← Gen(κ); c ← Enc(pk,m) : m ∈ m ⇒
Dec(sk, c) = m] > 1− negl(κ). A scheme has perfect correctness if the probability is 1.

Definition 11 (Homomorphic encryption [30]). An asymmetric encryption scheme Π = (Gen,Enc,
Dec) is homomorphic, with respect to ternary operators �, ⊕, and ⊗,34 if there exists a negligible
function negl, such that for all security parameters κ, we have the following.35 First, for all messages
m1 and m2 we have Pr[(pk, sk,m) ← Gen(κ); c1 ← Enc(pk,m1); c2 ← Enc(pk,m2) : m1,m2 ∈ m ⇒
Dec(sk, c1 ⊗pk c2) = Dec(sk, c1) �pk Dec(sk, c2)] > 1 − negl(κ). Secondly, for all messages m1 and

33Our definition differs from Katz and Lindell’s original definition [135, Definition 10.1] in that we formally state the plain-
text space.

34For brevity, we write Π is a homomorphic asymmetric encryption scheme as opposed to the more verbose Π is a homo-
morphic asymmetric encryption scheme, with respect to ternary operators �, ⊕, and ⊗.

35We write X ◦pk Y for the application of ternary operator ◦ to inputs X, Y , and pk. We occasionally abbreviate X ◦pk Y as
X ◦ Y , when pk is clear from the context.

m2, and all coins r1 and r2, we have Pr[(pk, sk,m) ← Gen(κ) : m1,m2 ∈ m ⇒ Enc(pk,m1; r1) ⊗pk

Enc(pk,m2; r2) = Enc(pk,m1�pk m2; r1⊕pk r2)] > 1− negl(κ). We say Π is additively homomorphic, if
for all security parameters κ, key pairs pk, sk, and message spaces m, such that there exists coins r and
(pk, sk,m) = Gen(κ; r), we have �pk is the addition operator in group (m,�pk).

Definition 12 (IND-CPA [68]). Let Π = (Gen,Enc,Dec) be an asymmetric encryption scheme, A be an
adversary, κ be the security parameter, and IND-CPA be the following game.36

IND-CPA(Π,A, κ) =

(pk, sk,m)← Gen(κ);
(m0,m1)← A(pk,m, κ);
β←R {0, 1};
c← Enc(pk,mβ);
g← A(c);
return g = β;

In the above game, we require m0,m1 ∈ m and |m0| = |m1|. We say Π satisfies IND-CPA, if for all
probabilistic polynomial-time adversaries A, there exists a negligible function negl, such that for all
security parameters κ, we have Succ(IND-CPA(Π,A, κ)) 6 1

2 + negl(κ).

Definition 13 (IND-PA0 [65]). Let Π = (Gen,Enc,Dec) be an asymmetric encryption scheme, A be an
adversary, κ be the security parameter, and IND-PA0 be the following game.

IND-PA0(Π,A, κ) =

(pk, sk,m)← Gen(κ);
(m0,m1)← A(pk,m, κ);
β←R {0, 1};
c← Enc(pk,mβ);
c← A(c);
m← (Dec(sk, c[1]), . . . ,Dec(sk, c[|c|]);
g← A(m);
return g = β ∧

∧
16i6|c| c 6= c[i];

In the above game, we require m0,m1 ∈ m and |m0| = |m1|. We say Π satisfies IND-PA0, if for all
probabilistic polynomial-time adversaries A, there exists a negligible function negl, such that for all
security parameters κ, we have Succ(IND-PA0(Π,A, κ)) 6 1

2 + negl(κ).

A.2. Proof systems

Definition 14 (Non-interactive proof system [30]). A non-interactive proof system for a relation R is a
tuple of algorithms (Prove,Verify), such that:

• Prove, denoted σ← Prove(s,w, κ), is executed by a prover to prove (s,w) ∈ R.

36Our definition of an asymmetric encryption scheme explicitly defines the plaintext space, whereas Bellare et al. [68] leave
the plaintext space implicit; this change is reflected in our definition of IND-CPA. Moreover, we provide the adversary with the
message space and security parameter. We adapt IND-PA0 similarly.

• Verify, denoted v ← Verify(s, σ, κ), is executed by anyone to check the validity of a proof. We
assume Verify is deterministic.

Moreover, the system must be complete: there exists a negligible function negl, such that for all statement
and witnesses (s,w) ∈ R and security parameters κ, we have Pr[σ ← Prove(s,w, κ) : Verify(s, σ, κ) =
1] > 1− negl(κ). A system has perfect completeness if the probability is 1.

Definition 15 (Fiat-Shamir transformation [136]). Given a sigma protocol Σ = (Comm,Chal,
Resp,VerifyΣ) for relation R and a hash functionH, the Fiat-Shamir transformation, denoted FS(Σ,H),
is the non-interactive proof system (Prove,Verify), defined as follows:

Prove(s,w, κ) =

(comm, t)← Comm(s,w, κ);
chal← H(comm, s);
resp← Resp(chal, t, κ);
return (comm, resp);

Verify(s, (comm, resp), κ) =

chal← H(comm, s);
return VerifyΣ(s, (comm, chal, resp), κ);

A string m can be included in the hashes computed by algorithms Prove and Verify. That is, the hashes
are computed in both algorithms as chal ← H(comm, s,m). We write Prove(s,w,m, κ) and Verify(s,
(comm, resp),m, k) for invocations of Prove and Verify which include string m.

Definition 16 (Zero-knowledge [61]). Let ∆ = (Prove,Verify) be a non-interactive proof system for a
relation R, derived by application of the Fiat-Shamir transformation [136] to a random oracleH and a
sigma protocol. Moreover, let S be an algorithm, A be an adversary, κ be a security parameter, and ZK
be the following game.

ZK(∆,A,H,S, κ) =

β←R {0, 1};
g← AH,P(κ);
return g = β;

Oracle P is defined on inputs (s,w) ∈ R as follows:

• P(s,w) computes if β = 0 then σ← Prove(s,w, κ) else σ← S(s, κ) and outputs σ.

And algorithm S can patch random oracle H.37 We say ∆ satisfies zero-knowledge, if there exists a
probabilistic polynomial-time algorithm S, such that for all probabilistic polynomial-time algorithm
adversaries A, there exists a negligible function negl, and for all security parameters κ, we have
Succ(ZK(∆,A,H,S, κ)) 6 1

2 + negl(κ). An algorithm S for which zero-knowledge holds is called a
simulator for (Prove,Verify).

37Random oracles can be programmed or patched. We will not need the details of how patching works, so we omit them
here; see Bernhard et al. [71] for a formalisation.

Definition 17 (Simulation sound extractability [30, 71, 137]). Suppose Σ is a sigma protocol for relation
R, H is a random oracle, and (Prove,Verify) is a non-interactive proof system, such that FS(Σ,H) =
(Prove,Verify). Further suppose S is a simulator for (Prove,Verify) and H can be patched by S. Proof
system (Prove,Verify) satisfies simulation sound extractability if there exists a probabilistic polynomial-
time algorithm K, such that for all probabilistic polynomial-time adversariesA and coins r, there exists
a negligible function negl, such that for all security parameters κ, we have:38

Pr[P← (); Q← AH,P(—; r); W← KA′
(H,P,Q) :

|Q| 6= |W| ∨ ∃ j ∈ {1, . . . , |Q|} . (Q[j][1],W[j]) 6∈ R ∧

∀(s, σ) ∈ Q, (t, τ) ∈ P . Verify(s, σ, κ) = 1 ∧ σ 6= τ] 6 negl(κ)

where A(—; r) denotes running adversary A with an empty input and coins r, where H is a transcript
of the random oracle’s input and output, and where oracles A′ and P are defined below:

• A′(). Computes Q′ ← A(—; r), forwarding any of A’s oracle queries to K, and outputs Q′. By
running A(—; r), K is rewinding the adversary.

• P(s). Computes σ← S(s, κ); P← (P[1], . . . ,P[|P|], (s, σ)) and outputs σ.

Algorithm K is an extractor for (Prove,Verify).

Theorem 16 (from [71]). Let Σ be a sigma protocol for relation R, and let H be a random oracle.
Suppose Σ satisfies special soundness and special honest verifier zero-knowledge. Non-interactive proof
system FS(Σ,H) satisfies zero-knowledge and simulation sound extractability.

The Fiat-Shamir transformation may include a string in the hashes computed by functions Prove and
Verify. Simulators can be generalised to include such a string too. We write S(s,m, κ) for invocations of
simulator S which include string m. And remark that Theorem 16 can be extended to this generalisation.

Appendix B. Ballot independence: Non-malleability game

We formalise an alternative definition of ballot independence as a non-malleability game, called com-
parison based non-malleability under chosen vote attack (CNM-CVA), as a straightforward adaptation of
the non-malleability definition for asymmetric encryption by Bellare & Sahai [65].

Definition 18 (CNM-CVA). Let Γ = (Setup,Vote, Tally) be an election scheme, A be an adversary, κ be
a security parameter, and cnm-cva and cnm-cva-$ be the following games.

cnm-cva(Γ,A, κ) = (pk, sk,mb,mc)← Setup(κ);
(V, nc)← A(pk, κ);
v←R V;
b← Vote(pk, v, nc, κ);
(R, bb)← A(b);
(v, pf)← Tally(sk, bb, nc, κ);
return R(v, v) ∧ b 6∈ bb ∧ V ⊆ {1, . . . , nc}
∧ 1 6 nc 6 mc ∧ |bb| 6 mb;

38We extend set membership notation to vectors: we write x ∈ x if x is an element of the set {x[i] : 1 6 i 6 |x|}.

cnm-cva-$(Γ,A, κ) = (pk, sk,mb,mc)← Setup(κ);
(V, nc)← A(pk, κ);
v, v′ ←R V;
b← Vote(pk, v′, nc, κ);
(R, bb)← A(b);
(v, pf)← Tally(sk, bb, nc, κ);
return R(v, v) ∧ b 6∈ bb ∧ V ⊆ {1, . . . , nc}
∧ 1 6 nc 6 mc ∧ |bb| 6 mb;

In the above games, we require that relation R is computable in polynomial time. We say Γ satisfies com-
parison based non-malleability under chosen vote attack (CNM-CVA), if for all probabilistic polynomial-
time adversaries A, there exists a negligible function negl, such that for all security parameters κ, we
have Succ(cnm-cva(Γ,A, κ))− Succ(cnm-cva-$(Γ,A, κ)) 6 negl(κ).

CNM-CVA is satisfied if no adversary can distinguish between games cnm-cva and cnm-cva-$. That
is, for all adversaries, the adversary wins cnm-cva iff the adversary looses cnm-cva-$, with negligible
probability. The first three steps of games cnm-cva and cnm-cva-$ are identical, thus, these steps cannot
be distinguished. Then, game cnm-cva-$ performs an additional step: the challenger samples a second
vote v′ from vote space V . Thereafter, game cnm-cva, respectively game cnm-cva-$, proceeds as follows:
the challenger constructs a challenge ballot b for v, respectively v′; the adversary is given ballot b and
computes a relation R and bulletin board bb; and the challenger tallies bb to derive election outcome v
and evaluates whether R(v, v) holds. Hence, CNM-CVA is satisfied if there is no advantage of the relation
computed by an adversary given a challenge ballot for v, over the relation computed by the adversary
given a challenge ballot for v′. That is, for all adversaries, we have with negligible probability that the
relation evaluated by the challenger in cnm-cva holds iff the relation evaluated in cnm-cva-$ does not
hold. It follows that no adversary can meaningfully relate ballots. On the other hand, if CNM-CVA is not
satisfied, then there exists a strategy to construct related ballots.

CNM-CVA avoids crediting the adversary for trivial and unavoidable relations which hold if the chal-
lenge ballot appears on the bulletin board. For example, suppose the adversary is given a challenge ballot
for v in cnm-cva, respectively v′ in cnm-cva-$. This adversary could output a bulletin board containing
only the challenge ballot and a relation R such that R(v, v) holds if v[v] = 1, hence, the relation evaluated
in cnm-cva holds, whereas the relation evaluated in cnm-cva-$ does not hold, but the adversary looses in
both games because the challenge ballot appears on the bulletin board. By contrast, if the adversary can
derive a ballot meaningfully related to the challenge ballot, then the adversary can win the game. For
instance, Cortier & Smyth [53, 54] identify a class of vulnerabilities against voting systems, which can
be exploited as follows: an adversary observes a voter’s ballot, casts a meaningfully related ballot, and
abuses the relation to recover the voter’s vote from the election outcome.

Comparing CNM-CVA and CNM-CPA.. Unsurprisingly, the distinction between non-malleability for
asymmetric encryption (CNM-CPA) and non-malleability for election schemes (CNM-CVA) is similar to
the distinction between indistinguishability for asymmetric encryption and indistinguishability for elec-
tion schemes (§3.2), namely, CNM-CPA performs a parallel decryption, whereas CNM-CVA performs a
single tally.

Our ballot independence games are adaptations of standard security definitions for asymmetric encryp-
tion: CNM-CVA is based on non-malleability for encryption and IND-CVA is based on indistinguishability
for encryption. Bellare & Sahai [65] have shown that non-malleability is equivalent to indistinguishabil-
ity for encryption and their proof can be adapted to show that CNM-CVA and IND-CVA are equivalent.

Theorem 17 (CNM-CVA = IND-CVA). Given an election scheme Γ, we have Γ satisfies CNM-CVA iff Γ

satisfies IND-CVA.

Proof. For the if implication, suppose Γ does not satisfy CNM-CVA, hence, there exists a probabilistic
polynomial-time adversaryA, such that for all negligible functions negl, there exists a security parameter
κ and Succ(cnm-cva(Γ,A, κ)) − Succ(cnm-cva-$(Γ,A, κ)) > negl(κ). We construct an adversary B
against game IND-CVA from A.

• B(pk, κ) computes (V, nc)← A(pk, κ); v, v′ ←R V and outputs (v, v′, nc).
• B(b) computes (R, bb)← A(b) and outputs bb.
• B(v) outputs 0 if R(v, v) holds and 1 otherwise.

If the challenger selects β = 0 in game IND-CVA, then adversary B simulates A’s challenger to A in
cnm-cva and B’s success (which requires R(v, v) to hold) is Succ(cnm-cva(Γ,A, κ)). Otherwise (β = 1),
adversary B simulates A’s challenger to A in cnm-cva-$ and, since B will evaluate R(v, v), B’s success
(which requires R(v, v) not to hold) is 1 − Succ(cnm-cva-$(Γ,A, κ)). It follows that Succ(IND-CVA(Γ,

B, κ)) = 1
2 · (Succ(cnm-cva(Γ,A, κ)) + 1−Succ(cnm-cva-$(Γ,A, κ))), therefore, 2 ·Succ(IND-CVA(Γ,

B, κ))−1 = Succ(cnm-cva(Γ,A, κ))−Succ(cnm-cva-$(Γ,A, κ)). Thus, Succ(IND-CVA(Γ,B, κ)) > 1
2 +

1
2 · negl(κ), concluding our proof of the if implication.

For the only if implication, suppose Γ does not satisfy IND-CVA, hence, there exists a probabilistic
polynomial-time adversaryA, such that for all negligible functions negl, there exists a security parameter
κ and Succ(IND-CVA(Γ,A, κ)) > 1

2 + negl(κ). We construct an adversary B against CNM-CVA from A.

• B(pk, κ) computes (v0, v1, nc)← A(pk, κ) and outputs ({v0, v1}, nc).
• B(b) computes bb← A(b), picks coins r uniformly at random, derives a relation R such that R(v, v)

holds if there exists a bit g such that v = vg ∧ g = A(v; r) and fails otherwise, and outputs (R, bb).

AdversaryB simulatesA’s challenger toA in game IND-CVA. Indeed, the challenge ballot is equivalently
computed. As is the election outcome. The computation A(v; r) is not black-box, but this does not
matter: it is still invoked exactly once in the game. Let us consider adversary B’s success against cnm-
cva and cnm-cva-$.

• Game cnm-cva samples a single vote v from V . By inspection of cnm-cva and IND-CVA, we have
Succ(cnm-cva(Γ,B, κ)) = Succ(IND-CVA(Γ,A, κ)), hence, Succ(cnm-cva(Γ,B, κ))− 1

2 > negl(κ).
• Game cnm-cva-$ samples votes v and v′ from V . Vote v is independent ofA’s perspective, indeed, an

equivalent formulation of cnm-cva-$ could sample v afterA has terminated and immediately before
evaluating the adversary’s relation. By inspection of cnm-cva-$ and IND-CVA, we have Succ(cnm-
cva-$(Γ,B, κ)) = 1

2 · Succ(IND-CVA(Γ,A, κ)) + 1
2 · (1− Succ(IND-CVA(Γ,A, κ))) = 1

2 .

It follows that Succ(cnm-cva(Γ,B, κ))− Succ(cnm-cva-$(Γ,B, κ)) > negl(κ). �

Appendix C. Proofs

C.1. Proof of Theorem 1

Suppose Γ does not satisfy ballot independence, hence, there exists a probabilistic polynomial-time
adversaryA, such that for all negligible functions negl, there exists a security parameter κ and Succ(IND-
CVA) > 1

2 + negl(κ). We construct an adversary B against Ballot-Secrecy from A.

• B(pk, κ) computes (v0, v1, nc)← A(pk, κ) and outputs nc.
• B() computes b← O(v0, v1); bb← A(b) and outputs bb.
• B(v, pf) computes g← A(v) and outputs g.

Adversary B simulatesA’s challenger toA. Indeed, the challenge ballot and election outcome are equiv-
alently computed. Moreover, the challenge ballot does not appear on the bulletin board, hence, the bul-
letin board is balanced. It follows that Succ(IND-CVA(Γ,A, κ)) = Succ(Ballot-Secrecy(Γ,B, κ)), hence,
Succ(Ballot-Secrecy(Γ,B, κ)) > 1

2 + negl(κ), concluding our proof.

C.2. Proof of Proposition 3

In essence, the proof follows from Theorem 4. Albeit, formally, a few extra steps are required. In
particular, the definition of an election scheme with zero-knowledge proofs demands that tallying proofs
must be computed by a zero-knowledge non-interactive proof system, but an election scheme without
tallying proofs need not compute proofs with such a system. Thus, we must introduce an election scheme
with zero-knowledge proofs and prove that it is equivalent to the election scheme without proofs. This
is trivial, so we do not pursue the details.

C.3. Proof of Theorem 4

Definition 19 (Zero-knowledge tallying proofs). An election scheme Γ = (Setup,Vote, Tally) has zero-
knowledge tallying proofs, if there exists a non-interactive zero-knowledge proof system (Prove,Verify),
such that for all security parameters κ, integers nc, bulletin boards bb, outputs (pk, sk,mb,mc) of
Setup(κ), and outputs (v, pf) of Tally(sk, bb, nc, κ), we have pf is an output of algorithm Prove pa-
rameterised with statement (pk, bb, nc, v) and coins chosen uniformly at random.

(Beyond the statement and coins, algorithm Prove additionally inputs some witness and security param-
eter.)

Definition 20. Let Γ = (Setup,Vote, Tally) be an election scheme with zero-knowledge tallying proofs,
A be an adversary, and κ be a security parameter. Moreover, let S be the simulator for the non-
interactive zero-knowledge proof system used by algorithm Tally to compute tallying proofs. We define
game BS as follows.

BS(Γ,A,S, κ) =

(pk, sk,mb,mc)← Setup(κ);
nc← A(pk, κ);
β←R {0, 1};
L← ∅;
bb← AO();
(v, pf)← Tally(sk, bb \ {b | (b, v0, v1) ∈ L}, nc, κ);
for b ∈ bb ∧ (b, v0, v1) ∈ L do

v[v0]← v[v0] + 1;

pf ′ ← S((pk, nc, bb, v), κ);
g← A(v, pf ′);
return g = β ∧ balanced(bb, nc, L) ∧ 1 6 nc 6 mc ∧ |bb| 6 mb;

Predicate balanced and oracle O are defined as per game Ballot-Secrecy.

Lemma 18. Let Γ = (Setup,Vote, Tally) be an election scheme with zero-knowledge tally proofs, S be
the simulator for that proof system, A be an adversary, and κ be a security parameter. If Γ satisfies
Additivity, then |Succ(BS(Γ,A,S, κ)) − Succ(Ballot-Secrecy(Γ,A, κ))| 6 negl(κ), for all negligible
functions negl and some security parameter κ.

Proof. The challengers in games BS and Ballot-Secrecy both compute public keys using the same al-
gorithm and provide those keys, along with the security parameter, as input to the first adversary call,
thus, these inputs and corresponding outputs are equivalent. Moreover, the left-right oracle is the same in
both BS and Ballot-Secrecy, hence, the bulletin board output by the second adversary call is equivalent
in both games. Furthermore, predicate balanced is satisfied in BS iff it is satisfied in Ballot-Secrecy,
hence, if predicate balanced is not satisfied, then Succ(BS(Γ,A,S, κ)) = Succ(Ballot-Secrecy(Γ,A,
κ)), concluding our proof. Otherwise, it suffices to show that the outcome and tallying proof are equiv-
alently computed in BS and Ballot-Secrecy, since this ensures the inputs to the third adversary call are
equivalent, thus the corresponding outputs are equivalent too, which suffices to conclude.

In Ballot-Secrecy, the outcome is computed by tallying the bulletin board. By comparison, in BS, the
outcome is computed by tallying the ballots on the bulletin board that were constructed by the adversary
(i.e., ballots in bb \ {b | (b, v0, v1) ∈ L}, where bb is the bulletin board and L is the set constructed by
the oracle) and by simulating the tallying of any remaining ballots (i.e., ballots constructed by the oracle,
namely, ballots in bb ∩ {b | (b, v0, v1) ∈ L}). Suppose (pk, sk,mb,mc) is an output of Setup(κ) and nc
is an integer. Since Γ satisfies Additivity, computing v as

(v, pf)← Tally(sk, bb, nc, κ);

is equivalent to computing v as

(v, pf)← Tally(sk, bb \ {b | (b, v0, v1) ∈ L}, nc, κ);
(v′, pf ′)← Tally(sk, bb ∩ {b | (b, v0, v1) ∈ L}, nc, κ);
v← v + v′;

and as
(v, pf)← Tally(sk, bb \ {b | (b, v0, v1) ∈ L}, nc, κ);
(v′, pf ′)← Tally(sk, ∅, nc, κ);
for b ∈ bb ∧ (b, v0, v1) ∈ L do

(v′′, pf ′′)← Tally(sk, {b}, nc, κ);
v′ ← v′ + v′′;

v← v + v′;

Moreover, by correctness of Γ, we have Tally(sk, ∅, nc, κ) outputs (v′, pf ′) such that v′ is a zero-filled
vector. Hence, the above computation is equivalent to

(v, pf)← Tally(sk, bb \ {b | (b, v0, v1) ∈ L}, nc, κ);
for b ∈ bb ∧ (b, v0, v1) ∈ L do

(v′, pf ′)← Tally(sk, {b}, nc, κ);
v← v + v′;

Thus, to prove the outcome is computed equivalently in Ballot-Secrecy and BS, it suffices to prove
that the simulations are valid, i.e., computing the above for-loop is equivalent to computing for b ∈
bb ∧ (b, v0, v1) ∈ L do v[v0]← v[v0] + 1.

In BS, we have for all (b, v0, v1) ∈ L that b is an output of Vote(pk, vβ, nc, κ) such that v0, v1 ∈
{1, ..., nc}, where β is the bit chosen by the challenger. Moreover, by correctness of Γ, we have
Tally(sk, {b}, nc, κ) outputs (v′, pf ′) such that v′ is a zero-filled vector, except for index vβ, which con-
tains one, hence, computing v← v+ v′ inside the for-loop is equivalent to computing v[vβ]← v[vβ] + 1

inside the loop. Furthermore, since predicate balanced holds in BS, we have for all v ∈ {1, . . . , nc} that
|{b | b ∈ bb ∧ ∃v1 . (b, v, v1) ∈ L}| = |{b | b ∈ bb ∧ ∃v0 . (b, v0, v) ∈ L}|. Hence, in BS, computing

for b ∈ bb ∧ (b, v0, v1) ∈ L do v[vβ]← v[vβ] + 1;

is equivalent to computing

for b ∈ bb ∧ (b, v0, v1) ∈ L do v[v0]← v[v0] + 1;

Thus, the simulation is valid in BS.
In Ballot-Secrecy, the tallying proof is computed by tallying the bulletin board. By comparison, in BS,

the tallying proof is computed by simulator S. Since Γ has zero-knowledge tallying proofs, there exists
a non-interactive proof system (Prove,Verify) such that for all (v, pf) output by Tally(sk, bb, nc, κ), we
have pf is an output of algorithm Prove parameterised with statement (pk, bb, nc, v) and coins chosen
uniformly at random. Moreover, since S is a simulator for (Prove,Verify), proofs output by algorithm
Prove are indistinguishable from outputs of simulator S. Thus, tallying proofs are equivalently computed
in Ballot-Secrecy and BS, thereby concluding our proof. �

Let BS-0, respectively BS-1, be the game derived from BS by replacing β ←R {0, 1} with β ←
0, respectively β ← 1. These games are trivially related to BS, namely, Succ(BS(Γ,A,S, κ)) =
1
2 · Succ(BS-0(Γ,A,S, κ))+ 1

2 ·Succ(BS-1(Γ,A,S, κ)). Moreover, let BS-1:0 be the game derived from
BS-1 by replacing g = β with g = 0 and let G j be the game derived from BS-1:0 by removing β ← 1

and redefining oracle O such that O(v0, v1) computes, on inputs v0, v1 ∈ {1, ..., nc}, the following:

if |L| < j then
b← Vote(pk, v1, nc, κ);

else
b← Vote(pk, v0, nc, κ);

L← L ∪ {(b, v0, v1)};
return b;

Games G0,G1, . . . are distinguished from games BS-0 and BS-1:0 by their left-right oracles. In par-
ticular, the first j left-right oracle queries in G j construct ballots for the oracle’s “right" input and any
remaining queries construct ballots for the oracle’s “left" input, whereas the left-right oracle in BS-0, re-
spectively BS-1:0, always constructs ballots for the oracle’s “left," respectively “right," input. We relate
game BS-1:0 to BS-1, games BS-0 and BS-1:0 to the hybrid games G0,G1, . . . , and we prove Theorem 4
using these relations.

Lemma 19. Let Γ be an election scheme with zero-knowledge tally proofs, S be the simulator for that
proof system,A be an adversary, and κ be a security parameter. If adversaryAwins game Ballot-Secrecy
against election scheme Γ, then Succ(BS-1(Γ,A,S, κ)) = 1− Succ(BS-1:0(Γ,A,S, κ)).

Lemma 20. Let Γ be an election scheme with zero-knowledge tally proofs, S be the simulator for that
proof system,A be an adversary, and κ be a security parameter. If Γ satisfies Additivity, then Succ(BS-0(
Γ,A,S, κ)) = Succ(G0(Γ,A,S, κ)) and Succ(BS-1:0(Γ,A,S, κ)) = Succ(Gq(Γ,A,S, κ)), where q is
an upper-bound on A’s left-right oracle queries.

Proof. Games BS-0 and G0, respectively BS-1:0 and Gq, are identical up to the oracle, except BS-0
computes β ← 0 and checks g = β, which is equivalent to G0 checking g = 0, respectively BS-1:0
computes β ← 1 and checks g = 0, which is equivalent to Gq checking g = 0. Thus, it suffices to
show that oracle outputs in BS-0 are equivalent to oracle outputs in G0, and similarly for BS-1:0 and
Gq. Left-right oracles queries O(v0, v1) in games BS-0 and G0 output ballots for vote v0, hence, outputs
are equivalent in both games. Oracle outputs in BS-1:0 and Gq are similarly equivalent, in particular,
left-right oracles queriesO(v0, v1) in both games output ballots for vote v1, because q is an upper-bound
on the left-right oracle queries, therefore, |L| < q in Gq, concluding our proof. �

Proof of Theorem 4. By Theorem 1, it suffices to prove that ballot independence implies ballot secrecy.
Suppose Γ does not satisfy ballot secrecy, hence, there exists a probabilistic polynomial-time adversary
A, such that for all negligible functions negl, there exists a security parameter κ and

1

2
+ negl(κ) < Succ(Ballot-Secrecy(Γ,A, κ))

Let Γ = (Setup,Vote, Tally). Since Γ has zero-knowledge tallying proofs, tallying proofs output by Tally
are computed by a non-interactive zero-knowledge proof system. Let algorithm S be the simulator for
that proof system. By Lemma 18, we have

≈ Succ(BS(Γ,A,S, κ))

By definition of BS-0 and BS-1, we have

=
1

2
· (Succ(BS-0(Γ,A,S, κ)) + Succ(BS-1(Γ,A,S, κ)))

And, by Lemma 19, we have

=
1

2
· (Succ(BS-0(Γ,A,S, κ)) + 1− Succ(BS-1:0(Γ,A,S, κ)))

=
1

2
+

1

2
· (Succ(BS-0(Γ,A,S, κ))− Succ(BS-1:0(Γ,A,S, κ)))

Let q be an upper-bound on A’s left-right oracle queries. Hence, by Lemma 20, we have

=
1

2
+

1

2
· (Succ(G0(Γ,A,S, κ))− Succ(Gq(Γ,A,S, κ)))

which can be rewritten as the telescoping series

=
1

2
+

1

2
·
∑

16 j6q

Succ(G j−1(Γ,A,S, κ))− Succ(G j(Γ,A,S, κ))

Let j ∈ {1, . . . , q} be such that Succ(G j−1(Γ,A,S, κ))−Succ(G j(Γ,A,S, κ)) is the largest term in that
series. Hence,

6
1

2
+

1

2
· q · (Succ(G j−1(Γ,A,S, κ))− Succ(G j(Γ,A,S, κ)))

Thus,

1

2
+

1

q
· negl(κ) 6

1

2
+

1

2
· (Succ(G j−1(Γ,A,S, κ))− Succ(G j(Γ,A,S, κ)))

From A, we construct the following adversary B against IND-CVA:

• B(pk, κ) computes nc← A(pk, κ); L← ∅ and runs AO(), handling A’s oracle queries O(v0, v1) as
follows: if |L| < j, then compute b ← Vote(pk, v1, nc, κ); L ← L ∪ {b, v0, v1} and return b to A,
otherwise, assign vc

0 ← v0; vc
1 ← v1, and output (v0, v1, nc).

• B(b) assigns L← L∪ {(b, vc
0, v

c
1)}; returns b to A and handles any further oracle queries O(v0, v1)

as follows, namely, compute b ← Vote(pk, v0, nc, κ); L ← L ∪ {(b, v0, v1)} and return b to A;
assigns A’s output to bb; and outputs bb \ {b | (b, v0, v1) ∈ L}.

• B(v) computes

for b ∈ bb ∧ (b, v0, v1) ∈ L do
v[v0]← v[v0] + 1;

pf ← S((pk, bb, nc, v), κ);
g← A(v, pf);

and outputs g.

We prove that B wins IND-CVA with success of at least 1
2 + 1

2 · (Succ(G j−1(Γ,A,S, κ)) −
Succ(G j(Γ,A,S, κ))).

Suppose (pk, sk,mb,mc) is an output of Setup(κ). Further suppose we run B(pk, κ). It is straight-
forward to see that B simulates the challenger and oracle in both G j−1 and G j to A. In particular,
B simulates query O(v0, v1) by computing b ← Vote(pk, v1, nc, κ) for the first j − 1 queries. Since
G j−1 and G j are equivalent to adversaries that make fewer than j left-right oracle queries, adversary A
must make at least j queries to ensure Succ(G j−1(Γ,A,S, κ))− Succ(G j(Γ,A,S, κ)) is non-negligible.
Hence, B(pk, κ) terminates with non-negligible probability. Suppose adversary B terminates by out-
putting (v0, v1, nc), where v0, v1 correspond to the inputs of the jth oracle query by A. Further suppose
b is an output of Vote(pk, vβ, nc, κ), where β is a bit. If β = 0, then B(b) simulates the oracle in G j−1

to A, otherwise, B(b) simulates the oracle in G j to A. In particular, B(b) responds to the jth oracle
query with ballot b for vβ, thus, simulating the challenger in G j−1 when β = 0, respectively G j when
β = 1. And B(b) responds to any further oracle queries O(v0, v1) with ballots for v0. Suppose bb is
an output of A, thus B(b) outputs bb \ {b | (b, v0, v1) ∈ L}. Further suppose (v, pf) is an output of
Tally(sk, bb\{b | (b, v0, v1) ∈ L}, nc, κ) and g is an output of B(v). It is trivial to see that B(v) simulates
A’s challenger. Thus, either

(1) β = 0 and B simulates G j−1 to A, thus, g = β with at least the probability that A wins G j−1; or
(2) β = 1 and B simulates G j toA, thus, g 6= 0 with at least the probability that B looses G j and, since
A wins game Ballot-Secrecy, we have g is a bit, hence, g = β.

It follows that the success of adversary B is at least 1
2 ·Succ(G j−1(Γ,A,S, κ)) + 1

2 · (1−Succ(G j(Γ,A,
S, κ))), thus we conclude our proof. �

C.4. Proof of Lemma 8

Suppose (pk, sk,mb,mc) is an output of Setup(κ) and (nc, bb, bb′) is an output of A(pk, κ) such that
nc 6 mc and |bb| 6 mb. Further suppose (v, pf) is an output Tally(sk, bb, nc, κ), (v0, pf 0) is an output
of Tally(sk, bb \ bb′, nc, κ), and (v1, pf 1) is an output of Tally(sk, bb ∩ bb′, nc, κ). Let v+ = v0 + v1.
Moreover, let v∗ = correct-outcome(pk, nc, bb, κ), v∗0 = correct-outcome(pk, nc, bb \ bb′, κ), and v∗1 =
correct-outcome(pk, nc, bb ∩ bb′, κ). By definition of function correct-outcome, we have v∗ = v∗0 + v∗1.
Moreover, by Tally-Soundness, we have v = v∗, v0 = v∗0, and v1 = v∗1, with overwhelming probability.
It follows by transitivity that v = v+, with overwhelming probability.

C.5. Proof of Proposition 12

We present a construction (Definition 21) for encryption schemes (Lemma 21) which are clearly not
secure (Lemma 22). Nevertheless, the construction produces encryption schemes that are sufficient for
ballot secrecy (Lemma 23). The proof of Proposition 12 follows from Lemmata 21–23.

Definition 21. Given an asymmetric encryption scheme Π = (GenΠ,EncΠ,DecΠ) and a constant sym-
bol ω, let Leak(Π, ω) = (GenΠ,EncΠ,Dec) such that Dec(sk, c) proceeds as follows: if c = ω, then
output sk, otherwise, compute m← DecΠ(sk, c) and output m.

Lemma 21. Given an asymmetric encryption scheme Π and a constant symbol ω such that Π’s cipher-
text space does not contain ω, we have Leak(Π, ω) is an asymmetric encryption scheme.

Proof sketch. The proof follows immediately from correctness of the underlying encryption scheme,
because constant symbol ω does not appear in the scheme’s ciphertext space. �

Lemma 22. Given an asymmetric encryption scheme Π and a constant symbol ω such that Π’s cipher-
text space does not contain ω and Π’s message space is larger than one for some security parameter, we
have Leak(Π, ω) does not satisfy IND-PA0.

Proof sketch. The proof is trivial: an adversary can output two distinct messages and a vector containing
constant symbol ω during the first two adversary calls, learn the private key from the parallel decryption,
and use the key to recover the plaintext from the challenge ciphertext, which allows the adversary to win
the game. �

Lemma 23. Let Π = (Gen,Enc,Dec) be an asymmetric encryption scheme andω be a constant symbol.
Suppose Π’s ciphertext space does not contain ω and Π’s message space is smaller than the private key.
Further suppose Enc2Vote(Π) satisfies Ballot-Secrecy. We have Enc2Vote(Leak(Π, ω)) satisfies Ballot-
Secrecy.

Proof. Let Enc2Vote(Π) = (Setup,Vote, Tally) and let Enc2Vote(Leak(Π, ω)) = (Setup′,Vote′, Tally′).
By definition of Enc2Vote(Π) and Leak, we have Setup = Setup′ and Vote = Vote′. Suppose m is Π’s
message space. By definition of Leak, we have m is Leak(Π, ω)’s message space too. Moreover, since
|m| is smaller than the private key, we have for all security parameters κ, bulletin boards bb, and number
of candidates nc, that nc 6 |m| implies

Pr[(pk, sk,m)← Gen(κ); (v, pf)← Tally(sk, bb, nc, κ);

(v′, pf ′) ← Tally′(sk, bb, nc, κ) : v = v′ ∧ pf = pf ′] = 1,

because Enc2Vote(Π) ensures that v′ is not influenced by decrypting ω (witness that decrypting ω out-
puts sk such that sk > |m| > nc) and pf is a constant symbol. It follows for all adversariesA and security
parameters κ that games Ballot-Secrecy(Enc2Vote(Π),A, κ) and Ballot-Secrecy(Enc2Vote(Leak(Π, ω)),
A, κ) are equivalent, hence, we have Succ(Ballot-Secrecy(Enc2Vote(Π),A, κ)) = Succ(Ballot-Secrecy(
Enc2Vote(Leak(Π, ω),A, κ)). Moreover, since Enc2Vote(Π) satisfies Ballot-Secrecy, it follows that
Enc2Vote(Leak(Π, ω)) satisfies Ballot-Secrecy too. �

Proof of Proposition 12. Let Π be an asymmetric encryption scheme and ω be a constant symbol. Sup-
pose Π’s ciphertext space does not contain ω. Further suppose Π’s message space is larger than one
for some security parameter, but smaller than the private key. We have Enc2Vote(Leak(Π, ω)) is an
asymmetric encryption scheme (Lemma 21) such that Enc2Vote(Leak(Π, ω)) satisfies Ballot-Secrecy
(Lemma 23), but Leak(Π, ω) does not satisfy IND-PA0 (Lemma 22), concluding our proof. �

C.6. Proof of Lemma 13

Let Π = (Gen,Enc,Dec) and Enc2Vote(Π) = (Setup,Vote, Tally). Election scheme Enc2Vote(Π) sat-
isfies HK-Injectivity (Lemma 10). Suppose Enc2Vote(Π) does not satisfy Tally-Soundness, hence, there
exists a probabilistic polynomial-time adversary A, such that for all negligible functions negl, there
exists a security parameter κ and Succ(Tally-Soundness(Enc2Vote(Π),A, κ)) 6 1 − negl(κ). Further
suppose (pk′, sk,mb,mc) is an output of Setup(κ), (nc, bb) is an output of A(pk, κ), and (v, pf) is an
output of Tally(sk, bb, nc, κ). By definition of algorithm Setup, we have pk′ is a pair (pk,m) such that
(pk, sk,m) is an output of Gen(κ), and mc is the largest integer such that {0, . . . ,mc} ⊆ {0} ∪m. More-
over, since A is a winning adversary, we have nc 6 mc. By definition of algorithm Tally, we have v is
initialised as a zero-filled vector of length nc and updated by computing for b ∈ bb do v← Dec(sk, b);
if 1 6 v 6 nc then v[v] ← v[v] + 1. Since Π satisfies well-definedness and error symbol ⊥ is not an
integer, that computation is equivalent to

for b ∈ bb ∧ ∃m, r . m ∈ m ∧ b = Enc(pk,m; r) ∧ b 6= ⊥ do
v← Dec(sk, b);
if 1 6 v 6 nc then

v[v]← v[v] + 1;

with overwhelming probability. Although each ciphertext Enc(pk,m; r) ∈ bb may not have been com-
puted using coins r chosen uniformly at random, we nonetheless have Dec(sk,Enc(pk,m; r)) = m,
because Π is perfectly correct. Hence, the above computation is equivalent to

for b ∈ bb ∧ ∃v, r . v ∈ m ∧ b = Enc(pk, v; r) ∧ b 6= ⊥ do
if 1 6 v 6 nc then

v[v]← v[v] + 1;

Thus, for all v ∈ {1, . . . , nc}, we have v[v] = ` if and only if ∃=`b ∈ bb \ {⊥} : ∃r : b = Enc(pk, v; r),
with overwhelming probability. It follows by definition of Vote that for all v ∈ {1, . . . , nc} we have

v[v] = ` iff ∃=`b ∈ bb \ {⊥} : ∃r : b = Vote(pk, v, nc, κ; r)

with overwhelming probability. Thereby contradicting our assumption that A is a winning adversary,
since v = correct-outcome(pk, nc, bb, κ), with overwhelming probability, which concludes our proof.

Appendix D. Helios

Smyth, Frink & Clarkson [30] formalise a generic construction for Helios-like election schemes (Def-
inition 23), which is parameterised on the choice of homomorphic encryption scheme and sigma proto-
cols for the relations introduced in the following definition.

Definition 22 (from [30]). Let (Gen,Enc,Dec) be a homomorphic asymmetric encryption scheme and
Σ be a sigma protocol for a binary relation R.39

39Given a binary relation R, we write ((s1, . . . , sl), (w1, . . . ,wk)) ∈ R ⇔ P(s1, . . . , sl,w1, . . . ,wk) for (s,w) ∈ R ⇔ P(s1,
. . . , sl,w1, . . . ,wk) ∧ s = (s1, . . . , sl) ∧ w = (w1, . . . ,wk), hence, R is only defined over pairs of vectors of lengths l and k.

• Σ proves correct key generation if a ((κ, pk,m), (sk, s)) ∈ R⇔ (pk, sk,m) = Gen(κ; s).

Further, suppose that (pk, sk,m) is the output of Gen(κ; s), for some security parameter κ and coins s.

• Σ proves plaintext knowledge in a subspace if ((pk, c,m′), (m, r)) ∈ R⇔ c = Enc(pk,m; r) ∧ m ∈
m′ ∧m′ ⊆ m.

• Σ proves correct decryption if ((pk, c,m), sk) ∈ R⇔ m = Dec(sk, c).

Definition 23 (Generalised Helios [30]). Suppose Π = (Gen,Enc,Dec) is an additively homomorphic
asymmetric encryption scheme, Σ1 is a sigma protocol that proves correct key generation, Σ2 is a sigma
protocol that proves plaintext knowledge in a subspace, Σ3 is a sigma protocol that proves correct
decryption, and H is a hash function. Let FS(Σ1,H) = (ProveKey,VerKey), FS(Σ2,H) = (ProveCiph,

VerCiph), and FS(Σ3,H) = (ProveDec,VerDec). We define election scheme generalised Helios, denoted
Helios(Π,Σ1,Σ2,Σ3,H) = (Setup,Vote, Tally), as follows.40

• Setup(κ). Select coins s uniformly at random, compute (pk, sk,m)← Gen(κ; s); ρ← ProveKey((κ,

pk,m), (sk, s), κ); pk′ ← (pk,m, ρ); sk′ ← (pk, sk), let m be the largest integer such that
{0, . . . ,m} ⊆ {0} ∪m, and output (pk′, sk′,m,m).

• Vote(pk′, v, nc, κ). Parse pk′ as a vector (pk,m, ρ). Output ⊥ if parsing fails or VerKey((κ, pk,
m), ρ, κ) 6= 1 ∨ v 6∈ {1, . . . , nc}. Select coins r1, . . . , rnc−1 uniformly at random and compute:

for 1 6 j 6 nc− 1 do
if j = v then m j ← 1; else m j ← 0;
c j ← Enc(pk,m j; r j);
σ j ← ProveCiph((pk, c j, {0, 1}), (m j, r j), j, κ);

c← c1 ⊗ · · · ⊗ cnc−1;
m← m1 � · · · � mnc−1;
r ← r1 ⊕ · · · ⊕ rnc−1;
σnc ← ProveCiph((pk, c, {0, 1}), (m, r), nc, κ);

Output ballot (c1, . . . , cnc−1, σ1, . . . , σnc).
• Tally(sk′, bb, nc, κ). Initialise vectors v of length nc and pf of length nc−1. Compute for 1 6 j 6 nc

do v[j] ← 0. Parse sk′ as a pair (pk, sk). Output (v, pf) if parsing fails. Let {b1, . . . , b`} be the
largest subset of bb such that b1 < · · · < b` and for all 1 6 i 6 ` we have bi is a vector of length
2 · nc− 1 and

∧nc−1
j=1 VerCiph((pk, bi[j], {0, 1}), bi[j + nc− 1], j, κ) = 1 ∧ VerCiph((pk, bi[1]⊗ · · ·

⊗ bi[nc − 1], {0, 1}), bi[2 · nc − 1], nc, κ) = 1.If {b1, . . . , b`} = ∅, then output (v, pf), otherwise,

40We omit algorithm Verify for brevity.

compute:

for 1 6 j 6 nc− 1 do
c← b1[j]⊗ · · · ⊗ b`[j];
v[j]← Dec(sk, c);
pf [j]← ProveDec((pk, c, v[j]), sk, κ);

v[nc]← ` −
∑nc−1

j=1 v[j];

Output (v, pf).

The above algorithms assume nc > 1. Smyth, Frink & Clarkson define special cases of Vote and Tally
when nc = 1. We omit those cases for brevity and, henceforth, assume nc is always greater than one.

The generic construction can be instantiated to derive Helios 2.0 and Helios’16.

Definition 24 (Weak Fiat-Shamir transformation [71]). The weak Fiat-Shamir transformation is a func-
tion wFS that is identical to FS, except that it excludes statement s in the hashes computed by Prove and
Verify, as follows: chal← H(comm).

Definition 25 (Helios 2.0 [30]). Let Ĥelios be Helios after replacing all instances of the Fiat-Shamir
transformation with the weak Fiat-Shamir transformation and excluding the (optional) messages input to
ProveCiph, i.e., ProveCiph should be used as a ternary function. Helios 2.0 is Ĥelios(Π,Σ1,Σ2,Σ3,H),
where Π is additively homomorphic El Gamal [138, §2], Σ1 is the sigma protocol for proving knowledge
of discrete logarithms by Chaum et al. [139, Protocol 2], Σ2 is the sigma protocol for proving knowledge
of disjunctive equality between discrete logarithms by Cramer et al. [140, Figure 1], Σ3 is the sigma
protocol for proving knowledge of equality between discrete logarithms by Chaum and Pedersen [141,
§3.2], andH is SHA-256 [142].

Definition 26 (Helios 3.1.4 [30]). Election scheme Helios 3.1.4 is Helios 2.0 after modifying the sigma
protocols to perform the checks proposed by Chang-Fong & Essex [70, §4].

Definition 27 (Helios’16 [30]). Election scheme Helios’16 is Helios(Π,Σ1,Σ2,Σ3,H), where Π is ad-
ditively homomorphic El Gamal [138, §2], Σ1 is the sigma protocol for proving knowledge of discrete
logarithms by Chaum et al. [139, Protocol 2], Σ2 is the sigma protocol for proving knowledge of dis-
junctive equality between discrete logarithms by Cramer et al. [140, Figure 1], Σ3 is the sigma protocol
for proving knowledge of equality between discrete logarithms by Chaum & Pedersen [141, §3.2], H is
a random oracle, and the sigma protocols are modified to perform the checks proposed by Chang-Fong
& Essex [70, §4].

Although Helios actually uses SHA-256 [142], we assume thatH is a random oracle to prove Theorem 6.
Moreover, we assume the sigma protocols used by Helios’16 satisfy the preconditions of generalised
Helios, that is, [139, Protocol 2] is a sigma protocol for proving correct key generation, [140, Figure 1]
is a sigma protocol for proving plaintext knowledge in a subspace, and [141, §3.2] is a sigma protocol
for proving decryption. We leave formally proving this assumption as future work.

D.1. Proof of Theorem 6

The construction for Helios-like schemes produces election schemes with zero-knowledge tallying
proofs (Lemma 24) that satisfy universal verifiability [30] and, thus, Additivity (Lemma 28). They also
satisfy ballot independence (Proposition 25). Hence, they satisfy ballot secrecy too (Theorem 4). We
show that Helios’16 satisfies ballot secrecy.

Henceforth, we assume Π, Σ1, Σ2 and Σ3 satisfy the preconditions of Definition 23, andH is a random
oracle. Let Helios(Π,Σ1,Σ2,Σ3,H) = (Setup,Vote, Tally) and Π = (Gen,Enc,Dec). Moreover, let
FS(Σ1,H) = (ProveKey,VerKey), FS(Σ2,H) = (ProveCiph,VerCiph), and FS(Σ3,H) = (ProveDec,
VerDec).

Lemma 24. If (ProveDec,VerDec) is zero-knowledge, then Helios(Π,Σ1,Σ2,Σ3,H) has zero-
knowledge tallying proofs.

Proof sketch. SupposeA is an adversary and κ is a security parameter. Further suppose (pk, sk,mb,mc)
is an output of Setup(κ), (nc, bb) is an output of A(pk, κ), and (v, pf) is an output of Tally(sk, bb, nc, κ),
such that |bb| 6 mb ∧ nc 6 mc. By inspection of algorithm Tally, tallying proof pf is a vector of proofs
produced by ProveDec. Thus, there trivially exists a non-interactive proof system that could compute pf ,
moreover, that proof system is zero-knowledge because (ProveDec,VerDec) is zero-knowledge, which
concludes our proof. �

Proposition 25. Suppose Π is perfectly correct and satisfies IND-CPA. Further suppose (ProveKey,
VerKey) and (ProveCiph,VerCiph) satisfy special soundness and special honest verifier zero-knowledge.
We have Helios(Π,Σ1,Σ2,Σ3,H) satisfies IND-CVA.

Proof. By Theorem 16, the proof systems have extractors and simulators. Let SimProveKey, respec-
tively SimProveCiph, be the simulator for (ProveKey,VerKey), respectively (ProveCiph,VerCiph). And
let ExtProveCiph be the extractor for (ProveCiph,VerCiph).

Let IND-CPA∗ be a variant of IND-CPA in which: 1) the adversary outputs two vectors of mes-
sages m0 and m1 such that |m0| = |m1| and for all 1 6 i 6 |m0| we have |m0[i]| = |m1[i]| and
m0[i] and m1[i] are from the encryption scheme’s message space, and 2) the challenger computes
c1 ← Enc(pk,mβ[1]); . . . ; c|mβ| ← Enc(pk,mβ[|mβ|]) and inputs c1, . . . , c|mβ| to the adversary. We have
Π satisfies IND-CPA∗ [135, §10.2.2].

Suppose Helios(Π,Σ1,Σ2,Σ3,H) does not satisfy IND-CVA. Hence, there exists a probabilistic
polynomial-time adversary A, such that for all negligible functions negl, there exists a security param-
eter κ and 1

2 + negl(κ) < IND-CVA(Γ,A, κ). Since A is a winning adversary, we have A(pk′, κ) outputs
(v0, v1, nc) such that v0 6= v1 with non-negligible probability, hence, either v0 < v1 or v1 < v0. For
brevity, we suppose v0 < v1. (Our proof can be adapted to consider cases such that v1 < v0, but these
details provide little value, so we do not pursue them.) We construct the following adversary B against
IND-CPA∗ from A:

• B(pk,m, κ) outputs ((1, 0), (0, 1)).
• B(c) proceeds as follows. First, compute:

ρ← SimProveKey((κ, pk,m), κ);
pk′ ← (pk,m, ρ);
(v0, v1, nc)← A(pk′, κ);

Secondly, select coins r1, . . . , rnc−1 uniformly at random and compute:

for j ∈ {1, . . . , nc− 1} \ {v0, v1} do
c j ← Enc(pk, 0; r j);
σ j ← ProveCiph((pk, c j, {0, 1}), (0, r j), j, κ);

cv0 ← c[1];
σv0 ← SimProveCiph((pk, cv0 , {0, 1}), v0, κ);
if v1 6= nc then

cv1 ← c[2];
σv1 ← SimProveCiph((pk, cv1 , {0, 1}), v1, κ);

c← c1 ⊗ · · · ⊗ cnc−1;
σnc ← SimProveCiph((pk, c, {0, 1}), nc, κ);
b← (c1, . . . , cnc−1, σ1, . . . , σnc);
bb← A(b);

Thirdly, compute {b1, . . . , b`} as the largest subset of bb satisfying the conditions of algorithm
Tally. Fourthly, initialise H as a transcript of the random oracle’s input and output, P as a transcript
of simulated proofs, Q as a vector of length nc−1, and v as a zero-filled vector of length nc. Fifthly,
compute:

Q←
(((

pk, b1[1], {0, 1}
)
, b1[nc]

)
, . . . ,((

pk, b`[1], {0, 1}
)
, b`[nc]

)
, . . . ,((

pk, b1[nc− 1], {0, 1}
)
, b1[2 · (nc− 1)]

)
, . . . ,((

pk, b`[nc− 1], {0, 1}
)
, b`[2 · (nc− 1)]

))
;

W← ExtProveCiph(H,P,Q);

v← (Σ`
i=1W[i][1], . . . , Σ

`·(nc−1)
i=`·(nc−2)+1W[i][1], ` − Σnc−1

j=1 v[j]);
g← A(v);

Finally, output g.

We prove that B wins IND-CPA∗.
Suppose (pk, sk,m) is an output of Gen(κ) and (m0,m1) is an output of B(pk,m, κ). Let β ∈ {0, 1}.

Further suppose c1 is an output of Enc(pk,mβ[1]) and c2 is an output of Enc(pk,mβ[2]). Let c =
(c1, c2). Moreover, suppose ρ is an output of SimProveKey((κ, pk,m), κ). Let pk′ = (pk,m, ρ). Sup-
pose (v0, v1, nc) is an output of A(pk′, κ). Since SimProveKey is a simulator for (ProveKey,VerKey), we
have B simulates the challenger in IND-CVA to A(pk′, κ). In particular, pk′ is a triple containing a public
key and corresponding message space generated Gen, and a (simulated) proof of correct key generation.
Suppose B computes b and bb is an output ofA(b). Further suppose B computes v, and g is an output of
A(v). The following claims prove that B simulates the challenger in IND-CVA to A(b) and A(v), hence,
g = β, with at least the probability that A wins IND-CVA, concluding our proof.

Claim 26. Adversary B’s computation of b is equivalent to computing b as b← Vote(pk′, vβ, nc, κ).

Proof of Claim 26. We have pk′ parses as a vector (pk,m, ρ). Moreover, since (pk, sk,m) is an out-
put of Gen(κ), there exist coins r such that (pk, sk,m) = Gen(κ; r). Hence, (sk, r) is a witness
for statement (κ, pk,m). Furthermore, since SimProveKey is a simulator for (ProveKey,VerKey) and
proofs output by ProveKey are indistinguishable from outputs of SimProveKey, we have VerKey((κ, pk,
m), ρ, κ)κ, pk,mρ = 1, with non-negligible probability. In addition, since B is a winning adversary, we
have v0, v1 ∈ {1, . . . , nc}, with non-negligible probability. It follows that Vote(pk′, vβ, nc, κ) does not
output ⊥, with non-negligible probability. Indeed, computation b ← Vote(pk′, vβ, nc, κ) is equivalent to
the following. Select coins r1, . . . , rnc−1 uniformly at random and compute:

for 1 6 j 6 nc− 1 do
if j = vβ then m j ← 1; else m j ← 0;
c j ← Enc(pk,m j; r j);
σ j ← ProveCiph((pk, c j, {0, 1}), (m j, r j), j, κ);

c← c1 ⊗ · · · ⊗ cnc−1;
m← m1 � · · · � mnc−1;
r ← r1 ⊕ · · · ⊕ rnc−1;
σnc ← ProveCiph((pk, c, {0, 1}), (m, r), nc, κ);
b← (c1, . . . , cnc−1, σ1, . . . , σnc);

Since vβ ∈ {v0, v1}, ciphertexts computed by the above for-loop all contain plaintext 0, except (possibly)
ciphertext cv0 and, if defined, ciphertext cv1 . (Ciphertext cv1 only exists if v1 < nc.) Given that v0 < v1 6
nc, ciphertext cv0 contains 1− β, i.e., if β = 0, then cv0 contains 1, otherwise (β = 1), cv0 contains 0. If
v1 < nc, then ciphertext cv1 contains β. Moreover, since � is the addition operator in group (m,�) and
0 is the identity element in that group, if v1 = nc, then plaintext m computed by the above algorithm
is 1 − β, otherwise, m = 1 − β � β = 1. Hence, the above algorithm is equivalent to selecting coins
r1, . . . , rnc−1 uniformly at random and computing:

for j ∈ {1, . . . , nc− 1} \ {v0, v1} do
c j ← Enc(pk, 0; r j);
σ j ← ProveCiph((pk, c j, {0, 1}), (0, r j), j, κ);

cv0 ← Enc(pk, 1− β; rv0);
σv0 ← ProveCiph((pk, cv0 , {0, 1}), (1− β, rv0), v0, κ);
if v1 6= nc then

cv1 ← Enc(pk, β; rv1);
σv1 ← ProveCiph((pk, cv1 , {0, 1}), (β, rv1), v1, κ);

c← c1 ⊗ · · · ⊗ cnc−1;
if v1 = nc then m← 1− β; else m← 1;
r ← r1 ⊕ · · · ⊕ rnc−1;
σnc ← ProveCiph((pk, c, {0, 1}), (m, r), nc, κ);
b← (c1, . . . , cnc−1, σ1, . . . , σnc);

Computation cv0 ← Enc(pk, 1− β; rv0) is equivalent to cv0 ← c[1], because if β = 0, then c[1] contains
plaintext 1, otherwise (β = 1), c[1] contains plaintext 0. Similarly, if v1 6= nc, then computation cv1 ←
Enc(pk, β; rv1) is equivalent to cv1 ← c[1]. Moreover, proof ProveCiph((pk, cv0 , {0, 1}), (1 − β, rv0),

v0, κ), respectively ProveCiph((pk, cv1 , {0, 1}), (β, rv1), v1, κ), can be simulated by SimProveCiph((pk,

cv0 , {0, 1}), v0, κ), respectively SimProveCiph((pk, cv1 , {0, 1}), v1, κ). Furthermore,

c← c1 ⊗ · · · ⊗ cnc−1;
if v1 = nc then m← 1− β; else m← 1;
r ← r1 ⊕ · · · ⊕ rnc−1;
σnc ← ProveCiph((pk, c, {0, 1}), (m, r), nc, κ);

can be simulated by

c← c1 ⊗ · · · ⊗ cnc−1;
σnc ← SimProveCiph((pk, c, {0, 1}), nc, κ);

Hence, we conclude the proof of this claim.

Claim 27. Adversary B’s computation of v is equivalent to computing v as (v, pf) ← Tally(sk′, bb, nc,
κ), where sk′ = (pk, sk).

Proof of Claim 27. Let {b1, . . . , b`} be the largest subset of bb satisfying the conditions of algorithm
Tally. It is trivial to see that the claim holds when {b1, . . . , b`} = ∅, because v is computed as a zero-filled
vector of length nc in both cases. We prove the claim also holds when {b1, . . . , b`} 6= ∅.

By simulation sound extractability, for all 1 6 i 6 ` and 1 6 j 6 nc−1, there exists a message mi, j ∈
{0, 1} and coins ri, j and ri, j+nc−1 such that bi[j] = Enc(pk,mi, j; ri, j) and bi[j + nc−1] = ProveCiph((pk,
bi[j], {0, 1}), (mi, j, ri, j), j, κ; ri, j+nc−1), with overwhelming probability. Suppose Q and W are computed
byB. We have for all 1 6 i 6 ` and 1 6 j 6 nc−1 that Q[`·(j−1)+i] = ((pk, bi[j], {0, 1}), bi[j+nc−1])
and W[` · (j− 1) + i] is a witness for (pk, bi[j], {0, 1}), i.e., (mi, j, ri, j), and W[` · (j− 1) + i][1] = mi, j.
Hence, adversary B’s computation of v is equivalent to computing v as:

v← (Σ`
i=1mi,1, . . . , Σ`

i=1mi,nc−1, ` − Σnc−1
j=1 v[j])

Moreover, computing v as (v, pf) ← Tally(sk′, bb, nc, κ) is equivalent to initialising v as a zero-filled
vector of length nc and computing

for 1 6 j 6 nc− 1 do
c← b1[j]⊗ · · · ⊗ b`[j];
v[j]← Dec(sk, c);

v[nc]← ` −
∑nc−1

j=1 v[j];

Since Π is a homomorphic encryption scheme, we have for all 1 6 j 6 nc − 1 that b1[j] ⊗ · · · ⊗ b`[j]
is a ciphertext with overwhelming probability. And although ciphertext b1[j]⊗ · · · ⊗ b`[j] may not have
been computed using coins chosen uniformly at random, we nevertheless have Dec(sk, b1[j] ⊗ · · · ⊗
b`[j]) = m1, j � · · · � m`, j with overwhelming probability, because Π is perfectly correct. It follows that
v = (m1,1�· · ·�m`,1, . . . , m1,nc−1�· · ·�m`,nc−1, `−

∑nc−1
j=1 v[j]), with overwhelming probability. Let

mb be the largest integer such that {0, . . . ,mb} ⊆ m. Since A is a winning adversary, we have ` 6 mb.
Moreover, since m1, j, . . . ,m`, j ∈ {0, 1} for all 1 6 j 6 nc − 1 and � is the addition operator in group
(m,�), we have m1, j � · · · � m`, j =

∑`
i=1 mi, j, which suffices to conclude the proof of this claim. �

For Helios’16, encryption scheme Π is additively homomorphic El Gamal [138, §2]. Moreover,
(ProveKey,VerKey), respectively (ProveCiph,VerCiph) and (ProveDec,VerDec), is the non-interactive

proof system derived by application of the Fiat-Shamir transformation [136] to a random oracle H and
the sigma protocol for proving knowledge of discrete logarithms by Chaum et al. [139, Protocol 2], re-
spectively the sigma protocol for proving knowledge of disjunctive equality between discrete logarithms
by Cramer et al. [140, Figure 1] and the sigma protocol for proving knowledge of equality between
discrete logarithms by Chaum & Pedersen [141, §3.2].

Bernhard, Pereira & Warinschi [71, §4] remark that the sigma protocols underlying non-interactive
proof systems (ProveKey,VerKey) and (ProveCiph,VerCiph) both satisfy special soundness and special
honest verifier zero-knowledge, hence, Theorem 16 is applicable. Bernhard, Pereira & Warinschi also
remark that the sigma protocol underlying (ProveDec,VerDec) satisfies special soundness and “almost
special honest verifier zero-knowledge" and argue that “we could fix this[, but] it is easy to see that ...
all relevant theorems [including Theorem 16] still hold." We adopt the same position and assume that
Theorem 16 is applicable.

Proof of Theorem 6. Helios’16 has zero-knowledge tallying proofs (Lemma 24), subject to the applica-
bility of Theorem 16 to the sigma protocol underlying (ProveDec,VerDec). Moreover, since Helios’16
satisfies UV [30], we have Helios’16 satisfies Additivity(Γ,A, κ) (Lemma 28). Furthermore, since El
Gamal satisfies IND-CPA [135, 143] and is perfectly correct, and since non-interactive proof systems
(ProveKey,VerKey) and (ProveCiph,VerCiph) satisfy special soundness and special honest verifier zero-
knowledge, we have Helios’16 satisfies IND-CVA (Proposition 25). Hence, Helios’16 satisfies Ballot-
Secrecy too (Theorem 4). �

Appendix E. Universal verifiability implies tally soundness

We recall the definition of universal verifiability by Smyth, Frink & Clarkson [30] and show that
verifiable election schemes satisfy Tally-Soundness (Lemma 28). This is useful to simplify applications
of Theorems 4, 14, & 30. Indeed, our ballot-secrecy proofs for Helios and Helios Mixnet make use of
this result.

We extend our syntax for election schemes (Definition 1) to include a probabilistic polynomial-time
algorithm Verify:

• Verify, denoted s ← Verify(pk, bb, nc, v, pf , κ), is run to audit an election. It takes as input a public
key pk, a bulletin board bb, some number of candidates nc, an election outcome v, a tallying proof
pf , and a security parameter κ. It outputs a bit s, where 1 signifies success and 0 failure.

We previously omitted algorithm Verify, because we did not focus on verifiability in the main body.
For universal verifiability, anyone must be able to check whether the election outcome represents the

votes used to construct ballots on the bulletin board. The formal definition of universal verifiability by
Smyth, Frink & Clarkson requires algorithm Verify to accept if and only if the election outcome is correct.
The if requirement is captured by completeness (Definition 28), which stipulates that election outcomes
produced by algorithm Tally will actually be accepted by algorithm Verify. And the only if requirement
is captured by soundness (Definition 30), which challenges an adversary to concoct a scenario in which
algorithm Verify accepts, but the election outcome is not correct.

Definition 28 (Completeness [30]). An election scheme (Setup,Vote, Tally,Verify) satisfies complete-
ness, if for all probabilistic polynomial-time adversaries A, there exists a negligible function negl, such

that for all security parameters κ, we have Pr[(pk, sk,mb,mc) ← Setup(κ); (bb, nc) ← A(pk, κ); (v,
pf)← Tally(sk, bb, nc, κ) : |bb| 6 mb ∧ nc 6 mc⇒ Verify(pk, bb, nc, v, pf , κ) = 1] > 1− negl(κ).

Definition 29 (Injectivity [30, 80]). An election scheme (Setup,Vote, Tally,Verify) satisfies injectiv-
ity, if for all probabilistic polynomial-time adversaries A, security parameters κ and computations
(pk, nc, v, v′) ← A(κ); b ← Vote(pk, v, nc, κ); b′ ← Vote(pk, v′, nc, κ) such that v 6= v′ ∧ b 6= ⊥ ∧
b′ 6= ⊥, we have b 6= b′.

Definition 30 (Soundness [30]). An election scheme Γ = (Setup,Vote, Tally,Verify) satisfies soundness,
if Γ satisfies injectivity and for all probabilistic polynomial-time adversaries A, there exists a negligible
function negl, such that for all security parameters κ, we have Pr[(pk, nc, bb, v, pf) ← A(κ) : v 6=
correct-outcome(pk, nc, bb, κ) ∧ Verify(pk, bb, nc, v, pf , κ) = 1] 6 negl(κ).

Definition 31 (UV [30, 80]). An election scheme Γ satisfies universal verifiability (UV), if completeness,
injectivity and soundness are satisfied.

Lemma 28. If election scheme Γ satisfies completeness and soundness, then Γ satisfies Tally-Soundness.

Proof. Let Γ = (Setup,Vote, Tally,Verify). Suppose there exists a probabilistic polynomial-time adver-
sary A that wins Tally-Soundness against Γ. We construct an adversary B against Exp-UV-Ext from A.
We define B such that B(κ) = (pk, sk,mb,mc) ← Setup(κ); (nc, bb) ← A(pk, κ); (v, pf) ← Tally(sk,
bb, nc, κ); return(pk, nc, bb, v, pf). Suppose (pk, sk,mb,mc) is an output of Setup(κ), (nc, bb) is an out-
put of A(pk, κ), and (v, pf) is an output of Tally(sk, bb, nc, κ). Since A is a winning adversary, we have
v 6= correct-outcome(pk, nc, bb, κ) ∧ |bb| 6 mb ∧ nc 6 mc, with non-negligible probability. And, by
completeness, we have Verify(pk, bb, nc, v, pf , κ) = 1, with overwhelming probability. Thereby conclud-
ing our proof. �

The reverse implication of Lemma 28 does not hold: Observe that Tally-Soundness only ensures al-
gorithm Tally tallies ballots correctly, whereas UV additionally ensures that anyone can check whether
ballots are tallied correctly.

Appendix F. Encryption-based voting systems

We have seen that election scheme Enc2Vote(Π) satisfies HK-Injectivity, if Π is perfectly correct
(Lemma 10). But, HK-Injectivity assumes public keys are computed using the key generation algorithm.
Thus, perfect correctness is insufficient to ensure injectivity when public keys are controlled by an ad-
versary. Nonetheless, this can be ensured using proofs of correct key generation. A sub-class of schemes
generated by Enc2Vote prove correct key generation. Indeed, we can consider schemes Enc2Vote(Π)
such that Gen proves correct key generation and Enc verifies such proofs, where Π = (Gen,Enc,Dec).
Alternatively, we can couple Enc2Vote with proofs of correct key generation:

Definition 32 (Enc2Vote+ [80]). Suppose Π = (Gen,Enc,Dec) is an asymmetric encryption scheme,
Σ is a sigma protocol that proves correct key generation, and H is a hash function. Let FS(Σ,H) =
(ProveKey,VerKey). We define Enc2Vote+(Π,Σ,H) = (Setup,Vote, Tally) such that:

• Setup(κ) selects coins s uniformly at random, computes (pk, sk,m)← Gen(κ; s); ρ← ProveKey((κ,
pk,m), (sk, s), κ); pk′ ← (pk,m, ρ); sk′ ← (pk, sk), derives mc as the largest integer such that
{0, . . . ,mc} ⊆ {0} ∪ m and for all m0,m1 ∈ {1, . . . ,mc} we have |m0| = |m1|, and outputs
(pk′, sk′, p(κ),mc), where p is a polynomial function.

• Vote(pk′, v, nc, κ) parses pk′ as vector (pk,m, ρ), outputting ⊥ if parsing fails or VerKey((κ, pk,
m), ρ, κ) 6= 1 ∨ v 6∈ {1, . . . , nc} ∨ {1, . . . , nc} 6⊆ m, computes b← Enc(pk, v), and outputs b.

• Tally(sk′, bb, nc, κ) initialises v as a zero-filled vector of length nc, parses sk′ as pair (pk, sk), out-
putting (v,⊥) if parsing fails, computes for b ∈ bb do v ← Dec(sk, b); if 1 6 v 6 nc then
v[v]← v[v] + 1, and outputs (v, ε), where ε is a constant symbol.

Lemma 29. Given an asymmetric encryption scheme Π satisfying IND-CPA, a sigma protocol Σ that
proves correct key generation, and a hash function H, we have Enc2Vote+(Π,Σ,H) is an election
scheme.

A proof of Lemma 29 follows from [80].41

Although the set of election schemes produced by Enc2Vote+ is not a subset of the schemes produced
by Enc2Vote, there is nonetheless a straightforward mapping from the former to the latter. Thus, the
results in Section 5 also hold for Enc2Vote+:

Theorem 30. Let Enc2Vote+(Π,Σ,H) = (Setup,Vote, Tally), where Π is an asymmetric encryption
scheme, Σ is a sigma protocol that proves correct key generation, and H is a random oracle. Moreover,
let Γ = (Setup,Vote, Tally′) for some algorithm Tally′ such that Γ is an election scheme with zero-
knowledge tallying proofs. Suppose Π is perfectly correct and satisfies IND-PA0 and well-definedness.
Moreover, suppose Σ is perfectly complete and FS(Σ,H) satisfies zero-knowledge. Further suppose Γ
satisfies Tally-Soundness. We have Γ satisfies Ballot-Secrecy.

Proof. Let FS(Σ,H) = (ProveKey,VerKey) and Π = (Gen,Enc,Dec). Moreover, let asymmetric en-
cryption scheme Π′ = (Gen′,Enc′,Dec) such that

• Gen′(κ) selects coins s uniformly at random, computes (pk, sk,m)← Gen(κ; s); ρ← ProveKey((κ,
pk,m), (sk, s), κ); pk′ ← (pk,m, ρ), and outputs (pk′, sk,m).

• Enc′(pk, v) parses pk′ as a vector (pk,m, ρ), outputting ⊥ if parsing fails or VerKey((κ, pk,
m), ρ, κ) 6= 1, computes ciphertext c← Enc(pk, v), and outputs c.

Since Π is perfectly correct and Σ is perfectly complete, we have Π′ is perfectly correct. Moreover,
since Π satisfies well-definedness, we have Π′ does too. Furthermore, since FS(Σ,H) satisfies zero-
knowledge and Π satisfies IND-PA0, we have Π′ satisfies IND-PA0. It follows that Enc2Vote(Π′) satisfies
Tally-Soundness and IND-CVA (Corollary 11 & Lemma 13).

We have Enc2Vote(Π′) = (Setup′,Vote′, Tally) such that Setup′ is Setup except Setup outputs public
key pk′ as a vector (pk,m, ρ), whereas Setup′ outputs public key (pk,m). Moreover, Vote′ is Vote except
Vote inputs public key (pk,m) whereas Vote′ inputs public key (pk,m, ρ). (This blight motivated the
inclusion of this appendix.) Hence, it is straightforward to see that Enc2Vote+(Π,Σ,H) satisfies Tally-
Soundness and IND-CVA, because Enc2Vote(Π′) does. Thus, Γ satisfies IND-CVA (Proposition 9) and
Ballot-Secrecy (Theorem 4 & Lemma 8). �

41Smyth considers instantiating Enc2Vote+ with a broad class of asymmetric encryption schemes that produce distinct
ciphertexts with overwhelming probability [80], whereas we consider a strictly narrower class of schemes satisfying IND-CPA.
This avoids having to recall Smyth’s notion of distinct ciphertexts.

Appendix G. Helios Mixnet

We recall a generic construction for election schemes similar to Helios Mixnet (Definition 34). The
construction is parameterised on the choice of homomorphic encryption scheme and sigma protocols for
the relations introduced in Definition 22 and the following definition.

Definition 33 (from [30]). Let (Gen,Enc,Dec) be a homomorphic asymmetric encryption scheme and
Σ be a sigma protocol for a binary relation R. Suppose that (pk, sk) = Gen(κ; s), for some security
parameter κ and coins s, and m is the encryption scheme’s plaintext space.

• Σ proves plaintext knowledge if ((pk, c), (m, r)) ∈ R⇔ c = Enc(pk,m; r) ∧ m ∈ m.
• Σ proves mixing if ((pk, c, c′), (r, χ)) ∈ R⇔

∧
16i6|c| c

′[i] = c[χ(i)]⊗Enc(pk, e; r[i])∧|c| = |c′| =
|r|, where c and c′ are both vectors of ciphertexts encrypted under pk, r is a vector of coins, χ is a
permutation on {1, . . . , |c|}, and e is an identity element of the encryption scheme’s message space
with respect to �.

Definition 34 (HeliosM [61, 144]). Suppose Π0 = (Gen,Enc,Dec) is a homomorphic asymmetric en-
cryption algorithm, Σ1 is a sigma protocol that proves correct key construction, Σ2 is a sigma protocol
that proves plaintext knowledge, and H is a hash function. Let FS(Σ1,H) = (ProveKey,VerKey) and
FS(Σ2,H) = (ProveCiph,VerCiph). Moreover, let π(Π,Σ2,H) = (Gen,Enc′,Dec′) be an asymmetric
encryption scheme such that:

• Enc′(pk, v) selects coins r uniformly at random, computes c ← Enc(pk, v; r);σ ← ProveCiph((pk,
c), (v, r), κ), and outputs (c, σ).

• Dec′(sk, c′) parses c′ as (c, σ), outputting⊥ if parsing fails or VerCiph((pk, c), σ, κ) 6= 1, computes
v← Dec(sk, c), and outputs v.

Let Enc2Vote+(π(Π,Σ2,H),Σ1,H) = (Setup,Vote, Tally′). Suppose Σ3 is a sigma protocol that proves
correct decryption and Σ4 is a sigma protocol that proves mixing. Let FS(Σ3,H) = (ProveDec,VerDec)
and FS(Σ4,H) = (ProveMix,VerMix). We define HeliosM(Π,Σ1,Σ2,Σ3,Σ4,H) = (Setup,Vote, Tally),
where algorithm Tally is defined below.42

Tally(sk′, nc, bb, κ) initialises v as a zero-filled vector of length nc; parses sk′ as a pair (pk, sk), outputting
(v,⊥) if parsing fails; and proceeds as follows:

(1) Remove invalid ballots. Let {b1, . . . , b`} be the largest subset of bb such that for all 1 6 i 6 ` we
have bi is a pair and VerCiph((pk, bi[1]), bi[2], κ) = 1. If {b1, . . . , b`} = ∅, then output (v,⊥).

(2) Mix. Select a permutation χ on {1, . . . , `} uniformly at random, initialise bb and r as a vector of
length `, fill r with coins chosen uniformly at random, and compute

for 1 6 i 6 ` do
bb[i]← bχ(i)[1]⊗ Enc(pk, e; r[i]);

pf 1 ← ProveMix((pk, (b1[1], . . . , b`[1]),bb), (r, χ), κ);

where e is an identity element of Π’s message space with respect to �.

42We omit algorithm Verify for brevity.

(3) Decrypt. Initialise W and pf 2 as vectors of length ` and compute:

for 1 6 i 6 ` do
W[i]← Dec(sk,bb[i]);
pf 2[i]← ProveDec((pk,bb[i],W[i]), sk, κ);
if 1 6W[i] 6 nc then

v[W[i]]← v[W[i]] + 1;

Output (v, (bb, pf 1,W, pf 2)).

Definition 35 (HeliosM’17). HeliosM’17 is the set of election schemes that includes every HeliosM(Π0,

Σ1,Σ2,Σ3,Σ4,H) such that Π0, Σ1, Σ2, Σ3, Σ4 andH satisfy the preconditions of Definition 34, more-
over, Π0 is perfectly correct and Σ1 and Σ2 are perfectly complete, furthermore, Π0 satisfies IND-CPA,
Σ1, Σ2, Σ3 and Σ4 satisfy special soundness and special honest verifier zero-knowledge,H is a random
oracle, and HeliosM(Π0,Σ1,Σ2,Σ3,Σ4,H) satisfies UV.

Smyth has shown that there exists an election scheme in HeliosM’17 that satisfies UV [144]. Hence, set
HeliosM’17 is not empty.

G.1. Proof of Theorem 15

Let election scheme Γ = HeliosM(Π0,Σ1,Σ2,Σ3,Σ4,H) = (Setup,Vote, Tally) and asymmetric en-
cryption scheme Π = π(Π0,Σ2,H). It follows that election scheme Enc2Vote+(Π,Σ1,H) = (Setup,
Vote, Tally′). Moreover, since Σ1 satisfies special soundness and special honest verifier zero-knowledge,
we have FS(Σ1,H) satisfies zero-knowledge (Theorem 16). We use Theorem 30 to prove that Γ ∈
HeliosM′17 satisfies Ballot-Secrecy.

Since Π0 is perfectly correct and Σ2 is perfectly complete, we have Π is a perfectly correct. Moreover,
since Σ2 satisfies special soundness and special honest verifier zero-knowledge, we have FS(Σ2,H)

satisfies simulation sound extractability (Theorem 16), hence, Π satisfies CNM-CPA [71, Theorem 2]
and, equivalently, IND-PA0 [65].

To prove Π = (Gen,Enc,Dec) satisfies well-definedness, suppose A is a probabilistic polynomial-
time adversary, κ is a security parameter, (pk, sk,m) is an output of Gen(κ), and c is an output of
A(pk,m, κ) such that Dec(sk, c) 6= ⊥. By definition of Dec, we have c is a pair (hence, c 6= ⊥) such that
FS(Σ2,H) can verify c[2] with respect to pk and c[1]. Since FS(Σ2,H) satisfies simulation sound ex-
tractability, we have c[2] is a proof computed using FS(Σ2,H) and there exists plaintext m ∈ m and coins
r such that c[1] = Enc(pk,m; r), with overwhelming probability. Thus, Π satisfies well-definedness.

Since Σ3 and Σ4 satisfy special soundness and special honest verifier zero-knowledge, we have FS(Σ3,

H) and FS(Σ4,H) satisfy zero-knowledge (Theorem 16), therefore, Γ has zero-knowledge tallying
proofs by reasoning similar to that given in the proof sketch of Lemma 24. Moreover, since Γ satis-
fies universal verifiability, we have Γ satisfies Tally-Soundness (Lemma 28).

We conclude by Theorem 30.

Appendix H. Ballot-Secrecy is strictly stronger than IND-SEC

Smyth & Bernhard propose definitions of ballot secrecy that consider an adversary that cannot control
the bulletin board nor the communication channel [27, 28]. As discussed in Section 8, their original defi-
nition [27] is too strong [29, §3.5] and they propose a revision [28]. We recall their syntax (Definition 36)
and revised definition (Definition 37), define a transformation from their syntax to ours (Definition 38),
and prove Ballot-Secrecy is strictly stronger than their definition (Theorem 32).

Definition 36 (Election scheme with a trusted bulletin board). An election scheme with a trusted bulletin
board is a tuple of efficient algorithms (Setup,Vote,BB, Tally) such that:

• Setup, denoted (pk, sk,m, bb)← Setup(κ), takes a security parameter κ as input and outputs a key
pair pk, sk, a vote space m, and a bulletin board bb, where m and bb are both sets.

• Vote, denoted b← Vote(pk, v), takes a public key pk and vote v as input and outputs a ballot b. Vote
v should be selected from the vote space m.

• BB, denoted bb′ ← BB(bb, b), takes a bulletin board bb and ballot b as input and outputs an
updated bulletin board bb′.

• Tally, denoted (o, pf) ← Tally(sk, bb), takes a private key sk and bulletin board bb as input and
outputs an election outcome o and a tallying proof pf , where o is a multiset of votes.

Election schemes with a trusted bulletin board must satisfy correctness, that is, for all secu-
rity parameters κ, votes v and multisets bb, we have: Pr[(pk, sk,m, bb0) ← Setup(κ); b ←
Vote(pk, v); bb′ ← BB(bb, b); (o, pf) ← Tally(sk, bb); (o′, pf ′) ← Tally(sk, bb′) : bb′ = bb ∪ {b} ∧
(o 6= ∅ ⇒ o′ = o ∪ {v} ∧ |v| = |bb|) ∧ (o = ∅ ⇒ o′ = ∅)] > 1− negl(κ).

Definition 37. Let Γ = (Setup,Vote,BB, Tally) be an election scheme with a trusted bulletin board, A
be an adversary, κ be a security parameter, and IND-SEC be the following game.

IND-SEC(Γ,A, κ) =

(pk, sk,m, bb0)← Setup(κ);
bb1 ← bb0; β←R {0, 1};
L0 ← ∅; L1 ← ∅;
x← AO(pk,m);
if L0 = L1 then

(o, pf)← Tally(sk, bbβ);
else

(o, pf)← Tally(sk, bb0);
pf ←⊥;

g← A(o, pf);
return g = β;

In the above game, L0 and L1 are multisets and oracle O is defined as follows:

• O(v0, v1) computes L0 ← L0∪{v0}; L1 ← L1∪{v1}; b0 ← Vote(pk, v0); bb0 ← BB(bb0, b0); b1 ←
Vote(pk, v1); bb1 ← BB(bb1, b1), where v0, v1 ∈ m.

• O(b) computes bb′ ← bbβ; bbβ ← BB(bbβ, b); if bbβ 6= bb′ then bb1−β ← BB(bb1−β, b).
• O() outputs bbβ.

We say Γ satisfies IND-SEC, if for all probabilistic polynomial-time adversaries A, there exists a neg-
ligible function negl, such that for all security parameters κ, we have Succ(IND-SEC(Γ,A, κ)) 6
1
2 + negl(κ).

Observe that game IND-SEC uses bulletin boards bbβ and bb0, hence, bb1 is unused when β = 0. It
follows that game IND-SEC is equivalent to a variant that redefines the following oracle calls:

• O(v0, v1) computes L0 ← L0 ∪ {v0}; L1 ← L1 ∪ {v1}; bβ ← Vote(pk, vβ); bbβ ← BB(bbβ, bβ); if
β = 1 then b0 ← Vote(pk, v0); bb0 ← BB(bb0, b0), where v0, v1 ∈ m.

• O(b) computes bb′ ← bbβ; bbβ ← BB(bbβ, b); if bbβ 6= bb′ ∧ β = 1 then bb0 ← BB(bb0, b).

Let that variant be IND-SEC∗.

Lemma 31. An election scheme with a trusted bulletin board Γ satisfies IND-SEC iff Γ satisfies
IND-SEC∗.

Lemma 31 follows from our informal reasoning and we omit a formal proof.

Definition 38. Given an election scheme with a trusted bulletin board Γ = (Setup,Vote,BB, Tally)
such that for all security parameters κ and computations (pk, sk,m, bb) ← Setup(κ) we have m =
{1, . . . ,mc} for some integer mc, we define γ(Γ) = (Setup′,Vote′, Tally′) such that

• Setup′(κ) computes (pk, sk,m, bb) ← Setup(κ); mc ← |m|; pk′ ← (pk,mc) and outputs
(pk′, sk,mc, p(κ)), where p is a polynomial function.

• Vote′(pk′, v, nc, κ) parses pk′ as (pk,mc), aborting if parsing fails; computes b ← Vote(pk, v); and
outputs b.

• Tally′(sk, bb, nc, κ) computes (o, pf) ← Tally(sk, bb), outputting an empty vector if o is empty; as-
signs the largest integer in o to nc; initialises v as a zero-filled vector of length nc; computes while
v ∈ o do v[v]← v[v] + 1; o← o \ {v}; and outputs (v, pf).

Theorem 32. Let Γ be an election scheme with a trusted bulletin board. If γ(Γ) is an election scheme
satisfying Ballot-Secrecy, then Γ satisfies IND-SEC.

Proof sketch. Let Γ = (Setup,Vote,BB, Tally) and γ(Γ) = (Setup′,Vote′, Tally′). Suppose γ(Γ) is an
election scheme satisfying Ballot-Secrecy. Moreover, suppose Γ does not satisfy IND-SEC. Hence, there
exists a probabilistic polynomial-time adversaryA, such that for negligible functions negl, there exists a
security parameter κ and Succ(IND-SEC(Γ,A, κ)) > 1

2 + negl(κ). We construct the following adversary
B against Ballot-Secrecy from A, where OA denotes A’s oracle and OB denotes B’s oracle:

• B(pk′, κ) parses pk′ as (pk,mc), aborting if parsing fails, and outputs mc.
• B() initialises bb and bb0 as empty sets and L0 and L1 as empty multisets; computes m ←
{1, . . . ,mc}; x← A(pk,m), handling A’s oracle calls as follows, namely,

∗ OA(v0, v1) computes L0 ← L0 ∪ {v0}; L1 ← L1 ∪ {v1}; b← OB(v0, v1); bb← BB(bb, b); b0 ←
Vote(pk, v0); bb0 ← BB(bb, b0),

∗ OA(b) computes bb′ ← bb; bb← BB(bb, b); if bb 6= bb′ then bb0 ← BB(bb0, b), and
∗ OA() outputs bb,

and outputs bb if L0 = L1 and bb0 otherwise.

• B(v, pf) computes o← {vv[v] | 1 6 v 6 mc};if L0 6= L1 then pf ←⊥;g← A(o, pf) and outputs g.

We prove that B wins Ballot-Secrecy.
Suppose (pk′, sk,mb,mc) is an output of Setup′(κ). By definition of algorithm Setup′, we have pk′ is

a pair (pk,mc), where (pk, sk,m, bb) is an output of Setup(κ) and mc = |m|. Hence, B(pk′, κ) outputs
mc. Let β be a bit and suppose bb is an output of B(). It is trivial to see that B() simulatesA’s challenger
to A. Moreover, by Lemma 31 it is straightforward to see that B simulates A’s oracle too. Indeed,
adversary B maintains bulletin board bb such that OA(v0, v1) constructs a ballot b for vβ using B’s
oracle, hence, the ballot is constructed by algorithm Vote by way of algorithm Vote′, and adds that ballot
to the bulletin board using algorithm BB. Suppose (v, pf) is an output of Tally(sk, bb, nc, κ) and g is an
output of B(v, pf). It is straightforward to see that B(v, pf) simulates A’s challenger to A, thus, g = β,
with at least the probability that A wins IND-SEC, concluding our proof. �

Appendix I. Stronger privacy notions

Ballot secrecy does not ensure free-choice when an adversary is able to communicate with voters
nor when voters deviate from the prescribed voting procedure to follow instructions provided by an
adversary. Stronger notions of free-choice, such as receipt-freeness [47, 114, 126–128] and coercion
resistance [129–133], are needed in the presence of such adversaries. This appendix introduces these
notions, proves that our syntax cannot be used to construct (interesting) schemes satisfying them, and
discusses variants of our syntax that can.

Receipt-freeness formalises a notion of free-choice in the presence of an adversary that can commu-
nicate with voters.

• Receipt-freeness. A voter cannot collaborate with a conspirator to produce information which can
be used to prove how they voted.

Free-choice may be compromised in receipt-free voting systems if voters deviate from the prescribed
voting procedure.43 Coercion-resistance formalises a stronger notion of free-choice assuming that not
only can voters deviate, but the adversary can instruct voters how to deviate.

• Coercion resistance. A voter can deviate from a coercer’s instructions, to cast their vote, without
detection.

The distinction between receipt-freeness and coercion resistance is subtle: “receipt-freeness deals with a
coercer who is only concerned with deducing information about how someone voted from receipts and
public information, but who does not give detailed instructions on how to cast the vote. Coercion resis-
tance, on the other hand, includes dealing with a coercer who gives details not just on which candidate
to vote for but also on how to cast the vote" [145, §1.1]. Both receipt-freeness and coercion resistance
retain the assumption that voters’ ballots are tallied in the prescribed manner, and receipt-freeness ad-
ditionally assumes voters’ ballots are constructed in the prescribed manner. Moreover, both require side
conditions to exclude inevitable revelations (§3).

43For receipt-freeness to be an effective notion of free-choice it might be necessary for the voting system to prevent voters
deviating from the prescribed voting procedure. This might be achieved by physically securing devices that can be used to cast
ballots.

I.1. Receipt-freeness

We cast the definition of receipt-freeness by Delaune, Kremer & Ryan [114, 115] from the symbolic
model to the computational model of cryptography, in the context of our election scheme syntax. More-
over, we extend their work to consider arbitrarily many voters, rather than just the two considered by the
original definition. The resulting formalisation (Definition 39) is a pair of games.

The first game (Receipt-Freeness-A) is an extension of Ballot-Secrecy that tasks the adversary to:
select a list of their preferred votes and a list of voter preferred votes (although it is somewhat unnat-
ural for the adversary to specify voter preferred votes, this is useful to quantify over all possible voter
preferences); construct a bulletin board from either (i) ballots for their preferred votes and coins used to
construct those ballots, or (ii) ballots for voter preferred votes and simulated coins; and non-trivially de-
termine whether their preferred or voter preferred votes were used, from the resulting election outcome
and tallying proof. The game proceeds as per game Ballot-Secrecy, except a new oracle is used (Line 5).
That oracle constructs ballots for either the adversary’s preferred votes (using algorithm Vote) or for
voter preferred votes (using algorithm V). Those ballots are output along with either the coins used by
algorithm Vote or coins simulated by algorithm V. Intuitively, algorithm V provides a strategy for voters
to cast voter preferred votes whilst convincing the adversary that its preferred votes were cast, hence,
information cannot be produced to prove how voters voted.

The second game (Receipt-Freeness-B) tasks the adversary to compute inputs (including a public key)
to algorithms Vote and V that cause the algorithms to output ballots that can be distinguished, thereby
over-approximating the requirement that algorithm V must produce a ballot for voter preferred votes.
(Indeed, the adversary can use algorithm Tally to determine whether a ballot is for the expected vote.)
The game proceeds as follows: The adversary computes inputs to algorithms Vote and V (Line 1); the
challenger flips a coin (Line 2) and computes a ballot using one of the algorithms (Lines 3–6), where the
choice between algorithms is determined by the coin flip; and the adversary is tasked with determining
the result of the coin flip from the ballot (Lines 7 & 8).

Definition 39 (Receipt-Freeness). Let Γ = (Setup,Vote, Tally) be an election scheme, V be an algo-
rithm, A be an adversary, κ be a security parameter, and Receipt-Freeness-A be the following game.

Receipt-Freeness-A(Γ,V,A, κ) =

1 (pk, sk,mb,mc)← Setup(κ);
2 nc← A(pk, κ);
3 β←R {0, 1};
4 L← ∅;
5 bb← AO();
6 (v, pf)← Tally(sk, bb, nc, κ);
7 g← A(v, pf);
8 return g = β ∧ balanced(bb, nc, L) ∧ 1 6 nc 6 mc ∧ |bb| 6 mb;

Oracle O is defined as follows:

• O(v0, v1) chooses coins r uniformly at random from the coin space of algorithm Vote, computes if
β = 0 then b ← Vote(pk, v0, nc, κ; r) else (b, r) ← V(pk, v1, v0, nc, κ) and L ← L ∪ {(b, v0, v1)},
and outputs (b, r), where v0, v1 ∈ {1, ..., nc}.

Moreover, let B be an adversary and Receipt-Freeness-B be the following game.

Receipt-Freeness-B(Γ,V,B, κ) =

1 (pk, v0, v1, nc)← B(κ);
2 β←R {0, 1};
3 if β = 0 then
4 b← Vote(pk, v0, nc, κ)
5 else
6 (b, r)← V(pk, v0, v1, nc, κ)

7 g← B(b);
8 return g = β ∧ 1 6 v0, v1 6 nc;

We say Γ satisfies Receipt-Freeness, if there exists a probabilistic polynomial-time algorithm V such
that for all probabilistic polynomial-time adversaries A and B, there exists a negligible function negl
and for all security parameters κ, we have Succ(Receipt-Freeness-A(Γ,V,A, κ)) 6 1

2 + negl(κ) and
Succ(Receipt-Freeness-B(Γ,V,B, κ)) 6 1

2 + negl(κ).

An election scheme satisfies receipt-freeness when ballot secrecy is preserved even when coins used to
construct ballots are revealed.

Similarly to ballot secrecy (§3), receipt-freeness tolerates inevitable revelations, e.g., unanimous elec-
tion outcomes. It follows that an election scheme for one candidate satisfies our definition of receipt-
freeness, because that scheme will always produce unanimous election outcomes.

Proposition 33. Given an election scheme Γ for one candidate (i.e., for all security parameters the
maximum number of candidates is one), we have Γ satisfies Ballot-Secrecy and Receipt-Freeness.

Proof. Let Γ = (Setup,Vote, Tally). Suppose (pk, sk,mb,mc) is an output of Setup(κ) and nc is an
output of A(pk, κ) such that 1 6 nc 6 mc, for some security parameter κ and some adversary A against
game Ballot-Secrecy or game Receipt-Freeness-A. Since mc = 1 by hypothesis, we have nc = 1 too.
For game Receipt-Freeness-A, let algorithm V be such that V(pk, v0, v1, nc, κ) chooses coins r uniformly
at random from the coin space of algorithm Vote, computes b ← Vote(pk, v0, nc, κ), and outputs (b, r).
Suppose β is a bit chosen uniformly at random and bb is an output of A(). By inspection of the oracle
definition in each game, we have for every oracle call O(v0, v1) that v0 = v1, moreover, the ballot
output by the oracle is independent of bit β. It follows that the adversary looses each game, hence Γ
satisfies Ballot-Secrecy. To show that Receipt-Freeness is satisfied too, we must consider game Receipt-
Freeness-B.

Suppose (pk, v0, v1, nc) is an output of B(κ) such that 1 6 v0, v1 6 nc, for some adversary B against
game Receipt-Freeness-B. Let β be a bit chosen uniformly at random. If β = 0, then suppose b is an
output of Vote(pk, v0, nc, κ), otherwise (β = 1), suppose (b, r) is an output of V(pk, v0, v1, nc, κ), hence,
b is an output of Vote(pk, v0, nc, κ) by definition of V. Thus, the ballot computed by the challenger is
independent of bit β. It follows that the adversary looses game Receipt-Freeness-B, hence, Γ satisfies
Receipt-Freeness, thereby concluding our proof. �

Beyond the uninteresting case (Proposition 33), we prove that Receipt-Freeness cannot be satisfied by
election schemes for more than one candidate (Proposition 34), assuming the election scheme is perfectly
correct or satisfies tally soundness.

Proposition 34. Let Γ be an election scheme for more than one candidate (i.e., there exists a security
parameter such that the maximum number of candidates is greater than one). Suppose Γ is perfectly
correct or Γ satisfies Tally-Soundness. We have Γ does not satisfy Receipt-Freeness.

Proof. Let Γ = (Setup,Vote, Tally). Suppose to the contrary that Γ satisfies Receipt-Freeness, hence,
there exists a probabilistic polynomial-time algorithm V such that for all probabilistic polynomial-time
adversaries A and B, there exists a negligible function negl and for all security parameters κ, we have
Succ(Receipt-Freeness-A(Γ,V,A, κ)) + Succ(Receipt-Freeness-B(Γ,V,B, κ)) 6 1

2 + negl(κ). Further
suppose κ is such that the maximum number of candidates output by algorithm Setup(κ) is greater than
one. Moreover, suppose A is the following adversary.

• A(pk, κ) computes nc← 2 and outputs nc.
• A() computes v0 ← 1; v1 ← 2; (b, r)← O(v0, v1) and outputs ∅.
• A(v, pf) outputs 0 if v = Vote(pk, v0, nc, κ; r) and 1 otherwise.

Since Γ satisfies Receipt-Freeness, it follows that V(pk, v1, v0, nc, κ) outputs (b, r) such that b =
Vote(pk, v0, nc, κ; r), with overwhelming probability. Suppose B is the following adversary.

• B(κ) computes (pk, sk,mb,mc)← Setup(κ); v0 ← 1; v1 ← 2; nc← 2 and outputs (pk, v0, v1, nc).
• B(b) computes (v, pf)← Tally(sk, {b}, nc, κ) and outputs 0 if v = (1, 0) and 1 otherwise.

We prove that B wins Receipt-Freeness-B(Γ,V,B, κ).
Suppose (pk, v0, v1, nc) is an output of B(κ) and β is a bit chosen uniformly at random. If β = 0, then

further suppose b is an output of Vote(pk, v0, nc, κ), and g is an output of B(b). Outputs (v, pf) of Tally(sk,
{b}, nc, κ) are such that v = (1, 0) by correctness, which ensures g = β by definition of B. Otherwise
(β = 1), suppose (b, r) is an output of V(pk, v0, v1, nc, κ), hence, b = Vote(pk, v1, nc, κ; r), and g is an
output of B(b). Outputs (v, pf) of Tally(sk, {b}, nc, κ) are such that v = (0, 1) by perfect correctness and
v = correct-outcome(pk, nc, {b}, κ) = (0, 1) by Tally-Soundness, which ensures g = β by definition of
B. (Correctness, rather than perfect correctness, is insufficient, because algorithm V may not have chosen
coins r uniformly at random.) Thus, Succ(Receipt-Freeness-A(Γ,V,A, κ)) + Succ(Receipt-Freeness-
B(Γ,V,B, κ)) 66 1

2 + negl(κ), concluding our proof. �

A special case of our proposition holds for universal verifiability, rather than tally soundness, because
universal verifiability is strictly stronger (Appendix E).

It follows from Proposition 34 that our syntax cannot be used to construct (interesting) election
schemes satisfying stronger notions of privacy such as Receipt-Freeness. Nonetheless, algorithm Vote
could be distributed between the voter and some other (possibly untrusted) parties to enable stronger
privacy notions. Indeed, a variant of Helios that delegates ballot construction to a trusted party would
satisfy receipt-freeness, since voters cannot access coins used by the trusted party to construct ballots,
hence, cannot communicate such coins to the adversary. More generally, an election scheme satisfying
ballot secrecy can delegate ballot construction to achieve receipt-freeness.

We have seen that election schemes for more than one candidate cannot satisfy Receipt-Freeness
(Proposition 34), assuming the election scheme is perfectly correct or satisfies tally soundness. Intu-
itively, it follows that coercion resistance cannot be satisfied by such election schemes either, because
coercion resistance strengthens receipt-freeness. Nevertheless, receipt-freeness can be satisfied by elec-
tion schemes with interactive voting algorithms and we now consider whether coercion resistance can
hold too.

I.2. Coercion resistance

Coercion resistance requires a mechanism to deviate from a coercer’s instructions. Intuitively, no
such mechanism exists for election schemes with interactive voting algorithms, because there exists
instructions for which deviations are impossible. Indeed, the coercer can instruct the voter to run the
algorithms themselves (i.e., without the aid of another party) and furnish the coercer with the coins used,
thereby enabling the coercer to check whether voters followed their instructions. It follows that election
schemes with interactive voting algorithms cannot satisfy coercion resistance.

Interactive voting algorithms can be extended with private inputs which cannot be simulated by voters,
thereby enabling voters to deviate from the coercer’s instructions. Alternatively, the variant of our syntax
with voter credentials [30, Definition 6] can be used; that variant extends algorithm Vote to input a
private credential (essentially resulting in interactive ballot construction). The latter has been used by
Smyth, Frink & Clarkson [30, §6] to model the coercion-resistant voting system by Juels, Catalano &
Jakobsson [43, 129] and by Smyth as a foundation for his coercion-resistant voting system [41], thus,
the syntax with voter credentials is compatible with stronger privacy notions.

	Introduction
	Election scheme syntax
	Privacy
	Ballot secrecy
	Ballot independence
	Secrecy and independence coincide (for zero-knowledge tallying proofs)

	Case study I: Helios
	Helios 2.0 & Helios 3.1.4
	Helios'16
	Ballot weeding considered harmful

	Simplifying ballot-secrecy proofs
	Case study II: Helios Mixnet
	Discussion, limitations, and directions for further research
	Related work
	Conclusion
	Acknowledgements
	References
	Appendix A. Cryptographic primitives
	Asymmetric encryption
	Proof systems

	Appendix B. Ballot independence: Non-malleability game
	Appendix C. Proofs
	Proof of Theorem 1
	Proof of Proposition 3
	Proof of Theorem 4
	Proof of Lemma 8
	Proof of Proposition 12
	Proof of Lemma 13

	Appendix D. Helios
	Proof of Theorem 6

	Appendix E. Universal verifiability implies tally soundness
	Appendix F. Encryption-based voting systems
	Appendix G. Helios Mixnet
	Proof of Theorem 15

	Appendix H. Ballot-Secrecy is strictly stronger than IND-SEC
	Appendix I. Stronger privacy notions
	Receipt-freeness
	Coercion resistance

