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Abstract. The selection of polynomials to represent number fields cru-
cially determines the efficiency of the Number Field Sieve (NFS) algo-
rithm for solving the discrete log problem in a finite field. An important
recent work due to Barbulescu et al builds upon existing works to pro-
pose two new methods for polynomial selection when the target field
has a composite order. These methods are called the generalised Joux-
Lercier (GJL) and the Conjugation methods. In this work, we propose a
new method for polynomial selection for the NFS algorithm in fields Fpn ,
with n > 1. The new method both subsumes and generalises the GJL
and the Conjugation methods. Asymptotic analysis for the new polyno-
mial selection method is performed for both the classical NFS and the
multiple NFS (MNFS) algorithms. For medium and large prime charac-
teristic, the new method does not provide any new asymptotic result.
For the boundary case, the complexity of the new method interpolates
between that of the Conjugation and the GJL methods for both classical
and multiple NFS algorithms. In particular, for p = LQ(2/3, cp), as cp
grows the complexity of the new method is lower than that of the GJL
method and hence becomes the new state of the art.

1 Introduction

Let G = 〈g〉 be a finite cyclic group. The discrete log problem (DLP) in G is
the following. Given (g, h), compute the minimum non-negative integer a such
that h = ga. For appropriately chosen groups G, the DLP in G is believed to
be computationally hard. This forms the basis of security of many important
cryptographic protocols.

Studying the hardness of the DLP on subgroups of the multiplicative group
of a finite field is an important problem. There are two general algorithms for
tackling the DLP on such groups. These are the function field sieve (FFS) [1,
2, 12, 15] algorithm and the number field sieve (NFS) [7, 13, 17] algorithm. Both
these algorithms follow the framework of index calculus algorithms which is
currently the standard approach for attacking the DLP in various groups.

For small characteristic fields, the FFS algorithm leads to a quasi-polynomial
running time [5]. Using the FFS algorithm outlined in [11, 5], Granger et al [8]



reported a record computation of discrete log in the binary extension field F29234 .
FFS also applies to the medium characteristic fields. Some relevant works on this
line are reported in [15, 10, 22].

For medium to large characteristic finite fields, the NFS algorithm is the
state-of-the-art. In the context of the DLP, the NFS was first proposed by Gor-
don [7] for prime order fields. The algorithm proceeded via number fields and one
of the main difficulties in applying the NFS was in the handling of units in the
corresponding ring of algebraic integers. Schirokauer [23, 25] proposed a method
to bypass the problems caused by units. Further, Schirokauer [24] showed the
application of the NFS algorithm to composite order fields. Joux and Lercier [13]
presented important improvements to the NFS algorithm as applicable to prime
order fields.

Joux, Lercier, Smart and Vercauteren [17] later showed that the NFS algo-
rithm is applicable to all finite fields. Since then, several works [18, 4, 9, 21] have
gradually improved the NFS in the context of medium to large characteristic
finite fields.

The efficiency of the NFS algorithm is crucially dependent on the properties
of the polynomials used to construct the number fields. Consequently, polyno-
mial selection is an important step in the NFS algorithm and is an active area
of research. The recent work [4] extends a previous method [13] for polynomial
selection and also presents a new method. The extension of [13] is called the
generalised Joux-Lercier (GJL) method while the new method proposed in [4] is
called the conjugation method. The paper also provides a comprehensive com-
parison of the trade-offs in the complexity of the NFS algorithm offered by the
various polynomial selection methods.

The NFS based algorithm has been extended to multiple number field sieve
algorithm (MNFS). The work [6] showed the application of the MNFS to medium
to high characteristic finite fields. More recently, Pierrot [21] proposed MNFS
variants of the GJL and the Conjugation methods.

Our contributions: In this work, we build on the works of [13, 4] to propose
a new method of polynomial selection for NFS over Fpn . The new method both
subsumes and generalises the GJL and the Conjugation methods. There are two
parameters to the method, namely a divisor d of the extension degree n and a
parameter r ≥ k where k = n/d.

For d = 1, the new method becomes the same as the GJL method. For d = n
and r = k = 1, the new method becomes the same as the Conjugation method.
For d = n and r > 1; or, for 1 < d < n, the new method provides polynomials
which leads to different trade-offs than what was previously known. Note that
the case 1 < d < n can arise only when n is composite, though the case d = n and
r > 1 arises even when n is prime. So, the new method provides new trade-offs
for both n composite and n prime.

Following the works of [4, 21] we carry out an asymptotic analysis of new
method for the classical NFS as well as for MNFS. For the medium and the
large characteristic cases, the results for the new method are exactly the same
as those obtained in [4, 21]. For the boundary case, however, we obtain some



interesting asymptotic results. We discuss these for the MNFS though similar
results also hold for the NFS.

Let p = LQ(2/3, cp) and let θ0 and θ1 be such that the complexity of the
MNFS-Conjugation method is LQ(1/3, θ0) and the complexity of the MNFS-GJL
method is LQ(1/3, θ1). As shown in [21], LQ(1/3, θ0) is the minimum complexity
of MNFS1 while for large cp, the complexity of MNFS-GJL is the smallest.

For MNFS-New with k = 1, let the complexity be LQ(1/3, C(r)) where for a
fixed r, C(r) is the minimum over all cp. Then we show that C(r) is monotone
increasing for r ≥ 1; C(1) = θ0; and that C(r) is bounded above by θ1 which is
its limit as r goes to infinity. So, for the new method the minimum complexity is
the same as MNFS-Conjugation method. On the other hand, as r increases, the
complexity of MNFS-New becomes the minimum of the complexities of all the
prior known methods. In particular, the complexity of MNFS-New interpolates
nicely between the complexities of the MNFS-GJL and the MNFS-Conjugation
methods.

2 Background on NFS for Non-Prime Fields

We provide a brief sketch of the background on the variant of the NFS algorithm
that is applicable to the extension fields FQ, where Q = pn, p is a prime and
n > 1. More detailed discussions can be found in [13, 4].

Following the structure of index calculus algorithms, NFS has three main
phases, namely, relation collection (sieving), linear algebra and descent. Prior to
these, is the set-up phase. In the set-up phase, two number fields are constructed
and the sieving parameters are determined. The two number fields are set up by
choosing two irreducible polynomials f(x) and g(x) over the integers such that
their reductions modulo p have a common irreducible factor φ(x) of degree n
over Fp. The field Fpn will be considered to be represented by φ(x).

The choices of the two polynomials f(x) and g(x) are crucial to the algorithm.
These greatly affect the overall run time of the algorithm. Let α, β ∈ C and
m ∈ Fpn be the roots of the polynomials f(x), g(x) and φ(x) respectively. The
two number fields and the finite field are given as follows.

K1 = Q(α) =
Q[x]

〈f(x)〉
, K2 = Q(β) =

Q[x]

〈g(x)〉
and Fpn = Fp(m) =

Fp[x]

〈φ(x)〉
.

Thus, there are two homomorphisms ψ1 : K1 → Fpn and ψ2 : K2 → Fpn given by
α ↪→ m and β ↪→ m respectively. Actual computations are carried out over these
number fields and are then transformed to the finite field via these homomor-
phisms. In fact, instead of doing the computations over the whole number field
Ki, one works over its ring of algebraic integers Oi. These integer rings provide
a nice way of constructing a factor basis and moreover, unique factorisation of
ideals holds over these rings.

1 The value of θ0 obtained in [21] is incorrect.



The factor basis F = F1 ∪ F2 is chosen as follows.

F1 = {prime ideal qi ∈ O1 having norm less than B} (1)

F2 = {prime ideal sj ∈ O2 having norm less than B} (2)

where B is the smoothness bound and is to be chosen appropriately. An algebraic
integer is said to be B-smooth if the principal ideal generated by it factors into
the prime ideals of norms less than B. As a result the size of the factor basis
is at most 2B. For asymptotic computations, this is simply taken to be B. The
work flow of NFS can be understood by the diagram in Figure 1.

Z[x]

Q(α) Q(β)

Fp(m)

α
7→x x 7→

β

α 7→
m

ψ
1

m

7→βψ2

Fig. 1. A work-flow of NFS.

A polynomial λ(x) ∈ Z[x] of degree t− 1 (i.e. having t coefficients) is chosen
and the principal ideals generated by its images in the two number field are
checked for smoothness. If both of these are smooth, then

λ(α)O1 =
∏
i

qi
ei and λ(β)O2 =

∏
j

sj
e′j (3)

where qi and sj are the prime ideals of the integer rings O1 and O2 respectively.
Let h1 and h2 be the class numbers of the number fields O1 and O2 respec-

tively. Then(
λ(α)O1

)h1

=

(∏
i

qi
ei

)h1

and
(
λ(β)O2

)h2

=

(∏
j

sj
e′j

)h2

. (4)

This leads to

λ(α)h1O1 =
∏
i

(
qi

h1

)ei
and λ(β)h2O2 =

∏
j

(
sj

h2

)e′j
. (5)

Note that (qi
h1) and (sj

h2) are principal ideals of O1 and O2 respectively. Let

(qi
h1) = δiO1 and (sj

h2) = εjO2. Thus,

λ(α)h1O1 =
∏
i

δi
eiO1 and λ(β)h2O2 =

∏
j

ε
e′j
j O2. (6)



Converting (6) into element form results in

λ(α)h1 = u
∏
i

δi
ei and λ(β)h2 = v

∏
j

ε
e′j
j (7)

where u and v are units in the rings O1 and O2 respectively.
Let (r1, r2) and (s1, s2) be the signatures of O1 and O2 respectively. Then

O?1 ≡ µ(K1) × Zr1+r2−1, where µ(K1) = 〈u0〉 is a finite cyclic group. Let
r = r1 + r2 − 1. Assuming that we can compute a system of fundamental units
u1, u2, . . . , ur, we can write u =

∏r
i=0 u

li
i . Similarly we have O?2 ≡ µ(K2) ×

Zs1+s2−1. Letting s = s1 + s2 − 1, µ(K2) = 〈v0〉, and v1, v2, . . . , vs as a funda-

mental units, we can write v =
∏s
j=0 v

l′j
j . Putting the values in (7) provides the

following relations.

λ(α)h1 =

r∏
i=0

ulii
∏
i

δi
ei and λ(β)h2 =

s∏
j=0

v
l′j
j

∏
j

ε
e′j
j . (8)

Using the homomorphisms ψi, the relations given by (8) can be converted to the
finite field Fpn represented by the polynomial φ(x).

ψ1(λ(α))
h1 =

r∏
i=0

ψ1(ui)
li
∏
i

ψ1(δi)
ei and ψ2(λ(β))

h2 =

s∏
j=0

ψ2(vj)
l′j
∏
j

ψ2(εj)
e′j

Taking discrete logarithms on both sides result in the following equations.

h1 log
(
ψ1(λ(α))

)
=

r∑
i=0

li log (ψ1(ui)) +
∑
i

ei log (ψ1(δi)) (9)

h2 log
(
ψ2(λ(β))

)
=

s∑
j=0

l′j log (ψ2(vj)) +
∑
j

e′j log (ψ2(εj)). (10)

Recall that the map ψ1 : α ↪→ m and ψ2 : β ↪→ m. So, ψ1(λ(α)) = λ(m) =
ψ2(λ(β)). Using this in (9) and (10), leads to the following relation.

h1

 s∑
j=0

l′j log (ψ2(vj)) +
∑
j

e′j log (ψ2(εj))


= h2

[
r∑
i=0

li log (ψ1(ui)) +
∑
i

ei log (ψ1(δi))

]
(11)

The relation given by (11) involves only the discrete log of field elements. Many
such relations are collected by sieving over suitable λ(x). The linear algebra step
solves the resulting system of linear equations using either the Lanczos or the
block Wiedemann algorithms to obtain the discrete logs of the field elements
present in these equations.



The above description assumes the availability of the class numbers and the
fundamental system of units. This may not always be the case. In such a scenario,
the Schirokauer maps [23, 25] are used to write the system of linear equations
in terms of virtual logarithms [25, 16]. We skip the details of virtual logarithms
and Schirokauer maps, as these details will not affect the polynomial selection
problem considered in this work.

After the linear algebra phase is over, the descent phase is used to compute
the discrete logs of the given elements of the field Fpn . We also skip these details.
For recent work on the descent phase, we refer to [9].

3 Polynomial Selection and its Effect on NFS Complexity

It is evident from the description of NFS that the relation collection phase re-
quires polynomials λ(x) ∈ Z[x] whose images in the two number fields are simul-
taneously smooth. For ensuring the smoothness of λ(α) and λ(β), it is enough
to ensure that their norms viz, Res(f, λ) and Res(g, λ) are B-smooth. We refer
to [4] for further explanations.

Kalkbrener in [19, Corollary 2], gave the following upper bound for the ab-
solute value of the norm.

|Res(f, λ)| ≤ κ (deg f, deg λ) ‖f‖deg λ∞ ‖λ‖deg f∞ (12)

where κ(a, b) =
(
a+b
a

)(
a+b−1
a

)
and ‖f‖∞ is maximum of the absolute values of

the coefficients of f .
Following [4], let E be such that the coefficients of λ are in

[
− 1

2E
2/t, 12E

2/t
]
.

So, ‖λ‖∞ = E2/t and the number of polynomials λ(x) that is considered for the
sieving is E2.

Whenever p = LQ(a) with a > 1
3 , we have the following bound on the

Res(f, λ)× Res(g, λ) (for details we refer to [4]).

|Res(f, λ)× Res(g, λ)| ≈ (‖f‖∞‖g‖∞)
t−1

E(deg f+deg g)2/t. (13)

For small values of n, the sieving polynomial λ(x) is taken to be linear, i.e., t = 2
and then the norm bound becomes approximately ‖f‖∞‖g‖∞E(deg f+deg g).

The methods for choosing f and g result in the coefficients of one or both of
these polynomials to depend on Q. So, the right side of (13) is determined by
Q and E. All polynomial selection algorithms try to minimize the RHS of (13).
From the bound in (13), it is evident that during polynomial selection, the goal
should be to try and keep the degrees and the coefficients of both f and g to be
small. Ensuring both degrees and coefficients to be small is a nontrivial task and
leads to a trade-off. Previous methods for polynomial selections provide different
trade-offs between the degrees and the coefficients.

Estimates of Q-E trade-off values have been provided in [4] and is based on
the CADO factoring software [3]. Table 1 reproduces these values.
As mentioned in [4, 9], presently the following three polynomial selection meth-
ods provide competitive trade-offs.



Table 1. Estimate of Q-E values [4].

Q(dd) 100 120 140 160 180 200 220 240 260 280 300

Q(bits) 333 399 466 532 598 665 731 798 864 931 997

E(bits) 20.9 22.7 24.3 25.8 27.2 28.5 29.7 30.9 31.9 33.0 34.0

1. JLSV1: Joux, Lercier, Smart, Vercauteren method [16].
2. GJL: Generalised Joux Lercier method [20, 4].
3. Conjugation method [4]

Brief descriptions of these methods are given below.

JLSV1. Repeat the following steps until f and g are obtained to be irreducible
over Z and φ is irreducible over Fp.

1. Randomly choose polynomials f0(x) and f1(x) having small coefficients with
deg(f1) < deg(f0) = n.

2. Randomly choose an integer a to be slightly greater than d√pe.
3. Let (u, v) be the rational reconstruction of a in Fp, i.e., a ≡ u/v mod p.
4. Define f(x) = f0(x) + af1(x) and g(x) = vf0(x) + uf1(x) and φ(x) =
f(x) mod p.

Note that deg(f) = deg(g) = n and both ‖f‖∞ and ‖g‖∞ are O
(
p1/2

)
=

O
(
Q1/(2n)

)
and so (13) becomes E4n/tQ(t−1)/n which is E2nQ1/n for t = 2.

GJL. The basic Joux-Lercier method [14] works for prime fields. The gener-
alised Joux-Lercier method extends the basic Joux-Lercier method to work over
composite fields Fpn .

The heart of the GJL method is the following idea. Let φ(x) be a monic
polynomial φ(x) = xn+φn−1x

n−1 + · · ·+φ1x+φ0 and r ≥ deg(φ) be an integer.
Let n = deg(φ). Given φ(x) and r, define an (r+ 1)× (r+ 1) matrix Mφ,r in the
following manner.

Mφ,r =



p
. . .

. . .

p
φ0 φ1 · · · φn−1 1

. . .
. . .

. . .

φ0 φ1 · · · φn−1 1


(14)

The first n × n principle sub-matrix of Mφ,r is diag[p, p, . . . , p] corresponding
to the polynomials p, px, . . . , pxn−1. The last r − n + 1 rows correspond to the
polynomials φ(x), xφ(x), . . . , xr−nφ(x).



Apply the LLL algorithm to Mφ,r and let the first row of the resulting LLL-
reduced matrix be [g0, g1, . . . , gr−1, gr]. Define

g(x) = g0 + g1x+ · · ·+ gr−1x
r−1 + grx

r. (15)

The notation

g = LLL (Mφ,r) (16)

will be used to denote the polynomial g(x) given by (15). By construction, φ(x)
is a factor of g(x) modulo p.

The GJL procedure for polynomial selection is the following. Choose an r ≥ n
and repeat the following steps until f and g are irreducible over Z and φ is
irreducible over Fp.

1. Randomly choose a degree (r+ 1)-polynomial f(x) which is irreducible over
Z and having coefficients of size O(ln(p)) such that f(x) has a factor φ(x)
of degree n modulo p which is both monic and irreducible.

2. Let φ(x) = xn+φn−1x
n−1 + · · ·+φ1x+φ0 and Mφ,r be the (r+ 1)× (r+ 1)

matrix given by (14).

3. Let g(x) = LLL (Mφ,r).

The polynomial f(x) has degree r + 1 and g(x) has degree r. The procedure is
parameterised by the integer r.

The determinant of M is pn and so from the properties of the LLL-reduced
basis, the coefficients of g(x) are of the order O

(
pn/(r+1)

)
= O

(
Q1/(r+1)

)
. The

coefficients of f(x) are O(ln(p)).

The bound on the norm given by (13) in this case is E2(2r+1)/tQ(t−1)/(r+1)

which becomes E2r+1Q1/(r+1) for t = 2. Increasing r reduces the size of the
coefficients of g(x) at the cost of increasing the degrees of f and g. In the
concrete example considered in [4] and also in [21], r has been taken to be n and
so M is an (n+ 1)× (n+ 1) matrix.

Conjugation. Repeat the following steps until f and g are irreducible over Z
and φ is irreducible over Fp.

1. Choose a quadratic monic polynomial µ(x), having coefficients of sizeO(ln p),
which is irreducible over Z and has a root t in Fp.

2. Choose two polynomials g0(x) and g1(x) with small coefficients such that
deg g1 < deg g0 = n.

3. Let (u, v) be a rational reconstruction of t modulo p, i.e., t ≡ u/v mod p.

4. Define g(x) = vg0(x) + ug1(x) and f(x) = Resy(µ(y), g0(x) + y g1(x)).

Note that deg(f) = 2n, deg(g) = n, ‖f‖∞ = O(ln(p)) and ‖g‖∞ = O(p1/2) =
O(Q1/(2n)). In this case, the bound on the norm given by (13) is E6n/tQ(t−1)/(2n)

which becomes E3nQ1/(2n) for t = 2.



4 A Simple Observation

For the GJL method, while constructing the matrix M , the coefficients of the
polynomial φ(x) are used. If, however, some of these coefficients are zero, then
these may be ignored. The idea is given by the following result.

Proposition 1. Let n be an integer, d a divisor of n and k = n/d. Suppose
B(x) is a monic polynomial of degree k. Let r ≥ k be an integer and set ψ(x) =
LLL(MB,r). Define g(x) = ψ(xd) and φ(x) = B(xd). Then

1. deg(φ) = n and deg(g) = rd;
2. φ(x) is a factor of g(x) modulo p;
3. ‖g‖∞ = pn/(d(r+1)).

Proof. For the first point, note that by construction B(x) is a factor of ψ(x)
modulo p. So, B(xd) is a factor of ψ(xd) = g(x) modulo p. The coefficients of
g(x) are the coefficients of ψ(x). Following the GJL method, ‖ψ‖∞ = pk/(r+1) =
pn/(d(r+1)) and so the same holds for ‖g‖∞. This shows the second point. ut
Note that if we had defined g(x) = LLL(Mφ,rd), then ‖g‖∞ would have been
pn/(rd+1). For d > 1, the value of ‖g‖∞ given by Proposition 1 is smaller.

A variant. The above idea shows how to avoid the zero coefficients of φ(x).
A similar idea can be used to avoid the coefficients of φ(x) which are small.
Suppose that the polynomial φ(x) can be written in the following form.

φ(x) = φi1x
i1 + · · ·+ φikx

ik + xn +
∑

j /∈{i1,...,ik}

φjx
j (17)

where i1, . . . , ik are from the set {0, . . . , n − 1} and for j ∈ {0, . . . , n − 1} \
{i1, . . . , ik}, the coefficients φj are all O(1). Some or even all of these φj ’s could
be zero. A (k + 1)× (k + 1) matrix M is constructed in the following manner.

M =



p
. . .

. . .

p
φi1 φi2 · · · φik 1

 (18)

In the above the matrix M has only one row obtained from φ(x) and it is difficult
to use more than one row. Apply the LLL algorithm to M and write the first
row of the resulting LLL-reduced matrix as [gi1 , . . . , gik , gn]. Define

g(x) = (gi1x
i1 + · · ·+ gikx

ik + gnx
n) +

∑
j /∈{i1,...,ik,n}

φjx
j . (19)

The degree of g(x) is n and the bound on the coefficients of g(x) is determined
as follows. The determinant of M is pk and by the LLL-reduced property each
of the coefficients gi1 , . . . , gik , gn is O(pk/(k+1)) = O(Qk/(n(k+1))). Since φj for
j /∈ {i1, . . . , ik} are all O(1), it follows from (19) that all the coefficients of g(x)
are O(Qk/(n(k+1))) and so ‖g‖∞ = O(Qk/(n(k+1))).



5 A New Polynomial Selection Method

In the simple observation made in the earlier section, the non-zero terms of the
polynomial g(x) are powers of xd. This creates a restriction and does not turn
out to be necessary to apply the main idea of the previous section. Once the
polynomial ψ(x) is obtained using the LLL method, it is possible to substitute
any degree d polynomial with small coefficients for x and still the norm bound
will hold. In fact, the idea can be expressed more generally in terms of resultants.
Algorithm 1 below describes the new general method for polynomial selection.

Algorithm 1: A new method of polynomial selection.

Input: p, n, d (a factor of n) and r ≥ n/d.
Output: f(x), g(x) and φ(x).

1.1 Let k = n/d;
1.2 repeat
1.3 Randomly choose a monic irreducible polynomial A(x) having the

following properties: deg(a) = r+ 1; A(x) is irreducible over the integers;
A(x) has coefficients of size O(ln(p)); modulo p, A(x) has an irreducible
factor B(x) of degree k.

1.4 Randomly choose monic polynomials C0(x) and C1(x) with small
coefficients such that degC0(x) = d and degC1(x) < d.

1.5 Define

f(x) = Resy (A(y), C0(x) + y C1(x)) ;

φ(x) = Resy (B(y), C0(x) + y C1(x)) mod p;

ψ(x) = LLL(Mb,r);

g(x) = Resy (ψ(y), C0(x) + y C1(x)) .

1.6 until f(x) and g(x) are irreducible over Z and φ(x) is irreducible over Fp.

1.7 return f(x), g(x) and φ(x).

The following result states the basic properties of Algorithm 1.

Proposition 2. The outputs f(x), g(x) and φ(x) of Algorithm 1 satisfy the
following.

1. deg(f) = d(r + 1); deg(g) = rd and deg(φ) = n;
2. both f(x) and g(x) have φ(x) as a factor modulo p;
3. ‖f‖∞ = O(ln(p)) and ‖g‖∞ = O(Q1/(d(r+1))).

Consequently,

|Res(f, λ)× Res(g, λ)| ≈ ‖f‖∞‖g‖∞ × E2(deg f+deg g)/t

= O
(
E2d(2r+1)/t ×Q(t−1)/(d(r+1))

)
. (20)



Proof. By definition f(x) = Resy (A(y), C0(x) + y C1(x)) where A(x) has degree
r + 1, C0(x) has degree d and C1(x) has degree d − 1, so the degree of f(x) is
d(r+1). Similarly, one obtains the degree of φ(x) to be n. Since ψ(x) is obtained
from B(x) as LLL(Mb,r) it follows that the degree of ψ(x) is r and so the degree
of g(x) is rd.

Since B(x) divides A(x) modulo p, it follows from the definition of f(x) and
φ(x) that modulo p, φ(x) divides f(x). Since ψ(x) is a linear combination of the
rows of Mb,r, it follows that modulo p, ψ(x) is a multiple of B(x). So, g(x) =
Resy (ψ(y), C0(x) + y C1(x)) is a multiple of φ(x) = Resy (B(y), C0(x) + y C1(x))
modulo p.

Since the coefficients C0(x) and C1(x) are O(1) and the coefficients A(x)
are O(ln p), it follows that ‖f‖∞ = O(ln p). The coefficients of g(x) are O(1)
multiples of the coefficients of ψ(x). By Proposition 1, the coefficients of ψ(x)
are O(pn/(d(r+1))) = Q1/(d(r+1)) which shows that ‖g‖∞ = O(Q1/(d(r+1))). ut

Proposition 2 provides the relevant bound on the product of the norms of a
sieving polynomial λ(x) in the two number fields defined by f(x) and g(x). We
note the following points.

1. If d = 1, then the norm bound is E2(2r+1)/tQ(t−1)/(r+1) which is the same
as that obtained using the GJL method.

2. If d = n, then the norm bound is E2n(2r+1)/tQ(t−1)/(n(r+1)). Further, if
r = k = 1, then the norm bound is the same as that obtained using the
Conjugation method. So, for d = n, Algorithm 1 is a generalisation of the
Conjugation method. Later, we show that choosing r > 1 provides asymp-
totic improvements.

3. If n is a prime, then the only values of d are either 1 or n. The norm bounds
in these two cases are covered by the above two points.

4. If n is composite, then there are non-trivial values for d and it is possible to
obtain new trade-offs in the norm bound. For concrete situations, this can
be of interest. Further, for composite n, as value of d increases from d = 1
to d = n, the norm bound nicely interpolates between the norm bounds of
the GJL method and the Conjugation method.

6 Comparison and Examples

We compare the norm estimates for t = 2, i.e., when the sieving polynomial is
linear. In this case, Table 2 lists the degree and norm estimates of polynomials
for various methods. Table 3 compares the new method with the JLSV1 and the
GJL method for concrete values of n, r and d. This shows that the new method
provides different trade-offs which were not known earlier.

As an example, we can see from Table 3 that the new method compares well
with GJL and JLSV1 methods for n = 4 and Q(dd) = 300 (refer to Table 1).
As mentioned in [4], when the differences between the methods are small, it is
not possible to decide by looking only at the size of the norm product. Keeping
this in view, we see that the new method is competetive for n = 6 as well. At



present there are no avaible estimates of E for the larger values of n. From the
Q-E pairs given in Table 1, it is clear that the increase of E is slower than that
of Q. This suggests that the new method will become competitive when Q is
sufficiently large.

Table 2. Parameterised efficiency estimates for NFS obtained from the different poly-
nomial selection methods.

Methods deg f deg g ‖f‖∞ ‖g‖∞ ‖f‖∞‖g‖∞E(deg f+deg g)

JLSV1 n n Q
1
2n Q

1
2n E2nQ

1
n

GJL (r ≥ n) r + 1 r O(ln p) Q
1

r+1 E2r+1Q
1

r+1

Conjugation 2n n O(ln p) Q
1
2n E3nQ

1
2n

New method (d|n, r ≥ n/d) d(r + 1) dr O(ln p) Q
1

d(r+1) Ed(2r+1)Q1/(d(r+1))

Table 3. Comparison of efficiency estimates for composite n with d = 2 and r = n/2.

deg f,deg g FQ ‖f‖∞ g ‖g‖∞ ‖f‖∞‖g‖∞E(deg f+deg g)

(5, 4)

Fp4

O(ln p) GJL Q
1
5 E9Q

1
5

(4, 4) Q
1
8 JLSV1 Q

1
8 E8Q

1
4

(6, 4) O(ln p) New Q
1
6 E10Q

1
6

(7, 6)

Fp6

O(ln p) GJL Q
1
7 E13Q

1
7

(6, 6) Q
1
12 JLSV1 Q

1
12 E12Q

1
6

(8, 6) O(ln p) New Q
1
8 E14Q

1
8

(9, 8)

Fp8

O(ln p) GJL Q
1
9 E17Q

1
9

(8, 8) Q
1
16 JLSV1 Q

1
16 E16Q

1
8

(10, 8) O(ln p) New Q
1
10 E18Q

1
10

(10, 9)

Fp9

O(ln p) GJL Q
1
10 E19Q

1
10

(9, 9) Q
1
18 JLSV1 Q

1
18 E18Q

1
9

(12, 9) O(ln p) New Q
1
12 E21Q

1
12

Next we provide some concrete examples of polynomials f(x), g(x) and φ(x)
obtained using the new method. The examples are for n = 6 and n = 4. For
n = 6, we have taken d = 1, 2, 3 and 6 and in each case r was chosen to be
r = k = n/d. For n = 4, we consider d = 2 with r = k = n/d and r = k+ 1; and
d = 4 with r = k. These examples are to illustrate that the method works as
predicted and returns the desired polynomials very fast. We have run the method



on other cases as well and have observed that it works fine in these other cases
also.

Example 1. Let n = 6, and p is a 201-bit prime given below.

p = 1606938044258990275541962092341162602522202993782792835361211

Taking d = 1 and r = d/n, we get

f(x) = x7 + 18x6 + 99x5 − 107x4 − 3470x3 − 15630x2 − 30664x− 23239

g(x) = 712965136783466122384156554261504665235609243446869x6

+16048203858903260691766216702652575435281807544247712x5

+148677207748141549203589890852868028274077107624860184x4

+724085384539143925795564835722926256171920852986660372x3

+1946932041954939829697950384964684583780249722185345772x2

+2718971797270235171234259793142851416923331519178675874x

+1517248296800681060244076172658712224507653769252953211

φ(x) = x6 + 6715600759360122754018289503697292868061440059396953

49290760x5 + 7747058346245540667371991605555115020882703

23481268337340514x4 + 1100646447552671580437963861085020

431145126151057937318479717x3 + 271316463864123658232870

095113273120009266491174096472632727x2 + 410171738950673

951225351009256251353058695601874372080573092x+ 1326632

804961027767272334662693578855845363854398231524390607

Note that ‖g‖∞ ≈ 2180. Taking d = 2 and r = d/n, we get

f(x) = x8 − x7 − 5x6 − 50x5 − 181x4 − 442x3 − 801x2 − 633x− 787

g(x) = 833480932500516492505935839185008193696457787x6 + 209259

3616641287655065740032896986343580698615x5 + 12985408995

689522617915377434683351943188533320x4 + 218697415909663

57897620167461539967141532970622x3 + 6440309722463426267

7273803471992671747860968564x2 + 55864711695281584283909

455665521092749502793807x+ 9217783540590778272527843567

0487132710722661831



φ(x) = x6 + 225577566898041285405539226183221508226286589225546

142714057x5 + 726156673723889082895351451739733545328394

720523246272955173x4 + 102147813205469472157888899400173

0764934454660630543688348056x3 + 67497810255620874288201

802771995130845407860934811815878391x2 + 632426210761786

622105494194314937817927439372918029042718843x+ 1040935

306866016702526455143725415379604742339065421793844038

Note that ‖g‖∞ ≈ 2156. Taking d = 3 and r = d/n, we get

f(x) = x9 − 4x8 − 54x7 − 174x6 − 252x5 − 174x4 − 76x3 − 86x2 − 96x− 42

g(x) = 2889742364508381557593312392497801006712x6 + 8363369537

064630608561087765146274738509x5 + 108280788065240857055

06412783408772941877x4 + 4181282488973040016900039741726

7197701179x3 + 14974213477775324762133150889796948238735

4x2 + 240946716989443210293442965552611305592194x+ 1516

96455655104744403073743333940426598833

φ(x) = x6 + 265074577705978624915342871970538348132010154368109

244143774x5 + 211598012736296544869789702260921340775666

75973129512551886x4 + 1063445611445684266941289540827947

199397416276334188055837892x3 + 145958728305805436563995

0761731919998074021438242745336103973x2 + 14565434378005

71643325638648207188371117923539168263210522995x+ 37812

9170960510211491600303623674471468414144797178846977007

Note that ‖g‖∞ ≈ 2137. Taking d = 6 and r = d/n, we get

f(x) = x12 + 3x10 + 10x9 + 53x8 + 112x7 + 163x6

+184x5 + 177x4 + 166x3 + 103x2 + 72x+ 48

g(x) = −666878138402353195498832669848x6 − 18672532710749247460

11849188889x5 − 5601759813224774238035547566667x4 − 66687

53801765210948063915265053x3 − 42680035364200678470378822

26971x2 − 6935516090029480629033212906363x− 746901308429

9698984047396755556



φ(x) = x6 + 356485336847074091920944597187811284411849047991334

266185684x5 + 106945601054122227576283379156343385323554

7143974002798557052x4 + 17548863997638018406276089359789

3819537042246173878495567205x3 + 10694560105412222757628

33791563433853235547143974002798557050x2 + 1069456010541

222275762833791563433853235547143974002798557054x+ 1425

94134738829636768377838875124513764739619196533706474273

6

In this case we get ‖g‖∞ ≈ 2102.

Example 2. Let n = 4, and p is a 301-bit prime given below.

p = 203703597633448608626844568840937816105146839366593625

0636140449354381299763336706183493607

Taking d = 2 and r = n/d, we get

f(x) = x6 + 2x5 + 10x4 + 11x3 + 8x2 + 3x+ 5

g(x) = 11084862440235762086893604101763003731322206545909767864

82134x4 + 2050762938144982289360096083705563965935573667

103554994528044x3 + 552346758037702193475309178620764847

9867036209679151793015319x2 + 45622272465147567453886458

48004531501269616133890841445574058x+ 44149813363534457

26063731376031348106734815555088175006533185

φ(x) = x4 + 130562336069828468517559927770734345757627914618824

2586245210199344777856138293049165536292x3 + 16306637647

13242722426772175575945319640665655794962932653634545690

570677252853972689997048x2 + 195570416872820075967794507

34445471817050521654016832790620588920363634983674148962

14457800x+ 16306637647132427224267721755759453196406656

55794962932653634545690570677252853972689997047

In this case we have ‖g‖∞ ≈ 2201. If we take r = n/d+ 1, we get

f(x) = x8 + 16x7 + 108x6 + 398x5 + 865x4 + 1106x3 + 820x2 + 328x+ 55



g(x) = 348482147842083865380881347784399925335728557x6 + 553610

3979982210590186016445459289773029045618x5 + 33812545050

706664774530525723335145801290667783x4 + 960621719572611

24763428590648958745188735445330x3 + 1240857957813073637

59935898131887563792535489069x2 + 7309083997372916996696

4061428402316131911130808x+ 160938107832743090553504819

72028841649178007790

φ(x) = x4 + 512869096459794324650196235899867623703393084616896

744799033424455696319185673262765599428x3 + 180240879693

27494874449747905760220817083446592292079112718458276500

35713383268427662416444x2 + 1553341208026321676289164637

55257366860311697999082884334755795747728615002384380426

2435184x+ 263801507553366513494386082876419210598165405

378517676874745554282946755826248639365618168

In this case we have ‖g‖∞ ≈ 2156. If we take d = 4 and r = d/n, we have

f(x) = x8 − 3x7 − 33x6 − 97x5 − 101x4 + 3x3 + 73x2 − 35x− 8

g(x) = 684862886024125973911391867198415841436877278x4 + 192580

8392957060519248933705295588974774910731x3 + 16682478627

26425714278449912696271875703468525x2 + 4096156044753896

1485182385700123093758271763x+ 124094550693293454533754

1838097173133338033453

φ(x) = x4 + 300129299129056665818770804611316232682274696357657

62480590133807217067092452460559896554x3 + 9003878973871

69997456312413833948698046824089072972874417704014216512

01277357381679689656x2 + 1500646495645283329093854023056

58116341137348178828812402950669036085335462262302799482

756x+ 3001292991290566658187708046113162326822746963576

5762480590133807217067092452460559896553

In this case also we have ‖g‖∞ ≈ 2150.

7 Asymptotic Complexity Analysis

Recall that Q = pn. The subexponential expression LQ(a, c) is defined to be the
following.

LQ(a, c) = exp
(
(c+ o(1))(lnQ)a(ln lnQ)1−a

)
. (21)



The goal of the asymptotic complexity analysis is to express the runtime of the
NFS algorithm using the L-notation and at the same time obtain bounds on p
for which the analysis is valid. Our description of the analysis is based on prior
works predominantly those in [13, 17, 4, 21].

For 0 < a < 1, write

p = LQ(a, cp), where cp =
1

n

(
lnQ

ln lnQ

)1−a

and so n =
1

cp

(
lnQ

ln lnQ

)1−a

.(22)

The value of a will be determined later. Also, for each cp, the runtime of the
NFS algorithm is the same for the family of finite fields Fpn where p is given
by (22).

From Section 2, we recall the following.

1. The number of polynomials to be considered for sieving is E2.
2. The factor base is of size 2B and we ignore the constant 2 for the asymptotic

analysis.

Sparse linear algebra using the Lanczos or the block Wiedemann algorithm takes
time O(B2). For some 0 < b < 1, let

B = LQ(b, cb). (23)

The value of b will be determined later. Set

E = B (24)

so that the number of sieving polynomial is equal to the time for the linear
algebra.

The bound on the product of the norms given by Proposition 2 is

Γ = E
2
t d(2r+1) ×Q

t−1
d(r+1) . (25)

Suppose that Γ can be written as

Γ = LQ(z, ζ). (26)

Using the L-notation version of the Canfield-Erdös-Pomerance theorem, the
probability π that integers at most Γ = LQ(z, ζ) are B-smooth with B =
LQ(b, cb) is given by

π−1 = LQ

(
z − b, (z − b) ζ

cb

)
. (27)

Following the usual convention, we assume that the same smoothness probability
holds for the event that a random sieving polynomial λ(x) is smooth over the
factor base.

The expected number of polynomials to consider for obtaining one relation is
π−1. Since B relations are required, obtaining this number of relations requires



trying Bπ−1 trials. Balancing the cost of sieving and the linear algebra steps
requires Bπ−1 = B2 and so

π−1 = B. (28)

Obtaining π−1 from (27) and setting it to be equal to B allows solving for cb.
Balancing the costs of the sieving and the linear algebra phases leads to the
runtime of the NFS algorithm to be B2 = LQ(b, 2cb). So, to determine the
runtime, we need to determine b and cb. The value of b will turn out to be 1/3
and the only real issue is the value of cb.

Lemma 1. Let n = kd for positive integers k and d. Using the expressions for
p and E(= B) given by (22) and (23), we obtain the following.

E
2
t d(2r+1) = LQ

(
1− a+ b, 2cb(2r+1)

cpkt

)
;

Q
t−1

d(r+1) = LQ

(
a,

kcp(t−1)
(r+1)

)
.

 (29)

Proof. The second expression follows directly from Q = pn, p = LQ(a, cp) and
n = kd. The computation for obtaining the first expression is the following.

E
2
t d(2r+1) = LQ

(
b, cb

2

t
d(2r + 1)

)
= exp

(
cb

2

t
(2r + 1)

n

k
(lnQ)b(ln lnQ)1−b

)
= exp

(
cb

2

cpkt
(2r + 1)

(
lnQ

ln lnQ

)1−a

(lnQ)b(ln lnQ)1−b

)

= LQ

(
1− a+ b,

2cb(2r + 1)

cpkt

)
.

ut

Theorem 1 (Boundary Case). Let k divide n, r ≥ k, t ≥ 2 and p =
LQ(2/3, cp) for some 0 < cp < 1. It is possible to ensure that the runtime of the
NFS algorithm with polynomials chosen by Algorithm 1 is LQ(1/3, 2cb) where

cb =
2r + 1

3cpkt
+

√(
2r + 1

3cpkt

)2

+
kcp(t− 1)

3(r + 1)
. (30)

Proof. Setting 2a = 1 + b, the two L-expressions given by (29) have the same
first component and so the product of the norms is

Γ = LQ

(
a,

2cb(2r + 1)

cpkt
+
kcp(t− 1)

(r + 1)

)
.

Then π−1 given by (27) is

LQ

(
a− b, (a− b)

(
2(2r + 1)

cpkt
+
kcp(t− 1)

cb(r + 1)

))
.



From the condition π−1 = B, we get

b = a− b;

cb = (a− b)
(

2(2r + 1)

cpkt
+
kcp(t− 1)

cb(r + 1)

)
.

The conditions a − b = b and 2a = 1 + b show that b = 1/3 and a = 2/3. The
second equation then becomes

cb =
1

3

(
2(2r + 1)

cpkt
+
kcp(t− 1)

cb(r + 1)

)
. (31)

Solving the quadratic for cb and choosing the positive root gives

cb =
2r + 1

3cpkt
+

√(
2r + 1

3cpkt

)2

+
kcp(t− 1)

3(r + 1)
.

ut

The boundary case complexity of the conjugation method is obtained as a
special case of Theorem 1.

Corollary 1 (Boundary Case of the Conjugation Method [4]). Let r =
k = 1. Then for p = LQ(2/3, cp), the runtime of the NFS algorithm is LQ(1/3, 2cb)
with

cb =
1

cpt
+

√(
1

cpt

)2

+
cp(t− 1)

6
.

Allowing r to be greater than k leads to improved asymptotic complexity.
We do not perform this analysis. Instead, we perform the analysis in the similar
situation which arises for the multiple number field sieve algorithm.

Theorem 2 (Medium Characteristic Case). Let p = LQ(a, cp) with a >
1/3. It is possible to ensure that the runtime of the NFS algorithm with the
polynomials produced by Algorithm 1 is LQ(1/3, (32/3)1/3).

Proof. Since a > 1/3, the bound Γ on the product of the norms can be taken to
be the expression given by (13).

The parameter t is chosen as follows. For 0 < c < 1, let

t = ctn

(
lnQ

ln lnQ

)−c
. (32)

Then the expressions given by (29) become the following.

E
2
t d(2r+1) = LQ

(
b+ c, 2cb(2r+1)

kct

)
;

Q
t−1

d(r+1) = LQ

(
1− c, kctr+1

)
.

 (33)



This can be seen by substituting the expression for t in (29) and further by using
the expression for n given in (22). Note that for the asymptotic analysis, t − 1
is also assumed to be given by (32).

Setting 2c = 1−b, the first components of the two expressions in (33) become
equal and so

Γ = LQ

(
b+ c,

2cb(2r + 1)

kct
+

kct
r + 1

)
.

Using this Γ, the expression for π−1 is

π−1 = LQ

(
c, c

(
2(2r + 1)

kct
+

kct
cb(r + 1)

))
.

We wish to choose ct so as to maximise the probability π and hence to minimise
π−1. This is done by setting

2(2r + 1)

kct
=

kct
cb(r + 1)

whence kct =
√

2cb(r + 1)(2r + 1). With this value of kct,

π−1 = LQ

(
c,

2c
√

2cb(r + 1)(2r + 1)

cb(r + 1)

)
.

Setting π−1 to be equal to B = LQ(b, cb) yields

b = c;

cb =

(
2c
√

2cb(r + 1)(2r + 1)

cb(r + 1)

)
.

From b = c and 2c = 1 − b we obtain c = b = 1/3. Using this value of c in the
equation for cb, we obtain

cb =

(
2

3

)2/3

×
(

2(2r + 1)

r + 1

)1/3

.

The value of cb is the minimum for r = 1 and this value is cb = (4/3)1/3. ut

Note that the parameter a which determines the size of p is not involved in any
of the computation. The assumption a > 1/3 is require to ensure that the bound
on the product of the norms can be taken to be the expression given by (13).
The proof of the theorem shows that the generality introduced by k and r does
not affect the overall asymptotic complexity which is the same as that obtained
in [4].

Theorem 3 (Large Characteristic). It is possible to ensure that the run-
time of the NFS algorithm with the polynomials produced by Algorithm 1 is
LQ(1/3, (64/9)1/3) for p ≥ LQ(2/3, (8/3)1/3).



Proof. For 0 < e < 1, let

r =
cr
2

(
lnQ

ln lnQ

)e
. (34)

For the asymptotic analysis, the expression for 2r + 1 is taken to be two times
the expression given by (34). Substituting this expression for r in (29), we obtain

E
2
t d(2r+1) = LQ

(
1− a+ b+ e, 2cbcrcpkt

)
;

Q
t−1

d(r+1) = LQ

(
a− e, 2kcp(t−1)cr

)
.

 (35)

Setting 1 + b = 2(a− e), we obtain

Γ = LQ

(
1 + b

2
,

2cbcr
cpkt

+
2kcp(t− 1)

cr

)
and so the probability π−1 is given by

LQ

(
1− b

2
,

1− b
2
×
(

2cr
cpkt

+
2kcp(t− 1)

crcb

))
.

The choice of cr for which the probability π is maximised (and hence π−1 is
minimised) is obtained by setting

cr
cpk

=

√
t(t− 1)

cb

and the minimum value of π−1 is

LQ

(
1− b

2
,

1− b
2
×
(

4

√
t− 1

tcb

))
.

Setting this value of π−1 to be equal to B, we obtain

b = (1− b)/2;

cb =
1− b

2
×
(

4

√
t− 1

tcb

)
.

The first equation shows b = 1/3 and using this in the second equation, we obtain
cb = (4/3)2/3((t− 1)/t)1/3. This value of cb is minimised for the minimum value
of t which is t = 2. This gives cb = (8/9)1/3.

Using 2(a− e) = 1 + b and b = 1/3 we get a− e = 2/3. Note that r ≥ k and
so p ≥ pk/r = LQ(a, (cpk)/r) = LQ(a − e, (2cpk)/cr). With t = 2, the value of
(cpk)/cr is equal to (1/3)1/3 and so p ≥ LQ(2/3, (8/3)1/3). ut



8 Multiple Number Field Sieve Variant

As the name indicates, the multiple number field sieve variant uses several num-
ber fields. The discussion and the analysis will follow the works [6, 21].

In the single number field sieve algorithm, there are two number fields (say,
the left and the right) and the sieving polynomial φ(x) is to satisfy smooth-
ness conditions on both of these. In the multiple number field sieve variant, the
left number field remains unchanged. The right number field is replaced by a
collection of V number fields. The sieving polynomial φ(x) has to satisfy the
smoothness condition on the left number field as before. On the right side, it
is sufficient for φ(x) to satisfy a smoothness condition on at least one of the
number fields.

Recall that the Algorithm 1 produces two polynomials f(x) and g(x) of
degrees d(r + 1) and dr respectively. The polynomial g(x) is defined to be
Resy(ψ(y), c0(x) + yc1(x)) where ψ(x) = LLL(MB,r), i.e., ψ(x) is defined from
the first row of the matrix obtained after applying the LLL-algorithm to Mb,r.

Methods for obtaining the collection of number fields on the right has been
mentioned in [21]. We adapt one of these methods to our setting. Consider Algo-
rithm 1. Let ψ1(x) be ψ(x) as above and let ψ2(x) be the polynomial defined from
the second row of the matrix MB,r. Define g1(x) = Resy(ψ1(y), c0(x) + yc1(x))
and g2(x) = Resy(ψ2(y), c0(x) + yc1(x)). Then choose V −2 linear combinations
gi(x) = sig1(x) + tig2(x), for i = 3, . . . , V . All the gi’s have degree dr. Asymp-
totically, ‖ψ2‖∞ = ‖ψ1‖∞ = Q1/(d(r+1)). So, all the gi’s have ther L∞ norms to
be the same as that of g(x) given by Proposition 2.

For the left number field, as before let B be the bound on the norms of the
ideals which are in the factor basis defined by f . For each of the right number
fields, let B′ be the bound on the norms of the ideals which are in the factor
basis defined by each of the gi’s. So, the size of the entire factor basis is B+V B′.
The following condition balances the left portion and the right portion of the
factor basis.

B = V B′. (36)

With this condition, the size of the factor basis is 2B and so linear algebra
takes time B2 after ignoring the constant 4. As before, the number of sieving
polynomials is E2 = B2 and the coefficients of φ(x) can take E2/t distinct values.

Let Ψ(Γ, B) be the probability that a random positive integer which is at
most Γ is B-smooth. As noted earlier, this probability is given by the Canfield-
Erdös-Pomerance theorem. Further, if Γ and B are expressed in the L-notation,
then Ψ(Γ, B) can also be expressed in the L-notation.

Let π be the probability that a random sieving polynomial φ(x) gives rise
to a relation. Let π1 be the probability that φ(x) is smooth over the left factor
basis and π2 be the probability that φ(x) is smooth over at least one of the
right factor bases. Further, let Γ1 = Resx(f(x), φ(x)) be the bound on the norm
corresponding to the left number field and Γ2 = Resx(gi(x), φ(x)) be the bound
on the norm for any of the right number fields. Note that Γ2 is determined only



by the degree and the L∞-norm of gi(x) and hence is the same for all gi(x)’s.
Heuristically, we have

π1 = Ψ(Γ1, B);
π2 = VΨ(Γ2, B

′);
π = π1 × π2.

(37)

As before, one relation is obtained in about π−1 trials and so B relations are
obtained in about Bπ−1 trials. Balancing the cost of linear algebra and sieving,
we have as before B = π−1.

The following choices of B and V are made.

E = B = LQ
(
1
3 , cb

)
;

V = LQ
(
1
3 , cv

)
; and so

B′ = B/V = LQ
(
1
3 , cb − cv

)
.

(38)

With these choices of B and V , it is possible to analyse the MNFS variant for
Algorithm 1 for three cases, namely, the medium prime case, the boundary case
and the large characteristic case. Below we present the details of the boundary
case. This presents a new asymptotic result.

Theorem 4 (MNFS-Boundary Case). Let k divide n, r ≥ k, t ≥ 2 and

p = LQ

(
2

3
, cp

)
where cp =

1

n

(
lnQ

ln lnQ

)1/3

.

It is possible to ensure that the runtime of the MNFS algorithm is LQ(1/3, 2cb)
where

cb =
2(r + 1)

3ktcp
− cv +

1

3(cb − cv)

(
2rcb
cpkt

+
kcp(t− 1)

r + 1

)
. (39)



Proof. First note the following computations.

Γ1 = ‖φ‖deg(f)∞ = E2deg(f)/t = E(2d(r+1))/t = E(2n(r+1))/(kt)

= LQ

(
1

3
,

2(r + 1)cb
ktcp

)
;

π−11 = LQ

(
1

3
,

2(r + 1)

3ktcp

)
;

Γ2 = ‖φ‖deg(g)∞ × ‖g‖deg(φ)∞

= E2deg(g)/t ×Q(t−1)/(d(r+1))

= E(2rd)/t ×Q(t−1)/(d(r+1))

= E(2rn)/(kt) ×Qk(t−1)/(n(r+1))

= LQ

(
1

3
,

2rcb
cpkt

+
kcp(t− 1)

r + 1

)
;

π−12 = LQ

(
1

3
,−cv +

1

3(cb − cv)

(
2rcb
cpkt

+
kcp(t− 1)

r + 1

))
;

π−1 = LQ

(
1

3
,

2(r + 1)

3ktcp
− cv +

1

3(cb − cv)

(
2rcb
cpkt

+
kcp(t− 1)

r + 1

))
;

From the condition π−1 = cb, we obtain the following equation.

cb =
2(r + 1)

3ktcp
− cv +

1

3(cb − cv)

(
2rcb
cpkt

+
kcp(t− 1)

r + 1

)
. (40)

We wish to find cv such that cb is minimised subject to the constraint (40). Using
the method of Lagrange multipliers, the partial derivative of (40) with respect
to cv gives

cv =
r + 1

3ktcp
.

Using this value of cv in (40) provides the following quadratic in cb.

(3ktcp)c
2
b − (4r + 2)cb +

(r + 1)2

3ktcp
− (cpk)2t(t− 1)

r + 1
= 0.

Solving this and taking the positive square root, we obtain

cb =
4r + 2

6ktcp
+

√
r(3r + 2)

(3ktcp)2
+
cpk(t− 1)

3(r + 1)
. (41)

Hence the overall complexity of MNFS for the boundary case is LQ
(
1
3 , 2cb

)
.
ut

8.1 Further Analysis of the Boundary Case

In Figure 2, we have plotted 2cb given by Theorem 4 against cp for some values
of t, k and r. The plot is labelled MNFS-New. The figure also shows the plot



of NFS-New which shows the complexity in the boundary case given by The-
orem 1. For comparison, we have plotted the complexities of the GJL and the
Conjugation methods from [4] and the MNFS-GJL and the MNFS-Conjugation
methods from [21].

Based on these plots, we make the following observations.

1. Complexities of NFS-New are never worse than the complexities of NFS-GJL
and NFS-Conj. Similarly, complexities of MNFS-New are never worse than
the complexities of MNFS-GJL and MNFS-Conj.

2. For both the NFS-New and the MNFS-New methods, increasing the value
of r provides new complexity trade-offs.

3. There is a value of cp for which the minimum complexity is achieved. This
corresponds to the MNFS-Conj. Let LQ(1/3, θ0) be this complexity. The
value of θ0 is determined later2

4. Let the complexity of the MNFS-GJL be LQ(1/3, θ1). The value of θ1 was
determined in [21]. The plot for MNFS-New approaches the plot for MNFS-
GJL from below.

5. For smaller values of cp, it is advantageous to choose t > 2 and also k > 1. On
the other hand, for larger values of cp, the minimum complexity is attained
for t = 2 and k = 1.

From the plot, it can be seen that for larger values of cp, the minimum value
of cb is attained for t = 2 and k = 1. So, we decided to perform further analysis
using these values of t and k. Let

C = 2cb = 2

√
cp

3 (r + 1)
+

(3 r + 2)r

36 c2p
+

2 r + 1

3 cp
(42)

Note that C is a function of both cp and r. For each r, we wish to find the value
of cp for which C is minimised. Let us denote this value as C(r). Our aim is to
show that θ0 = C(1); C(r) is monotone increasing for r ≥ 1; and the limiting
upper bound of C(r) is θ1. The analysis below is to establish these facts.

Differentiating C with respect to cp and equating to 0 gives

6
r+1 −

(3 r+2)r
c3p

18
√

cp
3 (r+1) + (3 r+2)r

36 c2p

− 2 r + 1

3 c2p
= 0 (43)

On simplifying we get,

6c3p − (3r + 2)r(r + 1)√(
12c3p + (r + 1)(3r + 2)r

)
(r + 1)

− 2 r + 1

1
= 0 (44)

2 Due to an error in calculation, the value of θ0 determined in [21] was incorrect.



Fig. 2. Complexity plot for boundary case

Equation (44) is quadratic in c3p. On solving we get the following value of cp.

cp =

(
7

6
r3 + 2 r2 +

1

6

√
13 r2 + 8 r + 1

(
2 r2 + 3 r + 1

)
+ r +

1

6

)1/3

= ρ(r) (say) (45)

Putting the value of cp back in (42), we get the minimum value of C (in terms
of r) as

C(r) = 2

√
ρ(r)

3 (r + 1)
+

(3 r + 2)r

36 ρ(r)2
+

2 r + 1

3 ρ(r)
. (46)

All the three sequences in the expression for C(r), viz, ρ(r)
3 (r+1) ,

(3 r+2)r
36 ρ(r)2 and

2 r+1
3 ρ(r) are monotonic increasing. This can be verified through computation (with

a symbolic algebra package) as follows. Let sr be any one of these sequences.
Then computing sr+1/sr gives a ratio of polynomial expressions from which it
is possible to directly argue that sr+1/sr is greater than one. We have done
these computations but, do not present the details since they are uninteresting

and quite messy. Since all the three sequences ρ(r)
3 (r+1) ,

(3 r+2)r
36 ρ(r)2 and 2 r+1

3 ρ(r) are

monotonic increasing so is C(r).



Note that for r ≥ 1,

ρ(r) >

(
7

6

)1/3

r, i.e., ρ(r) > 1.05r. (47)

So, for r > 1,

(3r + 2)r

ρ(r)2
= 3

(
r

ρ(r)

)2

+ 2
r

ρ(r)2
< 3×

(
1

1.05

)2

+ 2× 1

1.05
.

(2r + 1)

ρ(r)
= 2

r

ρ(r)
+

1

ρ(r)
< 2× 1

1.05
+

1

1.05
.

This shows that the sequences (3r+2)r
ρ(r)2 and (2r+1)

ρ(r) are bounded above. For r > 8,

we have

(3r + 1) < (8r + 1) < r2 and

(
2r2 + r +

1

6

)
<
r3

3

which implies that

ρ(r) <

(
7

6
+

1

6
×
√

14× 3 +
1

3

)1/3

r < 1.5 r for r > 8. (48)

Using ρ(r) < 1.5r for r > 8, it can be shown that the sequence
(
ρ(r)
r+1

)
r>8

is

bounded above by 1.5. Since the three constituent sequences ρ(r)
3 (r+1) ,

(3 r+2)r
36 ρ(r)2

and 2 r+1
3 ρ(r) are bounded above, it follows that C(r) is also bounded above. Being

monotone increasing and bounded above C(r) is convergent. Below we determine
its limit.

Claim.

lim
r→∞

C(r) =

(
2× (13

√
13 + 46)

27

)1/3

. (49)

Proof. Since

ρ(r) =

(
7

6
r3 + 2 r2 +

1

6

√
13 r2 + 8 r + 1

(
2 r2 + 3 r + 1

)
+ r +

1

6

)1/3

,

we have

lim
r→∞

ρ(r)

r
=

(
2

6

√
13 +

7

6

) 1
3

(50)

Now,

C(r) = 2

√
ρ(r)/r

3 (1 + 1/r)
+

(3 + 2/r)

36 ρ(r)2/r2
+

2 + 1/r

3 ρ(r)/r
(51)



Hence,

lim
r→∞

C(r) = 2

√
(2
√

13 + 7)1/3

3× 61/3
+

3× 62/3

36 (2
√

13 + 7)2/3
+

2× 61/3

3 (2
√

13 + 7)1/3

= 2

√
36(2
√

13 + 7) + 54

3× 61/3 × 36× (2
√

13 + 7)2/3
+

2× 61/3

3 (2
√

13 + 7)1/3

= 2

√
2(2
√

13 + 7) + 3

3× 61/3 × 2× (2
√

13 + 7)2/3
+

2× 61/3

3 (2
√

13 + 7)1/3

= 2

√
4
√

13 + 17

3× 61/3 × 2× (2
√

13 + 7)2/3
+

2× 61/3

3 (2
√

13 + 7)1/3

= 2

√
(
√

13 + 2)2

3× 61/3 × 2× (2
√

13 + 7)2/3
+

2× 61/3

3 (2
√

13 + 7)1/3

=
2(
√

13 + 2)

62/3 × (2
√

13 + 7)1/3
+

2× 61/3

3 (2
√

13 + 7)1/3

=
61/3

3(2
√

13 + 7)1/3

[
(
√

13 + 2) + 2
]

Thus,

lim
r→∞

C(r) =
61/3(

√
13 + 4)

3(2
√

13 + 7)1/3
=

61/3(61
√

13 + 220)1/3

3(2
√

13 + 7)1/3

=
61/3

3

(
61
√

13 + 220

2
√

13 + 7

)1/3

=
61/3

3

(
61
√

13 + 220

2
√

13 + 7
× 2
√

13− 7

2
√

13− 7

)1/3

=
61/3

3

(
13
√

13 + 46

3

)1/3

=

(
6× (13

√
13 + 46)

3× 27

)1/3

=

(
2× (13

√
13 + 46)

27

)1/3

ut

The limit of C(r) as r goes to infinity is the value of θ1 where LQ(1/3, θ1) is the
complexity of MNFS-GJL as determined in [21]. This shows that as r goes to
infinity, the complexity of MNFS-New approaches the complexity of MNFS-GJL
from below.

We have already seen that C(r) is monotone increasing for r ≥ 1. So, the
minimum value of C(r) is obtained for r = 1. After simplifying C(1), we get the



minimum complexity of MNFS-New to be

LQ

(
1/3,

(
146

261

√
22 +

208

87

)1/3
)

= L (1/3, 1.7116) . (52)

This minimum complexity is obtained at cp = ρ(1) =
(√

22 + 13
3

)1/3
= 2.0819.

Note 1. As mentioned earlier, for r = k = 1, the new method of polynomial
selection becomes the Conjugation method. So, the minimum complexity of
MNFS-New is the same as the minimum complexity for MNFS-Conj. Here we
note that the value of the minimum complexity given by (52), is not same as
the one reported by Pierrot in [21]. This is due to an error in the calculation
in [21]3.

Medimum and large characteristic cases. In a manner similar to that used
to prove Theorem 4, it is possible to work out the complexities for the medium
and large characteristic cases of the MNFS corresponding to the new method.
We have done this and the complexities turn out to be the same as that obtained
in DBLP:conf/eurocrypt/Pierrot15 for the MNFS-GJL (for large characteristic)
and the MNFS-Conjugation (for medium characteristic) methods. Hence, we do
not present these details.

9 Conclusion

In this work, we have proposed a new method for polynomial selection for the
NFS algorithm for fields Fpn with n > 1. The complexity of the resulting NFS
algorithm is parameterised by divisors d of n. For d = 1 or d = n, the obtained
complexities are those of the GJL algorithm and the conjugate method proposed
in [4]. For 1 < d < n, the new method provides new trade-offs not obtained from
earlier methods. The polynomial selection methods of [4] have been applied
to the multiple number field sieve algorithm in [21]. In a similar manner, the
new polynomial selection method proposed in this work has been applied to
the multiple number field sieve algorithm. This leads to new state of the art
complexity for the (M)NFS applied to the boundary case.
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