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Abstract

We prove that a known approach to improve Shamir’s celebrated secret sharing scheme; i.e.,

adding an information-theoretic authentication tag to the secret, can make it robust for n parties

against any collusion of size δn, for any constant δ ∈ (0, 1/2). This result holds in the so-called

“non-rushing” model in which the n shares are submitted simultaneously for reconstruction.

We thus obtain an efficient and robust secret sharing scheme in this model that is essentially

optimal in all parameters including the share size which is k(1 + o(1)) + O(κ), where k is the

secret length and κ is the security parameter. Like Shamir’s scheme, in this modified scheme

any set of more than δn honest parties can efficiently recover the secret.

Using algebraic geometry codes instead of Reed-Solomon codes, we decrease the share length

to a constant (only depending on δ) while the number of shares n can grow independently.

In this case, when n is large enough, the scheme satisfies the “threshold” requirement in an

approximate sense; i.e., any set of δn(1 + ρ) honest parties, for arbitrarily small ρ > 0, can

efficiently reconstruct the secret.

1 Introduction

Secret sharing, introduced by the seminal works of Shamir [Sha79] and Blackley [Bla79], is the

following problem (in its most basic formulation): Suppose we wish to encode and distribute a

secret s ∈ Fk2 among n parties in such a way that i) the n parties can reconstruct the original

secret s by revealing their respective shares; and, ii) for some integer parameter t > 0 (called the

privacy parameter), any group of t parties cannot infer any information about the secret from their

collection of shares. In coding-theoretic terms, the goal is to encode s (using randomness) into a

sequence Y1, . . . , Yn over some alphabet of size Q, in a way that s can be reconstructed from the

encoding and moreover, for any i1, . . . , it ∈ [n], the sequence Yi1 , . . . , Yit has the same distribution

regardless of the message s.
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Shamir proposed a beautiful scheme that provides an optimal solution to the problem. The

scheme regards the secret as an element of the finite field FQ, for some prime power Q ≥ n, and

then samples a uniformly random univariate polynomial of degree t over FQ with the constant

term set to be s. The coding-theoretic interpretation of this solution is that s is amended with t

uniformly random and independent elements of FQ and the result is encoded using a Reed-Solomon

code of length n and dimension t+1. Shamir’s solution works even if the adversary uses an adaptive

strategy; i.e., when each of the query positions i1, . . . , it depends on the observation outcomes at

the previous locations. Adaptive security is a property that is generally sought after for secret

sharing schemes.

Due to its coding-theoretic nature, Shamir’s scheme provides at least two additional benefits.

First, any group of parties is able to recover s as long as the size of the group is larger than t.

This so-called “threshold property” is due to the fact that the Reed-Solomon code is an MDS code.

Second, any Reed-Solomon code of rate R is able to tolerate any fraction of errors up to (1−R)/2

and this can be achieved by an efficient decoder (such as the Berlekamp–Massey decoding algorithm,

cf. [Rot06, Chapter 6]). As a result, a straightforward calculation shows that Shamir’s secret sharing

scheme is robust, in the sense that it can tolerate any less than 1/3 fraction of dishonest parties.

That is, the correct secret s can be reconstructed even if any less than 1/3 fraction of the parties

reveal their shares incorrectly. In fact, this holds true even if the malicious parties are able to

arbitrarily communicate with each other and choose the incorrect shares adversarially.

More strongly, Shamir’s scheme is secure against the so-called “rushing” adversaries. In the

rushing setting (also known as “secret sharing with reconstructor”), reconstruction is done by

each party broadcasting their (possibly corrupted) shares in an order determined by the protocol.

This means that the adversary may attempt to, adaptively, manipulate shares at any point in

the reconstruction phase (up to its allotted budget) based on its (adaptive) observation of up to

t shares as well as all the shares (including those of the honest parties) that are revealed so far.

Naturally, the requirement is then that each party should be able to correctly reconstruct the

secret in isolation, with high probability, from the information received from the n parties. The

error resilience of Shamir’s scheme is based on the minimum distance of Reed-Solomon code, and

thus the power of the adversary is irrelevant for this scheme as long as the number of manipulations

is less than the minimum distance of the code. In fact in the reconstruction phase the adversary may

observe everyone’s shares and then decide which ones to corrupt, and the set of corrupted shares

may or may not overlap with the set of t shares observed by the adversary before reconstruction

(an interesting property that is not in general required in robust secret sharing, but is nevertheless

satisfied by some known constructions that rely on error-correcting codes to provide robustness;

e.g., [SNW15]).
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1.1 Previous work

The robust notion of secret sharing has been studied in the literature, and some of the key results

in the area are summarized in Table 1. It is known that robust secret sharing is impossible when

the fraction of dishonest parties is at least 1/2 [IOS12]. It is also impossible to always reconstruct

the secret correctly (i.e., with probability 1) when the fraction of dishonest parties may be 1/3

or larger, in which case a small probability of error η is unavoidable. Therefore, Shamir’s scheme

provides optimal robustness for a scheme with zero probability of error.

When an honest majority exists, Rabin and Ben-Or [RBO89] provide a secret sharing scheme

based on Shamir’s scheme combined with message authentication codes. The share length q := logQ

in this scheme is, ignoring small terms, k+Ω(n log(1/η)), where η > 0 is the probability of incorrect

reconstruction. In contrast, an appealing feature of Shamir’s scheme is that the shares are compact ;

namely, the bit length of each share is equal to the bit length of the secret (under the natural

assumption that n ≤ 2k). This turns out to be optimal for schemes with perfect privacy satisfying

the threshold property [Sti92].

Another scheme, due to Cramer et al. [CDF01] (and based on [CPS99] and also using Shamir’s

scheme) improves the share length to max{k,O(n+ log(1/η))}. However, the reconstruction time

for this scheme is in general exponential in n (more precisely, at least
(
n
t

)
), and the scheme is

insecure against rushing adversaries (cf. [CFOR12]).

Cevallos et al. [CFOR12] propose a scheme similar to [RBO89] that achieves more compact

shares, namely of length k + O(log(1/η) + n(log n + log k)). This scheme provides efficient share

and reconstruction procedures and is also secure against rushing adversaries.

Jhanwar and Safavi-Naini [JSN13] consider a model in which all parties (including the adversary)

have access to public, shared, randomness. They construct information-theoretically optimal secret

sharing schemes in this model by re-encoding Shamir’s shares using the available public randomness.

This construction achieves the same share length as Shamir’s while providing privacy and robustness

against any collusion of size less than n/2.

Cramer et al. [CDF+08] introduce the notion of algebraic manipulation detection (AMD) codes,

which is a natural variant of error-detection codes in situations where the adversary’s perturbations

on a codeword are chosen independently of the codeword. By using this primitive as a pre-code in

Shamir’s secret sharing scheme (or any secret sharing scheme with linear decoder), they are able

to make the scheme robust against adversarial manipulations. The key difference in their model is

the notion of robustness; i.e., the requirement is that if the adversary corrupts any of the shares,

the reconstruction should detect the adversary and fail (rather than output the correct share) with

high probability.

More recently, Lewko and Pastro [BP14] defined a variation of robust secret sharing in which

the robustness requirement is against local adversaries. That is, the error in each share corrupted

by the adversary can only depend on the particular share being corrupted. Intuitively, this cor-
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responds to the case where a number of adversaries take control of different shares and have to

decide on submitting an incorrect share only based on the local information that they possess (the

adversaries may agree on a strategy beforehand but cannot communicate after observing their re-

spective shares). They show that even in this restricted model, the minimum required share length

is k + log(1/η)−O(1) (under the standard threshold assumption that any set of t+ 1 must recon-

struct the secret with probability at least 1− η). Furthermore, they construct efficient schemes in

the local model that attains a nearly optimal share length of k +O(log(1/η)).

Finally, Safavi-Naini and Wang [SNW15] construct secret sharing schemes based on codes for

the wiretap channel problem for the case n = 2t+ 1. This construction is based on wiretap codes

that are in turn based on list decodable Reed-Solomon codes, subspace-evasive sets and AMD codes,

and attains a share length of k +O(n2(log n)(log logn) + n log(1/η)).

1.2 Our contributions

In this work, we construct an essentially optimal robust secret sharing scheme against possibly

adaptive, but non-rushing, adversaries. Somewhat surprisingly, our construction turns out to be

strikingly similar to some of the known constructions mentioned in §1.1.

More precisely, the construction first amends the secret with a tag using an AMD code (such

as the one in [CDF+08]). Then, it uses Shamir’s scheme to encode the result into mn shares,

Ref. Share length Efficient? Remarks

[Sha79] k Yes Only robust against collusions of size t < n/3

[JSN13] k No Uses public independent randomness.

[CDF+08] k +O(log(1/η)) Yes Only robust in the sense of error detection

[BP14] k +O(log(1/η)) Yes Only secure against local adversaries

[CPS99] k +O(n+ log(1/η)) No

[CFOR12] k + Õ(n+ log(1/η)) Yes Secure against rushing adversaries

[RBO89] k +O(n log(1/η)) Yes Secure against rushing adversaries

[SNW15] k + Õ(n2 + n log(1/η)) Yes Restricted to n = 2t+ 1

This work k(1 + o(1)) +O(log(1/η)) Yes Corollary 15

This work Oρ(1) Yes Reconstruction from any t+ ρn shares,

for any constant ρ > 0, assuming t
n ≤

1
2 − ρ,

large n and η = exp(−Ω(n)) (Corollary 19).

Table 1: Summary of results in robust secret sharing scheme, and their key features and limitations.

The parameter t is the privacy parameter, n is the number of shares and η is the error probability

of reconstruction.
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for a carefully chosen integer parameter m > 1. Finally, the resulting shares are bundled into

n groups of size m each which are distributed among the n parties. In other words, we use a

variant of Shamir’s scheme based on folded Reed-Solomon codes (instead of plain Reed-Solomon

codes) combined with an AMD pre-code. This is very similar to what used in [CDF+08] to provide

robustness in the sense of error-detection, as well as the coding-theoretic construction of Safavi-

Naini and Wang [SNW15] (the latter additionally uses subspace-evasive sets that we do not need).

Combining Shamir’s scheme with some type of information-theoretic pre-code (such as a message

authentication code) can also be seen as the underlying idea of other existing constructions such

as [CDF01].

The techniques that we use are remarkably simple to describe as well. To prove robustness, we

first use an efficient list decoding algorithm of folded Reed-Solomon codes [GR08] to show that the

reconstruction procedure always outputs a short list containing an AMD encoding of the correct

secret. Second, we use an elegant observation by Guruswami and Smith [GS10] that was used

by them to construct “stochastic” error-correcting codes. The observation is that, for any list

decodable code that is linear over some base field, the list of potential messages corresponding to

the any given received word is the translation of the original message by elements of a set that only

depends on the noise vector. In particular, the list of potential messages, shifted by the correct

message, is only determined by the code and the error vector chosen by the adversary. For our

application in secret sharing, privacy of Shamir’s scheme implies that the perturbations of the

adversary, and thus the set of error vectors in the message domain, must be independent of the

original message and the internal randomness of the AMD code. As a result, the error detection

guarantee of the AMD code ensures that, with high probability, all the incorrect potential messages

are correctly identified by the reconstruction procedure so that only the correct secret remains in

the end.

The above sketch can be made precise to prove our main result as follows.

Theorem 1. (Corollary 15, rephrased) Let δ < 1/2 be any fixed constant. For any η > 0, there is

an efficient, robust and perfectly private secret sharing scheme with n shares, secret length k, and

share length q ≤ k(1 + o(1)) +O(log(1/η)) that is secure with privacy parameter t = δn, attaining

a reconstruction error of at most η.

Same as Shamir’s scheme and [SNW15], our result does not necessarily require the observations

of the adversary to coincide or overlap with the set of manipulated shares. In fact, the number of

adaptive observations by the adversary may in general be different from the number of incorrect

shares, and this is allowed as long as the total fraction of observations and incorrect shares add up

to a quantity sufficiently smaller than 1.

Although a share length of at least k bits is necessary for any robust secret sharing scheme

[Sti92] (even against local, or oblivious, adversaries [BP14]), it is possible to obtain smaller shares

at cost of slightly relaxing the threshold property. That is, instead of requiring the secret to be
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reconstructible (either with probability 1 or close to 1) from any set of more than t shares, we may

require reconstructability from any set of more than t+ g shares, for a small “gap” parameter g. A

desirable level for the gap parameter is when g is a small fraction of the number of shares, and it

is reasonable to argue that a secret sharing scheme that attains such a relaxed threshold property

may be of interest to most applications.

We adapt our secret sharing scheme to nonzero gap parameters and, moreover, show that when g

is a small fraction of n, the alphabet size may be reduced to an absolute constant (depending on the

fraction g/n and assuming that t/n is smaller than 1/2 by some constant). This is achieved by using

folded algebraic geometry codes instead of folded Reed-Solomon codes and their corresponding list

decoding algorithms (namely, the state-of-the-art algorithm due to Guruswami and Xing [GX14]).

Using algebraic geometry codes, we can prove the following.

Theorem 2. (Corollary 19, rephrased) For any constant ρ > 0, and any δ ≤ 1/2 − ρ, there is

a constant q = Oρ(1) such that the following holds. There is a robust and perfectly private secret

sharing scheme with n shares, secret length k, and share length O(q), attaining a reconstruction

error of η = exp(−Ω(ρnq)), provided that n ≥ k/(ρq). The scheme satisfies the threshold property

in an approximate sense; namely, that the secret can be reconstructed (with probability 1) given

any set of t+ ρn shares. The scheme is efficient given polynomial (in n) amount of pre-processed

information about the scheme.

The efficiency of this scheme is dictated by the efficiency of the underlying list decoding algo-

rithm for algebraic geometry codes. The encoding and list decoding algorithms in [GX14] that we

use run in polynomial time provided that a polynomial amount of pre-processed information about

the code is available to the algorithms. Naturally, any subsequent improvements in list decoding

algorithms of folded algebraic geometry (and for that matter, folded Reed-Solomon) codes would

automatically improve the performance of the above secret sharing schemes.

Organization. The rest of the article is organized as follows. We explain the notation in §1.3.

Preliminaries, including the exact notion of secret sharing schemes that we use in this work, are

discussed in §2. Our general construction is presented and analyzed in §3. We then instantiate the

construction using folded Reed-Solomon codes in §4.1 and folded algebraic geometry codes in §4.2.

Finally, §4.3 proves optimality of the obtained bounds using a reduction from the wiretap channel

problem.

1.3 Notation

We use dH(x, y) to denote the Hamming distance between two vectors x and y. For a vector

Y = (Y1, . . . , Yn), and i ∈ [n], we use the notation Y (i) to denote Yi. Moreover, for a sequence

W = (W1, . . . ,Wt) ∈ [n]t, we use the notation Y |W := (Y (W1), . . . , Y (Wt)). All logarithms are to
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base two. For a function f and a subset S of the domain of f , we use the notation f(S) to denote

the set {f(s) : s ∈ S}. Moreover for two sets A,B over a group (G,+), we use A + B to denote

{a+ b : a ∈ A, b ∈ B}, and A+ b (for b ∈ G) to denote A+ {b}.

2 Preliminaries

In this section, we describe the basic notions that are used throughout the paper, including the

exact definition of robust secret sharing schemes that we use. The general notion of coding schemes

is defined as follows.

Definition 3 (coding scheme). A pair of functions (Enc,Dec) where Enc : Fk2 × F`2 → Fn2q , and

Dec : (F2q ∪ {⊥})n → Fk2 ∪ {⊥} is called a coding scheme if for all s ∈ Fk2 and all z ∈ F`2, we have

Dec(Enc(s, z)) = s. The function Enc and Dec are respectively called the encoder and the decoder,

and parameters k and q are respectively called the message length and the symbol length. We

use the notation Enc(s) to denote the random variable Enc(s, Z) when Z is sampled uniformly at

random from F`2. The coding scheme is called efficient if Enc,Dec can be computed in polynomial

time in nq. The rate of the coding scheme is the quantity k/(nq). The coding scheme is binary if

q = 1.

Using the above definition, we may now define robust secret sharing schemes as a coding scheme

satisfying the privacy and robustness requirements.

Definition 4 (robust secret sharing scheme). A robust secret sharing scheme with secret length

k, share length q, and number of shares n is a coding scheme (Share,Rec) with message length k,

symbol length q and block length n satisfying the following.

1. Adaptive privacy: For a parameter t (known as the privacy parameter), and for any

“secret” s ∈ Fk2, an adversary who (possibly adaptively) observes any up to t of the shares

gains (almost or absolutely) no information about the secret s. More formally, for a Y ∈ Fn2q ,
and a parameter t, we define an observation strategy as follows. The strategy is specified by

an observation sequence W = (W1, . . . ,Wt), where each Wi ∈ [n] is distinct and determined

as a function of Y (W1), . . . , Y (Wi−1). The observation outcome with respect to Y is then the

string Y |W . The privacy requirement is that for every observation strategy as above, there is

a distribution D over Ft2q such that, for every s ∈ Fk2, letting Y := Share(s), the distribution

of the observation outcome Y |W is ε-close in statistical distance1 to D. The scheme satisfies

perfect privacy if ε = 0.

1 The statistical distance between two distributions D and D′ over a finite support Ω is defined as dist(D,D′) :=
1
2

∑
x∈Ω |D(x) − D′(x)| and the two distributions are said to be ε-close (denoted by D ≈ε D′) if dist(D,D′) ≤ ε. In

this work, we focus on perfect privacy; i.e., ε = 0.
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2. Robustness: For a parameter d (known as the robustness parameter), an adversary who

arbitrarily corrupts up to any d of the shares (possibly after adaptively observing any t of

the shares) cannot make Rec output an incorrect secret with probability more than η. More

formally, consider any observation strategy resulting in an observation sequence W . Then,

for any s ∈ Fk2 the following must hold. Let Y := Share(s), and suppose an adversary is given

(W,Y |W ) and accordingly chooses an error vector ∆ ∈ Fn2q of Hamming weight at most d.

Then it must be that, for some robustness error parameter η ≥ 0,

Pr(Rec(Y + ∆) 6= s) ≤ η,

where the probability is taken over the internal randomness of Share. The scheme satisfies

perfect robustness if η = 0.

The quantity log(1/max{η, ε}) is called the security parameter of the scheme. We say the

scheme satisfies the threshold property with gap g if the following holds for all s ∈ Fk2 and all sets

S ⊆ [n] of size at least t+ g + 1. Let Y := Share(s) and Y ′ ∈ (F2q ∪ {⊥})n be so that Y ′|S = Y |S
and Y ′(i) =⊥ for all i ∈ [n] \ S. Then, it must be that

Pr(Rec(Y ′) 6= s) ≤ η,

where the probability is taken over the internal randomness of Share. That is, the correct secret

can be reconstructed correctly from any set of t + g + 1 shares. If g = 0, we say that the scheme

satisfies a sharp threshold.

An important notion that we use in our constructions is the notion of algebraic manipulation

detection (AMD) codes, defined as follows.

Definition 5 (AMD code). [CDF+08] A binary coding scheme (Enc,Dec) with message length k

and block length n is an AMD code with error η if for every message s ∈ Fk2 and every ∆ ∈ Fn2 , we

have

Pr(Dec(Enc(s) + ∆) /∈ {s,⊥}) ≤ η,

where the probability is taken over the internal randomness of Enc.

The following result is shown in [CDF+08], which we shall use in our constructions. Although,

as stated in [CDF+08], the coding scheme is only defined for infinitely many values of the message

length k, it can be extended to all integers k > 0 by trivial padding techniques without any loss in

the asymptotic guarantees.

Theorem 6. [CDF+08] For every k and parameter η > 0, there is an efficient AMD code with

message length k and encoder of the form

Enc(s, z) = (s, z, f(s, z))

for some f : Fk2 × F
q
2 → F

q
2 such that q = O(log(1/η)).
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The notion of folded codes, following a line of work in algebraic list decoding (originally defined

in [GR08]) is the following. Intuitively, a folded code is obtained from an error-correcting code

by bundling groups of codeword symbols into “packets” of a certain size, thereby increasing the

effective alphabet size in favor of better error resilience guarantees.

Definition 7. Let C ⊆ FnmQ be a code with message length km. The folded C at level m is the

code C′ ⊆ FnQm (with alphabet size Qm) defined as

(c1, . . . , cn) ∈ C′ ⇐⇒ ((c1(1), . . . , c1(m)), . . . , (cn(1), . . . , cn(m)) ∈ C,

where ci ∈ FQm and (ci(1), . . . , ci(m)) is a natural embedding of ci ∈ FQm into FmQ . Intuitively, the

code C is obtained by writing each symbol in C′ as a length m vector over FQ.

3 The construction

The following is the main technical tool used by our constructions, in which we prove that a

combination of AMD codes with (folded) linear list decodable codes can be used to construct

robust secret sharing schemes.

Theorem 8. There is a constant c0 > 0 such that the following holds for any integer k > 0 and

parameter η > 0. For some Q = 2q and m | q, let C ⊆ FnQ be an explicit FQ1/m-linear code with

rate R that is efficiently list decodable from any δ fraction of errors with list size bounded by L and

has minimum distance d > δn. Moreover, suppose C has a sub-code C′ ⊆ FnQ that, over FQ1/m, is

linear with dual distance at least tm+ 1 and rate R′ ≤ R− 1/n satisfying

(R−R′)nq ≥ k + c0 log(L/η). (1)

Then, there is an efficient and perfectly private robust secret sharing scheme (Share,Rec) with secret

length k and n shares, share length q, privacy parameter t, robustness δn, and robustness error η.

Moreover, the scheme satisfies the threshold property with gap g = n− t− d.

Proof. Let η′ := η/L. We first instantiate the AMD code of Theorem 6 for message length k and

block length

n0 = k +O(log(1/η′)) ≤ k + c0(log(L/η))

for some constant c0 > 0. Let (Enc0,Dec0) be the resulting AMD coding scheme.

We can write the code C as a direct sum C = C′ + C′′ of complementary codes, where C′′ ⊆ FnQ
is an FQ1/m-linear sub-code of C of rate R − R′ > 0. For the sake of clarity in the sequel we use

C0, C′0 ⊆ (FQ1/m)nm to be the codes C, C′, respectively, when regarded as subspaces of (FQ1/m)nm

(in other words, C0, C′0 are the unfolded representations of C, C′). Recall that C0, C′0 are linear codes

over FQ1/m .
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Let f : Fn0
2 → C′′ be any efficient and F2-linear invertible function. Such a function exists since

log2 |C′′| = (R − R′)nq ≥ n0 by (1). Note that there is also an efficiently computable F2-linear

projection f ′ : FnQ → Fn0
2 such that for any w ∈ C′, and any x ∈ Fn0

2 , we have f ′(w + f(x)) = x.

We define the secret sharing scheme (Share,Rec) as follows:

• Share: Given s ∈ Fk2, Share(s) first computes S′ := Enc0(s). Then, it samples a Z ∈ FnQ
according to the uniform distribution on C′ and outputs Y := f(S′) + Z.

• Rec: Given Y ′ ∈ FnQ, the procedure Rec(Y ′) first uses the list decoding algorithm of C to

compute a list M ⊆ FnQ of size at most L consisting of all codewords of C that agree with

Y ′ in at least 1 − δ fraction of the positions. Let M ′ ⊆ Fn0
2 be the set M ′ := f ′(M). If the

set Dec0(M ′) \ {⊥} contains only one element, the algorithm outputs the unique element.

Otherwise, the algorithm returns ⊥.

Let Y = Share(s) denote the correct shares and Y ′ ∈ FnQ be the perturbation of Y according

to the strategy of the adversary. Note that Y is always a codeword of C. Furthermore, we are

guaranteed that Y ′ differs from Y in at most δn positions (chosen arbitrarily according to the

observation of the adversary). Since the minimum distance of C is larger than δn and since C
is a linear code, given Y ′ the decoder can efficiently check whether Y = Y ′ and make sure that

|M | = 1 if this is the case, so that there are no ambiguities when no perturbations occur (e.g.,

using the parity check matrix of C). Since Dec0(Enc0(s)) = s with probability 1, it follows that

Rec(Share(s)) = s with probability 1 as well. Therefore, it follows that (Share,Rec) is indeed a valid

coding scheme.

In order to see the privacy requirement, we observe that since C′0 has dual distance greater

than tm and Z ∈ FnQ is a uniformly random codeword of C′ (and thus, of C′0 when unfolded), the

vector Z is (tm)-wise independent over (FQ1/m)nm (and t-wise independent over FnQ). That is,

restriction of Z ∈ FnQ to any t coordinate positions (that may be chosen adaptively) is uniformly

distributed on FtQ. Therefore, since Z is independent of the randomness of the AMD code, we see

that regardless of the message s (and even more generally, conditioned on any particular outcome

of S′), the encoding Y = f(S′)+Z is t-wise independent. This guarantees that the adversary gains

no information about s (and in fact S′) by observing any up to t of the shares (note that this is

true even if the adversary’s strategy may depend on s, see Remark 10 below).

In order to verify the threshold property, we first verify that n − t − d ≥ 0. In order to

see this, note that by the Singleton bound [Rot06, §4.1], and since dim C′0 < dim C0, we have

tm + 1 ≤ nm − dim C′⊥0 + 1 = dim C′0 + 1 = R′nm + 1 ≤ Rnm −m + 1. Again by the Singleton

bound, we have Rn ≤ n−d+1, which combined with the previous bound gives t ≤ n−d. Now, since

the minimum distance of C is d, the vector Y can be uniquely recovered (in fact, with probability

1) from any set of n− d+ 1 shares. Therefore, since the privacy parameter is t, we obtain a gap of

g = (n− d+ 1)− t− 1 = n− d− t.
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Finally, we verify the robustness property. Let the random variable V denote the view of the

adversary after (possibly adaptively) observing up to t shares. That is, V specifies the sequence of

coordinate positions observed by the adversary (possibly adaptively and even given the knowledge

of s) and the value of shares at each one of those positions. In the sequel, we consider the conditional

probability space in which V attains a specific value v; i.e., we condition all random variables on

V = v. Our goal is to show that under any such conditioning, the robustness guarantee is satisfied.

Observe that because of the privacy argument, the two random variables V and S′ (where we recall

that S′ = Enc0(s) via the AMD code) are independent. Therefore, the distribution of S′ remains

unchanged under the conditioning V = v.

Now suppose given the observation V = v (and possibly the secret s), the adversary picks a

fixed error vector ∆ ∈ FnQ of Hamming weight at most δn and perturbs Y to Y ′ = Y + ∆ (if the

adversary picks ∆ according to a randomized function of v, we may use the following argument for

any fixing of the internal randomness of the adversary; i.e., we may add the adversary’s randomness

to the conditioning).

We now follow an argument similar to Guruswami and Smith [GS10] to complete the robustness

analysis. Let MY,∆ denote the set of all codewords of C that differ from Y ′ in at at most δn

coordinate positions. That is,

MY,∆ := {c ∈ C : dH(c, Y + ∆) ≤ δn}

= {c ∈ C : dH(Y + c,∆) ≤ δn}

= Y + {c ∈ C : dH(c,∆) ≤ δn}, (2)

where the last equality is due to the linearity of the code C. Recall that S′ = f ′(Y ) where f ′ is

an F2-linear projection function. Now, we apply f ′ on every element of MY,∆ to obtain the set

M ′ ⊆ Fn0
2 that using (2) can be written as follows.

M ′ := f ′(MY,∆)

= f ′(Y ) + {f ′(c) : c ∈ C ∧ dH(c,∆) ≤ δn}

= S′ + {f ′(c) : c ∈ C ∧ dH(c,∆) ≤ δn}.

Observe that, by the above derivation, the set S′ + M ′ is completely determined by the code C
and the fixed shift vector ∆ and is otherwise independent of Y and, importantly, the internal

randomness of the AMD encoder Enc0.

Recall that the reconstruction function Rec applies Dec0 on all elements of M ′ and outputs a

unique valid decoding if it exists (and otherwise, outputs ⊥). In other words, reconstruction is

successful if and only if |Dec0(M ′) \ {⊥}| = 1 (observe that it is already guaranteed that S′ ∈ M ′

according to list deocdability of C which ensures that the correct codeword is always on the list).

Let ∆′ ∈ S′ +M ′ be any shift vector according to M ′. Observe that

Pr(Dec0(S′ + ∆′) /∈ {S′,⊥}) ≤ η′ (3)

11



from the definition of AMD codes. Here, the probability is taken under the conditioning V =

v, which we have shown to not affect the internal randomness of the AMD encoder (i.e., the

distribution of S′ remains unchanged under the conditioning V = v). Therefore, by a union bound,

Pr(|Dec0(M ′) \ {⊥}| 6= 1) ≤ |M ′|η′ ≤ Lη′ = η,

which concludes the robustness analysis. Observe that (3) in fact shows that, with probability at

least 1− η, the decoder never outputs any secret other than the correct s (if it does not output ⊥).

This is an interesting property as pointed out in Remark 11 below.

Remark 9. The minimum distance bound d > δn in Theorem 8 is only used to make sure that

the scheme (Share,Rec) is a valid coding scheme; i.e., that Pr(Rec(Share(s)) = s) = 1. If instead

one wishes to have Pr(Rec(Share(s)) = s) ≥ 1 − η (or if C has a decoder that produces a list of

size 1 given a correct codeword), this requirement can be eliminated.

Remark 10. As mentioned in the proof of Theorem 8, the theorem holds even if the adversary’s

observation and perturbation strategies depend on the secret s. This is a property that also holds

true for the original Shamir’s scheme.

Remark 11. As observed in the end of the proof of Theorem 8, the secret sharing scheme of

Theorem 8 never outputs a wrong secret (except with probability at most η). That is, even if the

fraction of adversarial perturbations exceeds the designated parameter δ and the scheme fails to

reconstruct the correct share s, it has to fail with probability at least 1 − η. This is an appealing

property that is not present in Shamir’s original secret sharing scheme.

4 Instantiations

4.1 Construction based on Reed-Solomon codes

In this section, we instantiate Theorem 8 using folded Reed-Solomon codes. When folding (Defini-

tion 7) is instantiated to the special case of Reed-Solomon codes, we have the following definition

of folded Reed-Solomon codes.

Definition 12. Let q be a prime power. A folded Reed-Solomon code with block length n, alphabet

size Qm and message length k can be specified as the image of an encoder Enc : (FmQ )k → (FmQ )n

where Enc(f) interprets the input f as a polynomial of degree mk−1 over FQ and outputs a vector

(F1, . . . , Fn) (where Fi ∈ FmQ ) such that Fi = (f(αi,1), . . . , f(αi,m)) and the sequence (αi,j : i ∈
[n], j ∈ [m]) is a sequence of distinct evaluation points over FQ explicitly specified by the code

design. Rate of the folded Reed-Solomon code is k/n, and the code is linear over FQ.

12



As shown in [GR08], folded Reed-Solomon codes attain an optimal trade-off between rate and

list decoding radius. Specifically, the following is the main result proved2 in [GR08].

Theorem 13. [GR08, follows from Theorem 4.3] For any prime power p, integers n > k > 0 and

integer c ≥ 1 and constant parameter ρ > 0, there is an Fp-linear folded Reed-Solomon code with

message length k and block length n such that for some L = nO(log2(1/ρ)/ρ2) and δ ≥ 1 − k/n − ρ,

the following hold: (1) The code is list decodable from any δ fraction of errors with list size at most

L; (2) The alphabet size of the code is equal to Lc; (3) The code is linear over Fp.

We now apply the above result in Theorem 8 to obtain the main result of this section, as follows.

Theorem 14. For every integers n > t ≥ 1, g ≥ 0 and real parameters δ, ν, η > 0 such that

ρ := 1− δ − t+ g + 1

n
> 0

there is a q0 = O( log2(1/ρ)
νρ2 log n) such that for any integer q ≥ q0 the following holds. There is

an efficient and perfectly private secret sharing scheme (Share,Rec) with n shares, share length q,

privacy parameter t, threshold property with gap g, and secret length k satisfying k ≥ (1 +g−ν)q−
O(log(1/η)). Moreover, the scheme achieves a robustness parameter of δn and robustness error η.

Proof. Let c := bc0/νc, where c0 is the constant from Theorem 8. Let C ⊆ FnQ be an F2-linear

folded Reed-Solomon code, as obtained by Theorem 13, of length n, message length k′ := t+ g+ 1,

rate R := k′/n, alphabet size Q = Lc for some L = nO(log2(1/ρ)/ρ2) that is list decodable from any

δ = 1−R− ρ fraction of errors with list size bounded by L.

We instantiate Theorem 8 with the code C to obtain a secret sharing scheme (Share,Rec) with

share length q := logQ = c logL = O( log2(1/ρ)
νρ2 log n). We now verify that the requirements of

Theorem 8 are satisfied.

First, note that since any folded Reed-Solomon code is on the Singleton bound, the distance d

of C satisfies d = n− k′ + 1 = (1−R)n+ 1 > (δ + ρ)n > δn.

Let EncC : Fk
′
Q → FnQ be the natural encoder for the code C. That is, EncC interprets the input

as a univariate polynomial f of degree k′m− 1 over a subfield of FQ of size Q1/m, for some integer

m > 0, and evaluates f at nm points, interpreting the result as n points over FQ, each consisting of

a bundle of m evaluations (cf. Definition 12). We set the sub-code C′ needed by Theorem 8 to be the

code obtained by setting the last k′− t (among the total of k′) of the inputs of EncC to be zeros (in

algebraic terms, we take the subcode C′ to be the folded Reed-Solomon code formed by the space of

univariate polynomials, over FQ1/m , of degree at most tm−1). Thus, the subcode C′ (as a code over

2 As stated in [GR08], the result is not shown for all choices of the block length n. However, trivially one can

obtain a family of codes for all block lengths by adding additional evaluation points that are not used by the decoder,

without incurring an adverse effect in the asymptotic bounds.
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FQ1/m) is a Reed-Solomon code of dimension tm and dual distance nm− (nm− tm) + 1 = tm+ 1.

Moreover, the rate R′ of C′ is equal to t/n = (k′ − g − 1)/n ≤ R− 1/n, and we thus have

(R−R′)nq = (k′ − t)q = (g + 1)q,

which, by (1) in the statement of Theorem 8, we wish to be at least

k + c0 log(L/η) = kc0 log(1/η) +
c0

c
q ≥ kc0 log(1/η) + νq.

Therefore, by choosing k to be the largest integer satisfying the above, we may ensure that k ≥
(g + 1− ν)q −O(log(1/η)) as desired.

Finally, to verify the threshold property, by Theorem 8 we have that the gap achieved by the

code is upper bounded by n− t− d = n− t− (n− k′ + 1) = g.

For the important special case of δ = t/n and g = 0 we derive the following immediate corollary

from Theorem 14.

Corollary 15. Let δ < 1/2 be any fixed constant. For every integer n > 1/(1−2δ) and parameters

η > 0 and ν > 0, there is an efficient and perfectly private secret sharing scheme (Share,Rec) with

n shares, share length q = Oν(log n), and secret length k ≥ q(1 − ν) − O(log(1/η)). The scheme

attains a sharp threshold, privacy and robustness δn, and robustness error η.

4.2 Reducing the share length using algebraic geometry codes

A slight drawback of the result in Corollary 15 is that the share length grows with the number of

shares (i.e., q → ∞ as n → ∞). This is a direct consequence of the fact that the alphabet size

of a Reed-Solomon must grow with its block length. In order to resolve this issue, we instantiate

Theorem 8 with a family of folded algebraic geometry (AG) codes as described in [GX14]. As we

see in this section, for any fixed δ < 1/2, this results in a secret sharing scheme with privacy and

robustness δn and constant alphabet size (depending on 1− 2δ).

Theorem 16. [GX14, Theoren 4.3] For any ρ > 0 and a real R ∈ (0, 1), one can construct a

folded algebraic geometry code over alphabet size Q = (1/ρ)O(1/ρ2) with rate at least R and decoding

radius δ = 1 − R − ρ such that the length n of the code tends to infinity and is independent of ρ.

Moreover, the code is deterministically list decodable with a list size O(n1/ρ2
). Given a polynomial

(in n) amount of pre-processed information about the code, the algorithm runs in deterministic

polynomial time.

Theorem 17. Let c0 be the constant from Theorem 8. For any constants ρ, δ > 0, there is an

integer q = Θ(log(1/ρ)/ρ2) and n0 = (1/ρ)O(1) such that for all integers t, k and n ≥ n0 and real
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parameter η > 0 that satisfy

k

qn
+
t

n
+ δ ≤ 1− ρ− c0

log(1/η)

nq
(4)

the following holds. There is an efficient and perfectly private secret sharing scheme (Share,Rec)

with n shares, share length q, privacy parameter t and secret length k. Moreover, the scheme

achieves a robustness parameter of δn and error η, and satisfies the threshold property with gap

at most n(1 − t
n − δ). The scheme is efficient given polynomial (in n) amount of pre-processed

information about the scheme.

Proof. The proof is similar to that of Theorem 14, but uses the folded algebraic geometry codes of

Theorem 16 instead of folded Reed-Solomon codes.

Let ρ′ = Θ(ρ) to be a parameter to be determined later. Let C be a folded algebraic geometry

code of length3 n and rate R = 1− δ− ρ′ over alphabet size Q = (1/ρ)Θ(1/ρ2) that is list decodable

from any δ fraction of errors with list size L = O(n1/ρ′2). Let k′ := Rn be the message length of C.
We apply Theorem 8 on this code to obtain a secret sharing scheme (Share,Rec) with n shares of

length q = logQ = Θ(log(1/ρ)/ρ2). Now we set up the parameters so as to satisfy the requirements

of Theorem 8.

We observe that the construction of Theorem 16 uses function fields over Garcia-Stichtenoth

towers, and the setup of the parameters is so that the genus G of the function field can be made to

be at most ρ′nm, where m is the depth of folding, or in other words, nm is the block length of the

code before folding. Therefore, by the Riemann-Roch Theorem ([Sti09, Theorem 1.5.15 combined

with Corollary 2.2.3]), the minimum distance of C is greater than n− k′ −G/m ≥ n− k′ − ρ′n =

n(1−R− ρ′) = δn.

Let C0 ⊆ (FQ1/m)nm to be the unfolded representation of C (thus C0 is the original, unfolded,

algebraic geometry code). As is the case with Reed-Solomon codes, one can identify a subcode

C′ ( C0, over the same function field as C0, of dimension t′ := tm + d2ρ′nme + 4 over FQ1/m . Let

R′ be the rate of C′. We will have R′ ≤ R− 1/n assuming that t′ ≤ (k′ − 1)m. The dual of C′ has

dimension nm − dim(C′) = nm − t′ and, by [Sti09, Theorem 2.2.7 combined with Corollary 2.2.3

and Proposition 2.1.8], minimum distance at least

dim(C′)− 2G− 3 = t′ − 2G− 3 ≥ t′ − 2ρnm− 3 > tm.

In order to satisfy (1), noting that

(R−R′)nq ≥ (1− δ− ρ)nq− t′q/m ≥ nq
(
1− δ− ρ′ − tm+ 2ρ′nm+ 5

mn

)
≥ nq(1− δ− t

n
− 3ρ′ − 5),

3Even though Theorem 16 constructs codes for infinitely many choices of n, without loss of generality one can

assume that there is a code for every n. Since the set of block lengths for which the family contains a code is

sufficiently dense, this can be ensured by trivial padding without any loss in the asymptotic parameters.
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it suffices to ensure that

k

nq
+
t

n
+ δ +

c0 log(1/η)

nq
≤ 1− 3ρ′ − 5 + c0 logL

nq
. (5)

Recall that logL ≤ (1/ρ′2) log n + O(1). Thus by choosing an appropriate n0 = (1/ρ)O(1) and

ensuring that n ≥ n0, and ρ′ ≤ ρ/4 we can make the right hand side of (5) at least 1 − ρ.

Consequently, assuming (4), i.e.,

k + c0 log(1/η)

nq
+
t

n
+ δ ≤ 1− ρ,

we have (5) and, in turn, (1).

Finally, by Theorem 8, the scheme satisfies the threshold property with gap g = n − t − d ≤
n(1− t

n − δ), as desired.

From this result, we obtain the following corollary.

Corollary 18. For any constants δ, γ, ρ > 0, there is a q0 = O(log(1/ρ)/ρ2) and n0 = O(1/ρ) such

that for all integers c ≥ 1, the following holds. Let q := cq0. For any integers k > 0, n ≥ n0, and

parameter η > 0 such that
k

qn
+ γ + δ ≤ 1− ρ, (6)

There is a perfectly private secret sharing scheme (Share,Rec) with n shares, secret length k, share

length q, privacy parameter at least γn, and threshold property with gap at most n(1 − δ − γ).

Moreover, the scheme achieves a robustness parameter of δn and error η = exp(−Ω(ρnq)). The

scheme is efficient given polynomial (in n) amount of pre-processed information about the scheme.

Proof. We simply apply Theorem 17 with constant ρ′ := ρ/2 (for the parameter ρ required by

Theorem 17) to obtain a secret sharing scheme (Share,Rec) with cn shares, secret length k, share

length q0 = O(log(1/ρ)/ρ2), robustness δcn, and privacy parameter t := dγcne.
Let c0 be the constant from Theorem 8. We choose the error parameter η = exp(−Ω(ρnq)) so

that c0 log(1/η) ≤ ρnq/2− 1, and thus

k

qn
+

t

cn
+ δ + c0

log(1/η)

nq
≤ 1− ρ′

as needed by Theorem 17. Next, we bundle disjoint groups of c shares into shares of length cq0 = q,

thus obtaining a scheme with n shares of length q and the desired parameters.

Corollary 18, in turn, immediately implies the following result on robust secret sharing with

privacy and robustness parameter δn for any δ < 1/2.
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Corollary 19. For any constant ρ > 0, and any δ ≤ 1/2− ρ, There is a q0 = O(log(1/ρ)/ρ2) such

that for any q ≥ q0 and integers k > 0 and n ≥ k/(ρq), the following holds. There is a perfectly

private secret sharing scheme (Share,Rec) with n shares, secret length k, and share length at most

2q. The scheme attains privacy and robustness parameters equal to δn and error η = exp(−Ω(ρnq)),

and satisfies the threshold property with gap at most 2ρn. The scheme is efficient given polynomial

(in n) amount of pre-processed information about the scheme.

Compared with the result of Corollary 15 obtained from Reed-Solomon codes, we see that the

share length q can be chosen to be a constant (depending on the difference 1/2 − δ), and at the

same time the number of shares can be made arbitrarily large as well. However, for this to be

possible when the designed share length is small, the number of shares n needs to be large enough4

so that n ≥ k/(ρq) . In Section 4.3 we show that this is necessary for any robust secret sharing

scheme with share length q that attains privacy and robustness parameters close to n/2.

4.3 Optimality

In this section we briefly demonstrate that, for a general share length q, a robust secret sharing

scheme satisfying (6) for arbitrarily small ρ > 0 is essentially optimal (even if the threshold property

is not a concern). This can be shown by a straightforward reduction from the wiretap channel

problem.

In the wiretap channel problem [Wyn75, CK78], the goal is to construct a coding scheme to

encode a secret S ∈ Fk2 to an encoding Y ∈ FnQ that is transmitted over a main channel to a

recipient. The encoding is additionally sent to an adversary over a wiretap channel that has a

smaller channel capacity compared to the main channel. The secrecy requirement of the problem

is that the adversary should not learn any information about the secret from the wiretap channel’s

observation, whereas the recipient observing the main channel should be able to reconstruct the

correct secret (with probability at least 1 − η for arbitrarily small η > 0). There are various

formulations of the problem that differ in the following aspects:

1. Whether the reconstruction and secrecy requirements are defined with respect to a uniformly

random secret S or, more stringently, the worst case secret,

2. The choice of the main and wiretap channels, and

3. The notion of secrecy. In weak secrecy, the requirement is the mutual information security

(cf. [BTV12]) of the form

I(S;Y ′) ≤ εk,
4 Note such a requirement is not a barrier for the Reed-Solomon based constructions such as Shamir’s scheme and

the result of Theorem 14, since we have q ≥ k in those schemes.
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where Y ′ is the wiretap channel’s output, for arbitrarily small ε > 0. A much stronger notion

is semantic security (formalized in [BTV12]) which requires that there must be a distribution

D, determined by the coding scheme, such that for every fixed secret s ∈ Fk2, the wiretap

channel’s output is statistically ε-close to D.

An important parameter to characterize is the secrecy capacity in this model, which is the highest

achievable rate R := k/(qn) by a coding scheme satisfying the above-mentioned reconstruction and

secrecy requirements. For our reduction, the main channel is the Q-ary erasure channel, where

Q := 2q, with erasure probability p and, moreover, the wiretap channel is the Q-ary symmetric

channel with error probability p′, for given parameters p and p′. In this case, it is known that the

secrecy capacity even with respect to a random secret and weak secrecy requirement is the difference

between capacities of the two channels [CK78, LYC77], which is equal to (1− hQ(p′))− (1− p) =

p− hQ(p′) ≤ p− p′, where hQ(·) is the Q-ary entropy function.

It is immediate that a robust secret sharing scheme (as formulated in Definition 4) satisfies

the requirements of the wiretap channel problem formulated above, provided that the robustness

parameters is set to be δn := (p′ + ρ′)n, for an arbitrarily small ρ′ > 0, and the privacy parameter

is set to be t := d(1− p+ ρ′)ne.
In fact a secret sharing scheme is a stronger object than needed since it allows for the erasure

positions and also perturbations to be adaptively chosen by the adversary. Moreover, it provides

secrecy for worst-case secrets as well as semantic security (in fact, recall that our constructions

achieve perfect secrecy; i.e., semantic security with ε = 0).

By Chernoff bounds, the probability η′ that the fraction of erasures for the adversary is less than

p−ρ′ or the fraction of perturbations in the direct channel is more than p′+ρ′ is exponentially small

(i.e., at most η′ = exp(−Ω(n)) for any ρ′ > 0 that is a constant). It follows that the correctness

requirement of the wiretap channel problem can be satisfied with error at most η + η′ = o(1)

(provided that η = o(1)) and, moreover, semantic secrecy is also satisfied with a statistical error of

ε ≤ η′ (where the choice of D would be the uniform distribution over FtQ).

Since the secrecy capacity of the above wiretap channel problem is at most p − p′, it must be

that, defining γ := t/n,
k

qn
≤ p− p′ ≤ 1− γ − δ + (2ρ′ + o(1)).

Thus the bound obtained in (6) is the best to hope for.
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