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Abstract. Security parameters and attack countermeasures for Lattice-based cryp-
tosystems have not yet matured nearly to the level that we now expect from RSA
and Elliptic Curve implementations. Many modern Ring-LWE and other lattice-
based public key algorithms require high precision random sampling from the
Discrete Gaussian distribution. We examine stated requirements of precision of
Gaussian samplers, where statistical distance to the theoretical discrete Gaussian
distribution is expected to be below 2−90. We note that for lightweight targets
the sampling procedure often represents the biggest implementation bottleneck
due to its memory and computational requirements. We argue that this precision
is excessive and give precise arguments from distribution identity testing theory
why a square root precision of the security parameter is almost always sufficient
if we can ignore the distribution tail. We also observe that many of the proposed
algorithms for discrete Gaussian sampling are not constant-time or straight-line
programs and leak significant amounts of secret information in easily mounted
timing attacks.

Keywords: Gaussian Sampling, Timing attacks, Lattice Side-Channel Attacks, Quan-
tum Resistant Cryptography.

1 Introduction

With the recent announcement of a pending quantum-resistant suite of cryptographic
algorithms for U.S. Government use [1,19], renewed interest has been placed on various
Quantum-Resistant Cryptography (QRC) primitives that do not rely on (Elliptic Curve)
Discrete Logarithm or Integer Factorisation (RSA) problems. New quantum-resistant
algorithms can be soon expected to enter the realm of payment systems, identification
methods, and mainstream communications security. However, in the words of the CESG
team that created – and then broke via quantum methods – a lattice-based algorithm
named Soliloquy [4]:

One conclusion of this work is that designing quantum-resistant cryptography
is a difficult task. [..] As of late 2014, when novel types of quantum-resistant
cryptography are being developed for real-world deployment, we caution that
much care and patience will be required to ensure that each design receives a
thorough security assessment.

⋆ This work was funded by the European Union H2020 SAFEcrypto project (grant no. 644729).



Most modern Ring-LWE and other lattice-based cryptographic algorithms require vari-
ables to be sampled from the Discrete Gaussian distribution. For many implementa-
tions the sampling procedure represents the biggest performance bottleneck due to its
memory or computational requirements. This is especially the case for embedded or
lightweight targets such as smart cards [3,6,7,10,15,24].

Structure of this paper and our contributions. In Sections 2 and 3 we discuss the
discrete Gaussian distribution, sampling, and precision. In Section we 4 argue that the
common requirements for precision in Gaussian sampling are excessive; essentially half
of the bits are required, enabling faster and more compact implementations. Section
5 argues for constant-time samplers. We conclude with sampler recommendations in
Section 6.

2 The Discrete Gaussian Distribution

For simplicity we use zero mean c = 0 throughout this paper. Discrete Gaussian dis-
tributions Dσ are then defined solely by deviation parameter σ. The probabilities for
x ∈ Z are proportional to

fσ(x) = e−
x2

2σ2 . (1)

We define a one-sided cumulative function Sσ(b) for b ≥ 0 as Sσ(0) = 0,

Sσ(b) =

b−1∑
k=−b+1

fσ(k) for b ≥ 1. (2)

Due to symmetry fσ(x) = fσ(−x) we have Sσ(b) = 1 + 2
∑b−1

k=1 e
− k2

2σ2 for b ≥ 1.
Since the limit for total scaling mass Sσ(∞) is very closely approximated by σ

√
2π

when σ grows, we may use this scaling value in practical computations. Let P be a
discrete random variable on sample space Z. The probability mass for any x ∈ Z is

ρσ(x) = Pr(P = x) =
fσ(x)

Sσ(∞)
≈ e−

x2

2σ2

σ
√
2π

. (3)

Discrete Sampling. Sampling algorithms convert unbiased random bits into non-uniformly
distributed integer samples from a given distribution. In case of Gaussian distribu-
tion, this is fully characterised by the deviation parameter σ. There is no closed, non-
approximate algebraic formula for sampling that does not require evaluation of integrals
or series. Hence specialist algorithms are needed.

Sampling Precision. Let P and Q be two discrete random variables on the same do-
main. We use shorthand P (x) = Pr(P = x) and Q(x) = Pr(Q = x) for their
distributions. The total variation distance δ between P and Q is defined as:

ϵ = δ(P,Q) =
1

2
||P −Q||1 =

1

2

∑
x

|P (x)−Q(x)|. (4)



If we set P as the theoretical distribution (“perfect sampler”) and Q as the actually
generated distribution, we may use the statistical distance between the two to quantify
the quality of the Q sampler.

Tail cutting. In tail cutting we ignore the “tail” portion of distribution with |x| > βσ
that has very small total mass, under target distance ϵ or related precision 2−λ. A typical
tail cutting bound for cryptographic applications is β = 13.2 as it is easy to show that
for any σ ≥ 1 we have a negligible tail mass:

1− Sσ(13.2σ)

Sσ(∞)
< 2−128. (5)

It is easy to see that ϵ < 2−λ+1βσ where βσ is the tail cutting bound. Figure 1 illustrates
the relationship between sampling precision and tail cutting bound.

Required distance. It has been widely assumed that for cryptographic applications the
sampling distance should be roughly the inverse of the security parameter [8]:

It is necessary for the rigorous security analysis that the statistical difference
between the actual distribution being sampled and the theoretical distribution
(as used in the security proof) is negligible, say around 2−90 to 2−128.

This is also the precision typically now being implemented (See e.g. [2,5,14,22]). In
this paper we set out to show that such precision is essentially unnecessary since no
algorithm will be able to detect the difference from the non-tail portion of samples;
only about half of this precision is actually required in almost all cases.

3 Approximate Sampling

Perfect sampler. First consider an arbitrary-precision sampler that converts an uni-
formly random number x ∈ R, 0 ≤ x < 1 into the Discrete Gaussian distribution by
finding the “bin” i ∈ Z, i ≥ 0 in Cumulative Distribution Table (CDT) satisfying

Sσ(i)

Sσ(∞)
≤ x <

Sσ(i+ 1)

Sσ(∞)
. (6)

If i = 0, output 0, otherwise i or −i, depending on a single additional random bit. It is
easy to show that this creates samples exactly from the distribution Dσ .

Approximate sampler with precision λ. We define an approximation where we use a
λ-bit uniform random integer j ∈ Z, 0 ≤ j < 2λ to approximate the discrete Gaussian
Distribution. Here we again find the correct bin i via

Sσ(i)

Sσ(∞)
≤ 2−λj <

Sσ(i+ 1)

Sσ(∞)
. (7)
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Fig. 1. Sampling precision 2−λ and tail cutting bound β in multiples of deviation parameter σ.

Now for a sampling error to occur at all, 2−λj must fit exactly on one of the thresh-
old values i so that λ leftmost bits match with the cumulative distribution function:

2−λj ≤ Sσ(i)

Sσ(∞)
≤ 2−λ(j + 1). (8)

In practice, the probability of sampling error is almost directly proportional to sam-
pling precision 2−λ and total variation distance ϵ (Equation 4).

Binary Search in Cumulative Distribution Table. Since each half of the distribution
function is monotonically decreasing (or increasing), we may perform a binary search
on it in with at most ⌈log2 n⌉ < λ steps, where n is the number of entries in the table
(integers with greater than “tail cutting” probability). This approach is widely used in
real-life implementations [2,22].

Other Gaussian Sampling Algorithms. High precision non-uniform continuous ran-
dom sampling is a classic problem [18]. Many of the algorithms of the continuous case
also apply to discrete cryptographic applications. Methods such as Inversion Sampling
[21], Knuth-Yao Sampling [8,12], The Ziggurat Method [3,9,16,17], Kahn-Karney Sam-
pling [11], and “Bernoulli” sampling [6] have also been proposed for lattice cryptogra-
phy. For more (non-cryptographic) methods, see [25].



4 Distinguishing Distributions

When determining the appropriate sampling precision λ, we are led to ask “What is the
minimum statistical distance or precision λ that can be detected by an adversary?”. If
an approximation cannot be distinguished from true distribution with reasonable effort,
there should not be any reason not to use it.

Biased coins and distribution identity testing. In distribution testing literature the
task of determining whether a given black-box distribution is equal to a known distri-
bution is known as identity testing.

To get an intuitive feel for this problem one may consider the classical question
“how many coin tosses are required to determine that a coin is biased ?” We set the
probability of heads/tails as 1±ϵ

2 . Incidentally, this bias ϵ is equal to total variation dis-
tance (Equation 4) in this case. Consider the χ2 test-statistic for N coin tosses of which
M are heads:

χ2 =
1

N

(
2M −N

)2
(9)

Substituting our known bias M = N 1+ϵ
2 and solving N for arbitrary confidence level

χ2 we obtain

N =
χ2

ϵ2
. (10)

Note the ϵ2 term. We see that for a coin that has ϵ = 0.01 bias (50.5 % heads and 49.5
% tails or vice versa), 9360 coin tosses would be required to distinguish it from a fair
coin even at the very low 2/3 confidence level (corresponding in the single degree of
freedom cumulative distribution function to χ2 = 0.936).

This is of course a gross simplification since the χ2 statistic is not an optimal statis-
tical testing tool. However, exact analysis using the binomial distribution supports these
findings. Equivalent tight bounds have also been found for general uniformity testing;
Paninski [20] offers Θ(

√
n

ϵ2 ) (upper and lower) complexity where n the size of the dis-
crete domain. Generally speaking the number of required probes grows quadratically to
the inverse of the bias in the uniform case; O(ϵ−2) probes are required.

Tight bounds for distribution identity testing. We quote the following definitions
and a recent result (Theorem 1 from [26,27]) which offers very tight asymptotic bounds
for the sample complexity of distribution identity testing:

Definition 1. For a distribution P , let P−max denote the vector of probabilities ob-
tained by removing the entry corresponding to the element of largest probability.

Definition 2. For a vector P and ϵ > 0, define P−ϵ as the vector obtained from P
by iteratively removing the smallest domain elements and stopping before more than ϵ
probability mass is removed.

We observe that Definition 1 corresponds to removing the distribution centre (c = 0)
and Definition 2 corresponds to tail cutting (Section 2). Therefore these cases need to
be handled specially.



Theorem 1 (Theorem 1 of [26,27]). There exist constants c1, c2 such that for any ϵ >
0 and any known distribution P , for any unknown distribution Q on the same domain,
our tester will distinguish P = Q from ||P−Q||1 ≥ ϵ with probability 2/3 when run on

a set of at least c1
||P−max

−ϵ/16
||2/3

ϵ2 samples and no tester can do this task with probability

at least 2/3 with a set of fewer than c2
||P−max

−ϵ ||2/3
ϵ2 samples.

The tight Θ
( ||p||2/3

ϵ2

)
sample complexity of “Valiant-Valiant” (Theorem 1) not only im-

plies bounds for traditional computational complexity, but also the minimum oracle
query complexity of attack regardless of the computational model used. This is essen-
tially an information theoretic bound.

On binary hypothesis testing and randomized rounding. Consider a table of λ-
precision approximations T [0, 1, . . . , 2λ − 1]:

T [i] =

⌊
2λ

Sσ(i)

Sσ(∞)

⌋
. (11)

Theorem 1 requires distribution Q to be unknown but at most ϵ - distant from true
distribution P . A static table at exactly ϵ will not be unknown to a distinguisher and will
essentially yield a case of binary hypothesis testing. If the table is held in RAM, it is
possible to randomize it by adding +1 to each entry during initialization with probability
1
2 ; here one comes up with the precise case of an unknown static distribution that has
maximum total variation distance ϵ < 2−λ+1βσ.

In practice we define the precision 2−λ to have a few more bits of precision than
corresponding ϵ; we are actually distinguishing a very large family of distributions from
the true one. If an implementor still feels that this is a concern for some severely limited
λ, rounding can be further randomized. If the condition of Equation 8 holds and the
given random integer j matches all bits of T [i], a randomized rounding sampler will
output either i or i+ 1, depending on an additional random bit.

The tail detector test and conjecture. We note that the potentially infinite tail spread
of the Gaussian distribution makes the P−ϵ term problematic. Indeed, with tail cut at ϵ
level (tail mass of ϵ) one could simply test if any of the values of tail appear; such a “tail
detector” test would have complexity O(1/ϵ). This problem is sidestepped by Theorem
1 and we and also ignore this special case in current work. We conjecture that lack of
tail has only marginal effect on the entropy of random quantities and the security of the
resulting cryptosystem. However, the security impact of tail cutting must be evaluated
on case-by-base basis.

Recursive application of Theorem 1 on the tail. An inverse-CDT type generator
“knows” when it is supposed to generate values from the tail; in a straightforward im-
plementation the λ-bit random integer j is at the 2λ − 1 maximum or close to it. One
can apply Theorem 1 recursively on the tail by defining P ′ as the tail portion of the
main distribution, and adjusting ϵ′ accordingly.



Example 1. Here P ′ = Pϵ/16 would be a natural choice. Corresponding adjusted preci-
sion would be ϵ′ = ϵ2/16. First step of such a sampling algorithm is to test if uniformly
random j satisfies j ≥ 2λ−4. If this is a case, we randomize an another j′ and utilize a
search algorithm on a table of tail values. Other wise we proceed with the main table.
Overall precision will still be λ bits but the two-step approach removes the problem of
tail distinguishers. Naturally the condition makes creating a constant-time implementa-
tion (Section 5) more difficult, but not impossible.

Impact on sampling precision in private key operations. In a lattice public key
algorithm (such as Ring-LWE based encryption or signature algorithm), the bounds of
Theorem 1 directly indicate (up to a constant factor) the number of times the private key
oracle must be invoked before any algorithm, quantum or non-quantum, can determine
whether the samples it uses were drawn from perfectly sampled distribution or from
one with total variation distance ϵ to it. Since O(ϵ−2) probes are necessarily required,
one can generally set the sampling precision to λ = s/2 where 2s is the target security
level. This greatly simplifies implementation in many cases.

5 The Timing Channel

A timing attack is the “classical” side-channel attack originally considered by Kocher
in 1996 [13]. The attack measures the total execution time t required to create a signa-
ture and uses t to create forged signatures. Notably this leakage channel is available in
challenge-response authentication protocols (essentially all authentication protocols).
Most operational cryptosystems are now engineered to be resistant to this attack.

For most lattice sampling algorithms and implementations we have examined, the
timing channel reveals large amounts of secret information [2,5,3,6,8,9,12,14,22,16,17].
By comparison, rounding error in sampling is not really from any precise value; it is
from a number which itself is chosen at random. It appears to be very difficult to use
sampling quantisation errors in an attack.

Timing the Gaussian Sampler. If we consider the binary search sampling algorithm
of Section 3, it becomes clear that the further you are from the centre x = 0, more com-
parisons are required in a binary search; other algorithms will also exit early when |x| is
small. Such early exit strategies for larger intervals (smaller norm) are used in virtually
all samplers examined; Knuth-Yao Sampling [8,12], the Ziggurat Method [3,9,16,17],
and “Bernoulli” sampling [6]

We experimented by generating one billion uniformly random numbers in the in-
terval [0, 1[ and tested how many comparisons are required to find the correct discrete
“bin” in the distribution. Furthermore, for more narrow intervals (larger |x|) more byte
comparisons in memcmp() type algorithm are needed, further affecting execution time.
Figure 2 shows the results. We observe that if the sampling algorithm terminates in a
very short time, the norm of the resulting vector is small and be searched more easily.
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Fig. 2. Average number of byte comparisons (y axis) in a binary search on the Cumulative Dis-
tribution Function to find the correct value in the Discrete Gaussian Distribution (absolute value
on x axis). For this graph σ = 271.93, n = 109. We see that fast runs on the sampler are much
more likely to have a norm close to 0 and can be attacked in semi - exhaustive search fashion.

Constant time Sampling. The simplicity of the binary search algorithm – coupled with
our precision bound and tail cutting – allows us to easily find an exact upper bound for
its running time. We will simply not terminate the search even when the correct “bin”
is found but always run the comparisons to full precision (constant number of steps).
The upper bound for number of comparisons is exactly ⌈log2 n⌉ where n is the size
of the CDT table. Various conditional cases can be balanced with redundant operations
or comparison masks can be used. Memory cache could now become the only source
of variation. This approach was apparently first used in [2], and we recommend it for
practical use. A side-channel resilient hardware sampler design based on Knuth-Yao
was proposed in [23].

6 Conclusions: Experimental Recommendations for Ring-LWE

From the theory Statistical Identity Testing we know that Θ
( ||p||2/3

ϵ2

)
samples are re-

quired to determine if a sampled distribution differs from an ideal one by total variation
distance ϵ (and we ignore samples from the distribution “tail” of weight ϵ). Therefore an
appropriate selection for sampling precision is 2−

s
2 where s is the desired security level.

We conjecture that the ϵ tail has negligible effect on the entropy of secret quantities and
the security of Lattice-based cryptosystems of interest. However, this must be evaluated
on case-by-base basis, and a two-step recursive application of search algorithm can be
used to overcome the problem if desired.



Based on Theorem 1 we propose the following implementation parameters. Here
we assume that the ring polynomials are of relatively small degree n.

Security Precision Tailcut Possible data type
Up to 2100 λ = 50 |x| < 8.1σ IEEE 754 floating point (double)
Up to 2128 λ = 64 |x| < 9.2σ 64-bit fixed p. integer (uint64_t)
Up to 2192 λ = 96 |x| < 11.4σ IEEE 754 quadruple-precision
Up to 2256 λ = 128 |x| < 13.2σ 128-bit unsigned integer type

For example, BLISS-I [6,22] with σ = 215.75 and claimed 128-bit security can equiv-
alently use λ = 64 and a CDT table of size n = 2048 entries (9.5σ) in a binary search.
The total size of the CDT table is therefore 16kB in this case.

We further recommend using constant-time samplers for all algorithms which are
used in online protocols, since non-constant time samplers are easily exploitable with
timing attacks.
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