
Online-Offline Homomorphic Signatures for Polynomial
Functions

Kaoutar Elkhiyaoui, Melek Önen, and Refik Molva

EURECOM, Sophia Antipolis, France
{elkhiyao, onen, molva}@eurecom.fr

Abstract. The advent of cloud computing has given rise to a plethora of work
on verifiable delegation of computation. Homomorphic signatures are a power-
ful tool that can be tailored for verifiable computation, as long as they are effi-
ciently verifiable. The main advantages of homomorphic signatures are twofold:
(i) public verifiability: Any third party can verify the correctness of the delegated
computation; (ii) statelessness: The verifier is not required to have access to the
dataset on which the computation was performed. Thus in this paper, we design
a homomorphic signature suitable for multivariate polynomials of bounded de-
gree, and which draws upon the algebraic properties of eigenvectors and leveled
multilinear maps. The proposed signature yields an efficient verification process
(in an amortized sense) and supports offline-online signing. Furthermore, our sig-
nature is provably secure and its size grows only linearly with the degree of the
evaluated polynomial.

1 Introduction

The problem of verifiable computation has attracted increasing interest with the rise
of cloud computing. Thanks to the various computational and financial advantages of
cloud technology, companies are keen to delegate their computation tasks to powerful
servers. Yet, since such servers are considered to be potentially malicious, one major
challenge is to empower cloud customers to efficiently verify the correctness of the
requested computations. Homomorphic signatures are one of the cryptographic tools
that perfectly address this challenge, so long as their underlying verification algorithm
is efficient (in the amortized sense) and can be used by lightweight clients.

While all existing homomorphic signature designs rely on the use of either polyno-
mials [11] or lattices [5, 18], in this paper, we propose a new approach that leverages
the algebraic properties of eigenvectors to achieve homomorphism in signatures. Within
this new solution, a homomorphic signature is mapped to a (2, 2)-matrix admitting
a ”predefined” eigenvalue with respect to some secret vector u (u defines the signing
key). This mapping can be easily shown to be homomorphic: The eigenvalue of the sum
(product resp.) of two matrices is equal to the sum (product resp.) of the eigenvalues of
each matrix. More specifically, our homomorphic signature encodes each component of
the (2, 2)-matrix in the exponent. Since such an encoding preserves the addition oper-
ation, this signature is additively homomorphic. On the other hand, in order to support
multiplication, the proposed solution uses a leveled multilinear map [13]. Thanks to this

new design, the signature verification is more efficient and the size of the signature is
reduced compared to [11].

Additionally, to the best of our knowledge, our solution is the first homomorphic
signature that features an online/offline signing procedure. By pre-computing “offline”
signatures over a pre-defined random dataset, the actual “online” signature operation
becomes much cheaper.

The major contributions of this paper are:

– A new original primitive for homomorphic signatures which combines the use of
eigenvectors with leveled multilinear maps to support multivariate polynomials.

– The solution is provably secure under the multilinear Diffie-Hellman inversion
(MDHI) assumption [6]: Similarly to existing work, we first propose a weakly
sound solution that we later transform into an adaptively sound one. Our trans-
formation consists of replacing the message to be-signed with the evaluation of a
one-degree polynomial at a secret point.

– Because the signature is mapped to a matrix, the size of the weakly sound signature
is constant. Moreover, our adaptively sound solution results in signatures whose
size grows only linearly in the degree of the evaluated polynomial.

– Similarly to previous work, our signature enables online/offline verification. Fur-
thermore, it actually supports online/offline signatures as well: Namely, our solu-
tion allows the signer to pre-compute signatures of a random dataset (offline), and
whenever the “to-be-signed” dataset is generated, the signer applies cheap transfor-
mations over the pre-computed signatures.

The rest of the paper is organized as follows: Section 2 formalizes the definition and
the security properties of a homomorphic signature. The main building blocks of the
proposed solution are presented in Section 3. Section 4 introduces a first version of our
solution and proves its security using a weak unforgeability experiment. This solution is
further transformed in Section 5 to provide adaptive security. Finally, section 6 reviews
related work.

2 Background

2.1 Multi-labeled Programs

We first recall the definition of labeled programs, which by tying program inputs to
predefined labels enable the construction of homomorphic signatures (cf. [5, 14]).

Definition 1. A labeled program P evaluating an n-variate function f : In → I, is
defined by a tuple (f, τ1, τ2, ..., τn), where τi ∈ {0, 1}∗ is the label associated with the
ith variable of function f (i.e. the ith input of program P).

Given labeled programs P1, ...,Pt and a function g : It → I, we define the com-
posed (labeled) program PC = g(P1, ...,Pt) as the evaluation of function g on the
outputs of programs P1, ...,Pt. In this case, the labeled inputs of program PC cor-
respond to the distinctly labeled inputs of programs P1, ...,Pt. Namely, the inputs of
P1, ...,Pt associated with the same label will form one single input for the composed
program PC .

If we denote Iτ the identity program associated with the canonical identity function
I and label τ ∈ {0, 1}∗, then any labeled program P = (f, τ1, τ2, ..., τn) can be
expressed as the composition of identity programs Iτ1 , ..., Iτn and function f , i.e. P =
f(Iτ1 , ..., Iτn).

Similarly to the work of [11], in this paper, we focus on multi-labeled programs
which give way to the construction of efficiently verifiable homomorphic signatures. In
a nutshell, a multi-labeled program assigns label not only to program inputs, but also to
the dataset to which these inputs belong (cf. Definition 2).

Definition 2. A multi-labeled program P∆ is defined by a pair of dataset identifier
∆ ∈ {0, 1}∗ and a labeled program P. As such, P∆ indicates that program P operates
on inputs from dataset ∆.

As labeled programs, multi-labeled programs associated with the same dataset
identifier support composition. Notably, given multi-labeled programs (P1, ∆), ..., (Pt, ∆)
sharing the same dataset identifier ∆, and a function g : It → I, we define the com-
posed multi-labeled program PC∆ = g ((P1, ∆), ..., (Pt, ∆)) by the pair (PC , ∆), where
PC is the composed program g(P1, ...,Pt).

Moreover, we define the multi-labeled identity program I(∆,τ) by the pair (Iτ , ∆).
Consequently, if P∆ = (P, ∆), where P is the labeled program defined as (f, τ1, ..., τn),
then P∆ can be expressed as the composition of function f and the multi-labeled iden-
tities I(∆,τ1), ..., I(∆,τn), i.e. P∆ = (f(Iτ1 , ..., Iτn), ∆).

2.2 Efficient Homomorphic Signatures for Multi-labeled Programs

According to the work of [11], a homomorphic signature for multi-labeled programs
consists of the following algorithms:

– KeyGen(1κ,L) → (SK,VK, param): It is a randomized algorithm that takes as
input a security parameter κ and the label space L, and outputs a secret key SK,
the matching public verification key VK, and a set of public parameters param
describing the set of admissible inputs I and the set of admissible functions F.

– Sign(SK, ∆, τ,m) → σ: On inputs of secret key SK, a dataset identifier ∆, a la-
bel τ ∈ L, and an input message m ∈ I, algorithm Sign outputs a signature σ.
By definition, signature σ authenticates m as the output of the identity program
(Iτ , ∆).

– Eval(VK, f,σ) → σ: On input of verification key VK, an n-variate function f :
In → I, and a vector σ = (σ(1), ..., σ(n)) of n signatures, algorithm Eval outputs a
new signature σ. If each signature σ(i) authenticates a message m(i) as the output
of a multi-labeled program (Pi, ∆), then by definition, signature σ authenticates
the output of the composed program (f(P1, ...,Pn), ∆).

– Verify(VK,P∆,m, σ)→ b: It is a deterministic algorithm that takes as inputs pub-
lic verification key VK, a multi-labeled program P∆ = (P, ∆), a message m ∈ I,
and a signature σ. It accordingly verifies using signature σ, whether m is the out-
put of program P when executed on previously authenticated labeled messages
belonging to dataset ∆; and it outputs b = 1, if it decides that m was computed as
the output of program P, and b = 0 otherwise.

For a homomorphic signature to be secure, it should ensure the properties of cor-
rectness and soundness.

Correctness Correctness in homomorphic signatures is captured through two require-
ments. The first one is authentication correctness which ensures that the output of a
correct execution of algorithm Sign is always accepted by algorithm Verify. The second
requirement is evaluation correctness which assures that algorithm Eval always yields
outputs that are accepted by algorithm Verify.

Authentication Correctness We say that a homomorphic signature satisfies authenti-
cation correctness, if for any input m ∈ I, any label τ ∈ L and any dataset ∆, the
signature σ produced by algorithm Sign(SK, ∆, τ,m) will correctly authenticatem
as the output of identity program I(∆,τ) = (Iτ , ∆).

Definition 3. A homomorphic signature provides authentication correctness iff:
For any tuple of keys and public parameters (SK,VK, param) ← KeyGen(1κ,L)

and any signature σ ← Sign(SK, ∆, τ,m):

Pr[Verify(VK, I(∆,τ),m, σ)→ 1] = 1

Evaluation Correctness Intuitively, evaluation correctness ensures that given an n-
variate function f and a vector of n signatures σ = (σ(1), ..., σ(n)), such that
each signature σ(i) authenticates a message m(i) as the output of a multi-labeled
program (Pi, ∆), algorithm Eval generates a signature σ that correctly authenti-
cates the outputm of the composed program (f(P1, ...,Pn), ∆) executed on inputs
m(1), ...,m(n). Notably, algorithm Verify will accept σ as a valid signature of mes-
sage m, with respect to multi-labeled program (f(P1, ...,Pn), ∆).

Definition 4. A homomorphic signature ensures evaluation correctness iff:
For any tuple of keys and public parameters (SK,VK, param) ← KeyGen(1κ,L),

and any set of tuples {(Pi, ∆),m(i), σ(i)}ni=1 such that Verify(VK, (Pi, ∆),m(i), σ(i))→
1, when we denote m the output of the composed program PC∆ = (f(P1, ...,Pn), ∆)
executed on inputs (m(1), ...,m(n)) (i.e. m = f(m(1), ...,m(n))) and σ the vector
(σ(1), ..., σ(n)), we get the following equality:

Pr[Verify(VK,PC∆,m, σ)→ 1 | Eval(VK, f,σ)→ σ] = 1

Soundness We say that a homomorphic scheme is sound, if the only way to make algo-
rithm Verify accept a tuple (P∆,m, σ) comprising a mutli-labeled program P∆ evaluat-
ing an n-variate function f , a messagem and a signature σ (i.e. Verify(VK,P∆,m, σ)→
1), is by computing m as the outcome of an execution of program P∆ on some inputs
m(1), ...,m(n) belonging to dataset ∆, and having σ equal the output of Eval when
called with function f and vector σ = (σ(1), ..., σ(n)) composed of the signatures au-
thenticating messages m(i).

Algorithm 1: The unforgeability experiment of homomorphic signatures

(VK, param)← OKeyGen(1
κ,L);

A can do the following in any interleaved order
A picks up to s dataset identifiers

A → ∆i;
For each dataset ∆i, A queries OSign up to t times

A → (τ(i,j),m
(i,j)); # if l 6= j, then τ(i,j) 6= τ(i,l)

σ(i,j) ← OSign(VK, ∆i, τ(i,j),m
(i,j));

A outputs the tuple on which is going to be challenged
A → (P∆,m, σ); # P∆ = (P, ∆)
b← Verify(VK,P∆,m, σ);

In accordance with previous work on homomorphic signatures [11], we formalize
soundness by way of an unforgeability experiment. During this experiment, an adver-
sary A is allowed not only to run algorithms Verify and Eval, but also to access the
output of algorithms KeyGen and Sign through the following oracles:

– OKeyGen: When queried with a security parameter 1κ and a label space L, this oracle
generates a set of public parameters param, a secret key SK and the corresponding
verification key VK; and returns the pair (VK, param).

– OSign: When called with a verification key VK, a dataset identifier ∆ ∈ {0, 1}∗, a
label τ ∈ L and a message m, oracle OSign retrieves the secret key SK matching
verification key VK, executes algorithm Sign on input (SK, ∆, τ,m), and finally
outputs the resulting signature σ.

As depicted in Algorithm 1, adversary A enters the unforgeability experiment by
querying the oracle OKeyGen with security parameter κ and label space L. In turn,
OKeyGen outputs a verification key VK and a set of public parameters param that will be
used throughout the experiment. Later, adversary A adaptively picks s dataset identi-
fiers∆i. For each dataset identifier∆i, adversary A submits t adaptive queries to oracle
OSign: Namely, adversary A, selects t pairs of label and message (τ(i,j),m

(i,j)) such
that for all l 6= j, τ(i,j) 6= τ(i,l). Notice that in this manner, we take into account the
fact that adversary A can only submit one signature query per pair of dataset identifier
∆ and label τ .

Eventually, adversary A produces a tuple of multi-labeled program P∆ = (P, ∆),
message m and signature σ. To conclude the experiment, adversary A executes algo-
rithm Verify on the challenge tuple (P∆,m, σ).

Without loss of generality, we denote b the output of this execution of algorithm
Verify, and we assume that program P evaluates an n-variate function f and is associ-
ated with labels (τ1, ..., τn).

Consequently, we say that adversary A succeeds in breaking the unforgeability ex-
periment, if b = 1 and one of the following conditions holds:

– Adversary A never submitted a query involving dataset identifier ∆ to oracle OSign.
In this case, we say that the tuple (P∆,m, σ) returned by adversary A is a forgery
of Type I.

– Adversary A submitted signature queries to oracle OSign for dataset identifier ∆
and pairs (τj ,m

(j)), 1 ≤ j ≤ n, that is: ∆ = ∆i for some i ∈ {1, ..., s}, and
{(τj ,m(j))}nj=1 ⊂ {(τ(i,j),m(i,j)}tj=1. Yet, m is not the correct output of the la-
beled program P when executed on messages {m(j)}nj=1 (i.e.m 6= f(m(1), ...,m(n))).
In such a case, we say that adversary A provides a forgery of Type II.

– Adversary A submitted signature queries to oracle OSign for dataset identifier ∆,
namely:∆ = ∆i for some i ∈ {1, ..., s}, however, {τ1, ..., τn} 6⊂ {τ(i,1), ..., τ(i,t)}.
This case corresponds to a forgery of Type III.

Definition 5. Let ΠA
(s,t) denote the probability that adversary A succeeds in the un-

forgeability experiment.
A homomorphic signature scheme is (s, t)-sound iff,

ΠA
(s,t) ≤ ε(κ)

where κ is the security parameter and ε is a negligible function.

Efficiency In addition to the classical security properties of correctness and soundness,
a homomorphic signature should be efficient as well. Namely, in accordance with pre-
vious work [11, 18], a homomorphic signature should be succinct and support efficient
verification.

Succinctness Succinctness entails that the size of the signature of a program should
not depend on the number of inputs to that program. More precisely, we consider a
homomorphic signature succinct if, for a fixed security parameter κ, the output size
of algorithm Eval for any function f does not depend on the size of the inputs of f .

Efficient Verification This property can be implemented by dividing the verification
algorithm into two phases. An offline phase, during which the verifier is provided
with verification key VK and a labeled program P so as to compute a concise ver-
ification key VKP. The computed key is then used in an online phase, to verify
signatures involving program P and any dataset ∆ efficiently. In the context of this
paper, “efficiently” means that the cost of verifying signatures is less than comput-
ing program P, and that concise verification key VKP is reused indefinitely. This
implies that the cost of computing the concise key VKP is amortized over the un-
limited number of verifications that one can carry out for program P and different
datasets.

Formally, efficient verification is achieved by dividing the algorithm Verify into two
sub-algorithms:

– OffVerify(VK,P) → VKP: This algorithm takes as inputs a verification key VK
and a description of labeled program P, and computes a concise verification key
VKP which will be used later to verify signatures related to program P.

– OnVerify(VKP, ∆,m, σ) → b: It is a deterministic algorithm, which given a con-
cise verification key VKP, a data set identifier ∆, a message m ∈ I and a signature
σ, outputs a bit b ∈ {0, 1} such that: b = 1, if algorithm OnVerify decides that m
is the correct output of multi-labeled program (P, ∆). If not, then b = 0.

3 Preliminaries

The starting point of our proposal is the fact that if a vector u is an eigenvector of a
matrix M , then there exists a scalar λ such that Mu = λu. In light of this equality,
we can easily show that for any pair of matrices M (1),M (2) admitting vector u as
an eigenvector and having λ1 and λ2 as the corresponding eigenvalues, the following
equalities hold:

– (M (1) +M (2))u = (λ1 + λ2)u, meaning that λ1 + λ2 is the eigenvalue of matrix
M (1) +M (2) associated with eigenvector u;

– similarly, M (1)M (2)u = M (2)M (1)u = (λ1λ2)u, which entails that λ1λ2 is the
eigenvalue of matrices M (1)M (2) and M (2)M (1), associated with eigenvector u;

On account of these two observations, we map the homomorphic signature of a pair of
message m and label τ to a matrix

M =

[
m γ
0 λ

]
such that λ is computed as function of τ , and γ is generated in such a way that λ is the
eigenvalue of matrix M associated with a secret vector u = (x, y).

Therefore, the homomorphic signature of m(1) +m(2) is mapped to matrix M (1) +
M (2), and the verification of such a signature consists of checking that λ1 + λ2 is the
eigenvalue of matrixM (1)+M (2) associated with eigenvector u. Along the same lines,
the homomorphic signature of m(1)m(2) is mapped to matrix M (1)M (2), and the ver-
ification of this signature is performed by verifying whether λ1λ2 is the eigenvalue of
matrix M (1)M (2) associated with vector u. More precisely, we define the homomor-
phic signature of a pair (m, τ) as a tuple (m,Λ1, Γ1), where Λ1 = gλ1 and Γ1 = gγ1 . It
follows that the signature of m(1) +m(2) is straightforward and defined as:

(m(1) +m(2), Λ
(1)
1 Λ

(2)
1 , Γ

(1)
1 Γ

(2)
1)

whereas the signature of m(1)m(2) involves a a leveled multilinear map e and corre-
sponds to:

(m(1)m(2), e(Λ
(1)
1 , Λ

(2)
1), e(gm

(1)

1 , Γ
(2)
1)e(Γ

(1)
1 , Λ

(2)
1))

We note that this homomorphic signature is weakly sound against Type II forgeries.
Namely, it is secure against adversaries that issue their signature queries before re-
ceiving the public verification key (cf. Section 4.3). In order to make this signature
adaptively sound against Type II forgeries, the signer is required to do the following
whenever she wants to sign a pair (m, τ): (i) Generate a random number θ1 and evalu-
ate polynomial t(z) = θ1z +m at a secret point α; (ii) sign (t(α), τ) using the weakly

secure signature to get the tuple (t(α), Λ1, Γ1); (iii) set the homomorphic signature of
(m, τ) to ([m, θ1], Λ1, Γ1).

Finally, the signer thwarts Type I forgeries by signing dataset identifiers using a
digital signature, while she counters Type III forgeries by using aggregate signatures
to authenticate input labels.

Before moving to the description of our signature, we first provide a short overview
on multilinear maps and aggregate signatures.

3.1 Leveled Multilinear Maps

Definition 6. Let G1, G2, ...,and Gd be d groups of large prime order p, generated on
input of a security parameter 1κ (p > 2κ) and d. Let Pi be a canonical generator of
group Gi.

A d-leveled multilinear map is a set of bilinear maps ei,j : Gi × Gj → Gi+j
whereby i ≥ 1, j ≥ 1 and i+ j ≤ d, with the following property:

∀α, β ∈ Fp, ei,j(Pαi , P
β
j) = Pαβi+j

For the sake of better readability, we omit the indices i and j from ei,j . We also assume
that all generators Pi are computed from P1 using bilinear maps repeatedly: Pi =
e(P1, Pi−1).

We hereby state the assumption on which the security of our solution relies.

Definition 7 (MDH Inversion Assumption [6]). Let G1, G2, ...,Gd+1 be d+ 1 groups
of large prime order p, generated on input of a security parameter 1κ (p > 2κ) and d.
Let P1 be a canonical generator of group G1 and e a (d+ 1)-leveled multilinear map,
i.e. ∀1 ≤ i ≤ d, Pi+1 = e(P1, Pi).

We say that multilinear Diffie-Hellman inversion (MDHI) assumption holds, if given
(P1, P

α
1) ∈ G1 ×G1, where α ∈ F∗

p, the probability of finding Pα
−1

d+1 is negligible, that
is:

Pr[A → Pα
−1

d+1 |(P1, P
α
1)] ≤ ε(κ)

where ε is a negligible function.

3.2 Aggregate Signatures

We provide herein a quick overview of a simplified variant of the aggregate signature
proposed in [7]. Similarly to the signature of [7], this simplified variant comprises four
algorithms:

KeyGenAgg(1
κ)→ (SKAgg,PKAgg, paramAgg) On input of a security parameter 1κ,

KeyGenAgg proceeds as follows:
– It picks two groups G and GT of a large prime order p that admit a bilinear

pairing ê : G×G→ GT .
– It selects a secret key SKAgg ∈ F∗

p, chooses a random generator P of group G,
and sets public key PKAgg to P SKAgg .

– It selects a cryptographic hash functionH : {0, 1}∗ → G and defines paramAgg

as (p,H,G,GT , ê, P).
SignAgg(SKAgg, µ)→ Ψ Given a message µ ∈ {0, 1}∗, SignAgg outputs a signature

Ψ = H(µ)SKAgg .
AggregateAgg(Ψ)→ Ψ Given a vector of n signaturesΨ = (Ψ (1), ..., Ψ (n)), AggregateAgg

outputs aggregate signature Ψ =
∏n
i=1 Ψ

(i).
VerifyAgg(PKAgg,µ, Ψ)→ b ∈ {0, 1} When provided with public key PKAgg, a vector

of messages µ = (µ(1), ..., µ(n)), and an aggregate signature Ψ , VerifyAgg checks
whether the following equality holds:

ê(Ψ, P) = ê(

n∏
i=1

H(µ(i)),PKAgg)

If so, then VerifyAgg accepts the aggregate signature and accordingly outputs b = 1;
otherwise, it rejects the signature and outputs b = 0.

Using a similar argument to Boneh et al. [7]’s, one can easily show that this variant
of aggregate signatures is adaptively secure in the random oracle model, under the co-
CDH assumption in G.

4 A Weakly Secure Homomorphic Signature

The homomorphic signature we propose in this paper is suitable for programs that eval-
uate multivariate polynomials over a finite field Fp. Such programs can be expressed
using arithmetic circuits. An arithmetic circuit is composed of addition and multipli-
cation gates, such that each addition (multiplication resp.) gate takes two inputs and
returns the sum (the product resp.) of these two inputs. Furthermore, we recall that
arithmetic circuits have a measure called degree that is assigned to the inputs/outputs
of their gates. Namely, constants in the circuit are assigned a degree 0, whereas initial
inputs of the circuits has a degree 1. Moreover, the degree of an addition gate (resp.
multiplication gate) is defined as the maximum of the degree of its inputs (resp. the sum
of its inputs). Accordingly, the degree of an arithmetic circuit is defined as the degree
of the output gate of the circuit. This entails that the degree of an arithmetic circuit
evaluating a d-degree polynomial is d.

4.1 Description

In this section, we provide the detailed description of the algorithms underlying our
weakly secure homomorphic signature.

KeyGen(1κ, d,L)→ (SK,VK, param) Given a security parameter 1κ, an upper-bound
d of the degree of circuits supported by the signature, and a set of admissible labels
1 L = {τ1, ..., τN} in {0, 1}∗, algorithm KeyGen proceeds as follows:

1 Since |L| = N , the size of datasets supported by our signature cannot exceed N .

– It selects (d+1)-leveled linear groups G1, ..., Gd+1 of prime order p. We denote
elements lying in group Gi with capital letters and subscript i. Moreover, for
any element P1 ∈ G1, we denote by Pi the element e(P1, Pi−1) ∈ Gi, 2 ≤ i ≤
d+ 1, and namely, for all i, j ≥ 1 and i+ j ≤ d+ 1, we let e(Pi, Pj) = Pi+j .

– It selects a random key K ∈ F∗
p and a keyed hash function F : F∗

p × {0, 1}∗ ×
{0, 1}∗ → F∗

p.
– It picks a random generator P1 in G1, generates N random numbers λi =

F (K, τi, 0), 1 ≤ i ≤ N and computes Λ(τi)
1 = Pλi1 .

– It selects a pair of secret and public keys (SKDig,PKDig) for a digital signature
ΣDig.

– It selects two groups G and GT of the same prime order p that admit a bilin-
ear pairing ê : G × G → GT . Then it picks a random generator P of G and
a cryptographic hash function H : {0, 1}∗ → G. This generator and crypto-
graphic hash function will be used to implement an aggregate signature ΣAgg

as depicted in Section 3.2.
– Finally, it outputs the following:

SK = (F,K, SKDig)

VK = (PKDig, {(τi, Λ(τi)
1)}Ni=1)

param = (p, {τi}Ni=1, H, e, ê, {Gi}d+1
i=1 ,G,GT , P1, P)

Note that public parameters param implicitly specify the set of admissible
functions F and the set of admissible inputs I, which are respectively the set of
n-variate functions (n ≤ N) that can be implemented using circuits of degree
k ≤ d, and the finite field Fp.

Sign(SK, ∆, τ,m)→ σ In a nutshell, algorithm Sign computes three types of signa-
tures: A digital signature ΣDig to counter Type I forgery, an aggregate signature
ΣAgg to circumvent Type III forgery, and finally, a homomorphic signature ΣHom

to preclude Type II forgery. Indeed, given secret key SK = (F,K, SKDig), dataset
identifier ∆, a label τ ∈ L, and a message m ∈ Fp, algorithm Sign runs four
subroutines:

– ∆KeyGen(F,K,∆): Given keyed hash function F , secret key K, and dataset
identifier ∆, ∆KeyGen proceeds as follows:
• It generates a secret key SKAgg ∈ F∗

p for aggregate signatureΣAgg by com-
puting F (K,∆, 1). Once secret key SKAgg is produced, ∆KeyGen com-
putes the corresponding public key PKAgg = P SKAgg .
• It computesF (K,∆, 2) andF (K,∆, 3) to generate the secret key SKHom =

(x, y) ∈ F∗
p × F∗

p for a homomorphic signature ΣHom. After the genera-
tion of this secret key, ∆KeyGen computes X1 = P1

x and Y1 = P1
y

and defines the public key of homomorphic signature ΣHom as PKHom =
(X1, Y1).

– ΣDig(SKDig, ∆,PKAgg,PKHom): This subroutine takes as inputs secret key SKDig,
dataset identifier ∆, public key PKAgg, and public key PKHom, and computes a
digital signature Ω of tuple (∆,PKAgg,PKHom).

– ΣAgg(F,K, SKAgg, τ): This subroutine computesΛ1 = Pλ1 given λ = F (K, τ, 0),
and uses secret key SKAgg to compute signature Ψ = H(Λ1)SKAgg ∈ G.

– ΣHom(SKHom, Λ1,m): Given SKHom = (x, y), this subroutine computes

Γ1 =

(
Λ1

P1
m

)xy−1

and finally, defines the homomorphic signature of tuple (m, τ,∆) as Υ =
(m,Λ1, Γ1).

Remark 1. Assume that Λ1 = P1
λ and Γ1 = P1

γ , for (λ, γ) ∈ F∗
p × Fp.

Since Γ1 =
(
Λ1

P1
m

)xy−1

, we can easily show that λ is an eigenvalue of matrix

M =

[
m γ
0 λ

]
associated with vector u = (x, y), and consequently, we can deduce the following
equality:

Mu = λu

This remark comes in handy when we prove evaluation correctness in the following
section.

At the end of its execution, algorithm Sign returns the homomorphic signature σ =
(param∆, Ω, Ψ, Υ), where

param∆ = (∆,PKAgg,PKHom)

Eval(VK, f,σ)→ σ On inputs of public verification key VK, an n-variate function
f , and a vector σ of n homomorphic signatures σ(l) = (param∆, Ω, Ψ

(l), Υ (l))
whereby each signature σ(l) authenticates a message m(l) for all 1 ≤ l ≤ n, algo-
rithm Eval computes signature σ = (param∆, Ω, Ψ, Υ) in two steps:
Computation of homomorphic signature Υ : Eval computes Υ by evaluating the
arithmetic circuit Cf of function f on input (Υ (1), ..., Υ (n)). This evaluation of
circuit Cf is achieved by running the following subroutines:

– GateEval+(Υ (1), Υ (2))2: Without loss of generality, we assume that Υ (1) =

(m(1), Λ
(1)
i , Γ

(1)
i) ∈ Fp × G2

i and Υ (2) = (m(2), Λ
(2)
i , Γ

(2)
i) ∈ Fp × G2

i . In
other words, we assume that Υ (1) and Υ (2) are inputs to GateEval+ of the same
degree i 3.
Algorithm Eval invokes GateEval+ when it encounters an addition gate. There-
fore, given (Υ (1), Υ (2)), GateEval+ computes m = m(1) +m(2) and

Λi = Λ
(1)
i Λ

(2)
i ; Γi = Γ

(1)
i Γ

(2)
i

At the end of its execution, GateEval+ outputs Υ = (m,Λi, Γi).

2 For ease of exposition, we abuse the notations here and we denote by Υ (1) and Υ (2) the inputs
of GateEval+,×,c.

3 Note that Υ (1) and Υ (2) could be inputs of different degrees i and j respectively, that is,
Υ (2) = (m(2), Λ

(2)
j , Γ

(2)
j) ∈ Fp × G2

j . Still, if we assume that j < i, we can transform Υ (2)

into an input of degree i by computing Λ(2)
i = e(Λ

(2)
j , Pi−j) and Γ (2)

i = e(Γ
(2)
j , Pi−j).

– GateEvalc(Υ
(1), c): Algorithm Eval calls GateEvalc when it wants to evaluate

a gate for multiplication by a constant. On inputs of a homomorphic signature
Υ (1) = (m(1), Λ

(1)
i , Γ

(1)
i) ∈ Fp × G2

i and a constant c, GateEvalc computes
m = cm(1) and

Λi = (Λ
(1)
i)c ; Γi = (Γ

(1)
i)c

Later, GateEvalc returns Υ = (m,Λi, Γi).
– GateEval×(Υ (1), Υ (2)): Without loss of generality, assume that Υ (1) = (m(1), Λ

(1)
i , Γ

(1)
i) ∈

Fp ×G2
i and Υ (2) = (m(2), Λ

(2)
j , Γ

(2)
j) ∈ Fp ×G2

j .
Algorithm Eval executes GateEval× when it wants to evaluate a multiplication
gate. Hence, given (Υ (1), Υ (2)), GateEval× computes m = m(1)m(2) and

Λi+j = e(Λ
(1)
i , Λ

(2)
j)

Γi+j = e(Pi
m(1)

, Γ
(2)
j)e(Γ

(1)
i , Λ

(2)
j)

GateEval× then outputs Υ = (m,Λi+j , Γi+j).
Computation of aggregate signature Ψ : Algorithm Eval computes the aggregate
signature Ψ corresponding to function f by evaluating a modified circuit C̃f on in-
puts of aggregate signatures (Ψ (1),, Ψ (n)). The modified circuit C̃f is generated
from circuit Cf as follows:

– Each multiplication and addition gate in circuit Cf is transformed into a multi-
plication operation in G in circuit C̃f ;

– a multiplication by a constant in circuit Cf is omitted in circuit C̃f .
Algorithm Eval concludes its work by outputting

σ = (param∆, Ω, Ψ, Υ)

OffVerify(VK,P)→ VKP This algorithm takes as inputs verification key VK = (PKDig, {(τi, Λ(τi)
1)}Ni=1)

and labeled program P = (f, τ1, ..., τn). Here we assume that function f is imple-
mented as a circuit Cf of degree k.
Algorithm OffVerify first evaluates the arithmetic circuit Cf on tuple (Λ

(τ1)
1 , ..., Λ

(τn)
1).

More precisely, OffVerify transforms Cf into a circuit C̄f that operates on elements
from Gi, 1 ≤ i ≤ d+ 1, as follows:

– Addition gates of degree i in circuit Cf are replaced by multiplications in Gi
in circuit C̄f ;

– gates of degree i for multiplication by a constant in circuit Cf are transformed
in circuit C̄f into exponentiations in Gi by the same constants;

– finally, multiplication gates with inputs of degree i and degree j in circuit Cf
are expressed in circuit C̄f as bilinear maps between elements lying in Gi and
Gj .

In the rest of the paper, we denote by f(Λ
(τ1)
1 , ..., Λ

(τn)
1) the output of circuit C̄f

when evaluated on (Λ
(τ1)
1 , ..., Λ

(τn)
1).

Next, algorithm OffVerify evaluates the modified circuit C̃f (cf. Algorithm Eval) on
inputs (H(Λ

(τ1)
1), ...,H(Λ

(τn)
1)) ∈ Gn. This yield an aggregated hash HP.

At the end of its execution, algorithm OffVerify outputs concise verification key

VKP = (PKDig, HP, f(Λ
(τ1)
1 , ..., Λ

(τn)
1))

OnVerify(VKP, ∆,m, σ)→ b On input of concise verification key VKP, dataset iden-
tifier ∆, message m ∈ Fp, and signature σ = (param∆, Ω, Ψ, Υ), OnVerify pro-
ceeds as follows:

– It parses VKP as (PKDig, HP, f(Λ(τ1), ..., Λ(τn))), dataset parameters param∆

as (∆,PKAgg,PKHom) and homomorphic signature σ as (m,Ω, Ψ, Υ).
– Using public key PKDig, algorithm OnVerify checks whether Ω is a valid sig-

nature of message param∆. If not, then OnVerify returns b = 0.
– Otherwise, given public key PKAgg, algorithm OnVerify checks whether the

following equality holds:

ê(HP,PKAgg) = ê(Ψ, P) (1)

If the above equality is not satisfied, then OnVerify returns b = 0. Otherwise,
it moves on to the next step.

– Since program P is implemented as a circuit of degree k, algorithm OnVerify
parses homomorphic signature Υ as a tuple (m,Λk, Γk) ∈ Fp×G2

k, and given
public key PKHom = (X1, Y1) ∈ G2

1, it verifies whether the following equali-
ties are true:

Λk = f(Λ
(τ1)
1 , ..., Λ

(τn)
1) (2)

e(X1, Λk) = e(X1, Pk)me(Y1, Γk) (3)

If both equalities hold, then OnVerify outputs b = 1; otherwise it outputs b = 0.

4.2 Correctness

In this section, we demonstrate that our solution satisfies the properties of authentication
correctness and evaluation correctness.

Theorem 1. The homomorphic signature described above ensures authentication cor-
rectness.

Proof. Let σ = (param∆, Ω, Ψ, Υ) be a signature output by algorithm Sign on input of
message m, label τ and dataset identifier ∆, and let Λ1 = Pλ1 , where λ = F (K, τ, 0).
This implies the following:

param∆ = (∆,PKAgg,PKHom)

PKAgg = P SKAgg

PKHom = (X1, Y1) = (P1
x, P1

y)

Ω ← ΣDig(SK, param∆)

Ψ = H(Λ1)SKAgg

Υ = (m,Λ1, Γ1)

Γ1 =

(
Λ1

P1
m

)xy−1

Hence, signature Ω will pass the first verification of OnVerify. Similarly, signature Ψ
will verify Equation 1, and be accepted as a valid aggregate signature.

Now moving to the last verification step which consists of checking whether Equa-
tions 2 and 3 hold for the pair (P, Υ) = ((I, τ), Υ), where I is the canonical identity.

Since Λ1 = I(Λ1), Equation 2 is satisfied.

Additionally, since Γ1 =
(
Λ1

P1
m

)xy−1

, we obtain:

e(Y1, Γ1) = e

(
P1

y,

(
Λ1

P1
m

)xy−1)

= e

(
P1,

(
Λ1

P1
m

)x)
= e

(
P1

x,
Λ1

P1
m

)
= e

(
X1,

Λ1

P1
m

)
=

e(X1, Λ1)

e(X1, P1)m

Meaning that Equation 3 also is satisfied.

Theorem 2. The homomorphic signature described in Section 4.1 ensures evaluation
correctness.

Proof. Let σ = (σ(1), ..., σ(n)) be a vector of n homomorphic signatures σ(l), such
that each signature σ(l) (1 ≤ l ≤ n) successfully authenticates a message m(l) ∈ Fp as
the output of some multi-labeled program (Pl, ∆).

For ease of exposition, we assume that Pl = (fl, τ1, ..., τn) for all 1 ≤ l ≤ n. That
is, each Pl evaluates an n-variate function fl and as such, it is associated with n labels
(τ1, ..., τn). We also assume that function fl is a a circuit Cf of degree k, and we let:

σ(l) = (param∆, Ω, Ψ
(l), Υ (l))

Υ (l) = (m(l), Λ
(l)
k , Γ

(l)
k) ∈ Fp ×G2

k

Since σ(l) successfully authenticates message m(l), we conclude the following:

– Ω is a valid digital signature of param∆.
– Ψ (l) is a valid aggregate signature for program Pl, and thereby verifies: ê(HPl ,PKAgg) =
ê(Ψ (l), P), whereHPl is the aggregate hash of program Pl (cf. Algorithm OnVerify,
Section 4.1).

– Finally, Υ (l) is a correct homomorphic signature, namely:

Λ
(l)
k = fl(Λ

(τ1)
1 , ..., Λ

(τn)
1)

e(X1, Λk) = e(X1, Pk)m
(l)

e(Y1, Γk)

In what follows, we show that if algorithm Eval is executed correctly on inputs
(VK, f,σ) for some function f , then the output σ = (param∆, Ω, Ψ, Υ) returned by
algorithm Eval is going to be accepted by algorithm Verify (i.e. the combination of
algorithms OnVerify and OffVerify).

Correctness of digital signature Ω: Since algorithm Eval does not change sig-
nature Ω, the latter will always verify as a valid signature for the tuple param∆ =
(∆,PKAgg,PKHom).

Correctness of aggregate signature Ψ : We remind the reader that aggregate sig-
nature Ψ is obtained by evaluating a modified circuit C̃f on input (Ψ (1), ..., Ψ (n)).

Since for all 1 ≤ l ≤ n, Ψ (l) is a valid aggregate signature for program Pl, we know
that Ψ (l) = H

SKAgg

Pl
, which entails:

Ψ = C̃f (Ψ (1), ..., Ψ (n)) = C̃f (H
SKAgg

P1
, ...,H

SKAgg

Pn
)

Moreover, since circuit C̃f comprises only multiplication operations, it satisfies the
following:

C̃f (H
SKAgg

P1
, ...,H

SKAgg

Pn
) = C̃f (HP1

, ...,HPn)SKAgg

and hence: Ψ = C̃f (HP1
, ...,HPn)SKAgg = H

SKAgg

P , where HP is the aggregate hash of
multi-labeled program (P, ∆) defined as the composition of function f and programs
(Pl, ∆), 1 ≤ l ≤ n.

From the preceding equation, we deduce that Equality 1 always holds for the aggre-
gate signature Ψ returned by algorithm Eval.

Correctness of homomorphic signature Υ : We prove here that the output Υ of
GateEval+,c,× always verifies Equations 2 and 3. We only show here the correctness of
GateEval×. A similar argument can be used to prove the correctness of GateEval+ and
GateEvalc.

Without loss of generality, let Υ (1) = (m(1), Λ
(1)
i , Γ

(1)
i) ∈ Fp × G2

i and Υ (2) =

(m(2), Λ
(2)
j , Γ

(2)
j) ∈ Fp × G2

j . We demonstrate in what follows that the output Υ =
(m,Λi+j , Γi+j) of GateEval× satisfies Equations 2 and 3.

Along these lines, we first remind the reader that:m = m(1)m(2),Λi+j = e(Λi, Λj),
and Γi+j = e(Pi

m(1)

, Γ
(2)
j)e(Γ

(1)
i , Λ

(2)
j).

Correctness ofΛi+j . Note that GateEval× computesΛi as a bilinear map e(Λ(1)
i , Λ

(2)
j),

which matches the evaluation of a multiplication gate in the modified circuit C̄f (cf. Al-
gorithm OffVerify, Section 4.1). Hence, if we assume thatΛ(1)

i andΛ(2)
j satisfy Equation

2, then Λi+j will also satisfy that equation.
Correctness of Γi+j . Assume that Γ (1)

i = Pi
γ1 , Γ (2)

j = Pj
γ2 , Λ(1)

i = Pi
λ1 , and

Λ
(2)
j = Pj

λ2 , for γ1, γ2,∈ Fp and λ1, λ2 ∈ F∗
p.

If we assume that Υ (l), l ∈ {1, 2}, verifies Equation 3, then λl is an eigenvalue of
matrix Ml associated with eigenvector u = (x, y), where

Ml =

[
m(l) γl

0 λl

]

Algorithm 2: The weak unforgeability experiment of homomorphic signatures

param← OKeyGen(1
κ,L);

A picks up to s dataset identifiers
A → ∆i;

For each dataset ∆i, A generates t signature queries
A → (τ(i,j),m

(i,j)); # if l 6= j, then τ(i,j) 6= τ(i,l)
OKeyGen returns the verification key

VK← OKeyGen(1
κ,L);

OSign generates the signatures for A’s queries
σ(i,j) ← OSign(VK, ∆i, τ(i,j),m

(i,j));
A outputs the tuple on which is going to be challenged

A → (P∆,m, σ); # P∆ = (P, ∆)
b← Verify(VK,P∆,m, σ);

and consequently, λ1λ2 is also an eigenvalue of matrix

M = M1M2 =

[
m(1)m(2) m(1)γ2 + γ1λ2

0 λ1λ2

]
and it is associated with vector u = (x, y). This implies that Mu = λ1λ2u. Namely,
we have x(m(1)m(2)) + y(m(1)γ2 + γ1λ2) = x(λ1λ2), and Equality 3 ensues as a
result.

4.3 Soundness

We first define our experiment of weak unforgeability in Algorithm 2.
The difference between this experiment and the experiment depicted in Algorithm 1

is that adversary A receives the verification key VK after submitting its signature queries
〈∆i, τ(i,j),m

(i,j)〉.
We say that adversary A breaks the weak unforgeability experiment if it provides a

successful forgery of either Type I, Type II, or Type III (cf. Section 2.2).
Similarly to Definition 5, we say that a homomorphic scheme is (s, t)-weakly sound

iff, the probability that adversary A succeeds in breaking the weak unforgeability ex-
periment is negligible.

Theorem 3. If the digital signature ΣDig and the aggregate signature ΣAgg are secure,
then the homomorphic signature introduced in Section 4.1 is (s, t)-weakly sound under
the MDHI assumption.

Proof. Assume there is an adversary A that breaks the (s, t)-weak soundness of our ho-
momorphic signature with a non-negligible advantage εA . In the following, we demon-
strate that given the security of digital signature ΣDig and aggregate signature ΣAgg,
there exists another adversary B that breaks the MDHI assumption, with a non-negligible
advantage εA/s.

Indeed, to break the soundness of our scheme, adversary A might output either a
forgery of Type I, a forgery of Type II or finally a forgery of Type III.

If digital signature ΣDig is secure, then it is infeasible for adversary A to success-
fully provide a valid Type I forgery. Similarly, the security of aggregate signature ΣAgg

assures that it is infeasible for adversary A to output a valid Type III forgery. These
two facts entail that A breaks the (s, t)-weak soundness of our signature by providing a
Type II forgery.

Below, we show how adversary B exploits the Type II forgery returned by adversary
A to break the MDHI assumption:

First B queries the oracle OMDHI with security parameter 1κ and a degree d + 1 of
multilinear map e. Upon query, oracle OMDHI returns the description of d+1 multilinear
groups G1, ...,Gd+1 of prime order p, a leveled multilinear map e : Gi ×Gj → Gi+j ,
i, j ≥ 1 and i + j ≤ d + 1, and a pair (P1, P1

α) ∈ G2
1 for some randomly chosen

α ∈ F∗
p.

We recall that the goal of B is to output (Pd+1)α
−1 ∈ Gd+1. To this effect, B

simulates the weak unforgeability experiment depicted in Algorithm 2 as shown below:

– B simulates oracle OKeyGen and publishes the parameters

param = (p, {τi}Ni=1, H, e, ê, {Gi}d+1
i=1 ,G,GT , P1, P)

– A submits st signature queries 〈∆i, τ(i,j),m
(i,j)〉, 1 ≤ i ≤ s, 1 ≤ j ≤ t, such that

∆i ∈ {0, 1}∗, τ(i,j) ∈ {τ1, ..., τN}, τ(i,j) 6= τ(i,l) for l 6= j, and m(i,j) ∈ Fp.
– After receiving the signature queries 〈∆i, τ(i,j),m

(i,j)〉, B computes secret key SK
and verification key VK as follows:
• It selects a pair of secret and public keys (SKDig,PKDig) for digital signature
ΣDig. Then it chooses a keyed hash function F and a secret key K.

• It randomly picks a dataset identifier∆ from {∆i}si=1. Without loss of general-
ity, we denote 〈∆, τj ,m(j)〉tj=1 the signature queries corresponding to dataset
identifier ∆. Next B generates γj ∈ F∗

p as F (K,∆, τj), 1 ≤ j ≤ t, and defines

the generators Λ(τj)
1 as:

Λ
(τj)
1 = P1

(m(j))(P1
α)γj 4 (4)

Later, it picks N − t random generators Λ(τj)
1 ∈ G1, t+ 1 ≤ j ≤ N .

• Finally, it defines SK and VK as:

SK = (F,K, SKDig)

VK = (PKDig, {(τi, Λ(τi)
1)}Ni=1)

– After determining the pair (SK,VK), B returns verification key VK to A.

4 Note that the probability that Λ(τj)

1 = 1 is equal to 1
p

, which is negligible. Still, in the unlikely

event of Λ(τj)

1 = 1, adversary B regenerates γj .

– Afterwards, on a query 〈∆i, τ(i,j),m
(i,j)〉, B simulates the responses of oracle OSign

as follows:
If ∆i 6= ∆, then B follows the signing algorithm Sign depicted in Section 4.1.
If ∆i = ∆, then 〈∆i, τ(i,j),m

(i,j)〉 = 〈∆, τj ,m(j)〉 and B acts as following:
• It generates the pair of keys (SKAgg,PKAgg) as explained in algorithm Sign.
• It computes digital signature Ω of param∆ = (∆,PKAgg,PKDig), and aggre-

gate signature Ψ (j) of the generator Λ(τj)
1 associated with label τj .

• It generates x = F (K,∆, 1) in F∗
p, computes X1 = P1

x1 and Y1 = (P1
α)x,

and lets PKHom = (X1, Y1).
• It sets homomorphic signature Υ to (m(j), Λ

(τj)
1 , Γ

(j)
1), where Γ (j)

1 = P1
γj

and γj = F (K,∆, τj).
Note that by construction Λ(τj)

1 = (P1)m
(j)

(Γ
(j)
1)α (cf. Equation 4), therefore

Υ is a valid signature as it verifies equation 3 for (X1, Y1) = (P1
x, P1

αx).
• Finally, B returns homomorphic signature σ(j) = (param∆, Ω, Ψ

(j), Υ (j)).

At the end of the weak unforgeability experiment, A outputs a multi-labeled pro-
gram (P, ∆̃), and a Type II forgery σ. Without loss of generality, we assume that
P = (f, τ1, ..., τt) and that f is a t-variate arithmetic circuit of degree k ≤ d.

On receiving the description of (P, ∆̃), B checks whether ∆̃ = ∆. If not, B aborts
the experiment.

If ∆̃ = ∆ and A succeeds in breaking the weak unforgeability experiment, then
σ = (param∆, Ω, Ψ, Υ) such that:

Υ = (m,Λk, Γk) ∈ Fp ×G2
k

Λk = f(Λ
(τ1)
1 , ..., Λ

(τt)
1)

e(X1, Λk) = e(X1, Pk)me(Y1, Γk) (5)

Hence, to break the MDHI assumption, B first runs algorithm Eval on input of
(f,σ), where σ = (σ(1), ..., σ(t)) and for all 1 ≤ j ≤ t, σ(j) is the homomorphic
signature of message m(j) belonging to dataset ∆ under label τj . In turn, algorithm
Eval outputs a tuple (param∆, Ω, Ψ, Ϋ), such that Ϋ = (m̈, Λk, Γ̈k) ∈ Fp ×G2

k.
Since (m,σ) is a forgery of Type II, then m 6= m̈ and B breaks the MDHI assump-

tion by outputting:

(Pd+1)α
−1

= e

(
Γk

Γ̈k
, Pd+1−k

) 1
m̈−m

Notice that by definition:

e(X1, Λk) = e(X1, Pk)m̈e(Y1, Γ̈k) (6)

From Equation 5 and Equation 6, we deduce the following:

e(X1, Pk)m̈e(Y1, Γ̈k) = e(X1, Pk)me(Y1, Γk) = e(X1, Λk)

e(X1, Pk)m̈−m = e

(
Y1,

Γk

Γ̈k

)

e(P1
x, Pk)m̈−m = e

(
P1

αx,
Γk

Γ̈k

)
e(P1

x, Pk) = e

(
P1

αx,
Γk

Γ̈k

) 1
m̈−m

Since x ∈ F∗
p, e(P1, Pk) = e

(
P1

α,
(
Γk
Γ̈k

) 1
m̈−m

)
, which means that

(
Γk
Γ̈k

) 1
m̈−m

=

Pk
α−1

.
We thus conclude that if adversary A breaks the weak unforgeability experiment

with a non-negligible advantage εA , then adversary B breaks the MDHI assumption as
long as it does not stop the unforgeability experiment.

Here we quantify the advantage εB of adversary B.
Let EB be the event that adversary B succeeds in breaking the MDHI assumption,

and let E be the event that adversary B does not stop the unforgeability experiment.
We know that Pr(E) = 1

s and Pr(EB | E) = εA , and also that:

εB = Pr(EB) = Pr(EB ∩ E) + Pr(EB ∩ E)

= Pr(EB | E) Pr(E) + Pr(EB | E) Pr(E)

=
εA

s
+ Pr(EB | E) Pr(E) ≥ εA

s

5 An Adaptively Secure Homomorphic Signature

We hereby transform the solution described in Section 4.1 into an adaptively secure sig-
nature. This transformation is performed in three steps: (i) generate a one-degree poly-
nomial t whose free coefficient is m, i.e. the original message to be signed; (ii) evaluate
polynomial t at a secret point α; (iii) and finally, sign t(α) using the weakly secure
signature. In Section 5.4, we show that this simple transformation yields an adaptively
secure fully homomorphic signature under the MDHI assumption.

5.1 Description

KeyGen∗(1κ, d,L)→ (SK∗,VK∗, param) Given a security parameter 1κ, an upper-
bound d of the degree of circuits supported by the signature, and the set of labels
L = {τ1, ..., τN} ⊂ {0, 1}∗, algorithm KeyGen∗ first runs KeyGen which in turn
yields a tuple (SK,VK, param). Algorithm KeyGen∗ additionally selects a secret
key α ∈ F∗

p, computes A1 = Pα1 and outputs the following:

SK∗ = (SK, α) = (F,K, SKDig, α)

VK∗ = (VK, A1) = (PKDig, {(τi, Λ(τi)
1)}Ni=1, A1)

param = (p, {τi}Ni=1, H, e, ê, {Gi}d+1
i=1 ,G,GT , P1, P)

Sign∗(SK∗, ∆, τ,m)→ σ∗ On input of signing key SK∗ = (SK, α), data set identifier
∆, a label τ ∈ L, and a message m ∈ Fp, algorithm Sign∗ generates a random

number θ1 ∈ F∗
p, and computes the polynomial t(z) = m + θ1z. Using secret key

SK, this algorithm executes algorithm Sign over the tuple (∆, τ, t(α)), (i.e. algo-
rithm Sign signs message t(α)). This results in a signature σ = (param∆, Ω, Ψ, Υ)
with Υ = (t(α), Λ1, Γ1). Thereafter, algorithm Sign∗ defines the homomorphic
signature Υ ∗ of tuple (m, τ,∆) as:

Υ ∗ = ([m,θ], Λ1, Γ1)

whereby [m,θ] = [m, θ1, .., θd] represents an at most d-degree polynomial t(z) =

m+
∑d
r=1 θrz

r (i.e. the free coefficient is m). In the current setting, the degree of
t is 1 and hence: Υ ∗ = ([m, θ1, 0, .., 0], Λ1, Γ1).
At the end, Sign∗ returns the fully homomorphic signature:

σ∗ = (param∆, Ω, Ψ, Υ
∗)

Eval∗(VK∗, f,σ∗)→ σ∗ When provided with an n-variate function f and a vector
σ∗ of n homomorphic signatures σ∗(l) = (param∆, Ω, Ψ

(l), Υ ∗(l)), such that each
signature σ∗(l) authenticates a messages m(l) for 1 ≤ l ≤ n, algorithm Eval∗

proceeds – similarly to Eval – in two steps:
Computation of aggregate signature Ψ . This aggregate signature is obtained by
evaluating the same circuit C̃f defined in algorithm Eval, on inputs of aggregate
signatures (Ψ (1),, Ψ (n)) (see Section 4.1).
Computation of homomorphic signature Υ ∗. In this step, algorithm Eval∗ eval-
uates the circuit C∗

f of function f on inputs (Υ ∗(1), ..., Υ ∗(n)) using the following
subroutines:

– GateEval∗+(Υ ∗(1), Υ ∗(2)): Here we assume that for l ∈ {1, 2}, Υ ∗(l) = ([m(l),θ(l)], Λ
(1)
i , Γ

(1)
i) ∈

Fd+1
p × G2

i . Whenever, an addition gate is encountered, GateEval∗+ outputs
Υ ∗ = ([m,θ], Λi, Γi) such that:

[m,θ] = [m(1),θ(1)] + [m(2),θ(2)]

Λi = Λ
(1)
i Λ

(2)
i ; Γi = Γ

(1)
i Γ

(2)
i

– GateEval∗c(Υ
∗(1), c): This subroutine is called in order to evaluate a gate for

multiplication by a constant. Accordingly, on inputs of a homomorphic sig-
nature Υ ∗(1) = ([m(1),θ(1)], Λ

(1)
i , Γ

(1)
i) ∈ Fd+1

p × G2
i and a constant c,

GateEvalc outputs Υ ∗ = ([m,θ], Λi, Γi) where:

[m,θ] = c[m(1),θ(1)]

Λi = (Λ
(1)
i)c ; Γi = (Γ

(1)
i)c

– GateEval∗×(Υ ∗(1), Υ ∗(2)): Without loss of generality, assume that Υ ∗(1) = ([m(1),θ(1)], Λ
(1)
i , Γ

(1)
i) ∈

Fd+1
p × G2

i , and Υ ∗(2) = ([m(2),θ(2)], Λ
(2)
j , Γ

(2)
j) ∈ Fd+1

p × G2
j . This means

that (i) Υ ∗(1) and Υ ∗(2) are inputs of degree i and j respectively; and that
(ii) θ(1) = [θ

(1)
1 , ...θ

(1)
i , 0, ...0] and θ(2) = [θ

(2)
1 , ...θ

(2)
j , 0, ...0].

Now whenever a message m(1) is going to be multiplied with a message m(2),
GateEval∗× generates an (i + j)-degree polynomial t by multiplying the two
polynomials t(1)(z) = m(1)+

∑i
r=1 θ

(1)
r zr and t(2)(z) = m(2)+

∑j
r=1 θ

(2)
r zr.

The coefficients of the resulting polynomial t are denoted by [m(1)m(2),θ] ∈
Fd+1
p , where θ = [θ1, ..., θi+j , 0, ..., 0].

Additionally, GateEval∗× recursively computes the parameters Ar+1 and Bi,r,
for all 1 ≤ r ≤ i− 1, as follows:

Ar+1 = e(Ar, A1) ; Bi,r = e(Pi−r, Ar)

Given these parameters, GateEval∗× computes:

Λi+j = e(Λ
(1)
i , Λ

(2)
j)

Γi+j = e(Pm
(1)

i A
θ
(1)
i
i

i−1∏
r=1

B
θ(1)r
i,r , Γ

(2)
j)e(Γ

(1)
i , Λ

(2)
j)

GateEval∗× then outputs Υ ∗ = ([m,θ], Λi+j , Γi+j).
Algorithm Eval∗ concludes its execution by outputting:

σ∗ = (param∆, Ω, Ψ, Υ
∗)

OffVerify∗(VK∗,P)→ VK∗
P We assume here that P evaluates an n-variate function f

whose circuit is of degree k. Hence, given VK∗ = (VK, A1), algorithm OffVerify∗

first computes VKP using OffVerify (i.e. VKP ← OffVerify(VK, P)), and generates
the parameters:

Ar+1 = e(Ar, A1) ; Bk,r = e(Pk−r, Ar); 1 ≤ r ≤ k − 1

Finally, algorithm OffVerify∗ outputs:

VK∗
P = (VKP, Ak, {Bk,1, ..., Bk,k−1})

where VKP = (PKDig, HP, f(Λ
(τ1)
1 , ..., Λ

(τn)
1)).

OnVerify∗(VK∗
P, ∆,m, σ

∗)→ b On input of concise verification key VK∗
P, dataset iden-

tifier ∆, message m and signature σ∗ = (param∆, Ω, Ψ, Υ
∗), algorithm OnVerify∗

proceeds as following:
– It parses VK∗

P as (VKP, Ak, {Bk,1, ..., Bk,k−1}), dataset parameters param∆

as (∆,PKAgg,PKHom) and signature σ∗ as ([m,θ], Ω, Ψ, Υ ∗).
– Similarly to OnVerify, it uses VKP to incrementally check the validity of digital

signature Ω and aggregate signature Ψ . If any of these signatures is not valid,
then OnVerify∗ returns b = 0.

– Finally, it parses homomorphic signature Υ ∗ as a tuple ([m,θ], Λk, Γk) ∈
Fd+1
p ×G2

k, and given verification key VKP, public key PKHom = (X1, Y1) ∈
G2

1 and (Ak, {Bk,1, ..., Bk,k−1}) ∈ Gkk verifies whether the following equali-
ties hold:

Λk = f(Λ
(τ1)
1 , ..., Λ

(τn)
1) (7)

e(X1, Λk) = e(X1, P
m
k A

θk
k

k−1∏
r=1

Bθrk,r)e(Y1, Γk) (8)

If both equalities hold, then OnVerify∗ outputs b = 1; otherwise it outputs
b = 0.

5.2 Efficiency

In the following, we briefly discuss the efficiency of our homomorphic signature.
Online-Offline Signing. We point out that the signature we described in Section 5

supports online-offline signatures. Similarly to previous work on online-offline signa-
tures [19], the signer could sign a random dataset ∆̈ = (m̈(1), ..., m̈(n)) offline, using
the weakly secure signature. This yields a tuple param∆̈ = (∆̈, P̈KAgg, P̈KHom), a dig-
ital signature Ω̈, n aggregate signatures Ψ̈ (i) and n homomorphic signatures Ϋ (i) =

(m̈(i), Λ̈
(i)
1 , Γ̈

(i)
1). Later when a dataset ∆ = (m(1), ...,m(n)) is generated, the signer

proceeds as following:

– The signer uses secret key α to find for each message m(i) the coefficient θ(i)1 veri-
fying: m̈(i) = αθ

(i)
1 +m(i), and sets the homomorphic signature Υ (i) to ([m(i), θ

(i)
1], Λ̈

(i)
1 , Γ̈

(i)
1);

– she defines signature Ψ (i) of message m(i) as Ψ̈ (i);
– she defines the public parameters of dataset ∆ as param∆ = (∆, P̈KAgg, P̈KHom)

and signs these public parameters using her public key PK.

Adaptive Security Transformation. Catalano et al. [11] and Gorbunov et al. [18]
independently proposed generic transformations that make any weakly secure homo-
morphic signature into an adaptively secure one. While it is possible to leverage any
of these transformations to define our adaptively secure signature, it was more practical
and simple to opt for a dedicated transformation. For instance, compared to what is pro-
posed in [11], our transformation yields shorter signatures: The evaluation of a circuit
Cf of degree k results in a signature of size ' k when using our transformation, rather
than a signature of size ' 3k in the case of the transformation in [11]. Additionally, we
note that if we use any of these transformations, then we lose the online-offline signing
feature.

5.3 Correctness

Theorem 4. The adaptively secure homomorphic signature described above ensures
authentication and evaluation correctness.

Proof (Sketch). Due to the close similarity with the proofs of correctness of the weakly
secure homomorphic signature, we only provide a proof sketch for evaluation correct-
ness. A similar argument can be used to prove authentication correctness.

Let the inputs of algorithm Verify be: P∆ = (∆,P) where P = (f, τ1, .., τn)
is a program evaluating a circuit Cf of degree k, m = f(m(1), ...,m(n)) and σ∗ =
(param∆, Ω, Ψ, Υ

∗) such that Υ ∗ = ([m,θ], Λk, Γk).
Also, let t denote the polynomial associated with vector [m,θ].

Finally, let [m(l),θ(l)] be the vector from signature σ∗(l) of message m(l), and
t(l)(z) = m(l)+

∑i
r=1 θ

(l)
r zr be the corresponding polynomial (i.e. θ(l) = [θ

(l)
1 , ..., θ

(l)
i , 0, ..., 0]).

To show evaluation correctness, we rely on two observations: (i) The first is that
f(t(1)(α), ..., t(n)(α)) = f(t(1), ..., t(n))(α), which means that f(t(1)(α), ..., t(n)(α)) =

m +
∑k
r=1 θrα

r = t(α). (ii) The second is that (t(α), Λk, Γk) is a valid weakly se-
cure signature. More precisely, it can be viewed as the output of algorithm Eval (from
Section 4.1) on inputs of (t(l)(α), Λ

(l)
i , Γ

(l)
i).

Thus by correctness of our weakly homomorphic signature, Equation 3 is verified
for m = t(α). From this we can see that Equation 8 holds for vector [m,θ]. Indeed,
we have for all k ≥ 2 and for all 1 ≤ r ≤ k − 1: Ak = Pα

k

k and Bk,r = Pα
r

k .
Hence, Equation 8 could be rewritten as e(X1, Λk) = e(X1, P

t(α)
k)e(Y1, Γk), which

corresponds to Equation 3 when m is replaced by t(α).

5.4 Soundness

Theorem 5. If the digital signature ΣDig and the aggregate signature ΣAgg are secure,
then our homomorphic signature is (s, t)-sound under the MDHI assumption.

Proof (Sketch). Assume there is an adversary A that breaks the (s, t)-soundness of our
homomorphic signature with a non-negligible advantage εA . Similarly to the proof of
Theorem 3, sinceΣDig andΣAgg are secure, the only way A can succeed in breaking the
(s, t)-soundness is through a Type II forgery. Given the existence of a Type II forgery
by A, we show that either there exists an adversary B that breaks our weakly secure
homomorphic signature, or that adversary A breaks the MDHI assumption.

To break our weakly secure homomorphic signature, adversary B simulates the un-
forgeability experiment as follows:

– First, B enters the learning phase of Algorithm 2 and receives public parameters
param whereby

param = (p, {τi}Ni=1, H, e, ê, {Gi}d+1
i=1 ,G,GT , P1, P)

Further, it submits sN signature queries 〈∆i, τ
(i,j),m(i,j)〉 for randomly gener-

ated messages m(i,j), 1 ≤ i ≤ s and 1 ≤ j ≤ N , so that to receive VK =

(PKDig, {(τi, Λ(τi)
1)}Ni=1) and signatures σ(i,j) such that:

σ(i,j) = (param∆i , Ω
(i), Ψ (i,j), Υ (i,j))

param∆i = (∆i,PK
(i)
Agg,PK

(i)
Hom)

Υ (i,j) = (m(i,j), Λ
(i,j)
1 , Γ

(i,j)
1)

B keeps these signatures in a table T to further use them during its simulation.
– When A queries oracle OKeyGen∗ , B generates (α,A1 = Pα1), sets VK∗ = (PK∗

Dig, {(τi, Λ
(τi)
1)}Ni=1, A1)

where PK∗
Dig is its own public key, and returns accordingly (param,VK∗).

– When A queries for the signature of 〈∆∗
i , τ

∗
(i,j),m

∗(i,j)〉, B first fetches the public

parameters (∆i,PK
(i)
Agg,PK

(i)
Hom) of dataset ∆i in table T , and signs param∆∗

i
=

(∆∗
i ,PK

(i)
Agg,PK

(i)
Hom) using secret key SK∗

Dig matching public key PK∗
Dig. This re-

sults in a signature Ω∗(i).
Further, B finds in table T the message in dataset ∆i that was signed under la-
bel τ∗(i,j), Here, we assume that this message corresponds to m(i,j) (i.e. τ∗(i,j) =

τ(i,j)). B then retrieves signature σ(i,j) = (param∆i , Ω
(i), Ψ (i,j), Υ (i,j)), and lets

Υ ∗(i,j) = ([m∗(i,j), θ
(i,j)
1], Λ

(i,j)
1 , Γ

(i,j)
1), whereby θ(i,j)1 is computed so thatm(i,j) =

m∗(i,j) + θ
(i,j)
1 α. Finally, B returns σ∗(i,j) = (param∆∗

i
, Ω∗(i), Ψ (i,j), Υ ∗(i,j)).

Eventually, A outputs pairs (P, ∆∗
i) and (m∗, σ∗).

We suppose here that P = (f, τ(i,1), ..., τ(i,t)), with f being a t-variate function of
degree k.

Hence, σ∗ = (param∆∗
i
, Ω∗(i), Ψ (i), Υ ∗(i)) where Υ ∗(i) = ([m∗,θ], Λk, Γk), and

θ = [θ1, ..., θk, 0, ..., 0].
In order to break our weakly secure signature, B runs Eval∗ on inputs of function f

and signatures σ∗(i,j) with 1 ≤ j ≤ t.
This results in a vector [m̈∗, θ̈] ∈ Fd+1

p , where m̈∗ = f(m∗(i,1), ...,m∗(i,t)) and
θ̈ = [θ̈1, ..., θ̈k, 0, ..., 0].

Since A’s output is a Type II forgery, we know that m∗ 6= m̈∗. Now depending on
whether m∗ +

∑k
r=1 θrα

r equals m̈∗ +
∑k
r=1 θ̈rα

r, we show that either B breaks the
weak unforgeability of our scheme, or that A is able to break the MDHI assumption.

– If m∗ +
∑k
r=1 θrα

r 6= m̈∗ +
∑k
r=1 θ̈rα

r, then adversary B breaks our weakly
secure signature by outputting message m = m∗ +

∑k
r=1 θrα

r, multi-labeled pro-
gram (P, ∆i) and σ = (param∆i , Ω

(i), Ψ (i), Υ (i)), whereby Υ (i) = (m,Λk, Γk).
Indeed, notice that:

m̈∗ +

k∑
r=1

θ̈rα
r = f(m∗(i,1) + αθ

(i,1)
1 , ...,m∗(i,t) + αθ

(i,t)
1)

= f(m(i,1), ...,m(i,t))

Thus, m 6= f(m(i,1), ...,m(i,t)).
– If m∗ +

∑k
r=1 θrα

r = m̈∗ +
∑k
r=1 θ̈rα

r, then we can show that A breaks the
MDHI assumption. Namely, it can compute Pkα

−1

from (P1, A1 = Pα1). Indeed:

P
m∗+

∑k
r=1 θrα

r

k = P
m̈∗+

∑k
r=1 θ̈rα

r

k

Pm
∗−m̈∗

k = P
∑k
r=1 θ̈rα

r−
∑k
r=1 θrα

r

k

For the sake of clarity, we simplify the formula by replacing the subtraction of the
two polynomials with one polynomial:

Pm
∗−m̈∗

k = P
∑k
r=1 θ̂rα

r

k

Pk = P

∑k
r=1 θ̂rα

r

m∗−m̈∗

k = P
α

∑k
r=1 θ̂rα

r−1

m∗−m̈∗

k

This implies that A breaks the MDHI assumption by first computing Pα
r−1

k , 1 ≤
r ≤ k, using P1, A1 and bilinear pairing e, and then outputting:

Pα
−1

k =

(
k∏
r=1

P θ̂rα
r−1

k

)(m∗−m̈∗)−1

Finally to conclude, since our weakly secure signature is sound under the MDHI as-
sumption, so is our adaptively secure solution.

6 Related Work

Verifiable Delegation of Computation. The advent of cloud computing has spurred
interest in verifiable delegation of computation [12, 15, 20, 21]. The main concern of
this line of work is to ensure that the verification of computation calls for less computa-
tional resources than the delegated function. However, verifiable computation requires
the verifier to have access to the dataset on which computation has been performed,
which may be unrealistic in some settings.

Succinct Non-interactive ARguments of Knowledge. SNARKs [2, 3, 16] are a
powerful tool to build fully homomorphic signatures. Generally speaking, SNARKs
allow anyone to generate a proof for any NP statement. In particular, given a value y
and a function f , one can employ SNARKs to prove that there exists a witness x that
verifies y = f(x). While SNARKs give way to efficient verification procedures, their
soundness is only ensured under non-falsifiable assumptions [2, 17].

Additively Homomorphic Signatures. First attempts to design homomorphic sig-
natures focused on authenticating linear functions, cf. [1, 4, 8]. The motivating appli-
cations for this type of homomorphic signatures are namely: secure network coding [8]
which enables the authentication of messages forwarded in the network, and proofs of
retrievability [1, 22] which provide means to efficiently verify the availability of data
stored at untrusted servers.

Homomorphic MACs. Gennaro and Wichs [14] proposed one of the first homo-
morphic symmetric authenticators dedicated to Boolean circuits. The propounded solu-
tion builds upon homomorphic encryption and assumes that the adversary does not have
access to the results of the MAC verification (i.e. an adversary cannot know whether a
pair of message and signature is valid or not). To overcome this caveat, Catalano and
Fiore [9] introduced a solution that leverages the algebraic properties of the ring of
polynomials to homomorphically sign messages. Briefly, the idea of [9] is to represent
the signature as a polynomial of degree 1 in which the free term corresponds to the
signed message. In this manner, the proposed MAC is much more efficient than the
work of Gennaro and Wichs [14] and is suitable for arithmetic circuits. The issue how-
ever with this solution is that program composition yields MACs whose size grows with
the degree of the circuit. As a followup, Catalano et al. [10] exploited multilinear maps
to devise a homomorphic MAC that supports program composition while conserving
succinctness.

Homomorphic Signatures. One of the first solutions for homomorphic signatures
was devised by Boneh and Freeman [5]. The proposed solution uses ideal lattices to
authenticate the evaluation of multivariate polynomials. However, this scheme is shown
to be secure in the random oracle model only. To address this shortcoming, Catalano
et al. [11] build upon their previous work [9, 10] and design a homomorphic signature
that is suitable for multi-variate polynomial functions and secure in the standard model.
However, as discussed in Section 5.2, our solution outperforms the signature proposed
in [11] in terms of both size and computation. In a more recent work, Gorbunov et al.
[18] introduced leveled fully-homomorphic signatures from standard lattices, which
contrary to our signature and the signatures in [5, 11], authenticate arbitrary functions.
The proposed signature relies on dedicated homomorphic trapdoor functions and is
shown to be adaptively secure in the standard model. Nevertheless, the signature in [18]
does not take Type III forgeries into account.

Note that if similarly to Catalano et al. [11], we only consider multivariate polyno-
mials of degree d verifying d/p < 1/2, then the signature presented in 4.1 becomes
weakly-secure in the standard model. Indeed, according to Proposition 2 in [10], if
d/p < 1/2, then Type II and Type III forgeries are equivalent. This entails that there is
no need for aggregate signatures whose security is proved in the random oracle model.
Still, we emphasize that using aggregate signatures to thwart Type III forgeries is of
independent interest as it can be employed in other homomorphic signatures to resist
Type III forgeries (for e.g. [18]).

Finally, we remark that to the best of our knowledge, our solution is the only so-
lution that features an online-offline signing process. This capability is advantageous
especially in contexts where mobile devices (smart-phones, tablets...etc.) are prevalent.

7 Conclusion

In this paper, we introduced a new construction for homomorphic signatures suitable
for multivariate polynomials of bounded degree. By tailoring the algebraic properties
of eigenvectors and leveled multilinear maps, the proposed construction allows efficient
verification in the amortized model and enables online-offline signing. Besides, our
solution yields signatures whose size grows only linearly in the degree of evaluated
polynomials, and we show it to be provably secure under the MDHI assumption.

Bibliography

[1] G. Ateniese, R. C. Burns, R. Curtmola, J. Herring, L. Kissner, Z. N. J. Peterson,
and D. Song. Provable data possession at untrusted stores. In Peng Ning, Sab-
rina De Capitani di Vimercati, and Paul F. Syverson, editors, ACM Conference on
Computer and Communications Security, pages 598–609. ACM, 2007.

[2] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back again. In
Proceedings of the 3rd Innovations in Theoretical Computer Science Conference,
pages 326–349. ACM, 2012.

[3] N. Bitansky, A. Chiesa, Y. Ishai, O. Paneth, and R. Ostrovsky. Succinct Non-
Interactive Arguments via Linear Interactive Proofs. In Theory of Cryptography,
pages 315–333. Springer, 2013.

[4] D. Boneh and D. M. Freeman. Linearly homomorphic signatures over binary
fields and new tools for lattice-based signatures. In Public Key Cryptography–
PKC 2011, pages 1–16. Springer, 2011.

[5] D. Boneh and D.M. Freeman. Homomorphic signatures for polynomial functions.
In Advances in Cryptology–EUROCRYPT 2011, pages 149–168. Springer, 2011.

[6] D. Boneh and A. Silverberg. Applications of multilinear forms to cryptography.
Contemporary Mathematics, 324(1):71–90, 2003.

[7] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably en-
crypted signatures from bilinear maps. In Advances in cryptology - EUROCRYPT
2003, pages 416–432. Springer, 2003.

[8] D. Boneh, D. Freeman, J. Katz, and B. Waters. Signing a linear subspace: Signa-
ture schemes for network coding. In Public Key Cryptography–PKC 2009, pages
68–87. Springer, 2009.

[9] D. Catalano and D. Fiore. Practical Homomorphic MACs for Arithmetic Circuits.
In EUROCRYPT, volume 7881, pages 336–352. Springer, 2013.

[10] D. Catalano, D. Fiore, R. Gennaro, and L. Nizzardo. Generalizing homomor-
phic MACs for arithmetic circuits. In Public-Key Cryptography–PKC 2014, pages
538–555. Springer, 2014.

[11] D. Catalano, D. Fiore, and B. Warinschi. Homomorphic Signatures with Efficient
Verification for Polynomial Functions. In J.A. Garay and R. Gennaro, editors,
Advances in Cryptology – CRYPTO 2014, volume 8616 of Lecture Notes in Com-
puter Science, pages 371–389. Springer Berlin Heidelberg, 2014.

[12] D. Fiore and R. Gennaro. Publicly Verifiable Delegation of Large Polynomials
and Matrix Computations, with Applications. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security, CCS ’12, pages 501–
512. ACM, 2012.

[13] S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lattices.
In Thomas Johansson and PhongQ. Nguyen, editors, Advances in Cryptology EU-
ROCRYPT 2013, volume 7881 of Lecture Notes in Computer Science, pages 1–17.
Springer Berlin Heidelberg, 2013.

[14] R. Gennaro and D. Wichs. Fully Homomorphic Message Authenticators. In Kazue
Sako and Palash Sarkar, editors, Advances in Cryptology - ASIACRYPT 2013, vol-
ume 8270 of Lecture Notes in Computer Science, pages 301–320. Springer Berlin
Heidelberg, 2013.

[15] R. Gennaro, C. Gentry, and B Parno. Non-Interactive Verifiable Computation:
Outsourcing Computation To Untrusted Workers. In In Proceedings of CRYPTO.
Citeseer, 2010.

[16] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic Span Programs and
Succinct NIZKs without PCPs. In EUROCRYPT, volume 7881, pages 626–645.
Springer, 2013.

[17] C. Gentry and D. Wichs. Separating succinct non-interactive arguments from all
falsifiable assumptions. In Proceedings of the forty-third annual ACM symposium
on Theory of computing, pages 99–108. ACM, 2011.

[18] S. Gorbunov, V. Vaikuntanathan, and D. Wichs. Leveled fully homomorphic sig-
natures from standard lattices. In Proceedings of the Forty-Seventh Annual ACM
on Symposium on Theory of Computing, STOC ’15, pages 469–477, New York,
NY, USA, 2015. ACM. ISBN 978-1-4503-3536-2.

[19] S. Hohenberger and B. Waters. Short and stateless signatures from the rsa as-
sumption. In Advances in Cryptology-CRYPTO 2009, pages 654–670. Springer,
2009.

[20] B. Parno, M. Raykova, and V. Vaikuntanathan. How to Delegate and Verify in Pub-
lic: Verifiable Computation from Attribute-Based Encryption. In Ronald Cramer,
editor, Theory of Cryptography, volume 7194 of Lecture Notes in Computer Sci-
ence, pages 422–439. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-28913-
2.

[21] B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio: Nearly Practical
Verifiable Computation. In Security and Privacy (SP), 2013 IEEE Symposium on,
pages 238–252. IEEE, 2013.

[22] H. Shacham and B. Waters. Compact proofs of retrievability. In Proceedings of the
14th International Conference on the Theory and Application of Cryptology and
Information Security: Advances in Cryptology, ASIACRYPT ’08, pages 90–107,
Berlin, Heidelberg, 2008. Springer-Verlag.

