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Abstract

Recently Attrapadung (Eurocrypt 2014) proposed a generic framework for fully (adaptively) secure
predicate encryption (PE) based on a new primitive, called pair encodings. The authors shows that if
the underlying pair encoding scheme is either perfectly secure or computationally (doubly-selectively)
secure, then the PE scheme will be fully secure. Although the pair encodings were solely introduced for
PE, we show that these can also be used to construct predicate signatures, a signature analogue of PE.
More precisely, we propose a generic construction for predicate signature (PS) from the pair encoding
schemes. Our construction provides the signer privacy, and unforgeability in the adaptive-predicate
model. Thereafter, we instantiate many PS schemes with new results, e.g., the first PS schemes for
regular languages, the first attribute-based signature (ABS) scheme with constant-size signature in
adaptive-predicate model, the unbounded ABS with large universes in key-policy flavor etc.

Following the CCA conversions of Yamada et al. (PKC 2011, 2012) and Nandi et al. (ePrint Archive:
2015/457), one can have CCA secure PE from CPA-secure PE if the primitive PE has either verifiability
or delegation. We show that the fully secure CPA-construction of Attrapadung holds the verifiability
if we assume a very simple condition on the underlying pair encoding scheme. The aforesaid approach
degrades the performance of the resultant CCA-secure PE scheme. As an alternative, we provide a direct
fully secure CCA-construction for PE from the pair encoding schemes. This costs an extra computation
of group element in encryption and an extra pairing computation in decryption as compared to CPA-
construction of Attrapadung.

The predicate signcryption (PSC) is a super class of the existing class, attribute-based signcryption
(ABSC), where the confidentiality, unforgeability and signer privacy are well preserved. By combin-
ing the proposed frameworks for PS and PE, we provide a generic construction for PSC from the pair
encodings. It achieves the perfect privacy, and the strong unforgeability and CCA security in the
adaptive-predicates model. The construction has the support of “combined-setup”, where the distribu-
tion of public parameters and keys in the (implicit) signature and encryption schemes are identical. The
instantiations of the proposed PSC, provide many new schemes, e.g., the first PSC schemes for regular
languages, the first ABSC with either constant-size signatures or constant-size keys, the unbounded
ABSC with large universes in adaptive-predicates model etc.

1 Introduction

Predicate signature (PS) [4] is a signature analogue of predicate encryption (PE) [7], where Alice signs
a document under an associated data index (policy), provided Alice’s key index x ∈ X is related to the
associated data index y ∈ Y. The term “related” is ruled out by a binary relation ∼, called predicate
relation defined over X × Y, where X and Y are respectively called key space and associated data space.
The attribute-based signature (ABS) [26] is a larger subclass of PS. Like ABS, the predicate signature
schemes are available in two forms, key-policy predicate signature (KP-PS) and signature-policy predicate
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signature (SP-PS). If the contents of X are more expressive than the contents of Y, then the predicate
signature is called KP-PS, otherwise it is SP-PS. Similar to ABS, we have two types of security, the
unforgeability and signer privacy. The former ensures that the signatures are generated by a valid user
and later protects from revealing the signer key index.

Attribute-based signcryption (ABSC) [17] is a natural extension of attribute-based encryption (ABE)
and attribute-based signature (ABS) such that the confidentiality, unforgeability and signer privacy are
well maintained. Like ABS, if the key is labeled with the set of attributes and the policies (signer policy
and receiver policy) are associated with the signcryption, then the ABSC is known to be the key-policy
attribute-based signcryption (KP-ABSC) and its dual form is called the signcryption-policy attribute-based
signcryption (SCP-ABSC). In this paper, we start with predicate signcryption (PSC) which is a larger
class of signcryptions containing the subclass, ABSC. Similar to ABSC, the predicate signcryptions are of
two forms, the key-policy predicate signcryption (KP-PSC) and signcryption-policy predicate signcryption
(SCP-PSC).

The concept of signcryption was introduced by Zheng [37]. Since, then many signcryption schemes
[1, 28, 25] have been proposed. Among the three well known paradigms of [1], the paradigm “Commit
then Encrypt and Sign (CtE&S)” runs faster as the implicit subroutines execute in parallel in signcrypt
and unsigncrypt algorithms. The “combined-setup” in ABSC [31] and combining public-key schemes [20]
allows to keep the distribution of public parameters and keys in the (implicit) signature and encryption
schemes identical. Therefore, the schemes with “combined-setup” will be privileged as compared to the
schemes with independent setup.

The dual system methodology of Waters [33] is a well known tool for constructing the predicate encryp-
tion scheme. But, for some predicates, e.g., regular languages, the adaptively secure predicate encryption
were not known, even though their selectively-secure version was available. Therefore, for those class of
predicates, the dual system technique of Waters [33] was unreachable. Recently, Attrapadung [2] intro-
duced a new primitive, called pair encoding schemes which are sitting inside many PE schemes. They
proposed a generic framework for adaptively secure predicate encryption, which captures the core idea of
dual system technique [33]. They showed that by applying the generic approach on the pair encoding, the
adaptively-secure PE is possible. Their conversion assumes either the perfect security or computational
(doubly-selective) security of the underlying pair encoding scheme. Using this framework, the authors
constructed the first fully secure predicate encryption schemes for which only selectively secure schemes
were known. They instantiated some surprising results, e.g., PE for regular languages, unbounded ABE
for large universes, ABE with constant-size ciphertexts etc. Concurrently and independently, Wee [34]
proposed the notion of predicate encodings which is exactly identical to the perfectly secure pair encodings
of [2]. Some of the instantiations in [34] are similar to [2], viz., the KP-ABE, CP-ABE for small universe
with improved efficiency and doubly-spatial encryption.

Our Contribution. In this paper, we provide the generic constructions for predicate signature, (CCA-
secure) predicate encryption and predicate signcryption schemes from the pair encoding schemes. If the
underlying pair encoding scheme with a least security1, fulfills some (natural) conditions, then the PS
and PSC schemes will achieve the perfect signer privacy, and the unforgeability in adaptive-predicate(s)
model. But to ensure the adaptive-predicate(s) IND-CCA security of the PE and PSC schemes, we assume
either both the computational security, CMH and SMH or the PMH security of the underlying pair encoding
scheme. All the constructions are given in the setting of composite order bilinear groups. The unforgeability

1We consider two notions of security for the pair encoding scheme, perfect and computational. The perfect security is
called the perfectly master-key hiding (PMH). The computational are of two types, the selectively master-key hiding (SMH)
and co-selectively master-key hiding (CMH). The least security means either PMH or CMH.
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(applicable to PS and PSC) and IND-CCA security (applicable to PE and PSC) are proven under the
three subgroup assumptions, DSG1, DSG2, DSG3 and the extra hardness assumption(s) required for the
CMH (and SMH)-security of the underlying pair encoding scheme. If the primitive pair encoding scheme
has PMH-security, then we do not need any extra hardness assumption. In this case, we say that the
corresponding predicate scheme is cost free. Through these generic constrictions what we achieved are
summarized below:

– Predicate Signature. Since, all the pair encoding schemes of [2, 5] maintain the least security and sat-
isfy the natural conditions therefore, the resultant predicate signature schemes are adaptive-predicate
unforgeable and perfectly private.

• (PS for Regular Languages.) The predicate signature schemes for regular languages in both the
flavors, Key-policy and signature-policy are provided in this paper. Both the schemes support
the large universe alphabet. To the best of our knowledge, these are the first non-trivial predicate
signature schemes beyond ABS.

• (Unbounded KP-ABS.) We present an unbounded KP-ABS scheme with large universes, where
the size of the universe is super-polynomial and no restriction has been imposed on the access
polices and sets of attributes. To the best of our knowledge, this is the first large universes
KP-ABS construction with the feature unbounded. A dual version, unbounded CP-ABS with
large universes is also proposed in this paper.

• (Constant-size Signatures and Constant-size Keys.) Till to date, the only available ABS scheme
with constant-size signature is known to be unforgeable in the selective-predicate model. We
propose the first KP-ABS with constant-size signature, where the unforgeability is proven in
adaptive-predicate model. A dual version, CP-ABS with constant-size keys is also provided in
this paper.

• (Policy over Doubly-Spatial Signature.) Similar to key-policy over doubly spatial encryption
(KP-DSE) [2] and ciphertext-policy over doubly spatial encryption (CP-DSE) [5] , the new
predicate signatures, key-policy over doubly-spatial signature (KP-DSS) and signature-policy
over doubly-spatial signature (SP-DSS) are proposed in this paper. The new classes, KP-DSS
and SP-DSS generalize the existing classes, KP-ABS and SP-ABS respectively.

• (Cost Free ABS with Small Universe.) We present the small universes KP-ABS and SP-ABS
schemes, where a restriction is imposed only on the polices. Since, the primitive pair encoding
schemes are PMH secure, so the ABS schemes are cost free.

• (Cost Free ABS with Large Universe.) Again analogous to new large universe ABE [2], the
new cost free KP-ABS and CP-ABS schemes with large universes are presented. Unlike small
universes construction, the bounds on both, the size of attribute set and size of access structure
are imposed.

– CCA Secure Predicate Encryption. We obtain the adaptive-predicate IND-CCA predicate encryp-
tion schemes from the pair encoding schemes in two approaches:

• (Traditional Approach.) We first show that if the underlying pair encoding scheme fulfills the
condition (1) in Conditions 3.2, then the fully secure construction in sec.4.3 of [2] satisfies the
verifiability. Then, by applying the CCA conversion technique [36, 29, 35], we obtain adaptive-
predicate IND-CCA predicate encryption schemes.

• (New Approach.) We first point out some drawbacks of the traditional approach:
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1. The aforementioned approach may increases the length of key index and data index and
the size of universe.

2. The checking in verifiability degrades the performance of decryption.

3. For new predicate scheme (in future), we may not know the concrete index-transformer
[29, 36].

All these drawbacks keeping in mind, we provide a direct adaptive-predicate IND-CCA secure
construction from the pair encoding schemes with having the fulfillment of the conditions (1)
and (3) in Conditions 3.2. It has one extra group element in ciphertext and one extra pairing
computation in decryption as compared to the CPA construction of [2].

Since, all the underlying pair encodings [2, 5] satisfy the conditions (1) and (3), therefore, using these
approaches, we achieve CCA security of all the predicate encryptions found in [2, 5].

– Predicate Signcryption. Since, all the pair encoding schemes of [2, 5] either have both the compu-
tational security, CMH and SMH or the PMH security, and satisfy the natural conditions therefore,
the resultant predicate signcryption schemes are adaptive-predicates strong unforgeable and perfectly
private. All the predicate signcryption schemes have the combined-setup, non-repudiation and follow
the new paradigm, “Commit then Encrypt and Sign then Sign CtE&StS” of [31]. To the best of
our knowledge, all the results describes below are new except the SCP-ABSC with small universes
construction of [31].

• (PSC for Regular Languages.) We present the predicate signcryptions for regular languages in
both policies, key-policy (KP) and signcryption-policy (SCP) which support the large universe
alphabet.

• (Unbounded ABSC.) An unbounded ABSC schemes with large universes in both flavors, KP
and SCP are provided in this paper.

• (Constant-size Signcryptions and Constant-size keys.) A KP-ABSC scheme with constant-size
signcryptions and an SCP-ABSC with constant-size keys are proposed in this paper.

• (Policy over Doubly-Spatial Signcryption.) In this paper, we present the new predicate sign-
cryptions, a key-policy over doubly-spatial signcryption (KP-DSSC) and signcryption-policy
over doubly-spatial signcryption (SCP-DSSC) which respectively generalize the existing classes,
KP-ABSC and SCP-ABSC.

• (Cost Free ABSC with Small Universe.) Similar to signature, we propose the cost-free KP-ABSC
and SCP-ABSC schemes with the support of small universes.

• (Cost Free ABSC with Large Universe.) Similar to signature, we propose the cost-free KP-ABSC
and SCP-ABSC schemes with large universes.

Our Approach. In brief, the pair encoding scheme [2] consists of four deterministic algorithm,
Param,Enc1,Enc2 and Pair. Let N ∈ N. Param → n which describes the length of the common pa-
rameters h ∈ ZnN . Enc1(x) → (kx,m2), where kx is a sequence of polynomial over ZN with |kx| = m1

and m2 is length of the random coin r ∈ Zm2
N . Enc2(y) → (cy, ω2), where cy is a sequence of poly-

nomial over ZN with |cy| = ω1 and ω2 + 1 is length of the random coin s := (s, s1, . . . , sω2) ∈ Zω2+1
N .

Pair(x, y) → E ∈ Zm1×ω1
N . The correctness says for x ∼ y, (kx,m2) ← Enc1(x), (cy, ω2) ← Enc2(y) and

E ← Pair(x, y), we have kx(α, r,h)Ec>y (s,h) = αs.

– Approach for PS.
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Fact 1.1. Before describing the central idea, we state the following two facts:

1. A signature in nothing but a diluted key for a policy y computed from an actual (strong) key
SKx, where the message is binded.

2. To maintain the signer privacy, the signature is labeled with policy y, at least not labeled with
the key index x.

Using the Fact 1.1 and the power of pair encoding, we develop the central idea as follow. Let
(N,G,GT , e) be a bilinear groups and gT := e(g, g), where g ∈ G. Let SKx := gkx(α,r,h) be a key.

– Signature Generation. For x ∼ y, the diluted key δy for a policy y is computed as δy := gkx(α,r,h)E ,
where E ← Pair(x, y). Now to ensure the signer privacy, we compose δy by gv, i.e δy =
gkx(α,r,h)E+v, where v ∈ Zω1

N is a random coin for the signer privacy such that vc>y (s,h) = 0

for all s ∈ Zω2+1
N . The computational feasibility of such v is ensured by imposing some natural

conditions on the pair encoding schemes and the hardness of factorization problem.

– Signature Verification. The verification process is probabilistic as it can be thought as a combination
of encryption and decryption. Since, a signature is a poor or diluted key, so verifying a signature
is nothing but the checking its capability to extract out some information from the part of a
ciphertext. Therefore, to verify a signature δy, we first prepare a verification text (it is almost
like ciphertext, where some randomness involved) V := (V INT := gαsT ,Vy := gcy(s,h)). The
signature is accepted if e(δy,Vy) = V INT else rejected.

– Correctness. For x ∼ y, e(δy,Vy) = e(g, g)(kx(α,r,h)E+v)c>y (s,h) = e(g, g)kx(α,r,h)Ec
>
y (s,h) = gαsT ,

where the last equality is obtained from the correctness of pair encoding scheme.

The signature δy described here is a core part of the actual signature proposed in sec.3.6, where
some other components are to be added. E.g., for binding the message (m, y) to the signature,
a component gτ(θ1~+θ2) to be added to gkx(α,r,h)E while generating the signature, where τ is a
randomness, ~ := H(m, y) and H is a collision resistant hash. Accordingly the verification text is to
be changed (for details, refer to sec.3.6). However, this prevents to alter a given signature for (m, y)
to an another signature for (m′, y′) unless (m, y) = (m′, y′).

To program the above central idea in our framework for PS with the assurance of adaptive security,
we used the composite order bilinear groups. In this setup, our framework captures the dual system
methodology of Waters [33] as a signature analogue of [2], where the hybrid arguments over the games
follow the style of [30, 31]. In this style, we consider the semi-functional (mimic) forms of the original
stuffs, the verification text, signatures and keys. Through the hybrid arguments, we finally reach to
a game, where the V INT is chosen independently and uniformly random from GT which implies that
the forgery will be invalid with respect to the verification text V. To simulate all stuffs perfectly,
we assume some conditions on the underlying pair encoding schemes. To the best of our knowledge,
most of the pair encodings (in fact, all the pair encoding of [2, 5]) satisfy these conditions.

– Approach for CCA secure PE. The above message binding idea gives the abstraction for (direct
construction) CCA secure PE. Suppose Ccpa be the ciphertext of the CPA-construction of [2]. Similar

to message binder above, we compute an additional components gs(θ1~+θ2), where ~ := H(Ccpa) and

s is a randomness involved in Ccpa. The new component, gs(θ1~+θ2) is natural replacement for
one-time signature in traditional approach [29, 35], where s plays the role of a signing key of the
one-time signature. The adaptive security are obtained by following the dual system style of [2] which
incorporates the dual system methodology of [33].

– Approach for PSC. This combines the approaches for PS and PE (for detail, refer to sec.6).
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Related Work.
Attribute-based signature. Maji, Prabhakaran, and Rosulek [26] presented efficient ABS scheme for
monotone span programs, but the unforgeability was proven in the generic group model. Later, the authors
[27] proposed a general framework for ABS using the credential bundle and NIWI scheme as primitives.
The unforgeability of construction was proven in the standard model using the security of credential bundle
and soundness of NIWI scheme. The perfect witness hiding of the NIWI scheme provides the signer privacy
in information-theoretic sense. As pointed out in [30] that it is much less efficient as compared to [26],
since former uses the Groth-Sahai NIZK protocols [19] as building blocks. Though, the performance of
the ABS construction [30] defeats the same of [27] but, the size of the public parameters is linear to the
size of sub-universe and a bound is set on the number of times a attribute could appear in a policy. All
the aforementioned ABS schemes have only the flavor of signature-policy, support large universe and the
unforgeability is proven in adaptive-predicate model.

Functional Signature. Bellare and Fuchsbauer [6] proposed the notion of policy-based signatures which
unifies the exists signatures, e.g., group signatures [11], mess signatures [8], attribute-based signatures [27]
etc. For a policy-based signature (PBS) scheme, the authors defined the policy language, L to be any
member of the complexity class, NP. In this scheme, a key SKp which is associated with policy p can sign
a message m (without revealing p) if (p,m) ∈ L. Since, L ∈ NP, the message m together with the witness
w is to be supplied while generating the signature. If we restrict the policy language to be come from the
complexity class, P ⊆ NP, then what we have is nothing but the predicate signatures, where the witness
is computed in polynomial time. At the same time, Boyle et al. [9] introduced the concept of functional
signatures, where a key is associated with a function f and that key has the power to sign a message m if
m belongs to its range. This can be considered as a special case of PBS, in which the policy language L
is the set of all pairs, (f,m) such that m is in the range of f and the witness for (f,m) is a pre-image m
under f .

Attribute-based signcryption. In recent years, many ABSC schemes [32, 31, 15, 12, 14] have been
proposed to deal with various aspects, e.g., efficiency, expressibility, security feature, generality, model etc.
Among them only the scheme of [31] has the support of combined setup, signer privacy, and confidentiality
and unforgeability in the adaptive-predicates model. However, we show that this can be instantiated from
our framework.

CCA secure Predicate Encryption. The techniques [10, 18, 35] available in the literature for converting
CPA to CCA secure PE (even including CPA-secure IBE to CCA-secure PKE) in the standard model is
the use of one-time signature (OTS). In this approach, first a pair of verification key and signing key,
(vk, signk) is generated, then vk is embedded into the ciphertext Ccpa generated using the CPA-secure
primitive PE scheme. Then, Ccpa is signed by signk to form the one-time signature, δ. So, the ciphertext
for the CCA-secure PE scheme is of the form, CT := (Ccpa, δ, vk). The whole process makes sure that
a new ciphertext (possibly well-formed or ill-formed but up to a certain extent) can not be constructed
from a given ciphertext unless the signk is known. The generic technique of [35] is applicable to only ABE.
Later, Attrapadung et al. [36] went beyond ABE to capture many other predicates for which no well
known technique was known. Still they missed an important class, the predicate encryption for regular
languages. Their technique is based on the verifiability of the primitive CPA secure public index scheme.
Recently Nandi et al. [29] proposed a similar approach based on both the delegation and verifiability of
the primitive CPA secure PE and instantiated many missing classes including PE for regular languages.
The generic approach in [29] basically performs the index transformation for all the predicates including
hidden index, but the instantiations that actually transform the CPA to CCA-secure PE are customized
w.r.t the predicates.
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Pair Encodings. In addition to the full PE construction [2] from the pair encodings, the authors showed
a dual conversion for the pair encodings. If the source pair encoding, P is perfectly secure, then the dual
of P, D(P) is also perfectly secure encoding. Using this conversion the full security of the dual of a PE,
denoted by D(PE) is guaranteed if the underlying pair encoding, P has the perfect security. However,
there are many PE schemes for which the perfectly secure encodings was not known, so the fully secure
construction of their dual form was unsolved. Recently, Attrapadung et al. [5] showed that the same dual
conversion of [2] actually works for the computationally secure encodings. More specifically, they proved
(Theorem 4 and 5 of [5]) that if a pair encoding P for a predicate is normal and has (1,1)-CMH security,
then the D(P) for the dual predicate is (1,1)-SMH secure and vice versa. By applying this conversion on
the underlying pair encoding of previously proposed KP-ABE of [2], the authors achieved the first fully
secure unbounded CP-ABE with short keys for Boolean formulae. They also provided a direct construction
of pair encoding scheme for a certain dual predicate and show that it is (1,1)-CMH-secure and (1, poly)-
SMH-secure. Therefore, the resulting ABE enjoys tighter reduction of O(q1), where q1 is the number
of key queries in phases 1. What they considered is the CP-DSE, which is the dual of KP-DSE. Very
recently, Chen, Gay, and Wee [13] and Attrapadung [3] proposed the new generic frameworks for achieving
adaptively secure ABE in the prime order bilinear groups which are nothing but the prime order version
of [34] and [2] respectively. The main difference between the frameworks of [13] and [3] is that the former
deals with only the perfectly secure encodings, whereas the later can deal with the computationally secure
encodings.

Organization. This paper is organized as follows. The basic notation, composite order bilinear groups,
hardness assumptions and the syntax of commitment scheme and predicate family are given in sec.2. The
syntax and security definition of predicate signature scheme and pair encoding scheme, the construction of
predicate signature, and security of the construction are provided in sec.3. The instantiations of predicate
signature, and the framework for predicate encryption and predicate signcryption are respectively given
in sec.4, sec. 5 and sec.6. The syntax and security definition of predicate encryption and predicate
signcryption are provided respectively in sec.B and sec. C.

2 Preliminaries

2.1 Notation

For a set X, x
R←− X denotes that x is randomly picked from X according to the distribution R. Likewise,

x
U←− X indicates x is uniformly selected from X. For a, b ∈ N, let [a, b] := {i ∈ N : a ≤ i ≤ b} and

[b] := [1, b]. Through out this paper, bold marks indicate the vector notations. For h ∈ ZnN and p|N , we
define h mod p := (h1 mod p, . . . , hn mod p). For a matrix M , the notations M> and Mij respectively
denote the transpose of M and entry of M at (i, j)-position. Let Null(M) represent the nullity of the
matrix, M . For x,y ∈ ZnN , we define < x,y >:= xy> :=

∑n
i=1 xi.yi. Let G be a cyclic group of order N ,

then for g ∈ G and h ∈ ZnN , let gh := (gh1 , . . . , ghn). For x,y ∈ Gn, the notation x.y stands for component
wise group operations and so, x.y ∈ Gn. For W ∈ Gn and E ∈ Zn×mN , we define WE := z ∈ Gm, where

zi := WE1i
1 .WE2i

2 . . . . .WEni
n and ‘.’ is the group operation. If W = gw, for g ∈ G and w ∈ ZnN , then we

can write WE = gwE . For a bilinear groups (N,G,GT , e), let gT := e(g, g), where g ∈ G and Θ be the
zero (identity) element of G. For x,y ∈ Gn, let e(x,y) :=

∏n
i=1 e(xi, yi). The abbreviation CBG stands

for composite order bilinear groups. For three distinct primes, p1, p2 and p3, a cyclic group G of order
N = p1p2p3, can be written as G = Gp1Gp2Gp3 , where Gpi ’s are subgroups of G. So, each element x ∈ G
can be expressed as x = x1x2x3, where xi ∈ Gpi . For x ∈ G, the notation x

∣∣
Gpi

means the projection
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of x over Gpi , i.e., xi = x
∣∣
Gpi

. For x ∈ Gn, let x
∣∣
Gpi

denote (x1
∣∣
Gpi
, . . . , xn

∣∣
Gpi

). The notation, 0m×n

stands for an m × n matrix with all the entries are 0. Let str1|| . . . ||strn denote the concatenation of
the strings, str1, . . . , strn ∈ {0, 1}∗. Alg1 ‖ . . . ‖ Algn stands for the parallel execution of the algorithms,
Alg1, . . . , Algn.

2.2 Composite Order Bilinear Groups

Let G be an algorithm which takes 1κ as a security parameter and returns a description of a composite
order bilinear groups, J := (N := p1p2p3,G,GT , e), where p1, p2, p3 are three distinct primes and G and
GT are cyclic groups of order N and e : G×G→ GT is a map such that

1. (Bilinear) ∀g, h ∈ G, a, b ∈ ZN , e(ga, hb) = e(g, h)ab

2. (Non-degenerate) ∃g ∈ G such that e(g, g) has order N in GT

Let Gp1 ,Gp2 and Gp3 respectively denote the subgroups of G of order p1, p2 and p3. Let hi ∈ Gpi and
hj ∈ Gpj be arbitrary elements with i 6= j, then e(hi, hj) = 1. This property is called orthogonal property
of Gp1 ,Gp2 ,Gp3 .

2.3 Hardness Assumptions

We describe here three Decisional SubGroup (DSG) assumptions [24] for 3 primes, DSG1, DSG2 and DSS3

in composite order bilinear groups. Let J := (N = p1p2p3,G,GT , e)
U←− G(1κ) be the common parameters

for each assumptions.

[DSG1]. Let g
U←− Gp1 , Z3

U←− Gp3 , T0
U←− Gp1 , T1

U←− Gp1p2 . Define D := (J , g, Z3)

[DSG2]. Let g, Z1
U←− Gp1 , Z2,W2

U←− Gp2 , W3, Z3
U←− Gp3 , T0

U←− Gp1p3 , T1
U←− G. Then set

D := (J , g, Z1Z2,W2W3, Z3)

[DSG3]. Let α, s
U←− ZN , g

U←− Gp1 , W2, Y2, g2
U←− Gp2 , Z3

U←− Gp3 , T0 := e(g, g)αs, T1
U←− GT . Define

D := (J , g, gαY2, gsW2, g2, Z3)

The advantage of an algorithm A in breaking DSGi, for i = 1, 2, 3 is defined by

AdvDSGi
A (κ) = |Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]|

We say that the DSGi assumption holds if for every PPT algorithm A , the advantage AdvDSGi
A (κ) is at

most negligible in security parameter κ.

2.4 Commitment scheme

A non-interactive commitment scheme consists of three PPT algorithms - Setup, Commit and Open.

• Setup: It takes a security parameter κ and outputs a public commitment key CK.

• Commit: It takes as input a message m, the public commitment key CK and returns a pair
(com, decom), where com is a commitment of the message m and decom is the decommitment.

• Open: takes a pair (com, decom), the public commitment key CK as input and outputs m or ⊥.
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For correctness, it is required that2 Open(Commit(m)) = m for all message m ∈ M, where M is the
message space.

2.5 Security of Commitment

A commitment scheme is said to have hiding, binding and relaxed-binding properties if it satisfies the
following respectively:

Hiding: For all PPT A the following is negligible:∣∣∣∣∣Pr

[
CK ←− C.Setup(1κ), (m0,m1, st)←− A (CK),

b
U←− {0, 1}, (comb, decomb)←− Commit(CK,mb),

: A (CK, st, comb) = b

]
− 1

2

∣∣∣∣∣ .
Binding: For all PPT A the following is negligible:

Pr

[
CK ←− C.Setup(1κ), (com, decom, decom′)←− A (CK),
m←− Open(com, decom), m′ ←− Open(com, decom′),

: (m 6= m′) ∧ (m,m′ 6=⊥)

]
.

Relaxed-Binding: For all PPT A the following is negligible:

Pr

[
CK ←− C.Setup(1κ), (m, st)←− A (CK), (com, decom)←− Commit(m),

decom′ ←− A (CK, st, com, decom), m′ ←− Open(com, decom′),
: (m 6= m′) ∧ (m′ 6=⊥)

]
.

Remark 2.1. It is immediate that the relaxed-binding property is weaker than the binding property.

2.6 Predicate Family

Let ∼:= {(∼j ,Xj ,Yj)}j∈Nc for some constant c ∈ N be the family of predicate tuples, (∼j ,Xj ,Yj), where
Xj and Yj are respectively key space and associative data space and ∼j : Xj × Yj → {0, 1} is a predicate3

function. For (x, y) ∈ Xj × Yj , we write x ∼j y if ∼j (x, y) = 1 else x 6∼j y. The index of the family,
j is called system parameter index which defines predicate tuple, (∼j ,Xj ,Yj). Here we are interested
to design the predicate signature, predicate encryption and predicate signcryption over composite order
bilinear groups (CBG) and let N be the order of the groups. This N basically describes some domain, for
example, the domain of IBE is ZN with equality predicate. We therefore reserve the first entry of j to be
N , i.e., j1 = N . For notational simplicity, we omit j, simply write (∼N ,XN ,YN ).

Definition 2.1. (Domain-transferable [2]). We say that ∼ is domain-transferable if for p divides N , the
projection map f1 : XN → Xp and f2 : YN → Yp such that for all (x, y) ∈ XN × YN we have

• (Completeness). If x ∼N y then f1(x) ∼p f2(y).

• (Soundness). (1) If x 6∼N y, then f1(x) 6∼p f2(y) or (2) there exists an algorithm which takes (x, y)
as input, where (1) does not hold, outputs a non-trivial factor F such that p|F |N .

Remark 2.2. Attrapadung [2] showed that the equality predicate (for IBE) is domain-transferable. Since,
all other predicates are defined through the equality predicate, all the predicates of [2] are domain-
transferable.

2For brevity, we just omit CK in Open and Commit algorithm throughout this paper
3This predicate function ∼j also called binary relation or predicate relation over Xj × Yj .
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3 Framework for Predicate Signature

3.1 Definition of Predicate Signature

A predicate signature scheme for a predicate tuple family, ∼ consists of four PPT algorithms - Setup,
KeyGen, Sign and Ver.

• Setup: It takes a security parameter κ and a system parameter index j as input, outputs the public
parameters PP and the master secretMSK. Let (∼N ,XN ,YN ) be the predicate tuple corresponding
to the index, j = (N, . . . , ). From now onwards we ignore N , just write (∼,X ,Y) and N will be
understood from the context.

• KeyGen: It takes as input public parameters PP, master secret MSK and a key index x ∈ X and
outputs a secret key SKx corresponding to x.

• Sign: It takes public parameters PP, a message m ∈ M, a secret key SKx and an associated data
index y ∈ Y with x ∼ y and returns a signature δ.

• Ver: It receives public parameters PP, a message m ∈M, a signature δ and a claim associated index
y as input. It returns a boolean value 1 for accept or 0 for reject.

Correctness. For all (PP,MSK) ←− Setup(1κ, j), m ∈ M, x ∈ X , SKx ←− KeyGen(PP,MSK, x)
and y ∈ Y with x ∼ y, it is required that Ver(PP,m,Sign(PP,m,SKx, y), y) = 1.

3.2 Security of Predicate Signature

Definition 3.1 (Signer Privacy). A PS scheme is said to be perfectly private if for all (PP,MSK) ←−
Setup, x1, x2 ∈ X , SKx1 ←− KeyGen(PP,MSK, x1), SKx2 ←− KeyGen(PP,MSK, x2), m ∈ M, and
y ∈ Y with x1 ∼ y and x2 ∼ y, the distributions of Sign(PP,m,SKx1 , y) and Sign(PP,m,SKx2 , y) are
identical, where the random coins of the distributions are only the random coins involved in Sign algorithm.

Definition 3.2 (Adaptive-Predicate Unforgeability). A PS scheme is said to be adaptive-predicate exis-
tential unforgeable (AP-UF-CMA) if for all PPT adversary A , the advantage AdvPS−UF

A (κ) is at most
negligible function in κ, where A is provided the access to keyGen oracle, OK and sign oracle, OSg and
NRn is the natural restriction that (m∗, y∗) was never queried to OSg oracle and for each key index x
queried to OK , x 6∼ y∗.

AdvPS−UF
A (κ) := Pr

[
(PP,MSK)←− Setup(1κ, j),

(δ∗,m∗, y∗)←− A {OK, OSg}(PP)
: Ver(PP,m∗, δ∗, y∗) = 1 ∧ NRn

]
.

Remark 3.1. There is an another variant of unforgeability, called selective-predicate unforgeability, where
A submits a challenge index y∗ ∈ Y (later on which it will forge) before obtaining the PP of ABS.

3.3 Pair Encoding Scheme ([2])

A Pair Encoding Scheme, P for a predicate family, ∼ consists of four deterministic algorithms, Param,
Enc1, Enc2 and Pair.

– Param(j) −→ n ∈ N. n describes the number of common variables involved in Enc1 and Enc2. Let
h := (h1, . . . , hn) ∈ ZnN denotes the common variables in Enc1 and Enc2.
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– Enc1(x ∈ X , N) −→ (kx := (k1, . . . , km1),m2), where kι’s for ι ∈ [m1] are polynomial over ZN and
m2 ∈ N specifies the number of its own variables. We require that each polynomial kι is a linear
combination of monomials, α, rj , hirj , where α, r1, . . . , rm2 , h1, . . . , hn are variables. In other word, it
outputs a set of coefficients {bι, bι,j , bι,j,i}ι∈[m1],j∈[m2],i∈[n] which define the sequence of polynomials(
kι(α, r,h) := bια+

( ∑
j∈[m2]

bι,jrj
)

+
( ∑
j∈[m2]
i∈[n]

bι,j,ihirj
))

ι∈[m1]
, where r := (r1, . . . , rm2).

– Enc2(y ∈ Y, N) −→ (cy := (c1, . . . , cω1), ω2), where cι’s for ι ∈ [ω1] are polynomial over ZN and ω2 ∈ N
specifies the number of its own variables. We require that each polynomial cι is a linear combination
of monomials, s, sj , his, hisj , where s, s1, . . . , sω2 , h1, . . . , hn are variables. In other word, it outputs
a set of coefficients {aι, aι,j , a′ι,i, aι,j,i}ι∈[ω1],j∈[ω2],i∈[n] which define the sequence of polynomials(

cι(s = (s, s1, . . . , sω2),h) := aιs+
( ∑
j∈[ω2]

aι,jsj
)

+
( ∑
i∈[n]

a′ι,ihis
)

+
( ∑
j∈[ω2]
i∈[n]

aι,j,ihisj
))

– Pair(x, y,N) −→ E ∈ Zm1×ω1
N

Correctness: For all N ∈ N, (kx,m2)←− Enc1(x,N), (cy, ω2)←− Enc2(y,N), and E ←− Pair(x, y,N),
we have kxEc

>
y = αs if x ∼ y.

Properties of Pair Encoding Scheme. We define two properties of pair encoding scheme as follows

• (Param-Vanishing): k(α,0,h) = k(α,0,0).

• (Linearity):

k(α1, r1,h) + k(α2, r2,h) = k(α1 + α2, r1 + r2,h)

c(s1,h) + c(s2,h) = c(s1 + s2,h)

Conditions 3.2. (Sufficient) Our objectives are to design the predicate signature, CCA-secure predicate
encryption and predicate signcryption schemes from the pair encoding schemes. For assuring the correctness
and security of the constructions, we impose some conditions defined below on the primitive pair encoding
schemes. To best of our knowledge, most of the pair encoding schemes satisfy these conditions:

(1) cι(s,h) = s for some ι ∈ [ω1] (w.l.g we assume c1(s,h) = s)
(2) For j ∈ [ω2], either (a) there is a ι ∈ [ω1] such that cι(s,h) = aι,jsj or (b) first the case-(a) is

not happened, then if aι,j,i′ 6= 0 for some ι ∈ [ω1], i
′ ∈ [n], we require that i′ must be unique and for

all ι ∈ [ω1], i ∈ [n] with i 6= i′, aι,j,i = 0 and hi′ is co-prime to N.
(3) For (x, y) ∈ X × Y with x ∼ y, let (kx,m2)←− Enc1(x,N) and E ←− Pair(x, y,N). Suppose
there are ι1, . . . , ι` ∈ [m1] such that bιi 6= 0 for i ∈ [`]. W.l.g, we assume that ιi = i, i.e., bi 6= 0 for

i ∈ [`]. Then, we require that Eij = 0 for i ∈ [`] and j ∈ [2, ω1].

The 1st and 2nd conditions are put on Enc2 and 3rd condition is imposed on Enc1 and Pair. However, all
these conditions are discuss in their respective contexts. A pair encoding which satisfies the 1st condition is
referred as normal in [5]. In Appendix A, we worked out some pair encodings to understand the conditions.

11



3.4 Security of Pair Encoding Scheme

Below, we consider two forms of security, viz., perfect security and computational security as defined in
[2].

– Perfect Security: A pair encoding scheme is said to be perfectly master-key hiding (PMH) if for N ∈ N,
x 6∼N y, n ←− Param(j), (kx,m2) ←− Enc1(x,N) and (cy, ω2) ←− Enc2(y,N), the following two
distributions are identical:

{cy(s,h),kx(α, r,h)} and {cy(s,h),kx(0, r,h)}

where the random coins of the distributions are α
U←− ZN ,h

U←− ZnN , s
U←− Zω2+1

N , r
U←− Zm2

N .

– Computational Security: Here we consider two types of computational security, viz., selectively master-key
hiding (SMH) and co-selectively master-key hiding (CMH). A pair encoding scheme is said to have

G security for G ∈ {SMH,CMH} if for b
U←− {0, 1}, all PPT adversary A := (A1,A2), the advantage

AdvP−GA (κ) :=
∣∣Pr[ExpGA ,0(κ) = 1]− Pr[ExpGA ,1(κ) = 1]

∣∣ in the experiment ExpGA ,b(κ) defined below is
at most a negligible function in security parameter κ:

ExpGA ,b(κ) :=



(N := p1p2p3,G,GT , e)←− G(1κ)

(g, g2, g3)
u←− Gp1 ×Gp2 ×Gp3

α
U←− ZN , n←− Param(j), h

U←− ZnN
st←− A

O1
G,b,α,h(.)

1 (g, g2, g3)

b′ ←− A
O2
G,b,α,h(.)

2 (st)


where A is provided the access to two oracles, O1

G,b,α,h(.) and O2
G,b,α,h(.) defined below:

• For Selective Security: O1 is allowed only once, while O2 is allowed to query polynomially many
times

– O1
SMH,b,α,h(y∗): Run (cy∗ , ω2) ←− Enc2(y∗, p2), pick s

U←− Zω2+1
N and return Cy∗ :=

g
cy∗ (s,h)
2 .

– O2
SMH,b,α,h(x): If x 6∼p2 y

∗, return ⊥. Run (kx,m2) ←− Enc1(x, p2), pick r
U←− Zm2

N and
return

Kx :=

{
g
kx(0,r,h)
2 if b = 0

g
kx(α,r,h)
2 if b = 1

• For Co-selective Security: Both the oracles, O1 and O2 are allowed to query only once.

– O1
CMH,b,α,h(x∗): Run (kx∗ ,m2)←− Enc1(x∗, p2), pick r

U←− Zm2
N and then return

Kx∗ :=

{
g
kx∗ (0,r,h)
2 if b = 0

g
kx∗ (α,r,h)
2 if b = 1

– O2
CMH,b,α,h(y): If x∗ 6∼p2 y, return ⊥. Run (cy, ω2) ←− Enc2(y, p2), pick s

U←− Zω2+1
N and

then return Cy := g
cy(s,h)
2 .
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Remark 3.3. In the above definition of computational security, if the oracles, O1 and O2 are allowed to
access respectively t1 and t2 times, then SMH (resp. CMH)-security, will be referred as (t1, t2)-SMH (resp.
(t1, t2)-CMH) security. What considered in [2], are actually the (1, poly)-SMH and (1, 1)-CMH security
respectively for selectively and co-selectively master-key hiding. It is clear from the definitions of PMH
and CMH-security that the PMH-security of a pair encoding scheme implies the CMH-security.

3.5 Dual conversion of pair encodings([2, 5])

For a predicate tuple (∼,X ,Y), its dual predicate tuple, (∼̄, X̄ , Ȳ) is defined by X̄ := Y, Ȳ := X and for
x ∈ X̄ and y ∈ Ȳ, x∼̄y := y ∼ x. We illustrate the dual conversion technique [2, 5] for converting a pair
encoding for ∼ to a another pair encoding for the dual predicate, ∼̄.

Let P be a given pair encoding scheme for the predicate ∼. We construct a pair encoding scheme D(P)
for the predicate ∼̄ as follows: For (n,h) ← Param, we define Param := (n + 1, h̄), where h̄ := (h, φ) and
φ is a new variable.

– Enc1(x,N): It runs (c′x(s′,h), ω2)← Enc2(x,N), where s′ := (s′, s′1, . . . , s
′
ω2

). Then sets, kx(α, r, h̄) :=
(c′x(s′,h), α+ φ.s′), r := s′ and outputs (kx(α, r, h̄), ω2), where α is new variable.

– Enc2(y,N): Runs (k′y(α
′, r′,h),m2) ← Enc1(y,N). Then sets, cy(s, h̄) := (k′y(φ.s, s, h̄), s), s := (s, r′)

and returns (cy(s, h̄),m2), where s is a new variable.

The correctness is verified as follows: If x∼̄y, then y ∼ x, so from the correctness of P we have
k′y(α

′, r′,h)E′c′>x (s′,h) = α′s′ = (φ.s)s′. Then using the additional components, we have (α + φ.s′)(s) −
(φ.s)s′ = αs.

Proposition 3.1. ([2]) If a pair encoding P for ∼ is perfectly master-key hiding, then the pair encoding
D(P) for ∼̄ is also perfectly master-key hiding.

Proposition 3.2. ([5]) If a pair encoding P for ∼ is normal and (1, 1)-co-selectively master-key hiding,
then the pair encoding D(P) for ∼̄ is (1, 1)-selectively master-key hiding (with tight reduction).

Proposition 3.3. ([5]) If a pair encoding P for ∼ is normal and (1, 1)-selectively master-key hiding, then
the pair encoding D(P) for ∼̄ is (1, 1)-co-selectively master-key hiding (with tight reduction).

Observation 3.4. We first note that the pair encoding scheme, D(P) satisfies the condition (1) in Condi-
tions 3.2 due to newly added variable s. Let’s examine the 3rd condition. W.l.g, we set cy,1 = s and kx,1 =
α+φ.s′. The correctness of D(P) says that kx(α, r,h)Ec>y (s,h) = kx,1.cy,1−k′y(α′, r′,h)E′c′>x (s′,h) = αs.
If E′ has dimension (m1

′×ω1
′), then the dimension of E is (m1×ω1), where m1 = ω1

′+1 and ω1 = m1
′+1.

Hence, the matrix, E has of the form

Eij :=


1 if i = 1, j = 1

0 if i = 1, j ∈ [2, ω1]

0 if i ∈ [2,m1], j = 1

−E′(j−1)(i−1) if i ∈ [2,m1], j ∈ [2, ω1]

Therefore, it is straightforward to check that the dual pair encoding scheme D(P) satisfies the condition (3)
in Conditions 3.2. We note that the condition (2) in Conditions 3.2 is imposed on the Enc2, similarly
it could be defined over Enc1 and let’s call it condition (2̄). One can verify that if a pair encoding scheme
P for predicate, ∼ fulfills the condition (2̄), then its dual, D(P) for ∼̄ satisfies the condition (2). We remark
that all the pair encodings [2] and its dual so far satisfy the Conditions 3.2.
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3.6 Predicate Signature from Pair Encoding Scheme

Terminology: For fixed θ1, θ2, ~ ∈ ZN and h ∈ ZnN , we define hM := (θ1, θ2,h), θ := (θ1, θ2, ~) and
c0(z,θ) := z(θ1~ + θ2), where z is the independent variable. Note that θ1, θ2, ~ and h will be understood
from the context. For (cy, ω2) ←− Enc2(y,N), we define cMy := (c0, cy), so |cMy | = ω1 + 1 if |cy| = ω1.

Therefore, we can write cMy (s,hM) := (c0(s,θ), cy(s,h)) for s := (s, s1, . . . , sω2) ∈ Zω2+1
N . We define

V := {cMy (s,hM) ∈ Zω1+1
N | s := (s, s1, . . . , sω2) ∈ Zω2+1

N }. Now, we define a orthogonal set to be

V⊥ := {vsp ∈ Zω1+1
N | < vsp,u >= 0 ∀ u ∈ V}. The process of sampling from V⊥ are given in sec.3.7.

Let P := (Param,Enc1,Enc2,Pair) be a primitive pair encoding scheme with the following condition
(already defined in Conditions 3.2)

Here we assume that for some ι ∈ [ω1], cy,ι(s,h) = s. W.l.g, we assume that cy,1(s,h) = s

– Setup(1κ, j): It executes J := (N := p1p2p3,G,GT , e) ←− G(1κ). It chooses g
U←− Gp1 , Z3

U←− Gp3 . It

runs n←− Param(j) and picks h
U←− ZnN . Again it picks α, θ1, θ2

U←− ZN . It sets hM := (θ1, θ2,h) ∈
Zn+2
N . Let H : {0, 1}∗ −→ ZN be a hash function. The public parameters and master secret are given

by

PP := [J , g, ghM , gαT := e(g, g)α, Z3, H], MSK := [α]

– KeyGen(PP,MSK, x): It runs (kx,m2) ←− Enc1(x,N). Let |kx| = m1. It picks r
U←− Zm2

N and

R3
U←− Gm1

p3 . It outputs the secret key

SKx := [x, Kx := gkx(α,r,h).R3]

– Sign(PP,m,SKx, y): If x 6∼ y, returns ⊥. Let SKx = [x, Kx]. It runs4 Kx := gkx(α,r,h).R3 ←−
Re-Randomize(Kx) and Pair(x, y) −→ E ∈ Zm1×ω1

N . Then, it computes ~ := H(m, y). It picks

τ
U←− ZN , vsp

U←− V⊥ and R′3
U←− Gω1+1

p3 . It sets u := (−τ,ψ + kx(α, r,h)E) ∈ Zω1+1
N , where

ψ := (τ(θ1~ + θ2), 0, . . . , 0) ∈ Zω1
N . The signature is given by

δy := gu+vsp .(Θ,RE3 ).R′3 ∈ Gω1+1

We note that δy can be easily computed from SKx, ghM , E and the random coins involved in the
sign algorithm. In fact,

δy = (g−τ ,Θ, . . . ,Θ).(Θ, (gθ1)τ~.(gθ2)τ ,Θ, . . . ,Θ).(Θ,KE
x ).gvsp .R′3

– Ver(PP,m, δy, y): It runs (cy, ω2)←− Enc2(y,N) and picks s := (s, s1, . . . , sω2)
U←− Zω2+1

N . It computes

cMy (s,hM) := (c0(s,θ), cy(s,h)) ∈ Zω1+1
N , where |cy| = ω1, θ := (θ1, θ2, ~), ~ := H(m, y) and

c0(s,θ) := s(θ1~ + θ2). It computes a verification text, V := (V INT := gαsT ,Vy := gc
M
y (s,hM)). It

returns 1 if e(δy,Vy) = V INT else 0.

4The linear property of pair encoding scheme guarantees the re-randomization.
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Correctness: For x ∼N y (⇒ x ∼p1 y by domain-transferability), we have

e(δy,Vy) = g
<u+vsp, cMy (s,hM)>

T (by orthogonality of CBG)

= g
<u, cMy (s,hM)>

T (since vsp ∈ V⊥)

= g
<(−τ, 0,...,0)+(0, ψ)+(0, kx(α,r,h)E, cMy (s,hM)>

T (by the definition of u)

= g
−τc0(s,θ)+τ(θ1~+θ2)cy,1(s,h)+<kx(α,r,h)E, cy(s,hM)>
T

= g
−τs(θ1~+θ2)+τs(θ1~+θ2)+kx(α,r,h)Ec>y (s,hM)

T (by assumption: cy,1(s,h) = s)

= gαsT (by correctness of P)

Remark 3.5. In the Sign algorithm, two random coins, τ and vsp are used, among them vsp is assigned
only for signer privacy and τ is the only coin that provides the randomness in unforgeability. If signer
privacy is not our interest, then we can ignore vsp.

Fact 3.6. We note that size of the signature for a message (m, y) is ω1 + 1, where |cy| = ω1 and number of
pairings in Ver is ω1 + 1. Therefore, if cy of the underlying pair encoding scheme is of constant-
size, then the corresponding signature will be constant-size and the number of pairings in
verification will be constant-size.

3.7 How to uniformly sample from V⊥

Let V′ := {cy(s,h) ∈ Zω1
N | s := (s, s1, . . . , sω2) ∈ Zω2+1

N } and V′⊥ := {v ∈ Zω1
N | < v,u >=

0 ∀ u ∈ V′}. We don’t know how to sample uniformly from V′⊥ for arbitrary pair encoding schemes,
however if we put some conditions on Enc2 of P, then we can sample. Of course, these restrictions narrow
down our scope, but to best of our knowledge most of the existing pair encoding schemes satisfy the
conditions. If we write cy(s,h) = c(s,h) := (c1(s,h), c2(s,h), . . . , cω1(s,h)), where cι(s,h) := aιs +( ∑
j∈[ω2]

aι,jsj
)

+
( ∑
i∈[n]

a′ι,ihis
)

+
( ∑
j∈[ω2]
i∈[n]

aι,j,ihisj
)
, s = (s, s1, . . . , sω2) and h = (h1, . . . , hn), then c>y (s,h)

can be written as c>y (s,h) := As>, where A ∈ Zω1×(ω2+1)
N . In fact, the ιth row of A is given by

(aι +
∑
i∈[n]

a′ι,ihi, aι,1 +
∑
i∈[n]

aι,1,ihi, . . . , aι,ω2 +
∑
i∈[n]

aι,ω2,ihi). By the definition of V′⊥, we have following

identities

V′⊥ = {v ∈ Zω1
N | < v,u >= 0 ∀ u ∈ V′}

= {v ∈ Zω1
N | vc>y (s,h) = 0 ∀ s ∈ Zω2+1

N }

= {v ∈ Zω1
N | vAs> = 0 ∀ s ∈ Zω2+1

N }
= {v ∈ Zω1

N | vA = 0}
= {v ∈ Zω1

N | A>v> = 0}

Now we are solely interested in solving the homogeneous system, A>X = 0, with X> := (x1, x2, . . . , xω1).
Before proceeding further we note that the sampling of V′⊥ gives rise the sampling of V⊥ if
c1(s,h) = s. It is assured using the Theorem A.3, where A>M is defined from A> and t := θ1~ + θ2.

Our goal is to compute gv, where v
U←− V′⊥. Note that gh is given but not h. If each component vj of

v are linear combination of hi’s, then we will be able to compute gv. Since hi’s are not known, we are not
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able to compute h−1i required for the elementary operations (for details of the elementary operations, we
refer to Appendix A). Even, it may happen that the hi’s are not invertible in ZN . So the only information
of A available in the process of elementary operations are aι’s, a

′
ι,i’s, aι,j ’s and aι,j,i’s. Therefore, through

out the elementary operations, we treat hi’s as symbols, where the symbols h−1i ’s are not known. But,
if we find some row of A> is a multiple of hi, then we can multiple the row by h−1i (provided it exists
in ZN ) to make the row hi free as solutions of the systems before and after the multiplication, remain
unchanged. Suppose M is obtained by applying say n elementary column operations on A>, then we have
A>E>1 E>2 · · ·E>n = M , where E i is an elementary matrix. If the column operations are other than the
type-1, then there is a chance that hi may appear in the elementary matrix E>j . Since for each solution

v := (v1, . . . , vω1)> of MX = 0, E>1 E>2 · · ·E>n v is a solution of A>X = 0 and vι’s are linear combination
of hi’s, the terms like hi1hi2 · · ·hik may appear in v to hamper our life.

Definition 3.3. A ιth column ofA> is said to be “leading h-free” column for jth row ofA> if for i ∈ [ω2+1],
A>iι = aι,iδi,j , where δi,j is Kronecker delta function (in fact, δi,j = 1 if i = j, else 0).

Definition 3.4. A coin sj is called “h-free” if a leading h-free column exists for the jth row of A>,
otherwise it is called “non h-free” coin.

Conditions 3.7. (For Signer Privacy) Now all the technicalities keeping in mind, we define the sufficient
conditions (already defined in Conditions 3.2) for sampling as follows:

(1) cι(s,h) = s for some ι ∈ [ω1] (w.l.g we assume c1(s,h) = s)
(2) For j ∈ [ω2], either (a) [case - sj is h-free]: there is a ι ∈ [ω1] such that cι(s,h) = aι,jsj or (b)

[case - sj is non h-free]: first the case-(a) is not happened, then if aι,j,i′ 6= 0 for some ι ∈ [ω1],
i′ ∈ [n], we require that i′ must be unique and for all ι ∈ [ω1], i ∈ [n] with i 6= i′, aι,j,i = 0 and hi′ is

co-prime to N.

We set s0 := s. We define Shf := {ι ∈ [ω1] | ∃! j ∈ [0, ω2] such that cι(s,h) = aι,jsj} and Thf := {j ∈
[0, ω2] | ∃ι ∈ [ω1] such that cι(s,h) = aι,jsj}. By assumption c1(s,h) = s = s0, we have 1 ∈ Shf and
0 ∈ Thf which imply Shf and Thf are non empty. Let Snon-hf := [ω1] \ Shf. and Tnon-hf := [0, ω2] \ Thf.
Now define Sphf := {(ι, j) ∈ [ω1] × [0, ω2] | cι(s,h) = aι,jsj} and for each j ∈ Thf, Snon-fv,j := {ι ∈
Shf | ι = min{ι | (ι, j) ∈ Sphf}}.
Remark 3.8. Since, the factorization problem is intractable (as discussed in sec.A), all aι,j ’s appeared in
condition (2) are invertible in ZN . For most of the pair coding schemes, we have aι,j = 1 when (ι, j) ∈ Sphf
and so, Snon-fv,j is singleton set for j ∈ Thf. When all coins are h-free, then Tnon-hf = ∅.

The main task is to find which variables are free and which are not among x1, x2, . . . , xω1 with X :=
(x1, . . . , xω1)>. We will handle two cases separately for simplicity.

– All sj’s are h-free. Let Snon-fv := ∪j∈Thf
Snon-fv,j and Sfv := [ω1] \ Snon-fv. Note that Sfv and

Snon-fv respectively represent the indices for free variable and non free variable. For i ∈ Sfv, we

assign xi := bi
U←− ZN and for ι ∈ Snon-fv, we compute5 xι := −a−1ι,j

∑
i∈Sfv

ai,jbi. The condition 2(a)

guarantees that non non-free variable contributes during the computation of others and therefore
(x1, x2, . . . , xω1)> is a solution of the system A>X = 0. For this case, we do not require any
elementary operation. In this case, Null(A>) = ω1 − (ω2 + 1). For better understandable, we refer
to Example A.2.

5for each ι ∈ Snon-fv, there is unique j such that (ι, j) ∈ Sphf
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– Not all sj’s are h-free. For j ∈ Tnon-hf, the jth row of A> is multiplied6 by h−1ji (symbolically) to
have each element free from h-term. Under these changes the h-free coins remain h-free as the
corresponding leading h-free columns are unaffected. Since, hji is invertible (by condition 2(b)), the
solutions of the system A>X = 0 remain unaltered. Now, we apply the elementary row operations
of type-2 and type-3 as described below until each row j ∈ Tnon-hf becomes row reduced :

• Choose first non-zero (leading) element, say k of that row and then find the gcd(k,N). If
gcd(k,N) > 1, we solve the factorization problem in polynomial time in κ, else we apply the
elementary row operation of type-2 to make the leading element to 1.

• Then, apply the elementary row operations of type-3 to reduce all other elements of the column
containing leading 1 to 0.

Again under above elementary row operations, the h-free coins remain h-free as the corresponding
leading h-free columns are unaffected but some non h-free coins become h-free. These new h-free coins
make the free variables to non free variables. Let Snew := {ι ∈ Snon-hf | ∃j ∈ Tnon-hf such thatA>iι =
δi,j} be the set of those new non free variables. Let Snon-fv := ∪j∈Thf

Snon-fv,j ∪ Snew and Sfv :=

[ω1] \ Snon-fv. The rest of the part are same as above. In this case, Null(A>) ≤ ω1 − (ω2 + 1). More

specifically, if B ∈ Z
|Tnon-hf|×ω1

N be a sub-matrix of A> with Bij := A>ij for (i, j) ∈ [ω1] × Tnon-hf,

then Null(A>) = ω1 − (ω2 + 1)− rank(B). For better understandable, we refer to Example A.3.

3.8 Security Proof of Proposed Predicate Signature

3.8.1 Signer Privacy

Theorem 3.4. Our proposed PS scheme in sec.3.6 is perfectly private.

Proof. For s ∈ Zω2+1
N , we define Vαs := {v ∈ Zω1+1

N | < v, cMy (s,hM) >= αs}. One can easily check that

for any v ∈ Vαs, v + V⊥ = Vαs. Since, the distribution of a signature for (m, y) is

δy := gu+vsp .R3 ∈ Gω1+1 and u ∈ Vαs for s ∈ Zω2+1
N

so, it is sufficient to that u+vsp is uniformly distributed over Vαs for each s ∈ Zω2+1
N . Since, vsp is chosen

uniformly and independently from V⊥ and u+ V⊥ = Vαs, so we are done.

3.8.2 The Proof of Unforgeability

To prove the unforgeability of the proposed construction in sec.3.6, we apply the signature variant [30, 31]
of the dual system style of [2] (which abstracts the dual system methodology of [33]). In this variant, the
original unforgeability game is changed to the final game through some intermediate games under three
subgroup decision problems and CMH or PMH-security of the underlying pair encoding scheme. In the
final game, V INT of the verification text is sampled uniformly and independently from GT . Therefore, the
forgery in the final game will be invalid. If ν1 and ν2 are respectively the number of key query and signature
query made by A , then the reduction cost is O(ν1 + ν2). For all the games, we define the semi-functional
keys, signatures and verification texts of various type. We use the abbreviations ‘vText’ and ‘sf-type’
respectability for verification text and semi-functional type.

6for each j ∈ Tnon-hf, there is a unique i′ by condition 2(b) and let ji := i′
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– SFSetup(1κ, j): It runs (PP,MSK)←− Setup(1κ, j) and in addition it returns semi-functional param-

eters, g2
U←− Gp2 , θ̂1, θ̂2

U←− ZN and ĥ
U←− ZnN . We set ĥM := (θ̂1, θ̂2, ĥ).

– SFKeyGen(PP,MSK, x, g2, type, ĥ): It runs (kx,m2)←− Enc1(x,N) with |kx| = m1. It chooses α̂
U←−

ZN , r, r̂
U←− Zm2

N and R3
U←− Gm1

p3 . It outputs the semi-functional key SKx := (x,Kx), where Kx

is given by

Kx :=


gkx(α,r,h).g

kx(0,r̂,ĥ)
2 .R3 if type= 1

gkx(α,r,h).g
kx(α̂,r̂,ĥ)
2 .R3 if type= 2

gkx(α,r,h).g
kx(α̂,0,0)
2 .R3 if type= 3

– SFSign(PP,m,SKx, y, g2, type): If x 6∼ y, returns ⊥. It runs δy ←− Sign(PP,m,SKx, y). Note that

δy = gu+vsp .R3 with R3 ∈ Gω1+1
p3 . It picks b, ι

U←− ZN and returns the semi-functional signature

δy.g
û
2 , where û ∈ Zω1+1

N is given by

û :=

{
(b, ι, 0, . . . , 0) if type= 1

(0, ι, 0, . . . , 0) if type= 2

– SFVText(PP,m, y, g2, type, ĥM): It runs (cy, ω2) ←− Enc2(y,N) and picks s := (s, s1, . . . , sω2), ŝ :=

(ŝ, ŝ1, . . . , ŝω2)
U←− Zω2+1

N . It computes cMy (s,hM) := (c0(s,θ), cy(s,h)) ∈ Gω1+1 and cMy (ŝ, ĥM) :=

(c0(ŝ, θ̂), cy(ŝ, ĥ)) ∈ Gω1+1, where |cy| = ω1, θ := (θ1, θ2, ~), θ̂ := (θ̂1, θ̂2, ~), ~ := H(m, y),

c0(s,θ) := s(θ1~ + θ2) and c0(ŝ, θ̂) := ŝ(θ̂1~ + θ̂2). It returns the semi-function verification text
as

V :=

(V INT := gαsT ,Vy := gc
M
y (s,hM).g

cMy (ŝ,ĥM)

2 if type= 1

(V INT
U←− GT ,Vy := gc

M
y (s,hM).g

cMy (ŝ,ĥM)

2 if type= 2

Condition 3.9. We assume a condition on the underlying pair encoding scheme, viz, kx and E to go
through the proof of unforgeability:

For (x, y) ∈ X × Y with x ∼ y, (kx,m2)←− Enc1(x,N) and E ←− Pair(x, y,N), we require that
kx(α,0,0)E := (∗, 0, . . . , 0) ∈ Zω1

N , where ∗ is any entry from ZN .

Remark 3.10. The above condition is straightforwardly implied by the condition (3) in Conditions 3.2.

Remark 3.11. (Construction of sf-type 2 signature from sf-type 3 key.) We apply this construction (to
Lemma D.8) for reaching to GameFinal using the problem, DSG3. We see later that the sf-type 3 key
is easily computed from the instance of the DSG3 problem. But, the computation of sf-type 2 signature
is not possible unless we assume the Condition 3.9. Although one can directly compute the sf-type 2
signature, for simplicity of the simulation we show the construction of sf-type 2 signature from sf-type 3
key. If we apply the Sign algorithm to the sf-type 3 key, SKx, we have the following distribution (viz., the
Gp2 part):

δy
∣∣
Gp2

= (g02, g
kx(α̂,0,0)E
2 )

= (g02, g
(∗,0,...,0)
2 ) (by condition 3.9)

= g
(0,∗,0,...,0)
2
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Then, randomize it by composing g
(0,ι′,0,...,0)
2 ∈ Gω1+1

p2 for ι′
U←− ZN and finally what we get is the sf-type

2 signature.

Theorem 3.5. Let P be a pair encoding scheme for a predicate ∼ which satisfies the Conditions 3.2 and
∼ is domain-transferable. Suppose P has CMH-security, the assumptions, DSG1, DSG2 and DSG3 hold in
J and H is a collision resistant hash function, then the proposed predicate signature scheme, PS in sec.3.6
for the predicate ∼ is adaptive-predicate existential unforgeable.

Proof. Suppose there are at most ν1 (resp. ν2) key (resp. signature) queries made by an adversary A ,
then the security proof consists of hybrid argument over a sequence of 3ν1 + 2ν2 + 4 games. The games
are defined below:

– GameReal := The original unforgeability game of the predicate signature scheme.

– GameRes := This is same as GameReal except x 6∼N y∗ is replaced by x 6∼p2 y
∗ for each key query x

made by A .

– Game0 (= Game1−0−3) is just like GameRes except that the vText is of sf-type 1.

– In Game1−k−1 (for 1 ≤ k ≤ ν1) is same as Game1−(k−1)−3 except the kth key is sf-type 1.

– Game1−k−2 (for 1 ≤ k ≤ ν1) is same as Game1−k−1 except the kth key is sf-type 2.

– Game1−k−3 (for 1 ≤ k ≤ ν1) is same as Game1−k−2 except the kth key is sf-type 3.

– In Game2−k−1 (for 1 ≤ k ≤ ν2) is same as Game2−(k−1)−2 except the kth signature is of sf-type 1. (In
this sequel, we define Game2−0−2 = Game1−ν1−3)

– Game2−k−2 (for 1 ≤ k ≤ ν2) is same as Game2−k−1 except the kth signature is of sf-type 2.

– GameFinal is similar to Game2−ν2−2 except that the vText is of sf-type 2.

In GameFinal, the part, V INT is chosen independently and uniformly random from GT which implies that
the forgery will be invalid with respect to the vText. Therefore, the adversary A has no advantage in
GameFinal. The outline of the hybrid arguments over the games are structured in the box (for details of
the lemmas, refer to Appendix D):

Real

Lem D.1
|

DSG2
|

=⇒ Res

Lem D.2
|

DSG1
|

=⇒ 0

Lem D.3
|

DSG2
|

=⇒ 1− 1− 1 . . . 1− (k − 1)− 3

Lem D.3
|

DSG2
|

=⇒ 1− k − 1

1− k − 1

Lem D.4
|

CHM
|

=⇒ 1− k − 2

Lem D.5
|

DSG2
|

=⇒ 1− k − 3 . . . 1− ν1 − 3

Lem D.6
|

DSG2,CRH

|
=⇒ 2− 1− 1

2− 1− 1 . . . 2− (k − 1)− 2

Lem D.6
|

DSG2,CRH

|
=⇒ 2− k − 1

Lem D.7
|

DSG2
|

=⇒ 2− k − 2 . . . 2− ν2 − 2

Lem D.8
|

DSG3
|

=⇒ Final
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Using the above structure, we have the following reduction:

AdvPS−UF
A (κ) ≤ AdvDSG1

B1
(κ) + (2ν1 + 2ν2 + 1)AdvDSG2

B2
(κ) + ν1AdvP−CMH

B3
(κ) + ν2AdvCRH

B4
(κ) + AdvDSG3

B5
(κ)

where AdvCRH
B4

(κ) is the advantage of B4 in breaking collision resistant property of H and
B1,B2,B3,B4,B5 are PPT algorithms whose running times are same as that of A . This completes
the theorem.

Theorem 3.6. Let P be a pair encoding scheme for a predicate ∼ which satisfies the Conditions 3.2 and
∼ is domain-transferable. Suppose P has PMH-security, the assumptions, DSG1, DSG2 and DSG3 hold in
J and H is a collision resistant hash function, then the proposed predicate signature scheme, PS in sec.3.6
for the predicate ∼ is adaptive-predicate existential unforgeable.

Proof. Similar to the proof of the Theorem 3.5. The reduction of the proof is given by

AdvPS−UF
A (κ) ≤ AdvDSG1

B1
(κ) + (2ν1 + 2ν2 + 1)AdvDSG2

B2
(κ) + ν2AdvCRH

B3
(κ) + AdvDSG3

B4
(κ)

where B1,B2,B3 and B4 are PPT algorithms whose running times are same as that of A .

4 Instantiations of Predicate Signature

In this section, we instantiate (see Table 1) the different predicate signatures from various pair encoding
schemes. The different variants of PS with many new features which have not been achieved earlier are
presented here. If the underlying pair encoding scheme with either PMH or CMH-security satisfies the
sufficient Conditions 3.2, then our construction for predicate signature in sec.3.6 guarantees the signer
privacy and adaptive-predicate unforgeability of the predicate signature scheme. We consider in this section
only the pair encoding schemes presented in [2] as they are having at least either PMH or CMH-security.
Well, the other reasons to consider the pair encoding schemes mainly from [2] are that they are available in
ready-made form and many new PS schemes with new features can be constructed from them. However,
we are not strict to the pair encoding schemes of [2], it is applicable to all pair encoding scheme provided
they are eligible. Now, the requirement remains to show that the pair encoding schemes of [2] satisfy the
three conditions defined in sec.3.3. The first two conditions are imposed on c(s,h), whereas the third
condition is on k(α, r,h) and E. One can easily check that every pair encoding scheme of [2] fulfills the
1st and 3rd conditions.

Now come to the 2nd condition, which is required to ensure the signer-privacy: all the pair encoding
schemes of [2] satisfy this condition. In fact, all the schemes except Scheme 10, Scheme 11 and Scheme 13
satisfy condition 2(a) not 2(b), i.e., all the coins involved in each scheme are h-free and whereas some of
the coins in Scheme 10, Scheme 11 and Scheme 13 are non h-free due to the h-term, φ, i.e., hji = φ. This
shows that all the pair encoding schemes in [2] fulfills the 3rd condition.

The authors in [5] used the pair encodings of [2] to construct dual of the previous proposed predicate
encryption of [2]. Following the Observation 3.4, we have that the D(P) of any pair encoding P satisfy
the 1st and 3rd condition. Since, the pair encodings of [2] satisfy the condition (2̄) (as mentioned in
Observation 3.4), its dual will fulfill the condition (2). Therefore, all the pair encoding schemes in [2, 5]
are eligible for conversion to predicate signature schemes.

IBS We start with an Adaptive-ID unforgeable identity-based signature scheme constructed from a simple
pair encoding scheme, Scheme 1 of [2]. Both, the key space and associated data space are ZN . The
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Table 1: In this table, we summarize different instantiations of the predicate signature constructed from
the pair encodings of [2, 5]. The abbreviations NA, KP, SP and PES stand for not-applicable, key-policy,
signature-policy and pair encoding scheme respectively. All the pair encodings shown in the table are either
perfectly (PMH) secure or computationally (both, SMH and CMH) secure. However, the security given in
table are used for unforgeability of the predicate signatures.

Predicate
Signature

Flavor Feature Pair Encoding (P) Security of
P (Used)

IBS NA Cost Free PES 1 [2] PMH

PS KP Regular Languages PES 3 [2] CMH

PS SP Regular Languages PES 7 [2] CMH

ABS KP Unbounded, Large Universes PES 4 [2] CMH

ABS SP Unbounded, Large Universes Dual[5] of PES 4 [2] CMH

ABS KP Constant-size signatures PES 5 [2] CMH

ABS SP Constant-size keys Dual[5] of PES 5 [2] CMH

KP-DSS KP It generalizes KP-ABS PES 6 [2] CMH

SP-DSS SP It generalizes SP-ABS Dual[5] of PES 6 [2] CMH

ABS KP Cost Free PES 8 [2] PMH

ABS SP Cost Free PES 10 [2] PMH

ABS KP Cost Free, Large Universes PES 12 [2] PMH

ABS SP Cost Free, Large Universes PES 13 [2] PMH

Scheme 1 of [2] is perfectly master-key hiding due to the fact that the function f(X) := h1 + h2X is
pairwise independent function (used in [23]) and hence, the IBS scheme does not require any extra hardness
assumption.

PS for Regular Languages. We achieve the predicate signature schemes for regular languages which
are beyond the scope of ABS. To best of our knowledge, these are the only predicate signature schemes that
increase the functionality from ABS to non-trivial PS. Our construction in sec.3.6 provides two flavors of PS
for regular languages, key-policy PS and signature-policy PS respectively from the pair encodings, Scheme
3 and Scheme 7 of [2]. Both the predicate signature schemes are unforgeable in the adaptive-predicate
model and achieve the perfect privacy. Both the signatures support the large universe alphabet.

Unbounded ABS with Large Universes. We obtain an adaptive-predicate unforgeable unbounded
KP-ABS with large universes from the pair encoding scheme, Scheme 4 of [2] in key-policy flavor. Here
unbounded means there is no restriction on the size of policies, attribute sets and the repetition of attribute
in a policy. An ABS with large universes will have super-polynomial size attribute universe. Here we
consider the attribute universe to be ZN . The policies are are represented by Γ := (M , ρ), whereM ∈ Z`×kN ,
called LSSS matrix and ρ : [`] → ZN is a row labeling function. The attribute set S is any subset of ZN .
The size of the public parameters is constant. The only known adaptive-predicate unforgeable ABS with
large universes available in the literature are the construction of [30, 27], among them only ABS of [27] has
the feature, unbounded. However, all these construction are known to have the signature-policy. Therefore,
the proposed ABS scheme is the first unbounded KP-ABS with large universes which is unforgeable in
adaptive-predicate model. By applying our conversion in sec.3.6 on the dual [5] of pair encoding, Scheme
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4 of [2], we also obtain an unbounded ABS with large universes in signature-policy flavor.

ABS with Constant-size Signatures (or Keys). Considering the pair encoding scheme, Scheme 5 of
[2] as an input to our signature framework in sec.3.6, we achieve an adaptive-predicate unforgeable ABS
with constant-size signatures in KP flavor. We keep a bound on maximum size of the attribute sets S
and let max be the bound for the attribute sets. The policies are are represented by Γ := (M , ρ), where
M ∈ Z`×kN , called LSSS matrix and ρ : [`]→ ZN is a row labeling function. The attribute set S is any subset
of ZN but, |S| ≤ max. The unforgeability of the only known constant-size signature [4] for non-monotone
access structures was proven in the selective-predicate model. Therefore, the proposed ABS scheme is the
first ABS with constant-size signature which is existential unforgeable in the adaptive-predicate model.
Similarly, by applying our construction in sec.3.6 on the dual [5] of pair encoding, Scheme 5 of [2], we also
obtain a ABS with constant-size keys in signature-policy flavor.

Key-Policy over Doubly-Spatial Signature. Attrapadung [2] proposed a new key-policy predicate
encryption which generalizes the KP-ABE. This new KP-PE is called key-policy over doubly-spatial en-
cryption (KP-DSE) which works in similar manner as the KP-ABE except the equality relation is replaced
by doubly-spatial relation in doubly-spatial encryption [21]. The authors instantiated the KP-DSE using
the pair encoding scheme, Scheme 6. Later, Attrapadung et al. [5] achieved the dual of KP-DSE, CP-DSE
by applying the dual conversion on Scheme 6.

Similar to KP-DSE [2] (resp. CP-DSE [5]), its signature analogue key-policy over doubly-spatial signa-
ture (KP-DSS) (resp. signature-policy over doubly-spatial signature (SP-DSS)) generalizes the KP-ABS
(resp. SP-ABS). By applying our construction in sec.3.6 on Scheme 6 and its dual, we respectively obtain
KP-DSS and SP-DSS schemes.

Cost free ABS with Small Universes. The ABE schemes of [24] are the first ABE schemes which
were shown to be fully (adaptively) secure in the standard model under the subgroup decision problems,
DSG1, DSG2 and DSG3. In the proof strategy, the authors employed the dual system technique of Waters
[33], where an information-theoretic argument was used. Later, Attrapadung [2] show that there are pair
encoding schemes, viz., Scheme 8 of [2] and Scheme 10 of [2] setting inside KP-ABE of [24] and CP-ABE of
[24] respectively and which are basically perfectly master-key hiding. So, the aforementioned information-
theoretic argument actually was supplied by the respective pair encoding scheme.

Analogously, we obtain the cost free adaptive-predicate unforgeable ABS in both the flavors, KP and
SP by applying our construction in sec.3.6 on the Scheme 8 and Scheme 10 of [2] respectively. The SP-ABS
of [31] can be viewed by applying our construction on the Scheme 10 of [2].

Cost Free ABS with Large Universes. Attrapadung [2] constructed new ABE with large universes
in KP and SP flavors from the perfectly master-key hiding pair encodings, Scheme 12 and Scheme 13
respectively. The pair encoding schemes were constructed based on cover-free families [16, 22]. Analogously,
by applying our construction on Scheme 12 and Scheme 13 of [2], we obtain the adaptive-predicates
unforgeable ABS schemes with large universes in both flavors, KP and SP. Since, the underlying pair
encodings are perfectly master-key hiding, therefore, both the ABS are cost free.
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5 Framework for CCA Secure Predicate Encryption

The traditional technique [35, 36, 29] for CCA conversion requires that the primitive CPA-secure PE
schemes (for syntax and security definition of PE, we refer to Appendix B) must have either verifiability or
delegation property. One good side towards this direction is that if the underlying pair encoding scheme
fulfills the condition (1) in Conditions 3.2, then the fully secure construction in sec. 4.3 of [2] always
satisfies the verifiability as follows:

Verifiability. In the following, we define the algorithm, verify where y is the data index implicitly
contained in Ccpa, and x and x′ are key indices. Let E := Pair(x, y) and E′ := Pair(x′, y).

Verify(PP, Ccpa, x, x
′) :=


⊥ if y 6∼ x or y 6∼ x̃

1 if Event

0 otherwise

Event :=


e(gkx(0,1i,h)E , Cy) = 1 ∀ i ∈ [m2] (1)

e(gkx′ (0,1i,h)E
′
, Cy) = 1 ∀ i ∈ [m2

′] (2)

e(gkx(1,0,h)E , Cy) = e(gkx′ (1,0,h)E
′
, Cy) = e(g, Cy,1) (3)

For R3 ∈ Gp3 , e(R3, Cy,ι) = 1 ∀ ι ∈ [ω1] (4)

where 1i is a vector whose ith position is 1 and rest are 0.

Soundness of Verifiability. Suppose Verify(PP, Ccpa, x, x
′) = 1, then we show that both the keys,

SKx and SKx′ output the same message on decryption:

Decrypt(PP, Ccpa,SKx) = CINT/e(K
E
x ,Cy)

= CINT/e(g
kx(α,r,h)E ,Cy) (by (4))

= CINT/e(g
(kx(0,r,h)+kx(α,0,h))E ,Cy) (by Linearity of P)

= CINT/e(g
(
∑
i∈[m2]

rikx(0,1i,h)+αkx(1,0,h))E ,Cy) (by Linearity of P)

= CINT/
( ∏
i∈[m2]

e(gkx(0,1i,h)E ,Cy)
ri .e(gkx(1,0,h)E ,Cy)

α
)

= CINT/
( ∏
i∈[m2]

1ri .e(g, Cy,1)
α
)

(by (1) and (3))

= CINT/e(g, Cy,1)
α

Since x is arbitrary, similarly we have Decrypt(PP, Ccpa,SKx′) = CINT/e(g, Cy,1)
α.

Completeness of Verifiability. It follows from the correctness of the pair encoding scheme, P, orthog-
onality of CBG and the assumption, cy,1 = s.

Theorem 5.1. Suppose the underlying pair encoding scheme of the fully secure construction for predicate
in sec.4.3 [2] satisfies the condition (1) described in Conditions 3.2 and a concrete index-transformer
[29] for the predicate is available, then the CCA construction using verifiability-friendly index transformer
[36, 29] is adaptive-predicate IND-CCA secure predicate encryption scheme.
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Proof. The adaptive CPA-secure construction in sec.4.3 of [2] has the verifiability (described above). Rest
are followed from the proof of security based on verifiability in sec.3.5 of [36, 29].

Remark 5.1. All the fully secure CPA constructions in [2, 5] are eligible for adaptive-predicate CCA
secure predicate encryption schemes as the concrete verifiability-friendly index transformers for the said
predicates are available in [29, 36, 35] and all the underlying pair encoding schemes satisfy condition (1)
of Conditions 3.2.

Our proposed (direct) CCA construction is motivated by the following two aspects :

• Due to the use of OTS scheme, the vk is to be embedded in data index y. This may lead to increase
the length of key index and data index, and the size of universe. If the CCA-construction is based
on verifiability, then the checking in verify degrades the performance of the decryption algorithm, a
lot.

• As stated in [29], for some flavors of predicates either the concrete constructions are not known yet
or the defined constructions do not rule out the existing PE schemes.

5.1 CCA-secure Predicate Encryption from Pair Encoding Scheme

We explore the direct CCA secure predicate encryption scheme from the pair encoding scheme. Using this
construction, we achieve CCA security of all the predicate encryptions found in [2, 5] directly from the
pair encodings of [2, 5] at almost the same cost of CPA construction of [2]. In fact, the difference between
the construction of ours and [2] is that we use an extra component C0 := gc0 in ciphertext and one extra
paring computation in decryption.

Terminology: For (cy, ω2) ←− Enc2(y,N), we define cMy := (c0, cy), so |cMy | = ω1 + 1, where c0(z,θ) :=
z(θ1~ + θ2), θ := (θ1, θ2, ~) ∈ Z3

N , z is the independent variable and |cy| = ω1.

Let P := (Param,Enc1,Enc2,Pair) be a primitive pair encoding scheme with the following condition (already
defined in Conditions 3.2)

Here we assume that for some ι ∈ [ω1], cy,ι(s,h) = s. W.l.g, we assume that cy,1(s,h) = s

– Setup(1κ, j): Same as the Setup in sec.3.6.

– KeyGen(PP,MSK, x): Same as the KeyGen in sec.3.6.

– Encrypt(PP,m, y): It runs (cy, ω2) ←− Enc2(y,N) and picks s := (s, s1, . . . , sω2)
U←− Zω2+1

N . It
computes Ccpa := (y,Cy := gcy(s,h), CINT := m.gαsT ) and ~ := H(Ccpa). It sets cMy (s,hM) :=

(c0(s,θ), cy(s,h)) ∈ Zω1+1
N , where |cy| = ω1, θ := (θ1, θ2, ~), and c0(s,θ) := s(θ1~ + θ2). It returns

CT := (y,CM
y := gc

M
y (s,hM), CINT).

– Decrypt(PP,CT,SKx): It phrases CT as (y,CM
y = (C0,Cy), CINT) with Cy = (C1, . . . , Cω1), computes

~ := H(C) and picks R
U←− Gp3 . If x 6∼ y or e(gR,C0) 6= e(gθ1~+θ2 , C1), it returns ⊥. It sets

SKM
x := (K0,Ψ.KE

x ) ∈ Gω1+1, where K0 := g−τR0, Ψ := gψ with ψ := (τ(θ1~+θ2), 0, . . . , 0) ∈ Zω1
N ,

τ
U←− ZN , R0

U←− Gp3 and E ← Pair(x, y). It returns CINT/e(SKM
x ,C

M
y ).

24



Correctness: For x ∼N y (⇒ x ∼p1 y by domain-transferability), we have

e(SKM
x ,C

M
y ) = g

<(−τ, ψ+kx(α,r,h)E), cMy (s,hM)>

T (by orthogonality of CBG)

= g
<(−τ, 0,...,0)+(0, ψ)+(0, kx(α,r,h)E), cMy (s,hM)>

T (by Linearity)

= g
−τc0(s,θ)+τ(θ1~+θ2)cy,1(s,h)+<kx(α,r,h)E, cy(s,hM)>
T

= g
−τs(θ1~+θ2)+τs(θ1~+θ2)+kx(α,r,h)Ec>y (s,hM)

T (by assumption: cy,1(s,h) = s)

= gαsT (by correctness of P)

Remark 5.2. Note that the CCA secure ciphertext is also represented as CT := (Ccpa, C0), where the
routine Encrypt can be thought as subroutine Encrypt∗ (the Encrypt of CPA construction in [2]), then
followed by the computation of C0.

Remark 5.3. The key SKM
x defined in Decrypt, we call the alternative key (in short alt-key) whose

distribution is exactly the same as the signature δy if we ignore the random coin vsp for signer privacy.
Using this alternative key if we run AltDecrypt (defined later), we have the same message as in Decrypt
using the original key, SKx.

Fact 5.4. We note that size of the ciphertext is ω1 + 2, where |cy| = ω1 and number pairings in Decrypt
is ω1 + 1. Therefore, if cy of the underlying pair encoding scheme is of constant-size, then the
corresponding ciphertext will be constant-size and the number of pairings in decryption will
be constant-size.

5.2 Security Proof of Proposed Predicate Encryption

The proof strategy is based on the dual system style of [33, 2]. Again to pass the argument in Lemma
E.11, we assume the Condition 3.9 (which is implied by condition (3) of Conditions 3.2).

– SFSetup(1κ, j): It runs (PP,MSK)←− Setup(1κ, j) and in addition it returns semi-functional param-

eters, g2
U←− Gp2 , θ̂1, θ̂2

U←− ZN and ĥ
U←− ZnN . We set ĥM := (θ̂1, θ̂2, ĥ).

– SFKeyGen(PP,MSK, x, g2, type, ĥ): It runs (kx,m2)←− Enc1(x,N) with |kx| = m1. It chooses α̂
U←−

ZN , r, r̂
U←− Zm2

N and R3
U←− Gm1

p3 . It outputs the semi-functional key SKx := (x,Kx), where Kx

is given by

Kx :=


gkx(α,r,h).g

kx(0,r̂,ĥ)
2 .R3 if type= 1

gkx(α,r,h).g
kx(α̂,r̂,ĥ)
2 .R3 if type= 2

gkx(α,r,h).g
kx(α̂,0,0)
2 .R3 if type= 3

– SFEncrypt(PP,m, y, g2, type, ĥM): It runs (cy, ω2) ←− Enc2(y,N) and picks s := (s, s1, . . . , sω2), ŝ :=

(ŝ, ŝ1, . . . , ŝω2)
U←− Zω2+1

N . It computes cMy (s,hM) := (c0(s,θ), cy(s,h)) ∈ Gω1+1 and cMy (ŝ, ĥM) :=

(c0(ŝ, θ̂), cy(ŝ, ĥ)) ∈ Gω1+1, where |cy| = ω1, θ := (θ1, θ2, ~), θ̂ := (θ̂1, θ̂2, ~), ~ := H(Ccpa), Ccpa :=

(y,Cy := gcy(s,h), CINT := m.gαsT ), c0(s,θ) := s(θ1~ + θ2) and c0(ŝ, θ̂) := ŝ(θ̂1~ + θ̂2). It returns the

semi-function ciphertext as CT := (y,CM
y := gc

M
y (s,hM), CINT).

CT :=

(y,CM
y := gc

M
y (s,hM).g

cMy (ŝ,ĥM)

2 , CINT := m.gαsT if type= 1

(y,CM
y := gc

M
y (s,hM).g

cMy (ŝ,ĥM)

2 , CINT := m.gt; gt
U←− GT if type= 2
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– SFAltKeyGen(PP,MSK,CT, x, g2, type): It phrases CT as (Ccpa, C0), computes ~ := H(Ccpa) and

picks τ
U←− ZN , R0

U←− Gp3 . It first generates the normal key, SKx := [x, Kx := gkx(α,r,h).R3].
Then, it creates the alt-key SKM

x := (K0,Ψ.KE
x ) ∈ Gω1+1, where K0 := g−τR0, Ψ := gψ with

ψ := (τ(θ1~ + θ2), 0, . . . , 0) ∈ Zω1
N and E ← Pair(x, y). It picks b, ι

U←− ZN and returns the semi-

functional alt-key SKM
x .g

û
2 , where û ∈ Zω1+1

N is given by

û :=

{
(b, ι, 0, . . . , 0) if type= 1

(0, ι, 0, . . . , 0) if type= 2

– AltDecrypt(PP,CT,SKM
x ): This is same as Decrypt algorithm, but here we do not need to compute the

alt-key as it is supplied. For sake of completeness: It picks R
U←− Gp3 . If x 6∼ y or e(gR,C0) 6=

e(gθ1~+θ2 , C1), it returns ⊥ else CINT/e(SKM
x ,C

M
y ).

Remark 5.5. If we identify the challenge ciphertext and alt-keys respectively with the verification text
and queried signatures in the unforgeability proof of the predicate signature scheme in sec.3.6, then most
of the part of CCA-security proof of the proposed predicate encryption scheme in sec.5.1 will follow the
unforgeability proof in sec.3.8.2.

Theorem 5.2. Let P be a pair encoding scheme for a predicate ∼ which satisfies the conditions (1) and
(3) of Conditions 3.2 and ∼ is domain-transferable. Suppose P has both the security, SMH and CMH,
the assumptions, DSG1, DSG2 and DSG3 hold in J and H is a collision resistant hash function, then the
proposed predicate encryption scheme, PE in sec.5.1 for the predicate ∼ is adaptive-predicate IND-CCA
secure.

Proof. Suppose there are at most q (resp. ν) key (resp. decryption) queries made by an adversary A ,
then the security proof consists of hybrid argument over a sequence of 3q1 + 2ν + 7 games, where among
the q key queries, q1 and q2 respectively be the number of phase 1 and phase 2 key queries. The games are
defined below:

– GameReal := The original adaptive predicate CCA-security game.

– GameRes := This is same as GameReal except x 6∼N y∗ is replaced by x 6∼p2 y
∗ for each key query x

made by A .

– Game0 (= Game1−0−3) is just like GameRes except that the challenge ciphertext is of sf-type 1.

– In Game1−k−1 (for 1 ≤ k ≤ q1) same as Game1−(k−1)−3 except the kth queried key is sf-type 1.

– Game1−k−2 (for 1 ≤ k ≤ q1) is same as Game1−k−1 except the kth queried key is sf-type 2.

– Game1−k−3 (for 1 ≤ k ≤ q1) is same as Game1−k−2 except the kth queried key is sf-type 3.

– Game1−(q1+1)−i (for 1 ≤ i ≤ 3) is same as Game1−q1−3 except the last q2 queried keys are of sf-type i.

– In Game2−k−1 (for 1 ≤ k ≤ ν) is same as Game2−(k−1)−2 except the kth decryption query is answered
by sf-type 1 alt-key. (In this sequel, we define Game2−0−2 = Game1−(q1+1)−3)

– Game2−k−2 (for 1 ≤ k ≤ ν) is same as Game2−k−1 except the kth decryption query is answered by
sf-type 2 alt-key.

– GameFinal is similar to Game2−ν−2 except that the challenge ciphertext is of sf-type 2.
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In GameFinal, the challenge message mb is masked with an independently and uniformly chosen element
from GT implying the component CINT does not leak any information about the challenge message mb.
Therefore, the adversary A has no advantage in GameFinal. The outline of the hybrid arguments over the
games are structured in the box (for details of the lemmas, refer to Appendix E):

Real

Lem E.1
|

DSG2
|

=⇒ Res

Lem E.2
|

DSG1
|

=⇒ 0

Lem E.3
|

DSG2
|

=⇒ 1− 1− 1 . . . 1− (k − 1)− 3

Lem E.3
|

DSG2
|

=⇒ 1− k − 1

1− k − 1

Lem E.4
|

CHM
|

=⇒ 1− k − 2

Lem E.5
|

DSG2
|

=⇒ 1− k − 3 . . . 1− q1 − 3

Lem E.6
|

DSG2
|

=⇒ 1− (q1 + 1)− 1

1− (q1 + 1)− 1

Lem E.7
|

SHM
|

=⇒ 1− (q1 + 1)− 2

Lem E.8
|

DSG2
|

=⇒ 1− (q1 + 1)− 3

Lem E.9
|

DSG2,CRH

|
=⇒ 2− 1− 1

2− 1− 1 . . . 2− (k − 1)− 2

Lem E.9
|

DSG2,CRH

|
=⇒ 2− k − 1

Lem E.10
|

DSG2
|

=⇒ 2− k − 2 . . . 2− ν − 2

Lem E.11
|

DSG3
|

=⇒ Final

Using the above structure, we have the following reduction:

AdvPE−CCA
A (κ) ≤ AdvDSG1

B1
(κ) + (2q1 + 2ν + 3)AdvDSG2

B2
(κ) + q1AdvP−CMH

B3
(κ)

+ AdvP−SMH
B4

(κ) + νAdvCRH
B5

(κ) + AdvDSG3
B6

(κ)

where B1,B2,B3,B4,B5 and B6 are PPT algorithms whose running times are same as that of A . This
completes the theorem.

Theorem 5.3. Let P be a pair encoding scheme for a predicate ∼ which satisfies the conditions (1) and (3)
of Conditions 3.2 and ∼ is domain-transferable. Suppose P has PMH security, the assumptions, DSG1,
DSG2 and DSG3 hold in J and H is a collision resistant hash function, then the proposed predicate
encryption scheme, PE in sec.5.1 for the predicate ∼ is adaptive-predicate IND-CCA secure.

Proof. Similar to the proof of the Theorem 5.2. The reduction of the proof is given by

AdvPE−CCA
A (κ) ≤ AdvDSG1

B1
(κ) + (2q + 2ν + 1)AdvDSG2

B2
(κ) + νAdvCRH

B3
(κ) + AdvDSG3

B4
(κ)

where q and ν respectively be the number of key and decryption queries made A and B1,B2,B3,B4 are
PPT algorithms whose running times are same as that of A . This completes the theorem.

6 Framework for Predicate Signcryption

In this section, we present the predicate signcryption schemes (for syntax and security definition of PSC, we
refer to Appendix C) from the pair encoding schemes. The proposed signcryption satisfies the “combined-
setup” [31], i.e., the distributions of the public parameters and keys of the implicit primitive schemes,
PS and PE are identical. Here we consider the signcryptions in CtE&StS-paradigm of [31] to guarantee
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the faster execution of the subroutines in Signcrypt and Unsigncrypt, stronger security and the publicly
verifiability (non-repudiation).

Let PS := (Setup,KeyGen,PS.Sign,PS.Ver) and PE := (Setup,KeyGen,PE.Encrypt,PE.Decrypt) re-
spectively be the predicate signature scheme in sec.3.6 and predicate encryption scheme in sec.5.1 con-
structed form a pair encoding scheme P := (Param,Enc1,Enc2,Pair) for predicate ∼. Let OTS :=
(OTS.Gen,OTS.Sign,OTS.Ver) and C := (C.Setup,Commit,Open) respectively be the one-time signature
scheme and commitment scheme. To distinguish the hash values, ~s and ~e involved in PS and PE, we
keep the first argument of the hash function, H to be 1 and 0 respectively, viz., ~s := H(1, vk, ys) and
~e := H(0, com, δys , vk, Ccpa)

– Setup(1κ, j): Same as the Setup in sec.3.6 except the PP additionally contains the public commitment
key, CK.

– KeyGen(PP,MSK, x): Same as the KeyGen in sec.3.6.

– Signcrypt(m,SKx, ys, ye) :=



(com, decom) := Commit(m) ‖ (vk, signk) := Gen(1κ)

δys := PS.Sign(vk,SKx, ys) ‖ Ccpa := PE.Encrypt∗(decom, ye)

~e := H(0, com, δys , vk, Ccpa)

C0 := gs(θ1he+θ2),where s is a randomness in PE.Encrypt∗

δo := OTS.Sign(C0||ys, signk)

returns U := (com, δ := (δys , δo, vk),CT := (Ccpa, C0))



– Unsigncrypt(U,SKx, ys) :=


m if


OTS.Ver(C0||ys, δo, vk) = 1

PS.Ver(vk, δys , ys) = 1 ‖ let d := PE.Decrypt(CT,SKx)

let m := Open(com, d)


⊥ otherwise.

Correctness. Follows from the correctness of primitive predicate signature scheme, PS, predicate en-
cryption scheme, PE, commitment scheme, C and one-time signature scheme, OTS.

Remark 6.1. Note that the CCA secure ciphertext is also represented as CT := (Ccpa, C0), where the
routine Encrypt can be thought as subroutine Encrypt∗ (the Encrypt of CPA construction in [2]), then
followed by the computation of C0.

Fact 6.2. Following the Facts 3.6 and 5.4, we have if cy of the underlying pair encoding scheme
has constant-size, then the corresponding signcryption will be constant-size and the number
of pairings in Unsigncrypt is constant-size. In other word, if |cy| = ω1, then size of the signcryption
(mainly the #group elements) is 2ω1 + 3 and the number of pairings in Unsigncrypt is 2(ω1 + 1). Since Ver
and Decrypt run in parallel in Unsigncrypt, the number of pairings are counted to be ω1 + 1.

Remark 6.3. The Signcrypt and Unsigncrypt work almost in black-box manner using the black-boxes,
OTS scheme, commitment scheme, predicate signature scheme in sec.3.6 and predicate encryption scheme
sec.5.1 except the ~e is computed as H(0, com, δys , vk, Ccpa) in stead of H(Ccpa) in Encrypt and Decrypt.

Discussion 6.4. We see later that for confidentiality (resp. unforgeability) of the proposed signcryption,
we require hiding (resp. no) property of the primitive commitment scheme, C. However, to assure the
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non-repudiation, we have to rely on the relax-binding property of C as discussed in [31]. Before moving to
the security section, we pay our attention on the variant of signcryptions:

– If we ignore the commitment stuffs from the construction, in that case Ccpa ← PE.Encrypt∗(m, ye),
then this variant of signcryption has the same performance as the proposed signcryption except the
non-repudiation. Since, the non-repudiation is not attained, so the only security of the primitive
commitment scheme required to go through the proof is the hiding property.

– If we ignore the OTS scheme and apply the modification, δys ← PS.Sign(com||ye,SKx, ye), we have the
same results as the proposed signcryption except we have the weak unforgeability. For proving the
weak unforgeability, we require the relax-binding property of C.

6.1 Security of Signcryption

Theorem 6.1. Our proposed predicate signcryption scheme in sec.6 is perfectly private.

Proof. Since, the SKx is only used to generate δys and the PS scheme in sec.3.6 is perfectly private, so we
are done.

Theorem 6.2. Let P be a pair encoding scheme for a predicate ∼ which satisfies Conditions 3.2 and ∼
is domain-transferable. Suppose P has both the security, SMH and CMH, the assumptions, DSG1, DSG2
and DSG3 hold in J , the one-time signature scheme, OTS has strong unforgeability, the commitment
scheme, C has the hiding property and H is a collision resistant hash function, then the proposed predicate
signcryption scheme, PSC in sec.6 for the predicate ∼ is adaptive-predicates IND-CCA secure.

Proof. We refer to Appendix F.

Theorem 6.3. Let P be a pair encoding scheme for a predicate ∼ which satisfies Conditions 3.2 and ∼
is domain-transferable. Suppose P has the CMH security, the assumptions, DSG1, DSG2 and DSG3 hold
in J , the one-time signature scheme, OTS has strong unforgeability and H is a collision resistant hash
function, then the proposed predicate signcryption scheme, PSC in sec.6 for the predicate ∼ is adaptive-
predicates strong unforgeable.

Proof. We refer to Appendix F.

6.2 Instantiations of Predicate Signcryption

We provide the first black-box construction of predicate signcryption schemes from the pair encoding
schemes. All the signcryption schemes are shown to be strong unforgeable and IND-CCA secure in the
adaptive-predicates model and achieve the signer privacy. Since, the Sign (resp. Ver) and Encrypt (resp.
Decrypt) run in parallel in Signcrypt (resp. Unsigncrypt), the execution is faster as compared to other
approach. Using the different pair encoding schemes [2, 5], we instantiate various signcryptions which are
listed below:

– Obtained here are the predicate signcryptions for regular languages in both policies, key-policy (KP)
and signcryption-policy (SCP) which support the large universe alphabet set. The schemes are
constructed respectively from the pair encoding schemes, Scheme 3 and Scheme 7 of [2].
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– The unbounded ABSC schemes with large universes in KP and SCP flavors are instantiated using the
pair encoding Scheme 4 of [2]) and its dual [5] respectively.

– We provide a KP-ABSC scheme with constant-size signcryptions and the number of pairings required
to unsigncrypt is also constant. The signcryption is constructed from the pair encoding scheme,
Scheme 5 of [2]. Since, |cy| = 6, following the Fact 6.2, we have |U| = 15 and number of pairings
in Unsigncrypt is 14. Similarly, by applying dual [5] on the Scheme 5 of [2], we obtain SCP-ABSC
constant-size short keys.

– A new class predicate signcryption, key-policy over doubly-spatial signcryption (KP-DSSC) is con-
structed from the pair encoding scheme, Scheme 6 of [2]. Again, by applying dual [5] on the Scheme
6 of [2], we obtain another class predicate signcryption, signcryption-policy over doubly-spatial sign-
cryption (SCP-DSSC). Similar to KP-DSS (resp. SP-DSS), the new class, KP-DSSC (resp. SCP-
DSSC) generalizes the existing class, KP-ABSC (resp. SCP-ABSC).

– The cost-free ABSC schemes in both KP and SCP flavors with small universes are constructed from the
pair encoding schemes, Scheme 8 and Scheme 10 of [2] respectively.

– The cost-free KP-ABSC and SCP-ABSC schemes with large universes are constructed respectively from
the pair encoding schemes, Scheme 12 and Scheme 13 of [2].

7 Conclusion and Future Work

In this paper, we first time showed that the pair encodings provide the adaptively unforgeable predicate
signatures with prefect privacy. Then, we have shown that the pair encodings can also be applied to
construct fully (CCA) secure predicate encryption with almost the same cost as the CPA-secure PE of
[2]. Finally, we explored a generic framework for predicate signcryptions using the pair encodings. We
instantiated many practical schemes for all constructions. In future, similar to the prime order variants
[3, 13] of [2, 34], we will be focusing for the prime order variant of all the constructions in this paper.
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A Some Results of Linear Algebra

Let’s recall the three types of elementary row operations on a matrix.

• type-1: Interchange rows i and j (in sort, we write Ri ↔ Rj).

• type-2: Multiply row i by k, with k 6= 0 (in sort, kRi → Ri).

• type-3: Add k times row i to row j (in sort, Ri + kRj → Ri).

Similarly, we can define the three types of elementary column operations. Let E be a matrix obtained
by applying a single elementary row operation on the identity matrix, called the elementary matrix. Note
that the affect of a single elementary row (resp. column) operation on a matrix B can also be obtained by
pre (resp. post)-multiplying the matrix B by corresponding the elementary matrix E (resp. E>).

Definition A.1. A matrix M is said to be row (resp. column) equivalent to a matrix B if M is obtained
from B by applying a finite sequence of elementary row (resp. column) operations.

Definition A.2. A row of a matrix R is said to be row reduced if (1) the first non-zero entry of the row
is equal to 1 and (2) each column of R which contains the leading non-zero entry of some row has all its
other entries 0.

Definition A.3. A matrix R is said to be row reduced if each of its non-zero rows is row reduced.

A well known result that will be used rigorously is given below.

Theorem A.1. If two matrices B and M are row equivalent, then the systems BX = 0 and MX = 0
have the same solutions.

But, the scenario is slightly changed in case of column equivalent.

Theorem A.2. Suppose the matrix M is obtained from B by applying n elementary column operations,
i.e., BE>1 E>2 · · ·E>n = M , where E i’s are elementary matrices. Then, v is a solution of the system
MX = 0 if and only if E>1 E>2 · · ·E>n v is a solution of BX = 0.

Theorem A.3. Let R be a ring with 1. Let B ∈ Rm×n be a matrix such that Bi1 = δi,1, where δi,1 is a
Kronecker delta function. Let BM ∈ Rm×(n+1) be a matrix defined by

BM :=


t
0
...
0

B

 , for t ∈ R.

Then, (v1 . . . , vn)> is a solution of BX = 0 if and only if for each v0 ∈ R, (v0,−tv0 + v1, v2, . . . , vn) is a
solution of the system BMX = 0.

Remark A.1. From the above theorem, we have Null(BM) = Null(B) + 1.
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Assumption: The factorization problem is intractable. For our purpose, we mainly apply the
elementary row operations of type-2 and type-3, but for simple representation of the solutions, one may
use elementary row and column operations of type-1. The Theorem A.1 and A.2 assume the fact that k 6= 0
(involved in type-2 operation) implies that k in invertible. When the matrices are considered over a field,
we do not have any problem. But if we are not in field, then we may be in trouble. Here we consider the
matrix A over ZN , with N = p1p2p3 which is not a field. Since we assume that the factorization problem
is intractable, perhaps it could help out from the said trouble. Of course it does: let 0 6= k ∈ ZN , then we
show that k is co-prime to N which in turn implies that k is invertible in ZN . If k is not co-prime to N ,
then one can break the factorization problem through the finding gcd(k,N) > 1 in polynomial time of the
security parameter, κ.

A.1 Scheme 4 : Unbounded KP-ABE with Large Universes of [2]

Here we consider the pair encoding, Scheme 4 of [2] which realized the unbounded KP-ABE with large
universe. We show that this pair encoding satisfies the Conditions 3.2. The condition (1) is so obvious.
To verify the condition (2), we see that for each the random coin si, there is a component cι such that
cι(s,h) = si. Therefore, it is an example, where all the coins are h-free. For verifying the condition (3),
we first notice that only b1 6= 0. Hence, we have to show that E1j = 0 for j ∈ [2, ω1]. We find from the
correctness of the scheme that the monomials containing k1 appear in the correctness are exactly k1c1, so
the first row of the matrix E must be (1,0). Hence, we are done.

Scheme 4 : Unbounded KP-ABE with Large Universes of [2]

Param→ 6. h := (h0, h1, φ1, φ2, φ3, η)

Enc1(Γ := (M , ρ)) → k(α, r,h) := (k1, k2, k3, {k4,i, k5,i, k6,i}i∈[`]), where k1 := α + rφ1 +

uη, k2 := u, k3 := r, k4,i := M iv
>+ riφ3, k5,i := ri, k6,i := ri(h0 +h1ρ(i)), and v1 := rφ2,

r := (r, u, r1, . . . , r`, v2, . . . , vk), v := (v1, . . . , vk).

Enc2(S ⊆ ZN ) → c(s,h) := (c1, c2, c3, c4, {c5,y}y∈S , {c6,y}y∈S), where c1 := s, c2 := sη,
c3 := sφ1 + wφ2, c4 := w, c5,y := wφ3 + sy(h0 + h1y), c6,y := sy and s := (s, w, {sy}y∈S)

Correctness: If x ∼ y, i.e., Γ(S) = True, there exists reconstruction coefficients {µi}i∈I ,
with let I := {i ∈ [`] | ρ(i) ∈ S} s.t

∑
i∈I µiM iv

> = v1 = rφ2. So the following linear
combination reveals αs as : k1c1 − k2c2 − k3c3 +

∑
i∈I µi(k4,ic4 − k5,ic5,ρ(i) + k6,ic6,ρ(i)) =

αs− rwφ2 +
∑

i∈I µi(M iv
>w) = αs

Example A.2. To understand that the process of sampling for the Scheme 4, we customize the set of
attributes S. Let S := {y2, y3, y4} ⊂ ZN . Enc2(S) → c(s,h) := (c1 := s, c2 := sη, c3 := sφ1 + wφ2, c4 :=
w, {c5,y, c6,y}y∈S), where c5,y := wφ3 + sy(h0 + h1y), c6,y := sy and s := (s0 := s, s1 := w, s2, s3, s4) with
si := syi . This is a case, where all the coins are h-free. The matrix7 of the system is given by

A> :=


1 η φ1 0 0 0 0 0 0 0

0 0 φ2 1 φ3 0 φ3 0 φ3 0

0 0 0 0 h0 + h1y2 1 0 0 0 0

0 0 0 0 0 0 h0 + h1y3 1 0 0

0 0 0 0 0 0 0 0 h0 + h1y4 1


7The box in the jth row indicates that the coin sj is h-free and the column containing the box is the leading h-free column

for the jth row.
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Here Shf := {1, 4, 6, 8, 10}, Thf := {0, 1, 2, 3, 4}, Sphf := {(1, 0), (4, 1), (6, 2), (8, 3), (10, 4)}, Snon-fv,0 :=

{1}, Snon-fv,0 := {1}, Snon-fv,1 := {4}, Snon-fv,2 := {6}, Snon-fv,3 := {8}, Snon-fv,4 := {10}, Snon-fv :=

{1, 4, 6, 8, 10} and Sfv := {2, 3, 5, 7, 9}. Therefore, xi are chosen randomly from ZN for i ∈ Sfv. The non-
free variables are computed as: x1 := −ηx2−φ2x3, x4 := −φ2x3−φ3(x5 +x7 +x9), x6 := −(h0 +h1y2)x5,
x8 := −(h0 + h1y3)x7, x10 := −(h0 + h1y4)x7

A.2 Scheme 10 : CP-ABE with Small Universes of [2]

This pair encoding scheme was extracted from the fully secure CP-ABE [24]. Again the condition (1) is
obvious. For the random coins s, s1, . . . , s`, the condition 2(a) holds. But, for v2, . . . , vk, the condition 2(b)
holds. For all the vj , the unique hi′ is φ. So, we require that during setup φ is chosen to be co-prime to
N . The condition (3) works out through the similar argument as in sec.A.1.

Scheme 10 : CP-ABE with Small Universes of [2]

Param(|U|)→ |U|+ 1. h := (φ, {hi}i∈U )

Enc1(S ⊆ U)→ k(α, r,h) := (k1 := α+ φr, {k2,x := rhx}x∈S , k3 := r), where r := r.

For Γ := (M , ρ), where M ∈ Z`×kN and ρ : [`]→ U , an injective row labeling
Enc2(Γ := (M , ρ))→ c(s,h) := (c1, {c2,i, c3,i}i∈[`]), where c1 := s, c2,i := φM iv

>+sihρ(i),
c3,i := si and s := (s, v2, . . . , vk, s1, . . . , s`), v := (s, v2, . . . , vk)

Correctness: If Γ(S) = True, we have
∑

i∈I µiM iv
> = α. So the following linear combi-

nation reveals αs as : k1c1 +
∑

i∈I µi(k3c2,i − k2,ρ(i)c3,i) = αs

Example A.3. To understand that the process of sampling for the Scheme 10 of [2], we customize the
monotone access structure. Let Γ := (M , ρ), where

M :=


1 2 3
2 3 4
3 2 1
3 1 3

 and ρ : [4]→ U is some row labeling function.

Enc2(Γ)→ c(s,h) := (c1, {c2,i, c3,i}i∈[4]), where c1 := s′, c2,i := φM iv
>+ s′ihρ(i), c3,i := s′i and s := (s0 :=

s′, s1 := v2, s2 := v3, s3 := s′1, s4 := s′2, s5 := s′3, s6 := s′4), v := (s′, v2, v3). This is a case, where all the
coins are not h-free. For all non h-free coins there is unique h-term which is φ. The matrix of the system
is given by

A> :=



1 φ 0 2φ 0 3φ 0 3φ 0
0 2φ 0 3φ 0 2φ 0 φ 0
0 3φ 0 4φ 0 φ 0 3φ 0

0 hρ(1) 1 0 0 0 0 0 0

0 0 0 hρ(2) 1 0 0 0 0

0 0 0 0 0 hρ(3) 1 0 0

0 0 0 0 0 0 0 hρ(4) 1


Here Shf := {1, 3, 5, 7, 9}, Snon-hf := {2, 4, 6, 8}, Thf := {0, 3, 4, 5, 6}, Tnon-hf := {1, 2}, Sphf :=

{(1, 0), (3, 3), (5, 4), (7, 5), (9, 6)}, Snon-fv,0 := {1}, Snon-fv,3 := {3}, Snon-fv,4 := {5}, Snon-fv,5 := {7},
Snon-fv,6 := {9} and Snon-fv := {1, 4, 6, 8, 10}. We now apply the sequence of elementary row operations

of type-2 and type-3 to make each non h-free row reduced: φ−1R2 → R2, φ
−1R3 → R3, 2−1R2 → R2,
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R1 + (−φ)R2 → R1, R3 + (−3)R2 → R3, R4 + (−hρ(1))R2 → R4, (−2)R3 → R3, R1 + (−φ/2)R3 → R1,
R2 + (−3/2)R3 → R2, R4 + 3hρ(1)/2R3 → R4 and R5 + (−hρ(2))R3 → R5. The red color boxes of the row
reduced matrix indicate the new leading element of the corresponding rows.

1 0 0 0 0 0 0 4φ 0

0 1 0 0 0 −5 0 5 0

0 0 0 1 0 4 0 −3 0

0 0 1 0 0 5hρ(1) 0 −5hρ(1) 0

0 0 0 0 1 −4hρ(2) 0 3hρ(2) 0

0 0 0 0 0 hρ(3) 1 0 0

0 0 0 0 0 0 0 hρ(4) 1


Snew := {1, 3}. So Snon-fv := {1, 2, 3, 4, 5, 7, 9} and Sfv := {6, 8}. The rest are same as Example A.2.

B Predicate Encryption

A predicate encryption (PE) scheme for a predicate tuple family, ∼ consists of four PPT algorithms -
Setup, KeyGen, Encrypt and Decrypt.

• Setup: It takes a security parameter κ and a system parameter index j as input, outputs the public
parameters PP and the master secret MSK.

• KeyGen: It takes as input public parameters PP, master secret MSK and a key index x ∈ X and
outputs a secret key SKx corresponding to x.

• Encrypt: It takes public parameters PP, a message m ∈M and an associated data index y ∈ Y and
returns a ciphertext C, which implicitly contains y.

• Decrypt: It takes as inputs the public parameters PP, a ciphertext C and a key SKx. It returns a
value form M∪ {⊥}.

Correctness. For all (PP,MSK)←− Setup(1κ, j), all x ∈ X , SKx ←− KeyGen(PP,MSK, x), all y ∈ Y
and for all messages m ∈M, it is required that if x ∼ y then Decrypt(PP,Encrypt(PP,m, y),SKx) = m.

Definition B.1 (Verifiability[29]). A predicate encryption scheme PE with public index is said to have
the verifiability if there is a PPT algorithm, Verify such that for all ciphertext C (possibly ill-format) with
the public associated index y, and all x, x̃ with x ∼ y, x̃ ∼ y we have

Verify(PP,C, x, x̃) = 1⇒ Decrypt(PP,C,SKx) = Decrypt(PP,C,SKx̃) (5)

and it is a weak format-verifier, i.e., it returns 1 for all correctly-format ciphertext.8

The property in equation (5) is called soundness of the verifiability and the weak format-verifier is
called the completeness of the verifiability.

8So if Verify(PP,C, x, x̃) = 0 for x ∼ y, x̃ ∼ y then C must be ill-format.
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B.1 Security of Predicate Encryption

Definition B.2 (Adaptive-Predicate IND-CCA Security). A PE scheme is said to be adaptively CCA-
secure (AP-IND-CCA) if for all PPT adversary A := (A1,A2), the advantage AdvPE−CCA

A (κ) is at most
a negligible function in security parameter κ, where A is provided the access to keyGen oracle, OK and
decryption oracle, OD and NRn is the natural restriction that (C∗, x) with x ∼ y∗ was never queried to OD
and for each key index x queried to OK , x 6∼ y∗.

AdvPE−CCA
A (κ) :=

∣∣∣∣∣∣∣Pr

 (PP,MSK)←− Setup(1κ, j),

(m0,m1, y
∗, st)←− A

{OK, OD}
1 (PP), b

U←− {0, 1},
C∗ ←− Encrypt(PP,mb, y

∗), b′ ←− A
{OK, OD}
2 (PP,C∗, st)

: b = b′ ∧ NRn

− 1

2

∣∣∣∣∣∣∣ .
Likewise in Selective-Predicate IND-CCA (SP-IND-CCA) security, the adversary A submits the chal-

lenge index y∗ before receiving PP of PE.

A weaker notion of security can be defined similarly as above except, A is not allowed to access to OD
oracle. It is called IND-CPA security in both adaptive-predicate (AP-IND-CPA) and selective predicate
(SP-IND-CPA) models.

C Predicate Signcryption

A predicate signcryption (PSC) scheme for a predicate tuple family, ∼ consists of four PPT algorithms -
Setup, KeyGen, Signcrypt and Unsigncrypt.

• Setup: It takes a security parameter κ and a system parameter j as input, outputs the public
parameters PP and the master secret MSK.

• KeyGen: It takes public parameters PP, master secret MSK and a key index x ∈ X as input and
outputs a secret key SKx corresponding to x.

• Signcrypt: It takes public parameters PP, a message m ∈M, a signing key SKx, an associated index
ys ∈ Y for signer with x ∼ ys and an associated index ye ∈ Y for receiver as input and returns a
signcryption U for (ys, ye) (we assume that U implicitly contains ye).

• Unsigncrypt: It takes as input public parameters PP, a signcryption U, a secret key SKx and an
associated index ys ∈ Y for signer. It returns a value from M∪ {⊥}.

Correctness. For all (PP,MSK) ←− Setup(1κ, j), all m ∈ M, all key indices x ∈ X , SKx ←−
KeyGen(PP,MSK, x), all signer associated indices ys ∈ Y with x ∼ ys, all receiver associated indices
ye ∈ Y, all signcryptions U ←− Signcrypt(PP,m,SKx, ys, ye) and all key indices x̃ ∈ X with x̃ ∼ ye,
SKx̃ ←− KeyGen(PP,MSK, x̃), it is required that Unsigncrypt(PP,U,SKx̃, ys) = m.

C.1 Security of Predicate Signcryption

Definition C.1 (Signer Privacy). A PSC scheme is said to be perfectly private if for all
(PP,MSK) ←− Setup, all key indices x1, x2 ∈ X , all keys SKx1 ←− KeyGen(PP,MSK, x1), SKx2 ←−
KeyGen(PP,MSK, x2), all messages m ∈ M, all signer associated indices ys ∈ Y such that x1 ∼ ys and
x2 ∼ ys, and all receiver associated indices ye ∈ Y, the distributions of Signcrypt(PP,m,SKx1 , ys, ye) and
Signcrypt(PP,m,SKx2 , ys, ye) are identical.
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Definition C.2 (Adaptive-Predicates IND-CCA Security). An PSC scheme is said to be adaptively CCA-
secure (APs-IND-CCA) if for all PPT adversary A := (A1,A2), the advantage AdvPSC−CCA

A (κ) is at most
a negligible function in security parameter κ, where A is provided the access to keyGen oracle, OK ,
signcrypt oracle, OS and unsigncrypt oracle, OU , and NRn is the natural restriction that (U∗, x, y∗s) with
x ∼ y∗e was never queried to OU and for each key index x queried to OK , x 6∼ y∗e .

AdvPSC−CCA
A (κ) :=

∣∣∣∣∣∣∣∣∣∣
Pr


(PP,MSK)←− Setup(1κ, j),

(m0,m1, x, y
∗
s , y
∗
e , st)←− A

{OK, OS, OU }
1 (PP),

b
U←− {0, 1}, U∗ ←− Signcrypt(PP,mb,SKx, y∗s , y∗e),

b′ ←− A
{OK, OS, OU }
2 (PP,U∗, st)

: b = b′ ∧ NRn

− 1

2

∣∣∣∣∣∣∣∣∣∣
.

Remark C.1. Likewise in selective-predicate(s) IND-CCA security, A submits either receiver associated
index y∗e or sender associated y∗s or both before receiving PP of PSC.

Definition C.3 (Adaptive-Predicates Unforgeability). A PSC scheme is said to be adaptive-predicates
existential unforgeable (APs-UF-CMA) if for all PPT A , the advantage AdvPSC−UF

A (κ) is at most negligible
function in κ, where A is provided the access to keyGen oracle, OK , signcrypt oracle, OS and unsigncrypt
oracle, OU , and NRn is the natural restriction that for each tuple, (m,x, ys, ye) queried to OS oracle,
(m, ys, ye) 6= (m∗, y∗s , y

∗
e) and for each key index x ∈ X queried to OK oracle, x 6∼ y∗s .

AdvPSC−UF
A (κ) := Pr


(PP,MSK)←− Setup(1κ, j),

(U∗, y∗s , y
∗
e)←− A {OK, OS, OU }(PP),

m∗ ←− Unsigncrypt(PP,U∗,SKx, y∗s , y∗e),
where x ∼ y∗e

: m∗ 6=⊥ ∧ NRn

 .
Remark C.2. The above unforgeability is also called weak unforgeability in the sense that in forgery A is
not allowed to forge for the queried messages. In strong unforgeability (we use notation, APs-sUF-CMA),
the restriction (m, ys, ye) 6= (m∗, y∗s , y

∗
e) is replaced by (U,m, ys, ye) 6= (U∗,m∗, y∗s , y

∗
e), where U is the reply

for the query (m,x, ys, ye) to OS oracle.

Remark C.3. Similar to the above, there is an another variant of unforgeability, called selective-
predicate(s) unforgeability in both weak and strong sense, where A submits either signer index y∗s or
receiver index y∗e or both before receiving PP of PSC.

D Lemmas used in Theorem 3.5 for Predicate Signature

Lemma D.1. GameReal and GameRes are indistinguishable under the DSG2 assumption9. That is, for
every adversary A , there exists a PPT algorithm B such that |AdvReal

A ,PS(κ)− AdvRes
A ,PS(κ)| ≤ AdvDSG2

B (κ).

Proof. Suppose an adversary can distinguish the games with a non-negligible probability, then we will
establish a PPT simulator B for breaking the DSG2 assumption with the same probability. An instance

of DSG2, (J , g, Z1Z2,W2W3, Z3, Tβ) with β
U←− {0, 1} is given to B. The only difference between the

games, GameReal and GameRes is that for all query key indices x and challenge associated data index y∗ :
x ∼p2 y

∗, but, x 6∼N y∗. We show that the above scenario will not happen. In fact, from the soundness of
domain-transferability of ∼, we can find a factor F such that p2|F |N . Then, there are three possibilities
of F : (1) F = p2, (2) F = p1p2 and (3) F = p2p3. We remark the aforesaid cases are recognized using the

9In Lemma 27 of [2], DSG1 and DSG2 assumptions were considered. In contrast, we show that one assumption, DSG2 can
capture the intractability of factorization problem.
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parameters of the given instance of DSG2. Suppose F = p2. Let B := N/F = p1p3 and then by checking

TBβ
?
= Θ, B can break the DSG2 assumption. Now suppose F = p1p2 or F = p2p3. Let B := N/F . If

B = p3, it computes Y2 := (W2W3)
B = W p3

2 else Y2 := (Z1Z2)
B = Zp12 . In both case, we have Y2 ∈ Gp2 ,

then by checking e(Tβ, Y2)
?
= 1, B can break the DSG2 assumption.

Lemma D.2. GameRes and Game0 are indistinguishable under the DSG1 assumption. That is, for every
adversary A , there exists a PPT algorithm B such that |AdvRes

A ,PS(κ)− Adv0A ,PS(κ)| ≤ AdvDSG1
B (κ).

Proof. We establish a PPT simulator B who receives an instance of DSG1, (J , g, Z3, Tβ) with β
U←− {0, 1}

and depending on the distribution of β, it either simulates GameRes or Game0.

Setup: B chooses α, θ1, θ2
U←− ZN , h

U←− ZnN and sets hM := (θ1, θ2,h). Let H : {0, 1}∗ −→ ZN be a
hash function. Then, it provides PP := [J , g, ghM , gαT := e(g, g)α, Z3, H] to A and keeps MSK := (α) to

itself. It implicitly sets ĥM :≡ hM mod p2. By Chinese Remainder Theorem (CRT), ĥM is independent
from hM mod p1 and so ĥM is perfectly distributed.

Query Phase: It consists of the following queries in adaptive manner:

– KeyGen(x): It is normal key. B can handle the key queries of A , since the MSK is known to him.

– Sign(m,x, y): If x 6∼ y, it returns ⊥. It is normal signature. B can answer the queries of A , since he
can construct SKx using the MSK known to him.

Forgery: A outputs a signature δy∗ for (m∗, y∗). Then, B prepares a vText for (m∗, y∗) as follows: It
computes ~∗ := H(m∗, y∗). It runs (cy∗ , ω2) ←− Enc2(y∗, N) with |cy∗ | = ω1 and sets cMy∗ := (c∗0, cy∗). It

picks s′ := (s′, s′1, . . . , s
′
ω2

)
U←− Zω2+1

N . Finally, it computes a vText as V := (V INT := e(gα, Tβ)s
′
,Vy∗ :=

T
cM
y∗ (s

′,hM)

β ). B returns 1 if e(δy∗ ,Vy∗) = V INT else 0.

Analysis: We will show that all the stuffs are perfectly distributed as required. B implicitly sets gt1 :=

Tβ
∣∣
Gp1

and for β = 1, gt22 := Tβ
∣∣
Gp2

. Then by linearity of P, we have g
t1cMy∗ (s

′,hM)
= g

cM
y∗ (t1s

′,hM)
and

g
t2cMy∗ (s

′,hM)

2 = g
cM
y∗ (t2s

′,ĥM)

2 . B implicitly sets s :≡ t1s′ mod p1 and for β = 1, ŝ :≡ t2s′ mod p2. By CRT,
s′ mod p1 is independent from s′ mod p2 and therefore s and ŝ are perfectly distributed as required. All
together, we have the stuffs simulated by B are identical to that of GameRes if β = 0 else Game0.

Lemma D.3. Game1−(k−1)−3 and Game1−k−1 are indistinguishable under the DSG2 assumption. That

is, for every adversary A , there exists a PPT algorithm B such that |Adv
1−(k−1)−3
A ,PS (κ) − Adv1−k−1A ,PS (κ)| ≤

AdvDSG2
B (κ) for 1 ≤ k ≤ ν1.

Proof. We establish a PPT simulator B who receives an instance of DSG2, (J , g, Z1Z2,W2W3, Z3, Tβ)

with β
U←− {0, 1} and depending on the distribution of β, it either simulates Game1−(k−1)−3 or Game1−k−1

Setup: B chooses α, θ1, θ2
U←− ZN , h

U←− ZnN and sets hM := (θ1, θ2,h). Let H : {0, 1}∗ −→ ZN be a
hash function. Then, it provides PP := [J , g, ghM , gαT := e(g, g)α, Z3, H] to A and keeps MSK := (α) to

itself. It implicitly sets ĥM :≡ hM mod p2. By CRT, ĥM is independent from hM mod p1 and so ĥM is
perfectly distributed.

Query Phase: It consists of the following queries in adaptive manner:

– KeyGen(x): Let xj be the jth query key index. B answers the key SKxj as follows:
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• If j > k, then B runs the KeyGen algorithm and gives the normal key to A .

• If j < k, then it is of sf-type 3 key. It runs (kxj ,m2)←− Enc1(xj , N) with |kxj | = m1. It picks

α′j
U←− ZN , rj

U←− Zm2
N and R3

U←− Gm1
p3 . It computes the sf-type 3 key as defined below.

SKxj := gkxj (α,rj ,h).(W2W3)
kxj (α

′
j ,0,0).R3

It implicitly sets α̂j := w2α
′
j , where W2W3 = gw2

2 gw3
3 . So, SKxj is properly distributed sf-type

3 key.

• If j = k then it is either normal or sf-type 1 key. It runs (kxk ,m2) ←− Enc1(xk, N) with

|kxk | = m1. It picks r′k, r̂
′
k

U←− Zm2
N and R3

U←− Gm1
p3 . B generates SKxj using Tβ of the

instance of DSG2.

SKxk := gkxk (α,r
′
k,h).T

kxk (0,r̂
′
k,h)

β .R3

B implicitly sets gt1 := Tβ
∣∣
Gp1

and for β = 1, gt22 := Tβ
∣∣
Gp2

. Then by linearity of P, we

have gkxk (α, r
′
k, h).gt1kxk (0, r̂

′
k, h) = gkxk (α, r

′
k+t1r̂

′
k, h) and g

t2kxk (0, r̂
′
k, h)

2 = g
kxk (0, t2r̂

′
k, ĥ)

2 . B
implicitly sets rk := r′k + t1r̂

′
k and r̂k := t2r̂

′
k. Since r′k and r̂′k are chosen uniformly and

independently from Zm2
N , then so are rk and r̂k. Therefore, SKxk is perfectly distributed

normal (resp. sf-type 1) key if β = 0 (resp. β = 1).

– Sign(m,x, y): If x 6∼ y, it returns ⊥. It is normal signature. B can answer the queries of A as theMSK
is known to him.

Forgery: A outputs a signature δy∗ for (m∗, y∗). Then, B prepares a vText for (m∗, y∗) as follows: It
computes ~∗ := H(m∗, y∗). It runs (cy∗ , ω2) ←− Enc2(y∗, N) with |cy∗ | = ω1 and sets cMy∗ := (c∗0, cy∗). It

picks s′ := (s′, s′1, . . . , s
′
ω2

)
U←− Zω2+1

N . Finally, it computes a vText as V := (V INT := e(gα, Z1Z2)
s′ ,Vy∗ :=

(Z1Z2)
cM
y∗ (s

′,hM)
). B returns 1 if e(δy∗ ,Vy∗) = V INT else 0.

Analysis: We will show that all the stuffs are perfectly distributed as required. Let Z1Z2 = gz1gz22 .

Then by linearity of P, we have g
z1cMy∗ (s

′,hM)
= g

cM
y∗ (z1s

′,hM)
and g

z2cMy∗ (s
′,hM)

2 = g
cM
y∗ (z2s

′,ĥM)

2 . B implicitly
sets s :≡ z1s

′ mod p1 and ŝ :≡ z2s
′ mod p2. By CRT, s′ mod p1 is independent from s′ mod p2 and

therefore s and ŝ are perfectly distributed as required. All together, we have the stuffs simulated by B
are identical to that of Game1−(k−1)−3 if β = 0 else Game1−k−1.

Lemma D.4. Game1−k−1 and Game1−k−2 are indistinguishable under the CMH security of primitive
pair encoding scheme, P. That is, for every adversary A , there exists a PPT algorithm B such that
|Adv1−k−1A ,PS (κ)− Adv1−k−2A ,PS (κ)| ≤ AdvP−CMH

B (κ) for 1 ≤ k ≤ ν1.

Proof. Suppose A can distinguish Game1−k−1 and Game1−k−2 with non-negligible probability, then we
will construct a PPT simulator B for breaking the CMH security of P with the same probability.

Setup: The challenger CH of P gives (g, g2, g3) ∈ Gp1 × Gp2 × Gp3 to B. B chooses α, θ1, θ2
U←− ZN ,

h
U←− ZnN and sets hM := (θ1, θ2,h). Let H : {0, 1}∗ −→ ZN be a hash function. Then, it provides

PP := [J , g, ghM , gαT := e(g, g)α, Z3 := g3, H] to A and keeps MSK := (α) and g2 to itself.

Query Phase: It consists of the following queries in adaptive manner:

– KeyGen(x): Let xj be the jth query key index. B answers the key SKxj as follows:
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• If j > k, then B runs the KeyGen algorithm and gives the normal key to A .

• If j < k, then it is of sf-type 3 key. Using PP, MSK and g2, B can generate the required key.

• If j = k then it is either of sf-type 1 or sf-type 2 key. It runs (kxk ,m2) ←− Enc1(xk, N) with

|kxk | = m1. It picks rk
U←− Zm2

N and R3
U←− Gm1

p3 . B makes a query with xk to CH and let

T := g
kxk (β,r̂k,ĥ)

2 be the reply, where β = 0 or random element from ZN . Then B returns the
following key to A

SKxk := gkxk (α,rk,h).T.R3

Therefore, SKxj is perfectly distributed sf-type 1 key if β = 0 else sf-type 2.

– Sign(m,x, y): If x 6∼ y, it returns ⊥. It is normal signature. B can answer the queries of A as theMSK
is known to him.

Forgery: A outputs a signature δy∗ for (m∗, y∗). Then, B prepares a vText for (m∗, y∗) as follows: It
computes ~∗ := H(m∗, y∗). It runs (cy∗ , ω2) ←− Enc2(y∗, N) with |cy∗ | = ω1 and sets cMy∗ := (c∗0, cy∗).

It picks s := (s, s1, . . . , sω2)
U←− Zω2+1

N . Then, B makes a query with y∗ to CH and let D := g
cy∗ (ŝ,ĥ)
2

be the reply. Finally, it computes a vText as V :=
(
V INT := e(g, g)αs,Vy∗ := g

cM
y∗ (s,hM)

.g
cM
y∗ (ŝ,ĥM)

2

)
, where

g
cM
y∗ (ŝ,ĥM)

2 := (g
ŝ(θ1~∗+θ2)
2 , D). B returns 1 if e(δy∗ ,Vy∗) = V INT else 0.

Analysis:

– Correctness: B follows the restriction of unforgeability game (while interacting with CH) as long as A
does so. In fact, by natural restriction, for all key queries x made by A , we have x 6∼p2 y∗, in
particular for kth query, xk 6∼p2 y

∗. Therefore, B does not violet the restriction of the CMH security
game with CH.

– Perfectness: By the assumption: cy∗,1(ŝ, ĥ) = ŝ, the first component of D is gŝ2. So, the first component of

g
cM
y∗ (ŝ,ĥM)

2 can be computed as g
ŝ(θ1~∗+θ2)
2 := (gŝ2)θ1~

∗+θ2 . B implicitly sets (θ̂1, θ̂2) :≡ (θ1, θ2) mod p2.

By CRT, (θ̂1, θ̂2) is independent from (θ1, θ2) mod p1 and therefore V is perfectly distributed sf-type
1 vText. All together, we have the stuffs simulated by B are identical to that of Game1−k−1 if β = 0
else Game1−k−2.

Lemma D.5. Game1−k−2 and Game1−k−3 are indistinguishable under the DSG2 assumption. That is, for
every adversary A , there exists a PPT algorithm B such that |Adv1−k−2A ,PS (κ)−Adv1−k−3A ,PS (κ)| ≤ AdvDSG2

B (κ)
for 1 ≤ k ≤ ν1.

Proof. We establish a PPT simulator B who receives an instance of DSG2, (J , g, Z1Z2,W2W3, Z3, Tβ)

with β
U←− {0, 1} and depending on the distribution of β, it either simulates Game1−k−2 or Game1−k−3.

Description of the simulation is same as that of the Lemma D.3 except the answering kth key query. Below
we only describes the simulation of kth query:

The kth key is either sf-type 2 or sf-type 3. It runs (kxk ,m2) ←− Enc1(xk, N) with |kxk | = m1. It picks

r′k, r̂
′
k

U←− Zm2
N and R3

U←− Gm1
p3 . B generates SKxk using Tβ of the instance of DSG2.
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SKxk := gkxk (α,r
′
k,h).(W2W3)

kxk (α
′
k,0,0).T

kxj (0,r̂
′
k,h)

β .R3

If W2W3 = gw2
2 gw3

3 and Tβ = gt1gt22 g
t3
3 (for β = 1), then B implicitly sets α̂k := w2α

′
k, rk := r′k + t1r̂

′
k

and r̂k := t2r̂
′
k. Since r′k and r̂′k are chosen uniformly and independently from Zm2

N , then so are rk and
r̂k. Therefore, SKxk is perfectly distributed sf-type 2 (resp. sf-type 3) key if β = 1 (resp. β = 0).

Lemma D.6. Game2−(k−1)−2 and Game2−k−1 are indistinguishable under the DSG2 assumption and col-
lision resistant property of H. That is, for every adversary A , there exists a PPT algorithm B such that

|Adv
2−(k−1)−2
A ,PS (κ)− Adv2−k−1A ,PS (κ)| ≤ AdvDSG2

B (κ) + AdvCRH
B (κ) for 1 ≤ k ≤ ν2.

Proof. We establish a PPT simulator B who receives an instance of DSG2, (J , g, Z1Z2,W2W3, Z3, Tβ) with

β
U←− {0, 1} and depending on the distribution of β, it either simulates Game2−(k−1)−2 or Game2−k−1.

Setup: Same as Lemma D.3.

Query Phase: It consists of the following queries in adaptive manner:

– KeyGen(x): Here all the keys are of sf-type 3 and simulation of the keys are same as the sf-type 3 keys
of Lemma D.3.

– Sign(m,x, y): If x 6∼ y, it returns ⊥. Let (mj , xj , yj) be the jth signature query made A . B answers
the signature δyj as follows:

• If j > k, it is normal signature. B can answer the queries of A as the MSK is known to him.

• If j < k, it is sf-type 2 signature. It first computes the normal signature δyj , picks ι′j
U←− ZN

and then returns
δ̃yj := δyj .(W2W3)

(0, ι′j , 0,...,0).

If W2W3 = gw2
2 gw3

3 , then B implicitly sets ιj := w2ι
′
j . So, δ̃yj is properly distributed sf-type 2

signature.

• If j = k, it is either normal signature or sf-type 1 signature. It runs (kxk ,m2)←− Enc1(xk, N)

and Pair(xk, yk) −→ E ∈ Zm1×ω1
N . It picks vsp

U←− V⊥ and R3
U←− Gω1+1

p3 . It computes
~k := H(mk, yk) and then returns the signature as given below

δyk := g(0,kxkE).gvsp .T
(−1, 0, ...,0)
β .T

(0, θ1~k+θ2, ...,0)
β .R3

Let gτ := Tβ
∣∣
Gp1

and for β = 1, gt22 := Tβ
∣∣
Gp2

. Then, the Gp1 component of δyk can be

written as gu+vsp , where u := (−τ,ψ + kxkE) and ψ := (τ(θ1~k + θ2), 0, . . . , 0). If β = 1,
the Gp2 component of δyk is expressed as gû2 where B implicitly sets b :≡ −t2 mod p2 and
ι :≡ t2(θ1~k + θ2) mod p2. Since θ1~k + θ2 mod p1 are independent from θ1~k + θ2 mod p2
by CRT, therefore δyk is perfectly distributed signature unless some correlation with vText is
found later.

Forgery: A outputs a signature δy∗ for (m∗, y∗). Then, B prepares a vText for (m∗, y∗) as follows: It
computes ~∗ := H(m∗, y∗). It runs (cy∗ , ω2) ←− Enc2(y∗, N) with |cy∗ | = ω1 and sets cMy∗ := (c∗0, cy∗). It

picks s′ := (s′, s′1, . . . , s
′
ω2

)
U←− Zω2+1

N . Finally, it computes a vText as V := (V INT := e(gα, Z1Z2)
s′ ,Vy∗ :=

(Z1Z2)
cM
y∗ (s

′,hM)
). B returns 1 if e(δy∗ ,Vy∗) = V INT else 0.
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Analysis: Now, we mainly concentrate on the joint distribution of kth signature and vText as there may
be a correlation between them. More precisely, we observe the distributional relation between c∗0(ŝ, θ̂) :=
ŝ(θ̂1~∗+ θ̂2) :≡ s̃(θ1~∗+ θ2) mod p2 and cy∗,1(ŝ, ĥ) := ŝ :≡ s̃ mod p2 with s̃ :≡ z1s′ involved in cMy∗(ŝ, ĥM)
of vText. Unfortunately, a similar kind of relation is found in û, viz., between b :≡ −t2 mod p2 and
ι :≡ t2(θ1~j + θ2) mod p2. But that correlation does not hamper our life: since H has collision resistant
property and (mj , yj) 6= (m∗, y∗), we have ~j 6= ~∗ and hence, θ1~j + θ2 mod p2 and θ1~∗+ θ2 mod p2 are
independently10 and uniformly distributed over Zp2 . Therefore, (s̃, s̃(θ1~∗ + θ2)) mod p2 is uncorrelated
from (b, ι). All together, we have the stuffs simulated by B are identical to that of Game2−(k−1)−2 if β = 0
else Game2−k−1.

Lemma D.7. Game2−k−1 and Game2−k−2 are indistinguishable under the DSG2 assumption. That is, for
every adversary A , there exists a PPT algorithm B such that |Adv2−k−1A ,PS (κ)−Adv2−k−2A ,PS (κ)| ≤ AdvDSG2

B (κ)
for 1 ≤ k ≤ ν2.

Proof. We establish a PPT simulator B who receives an instance of DSG2, (J , g, Z1Z2,W2W3, Z3, Tβ)

with β
U←− {0, 1} and depending on the distribution of β, it either simulates Game2−k−1 or Game2−k−2.

The simulation is almost similar to Lemma D.6 except the answering kth signature query. Note that in
this case, we do not require the collision resistant property of H. We only illustrate here the kth signature
:

The kth signature is of either sf-type 1 or sf-type 2. It runs (kxk ,m2)←− Enc1(xk, N) and Pair(xk, yk) −→
E ∈ Zm1×ω1

N . It picks ι′k
U←− ZN , vsp

U←− V⊥ and R3
U←− Gω1+1

p3 . It computes ~k := H(mk, yk) and then
returns the signature as given below

δyk := g(0,kxkE).gvsp .T
(−1, 0, ...,0)
β .T

(0, θ1~k+θ2, ...,0)
β .(W2W3)

(0, ι′k, 0,...,0).R3

Let W2W3 = gw2
2 gw3

3 . Let gτ := Tβ
∣∣
Gp1

and for β = 1, gt22 := Tβ
∣∣
Gp2

. Then, the Gp1 component of

δyk can be written as gu+vsp , where u := (−τ,ψ + kxkE) and ψ := (τ(θ1~k + θ2), 0, . . . , 0). If β = 1

(resp. β = 0), the Gp2 component of δyk is expressed as gû2 , with û := (b, ι, 0, . . . , 0) ∈ Zω1+1
N where

B implicitly sets b :≡ −t2 mod p2 (resp. b :≡ 0 mod p2) and ι :≡ t2(θ1~k + θ2) + w2ι
′
k mod p2 (resp.

ι :≡ w2ι
′
k mod p2). Therefore, δyk is perfectly distributed sf-type 1 (resp. sf-type 2) signature if β = 1

(resp. β = 0).

Lemma D.8. Game2−ν2−2 and GameFinal are indistinguishable under the DSG3 assumption. That is, for
every adversary A , there exists a PPT algorithm B such that |Adv2−ν2−2A ,PS (κ)−AdvFinalA ,PS(κ)| ≤ AdvDSG3

B (κ).

Proof. We establish a PPT simulator B who receives an instance of DSG1, (J , g, gαY2, gsW2, g2, Z3, Tβ)

with β
U←− {0, 1} and depending on the distribution of β, it either simulates Game2−ν2−2 or GameFinal.

Setup: B chooses θ1, θ2
U←− ZN , h

U←− ZnN and sets hM := (θ1, θ2,h). Let H : {0, 1}∗ −→ ZN be
a hash function. Then, it provides PP := [J , g, ghM , gαT := e(g, gαY2), Z3, H] to A . It implicitly sets

ĥM :≡ hM mod p2. By Chinese Remainder Theorem (CRT), ĥM is independent from hM mod p1 and so
ĥM is perfectly distributed.

Query Phase: It consists of the following queries in adaptive manner:

10To show independent, we require that ~j − ~∗ 6≡ 0 mod p2. From ~j − ~∗ 6≡ 0 mod N , we have ~j − ~∗ 6≡ 0 mod p
for at least one p such that p ∈ {p1, p2, p3}. One can show that ~j − ~∗ 6≡ 0 mod p for all p with p ∈ {p1, p2, p3} assuming
factorization problem is hard. However, if ~j − ~∗ ≡ 0 mod p2 we can find a factor F of N with p2|F and which leads to
break the DSG2 assumption, a contradiction.
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– KeyGen(x): It is sf-type 3 key. It runs (kx,m2)←− Enc1(x). Then it picks r
U←− Zm2

N , α̂′
U←− ZN and

R3
U←− Gm1

p3 . Finally it returns

SKx := (gαY2)
kx(1,0,0).gkx(0,r,h).g

kx(α̂′,0,0)
2 .R3

If Y2 = gy22 , B implicitly sets α̂ := y2 + α̂′ mod p2 and so, SKx is a perfectly distributed sf-type 3
key.

– Sign(m,x, y): If x 6∼ y, it returns ⊥. It is sf-type 2 signature. B first creates sf-type 3 key SKx and
then using SKx, it can compute the sf-type 2 signature as described in Remark 3.11.

Forgery: A outputs a signature δy∗ for (m∗, y∗). Then, B prepares a vText for (m∗, y∗) as follows: It
computes ~∗ := H(m∗, y∗). It runs (cy∗ , ω2) ←− Enc2(y∗, N) with |cy∗ | = ω1 and sets cMy∗ := (c∗0, cy∗).

It picks (s′1, . . . , s
′
ω2

)
U←− Zω2

N and sets s′ := (1, s′1, . . . , s
′
ω2

) ∈ Zω2+1
N . Finally, it computes a vText as

V := (V INT := Tβ,Vy∗ := (gsW2)
cM
y∗ (s

′,hM)
). B returns 1 if e(δy∗ ,Vy∗) = V INT else 0.

B implicitly sets s :≡ ss′ mod p1 and ŝ :≡ ss′ mod p2. By CRT, s′ mod p1 is independent from s′

mod p2 and so, s and ŝ are perfectly distributed as required. Therefore, V is perfectly distributed sf-type
1 vText if β = 0 else sf-type 2 vText.

Analysis: perfectness: All the components simulated above are perfectly distributed as required. There-
fore, all the stuffs simulated by B are identical to that of Game2−ν2−2 if β = 0 else GameFinal.

E Lemmas used in Theorem 5.2 for Predicate Encryption

Lemma E.1. GameReal and GameRes are indistinguishable under the DSG2 assumption. That is, for
every adversary A , there exists a PPT algorithm B such that |AdvReal

A ,PE(κ)− AdvRes
A ,PE(κ)| ≤ AdvDSG2

B (κ).

Proof. It can be followed from the Lemma 27 of [2] or Lemma D.1 in this paper.

Lemma E.2. GameRes and Game0 are indistinguishable under the DSG1 assumption. That is, for every
adversary A , there exists a PPT algorithm B such that |AdvRes

A ,PE(κ)− Adv0A ,PE(κ)| ≤ AdvDSG1
B (κ).

Proof. The proof is similar to the Lemma 28 of [2] and Lemma D.2 in this paper.

Lemma E.3. Game1−(k−1)−3 and Game1−k−1 are indistinguishable under the DSG2 assumption. That

is, for every adversary A , there exists a PPT algorithm B such that |Adv
1−(k−1)−3
A ,PE (κ) − Adv1−k−1A ,PE (κ)| ≤

AdvDSG2
B (κ) for 1 ≤ k ≤ q1.

Proof. For proof, refer to the proof of the Lemma 29 of [2] and Lemma D.3 in this paper.

Lemma E.4. Game1−k−1 and Game1−k−2 are indistinguishable under CMH security of the primitive
pair encoding scheme, P. That is, for every adversary A , there exists a PPT algorithm B such that
|Adv1−k−1A ,PE (κ)− Adv1−k−2A ,PE (κ)| ≤ AdvP−CMH

B (κ) for 1 ≤ k ≤ q1.

Proof. Following the proof of Lemma 30 of [2] and Lemma D.4 in this paper, it can be proven. Note that
condition (1) in Conditions 3.2 will be used here.
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Lemma E.5. Game1−k−2 and Game1−k−3 are indistinguishable under the DSG2 assumption. That is, for
every adversary A , there exists a PPT algorithm B such that |Adv1−k−2A ,PE (κ)−Adv1−k−3A ,PE (κ)| ≤ AdvDSG2

B (κ)
for 1 ≤ k ≤ q1.

Proof. The proof is similar to that of Lemma 31 of [2] and Lemma D.5 in this paper.

Lemma E.6. Game1−q1−3 and Game1−(q1+1)−1 are indistinguishable under the DSG2 assumption. That

is, for every adversary A , there exists a PPT algorithm B such that |Adv1−q1−3A ,PE (κ)−Adv
1−(q1+1)−1
A ,PE (κ)| ≤

AdvDSG2
B (κ).

Proof. For proof, we refer to Lemma 32 of [2].

Lemma E.7. Game1−(q1+1)−1 and Game1−(q1+1)−2 are indistinguishable under SMH security of of the
primitive pair encoding scheme, P. That is, for every adversary A , there exists a PPT algorithm B such

that |Adv
1−(q1+1)−1
A ,PE (κ)− Adv

1−(q1+1)−2
A ,PE (κ)| ≤ AdvP−SMH

B (κ).

Proof. The proof is similar to Lemma 33 of [2]. Note that condition (1) in Conditions 3.2 is applied
here.

Lemma E.8. Game1−(q1+1)−2 and Game1−(q1+1)−3 are indistinguishable under the DSG2 assump-

tion. That is, for every adversary A , there exists a PPT algorithm B such that |Adv
1−(q1+1)−2
A ,PE (κ) −

Adv
1−(q1+1)−3
A ,PE (κ)| ≤ AdvDSG2

B (κ).

Proof. The proof can be done in similar manner as in Lemma 34 of [2].

Lemma E.9. Game2−(k−1)−2 and Game2−k−1 are indistinguishable under the DSG2 assumption and col-
lision resistant property of H. That is, for every adversary A , there exists a PPT algorithm B such that

|Adv
2−(k−1)−2
A ,PE (κ)− Adv2−k−1A ,PE (κ)| ≤ AdvDSG2

B (κ) + AdvCRH
B (κ) for 1 ≤ k ≤ ν.

Proof. We establish a PPT simulator B who receives an instance of DSG2, (J , g, Z1Z2,W2W3, Z3, Tβ) with

β
U←− {0, 1} and depending on the distribution of β, it either simulates Game2−(k−1)−2 or Game2−k−1.

Setup: B chooses α, θ1, θ2
U←− ZN , h

U←− ZnN and sets hM := (θ1, θ2,h). Let H : {0, 1}∗ −→ ZN be a
hash function. Then, it provides PP := [J , g, ghM , gαT := e(g, g)α, Z3, H] to A and keeps MSK := (α) to

itself. It implicitly sets ĥM :≡ hM mod p2. By CRT, ĥM is independent from hM mod p1 and so ĥM is
perfectly distributed.

Query Phase-1: It consists of the following queries in adaptive manner:

– KeyGen(x): Here all the keys are of sf-type 3 and simulation of the keys are same as the sf-type 3 keys
of Lemma E.3.

– Decrypt(CT, x): Let (CTj , xj) be the jth decryption query made A . B first constructs the alt-key SKM
xj

as shown below and then answers to A by running AltDecrypt algorithm :

• If j > k, it is normal alt-key. B can compute the key as the MSK is known to him.
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• If j < k, it is sf-type 2 alt-key. It first computes the normal alt-key SKM
xj , picks ι′j

U←− ZN and
then creates the sf-type 2 alt-key as follows:

S̃KM
xj := SKM

xj .(W2W3)
(0, ι′j , 0,...,0).

If W2W3 = gw2
2 gw3

3 , then B implicitly sets ιj := w2ι
′
j . So, S̃KM

xj is properly distributed sf-type
2 alt-key.

• If j = k, it is either normal or sf-type 1 alt-key. It runs (kxk ,m2) ←− Enc1(xk, N) and

Pair(xk, yk) −→ E ∈ Zm1×ω1
N . It picks R3

U←− Gω1+1
p3 . It computes the alt-key as given below :

SKM
xk

:= g(0,kxkE).T
(−1, 0, ...,0)
β .T

(0, θ1~k+θ2, ...,0)
β .R3; where ~k := H(C

(k)
cpa)

Let gτ := Tβ
∣∣
Gp1

and for β = 1, gt22 := Tβ
∣∣
Gp1

. Then, it sets gu := SKM
xk

∣∣
Gp1

, where u :=

(−τ,ψ + kxkE) and ψ := (τ(θ1~k + θ2), 0, . . . , 0). If β = 1, it sets gû2 := SKM
xk

∣∣
Gp2

with

û := (b, ι, 0, . . . , 0) ∈ Zω1+1
N , where B implicitly sets b :≡ −t2 mod p2 and ι :≡ t2(θ1~k + θ2)

mod p2.

Challenge Phase: A provides two equal length messages m0,m1 and the challenge index y∗ to B. Then,

B picks b
U←− {0, 1}. It runs (cy∗ , ω2)←− Enc2(y∗, N) with |cy∗ | = ω1. It picks s′ := (s′, s′1, . . . , s

′
ω2

)
U←−

Zω2+1
N . It first computes C∗cpa := (y∗,Cy∗ := (Z1Z2)

cy∗ (s
′,h), CINT := m∗.e(gα, Z1Z2)

s′) and then computes

~∗ := H(C∗cpa). Finally, it returns the challenge ciphertext CT∗ := (y∗,CM
y∗ := (Z1Z2)

cM
y∗ (s

′,hM)
, CINT :=

mb.e(g
α, Z1Z2)

s′). Recall that CT∗ = (C∗cpa, C
∗
0 ) with C∗0 := (Z1Z2)

s′(θ1~∗+θ2). If Z1Z2 = gz1gz22 , it
implicitly sets s := z1s

′ mod p1 and ŝ := z2s
′ mod p2. Since, s′ mod p1 is independent from s′ mod p2,

therefore CT∗ is perfectly distributed sf-type 1 challenge ciphertext

Query Phase-2: Similar to phase-1 except, suppose the kth decryption query is made in Phase-2, then
B solves the given instance of DSG2 assumption (described later) and aborts if CT∗ 6= CTk and ~∗ = ~(k).
Guess: A sends a guess b′ to B. If b′ = b then B returns 1 else 0.

Analysis: By the natural restriction of the security game, A is allowed to decryption query CTk if
CT∗ 6= CTk. On the based of the analysis part in the proof of the Theorem D.6, ~∗ = ~(k) could hamper
the joint distribution, but we show that if this happens, then B can solve the DSG2 assumption: We start
with

CT∗ 6= CTk and ~∗ = ~(k) (6)

Since, H is a collision resistant hash function, from the equation (6), we have

C∗0 6= C
(k)
0 and C∗cpa = C

(k)
cpa (7)

From the definition of AltDecrypt and C∗1 = C
(k)
1 , we have the following equations:

C
(k)
0

∣∣
Gp3

= Θ and e(g, C
(k)
0 ) = e(gθ1~

(k)+θ2 , C
(k)
1 ) (8)

From the challenge ciphertext, we have

C∗0
∣∣
Gp3

= Θ and e(g, C∗0 ) = e(gθ1~
∗+θ2 , C∗1 ) (9)
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Using the 2nd part of the equations (6), (7), (8) and (9), we have e(g, C∗0 ) = e(g, C
(k)
0 ) which in turn

implies that

C∗0
∣∣
Gp1

= C
(k)
0

∣∣
Gp1

(10)

Since C
(k)
0

∣∣
Gp3

= Θ, C∗0
∣∣
Gp3

= Θ, using equation (10), we must have Y2 := (C∗0 )−1.C
(k)
0 ∈ Gp2 . Since

C∗0 6= C
(k)
0 , we have Y2 6= Θ. Therefore, B can break the given instance of DSG2 assumption using Y2.

Lemma E.10. Game2−k−1 and Game2−k−2 are indistinguishable under the DSG2 assumption. That is, for
every adversary A , there exists a PPT algorithm B such that |Adv2−k−1A ,PE (κ)−Adv2−k−2A ,PE (κ)| ≤ AdvDSG2

B (κ)
for 1 ≤ k ≤ ν.

Proof. We establish a PPT simulator B who receives an instance of DSG2, (J , g, Z1Z2,W2W3, Z3, Tβ)

with β
U←− {0, 1} and depending on the distribution of β, it either simulates Game2−k−1 or Game2−k−2.

The simulation is almost similar to Lemma E.9 except the answering kth decryption query. Note that in
this case, we do not require the collision resistant property of H. We illustrate here only the kth alt-key :

The kth alt-key is of either sf-type 1 or sf-type 2. It runs (kxk ,m2) ←− Enc1(xk, N) and Pair(xk, yk) −→
E ∈ Zm1×ω1

N . It picks ι′k
U←− ZN and R3

U←− Gω1+1
p3 . It computes the alt-key as given below

SKM
xk

:= g(0,kxkE).T
(−1, 0, ...,0)
β .T

(0, θ1~k+θ2, ...,0)
β .(W2W3)

(0, ι′k, 0,...,0).R3; where ~k := H(C
(k)
cpa)

Let W2W3 = gw2
2 gw3

3 . Let gτ := Tβ
∣∣
Gp1

and for β = 1, gt22 := Tβ
∣∣
Gp1

. Then, it sets gu = SKM
xk

∣∣
Gp1

,

where u := (−τ,ψ+kxkE) and ψ := (τ(θ1~k+θ2), 0, . . . , 0). If β = 1 (resp. β = 0), it sets gû2 := SKM
xk

∣∣
Gp2

with û := (b, ι, 0, . . . , 0) ∈ Zω1+1
N , where B implicitly sets b :≡ −t2 mod p2 (resp. b :≡ 0 mod p2) and

ι :≡ t2(θ1~k + θ2) + w2ι
′
k mod p2 (resp. ι :≡ w2ι

′
k mod p2). Therefore, SKM

xk
is perfectly distributed

sf-type 1 (resp. sf-type 2) alt-key if β = 1 (resp. β = 0).

Lemma E.11. Game2−ν and GameFinal are indistinguishable under the DSG3 assumption. That is, for
every adversary A , there exists a PPT algorithm B such that |Adv2−νA ,PE(κ)− AdvFinalA ,PE(κ)| ≤ AdvDSG3

B (κ).

Proof. For proof, we refer to Lemma 35 of [2] and Lemma D.8 in this paper. Note that condition (3) in
Conditions 3.2 is applied here.

F Security of the Proposed Predicate Signcryption 6

Although Signcrypt and Unsigncrypt run almost in black-box way, neither the confidentiality nor unforge-
ability of the proposed predicate signcryption are proven as black-box proof of PE in sec.5.1 and PS in
sec. 3.6 respectively. The reason behind is that the adversary is given access to signcryption oracle in the
adaptive-predicates IND-CCA (resp. UF-CMA) model of predicate signcryption scheme which could not
be answered using black-box proof of PE in sec.5.1 (resp. PS in sec. 3.6).
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F.1 Semi-Functional Stuffs for Confidentiality and Unforgeability

To obtain the adaptive-predicates confidentiality and unforgeability, we use the dual system proof technique
[33], but its signcryption version [31]. We consider two kinds of signcryptions, the replied signcryptions
(queried through the signcryption oracle) and challenge signcryption. The former has three forms, N
(normal), sf-type I and sf-type II, whereas the later is of five forms, N, sf-type 1, sf-type 2, sf-type 3 and
sf-type 4. For simplicity, we ignore the one-time signature and write signcryption := (signature (δys),
ciphertext (CT)). We also consider a new stuff, called verification text key (in short vTextKey) which is
composed of alt-key and vText, i.e., better to write vTextKey := (alt-key, vText). This vTextKey will
be used to unsigncrypt the signcryption using a new algorithm, AltUnsigncrypt. Similar to the forms of
signcryption, we consider two kinds of vTextKeys, one is used to answer the unsigncryption queries and
other to unsigncrypt the forgery signcryption. The former has three forms, N, sf-type I and sf-type II,
whereas the later is of five forms, N, sf-type 1, sf-type 2, sf-type 3 and sf-type 4. Since, the signcryption
(resp. unsigncryption) is obtained by running the two routines, Sign (resp. Ver )and Encrypt (resp. Decrypt)
almost in black-box manner, we described the different forms of signcryptions (resp. vTextKeys) through
already defined different forms of signatures (resp. alt-keys) and ciphertexts (resp. vTexts). For this
purpose, we define a (type converter) function fconvrt : {N, I, II, 1, 2, 3, 4} → {(i, j) | i, j ∈ {N, 1, 2}}, which
takes the type of a signcryption (resp. vTextKey) as an input and outputs a pair (i, j) of form of signature
(resp. alt-key) and form of ciphertext (resp. vText). The function fconvrt is completely defined by the
image as fconvrt(N) := (N,N), fconvrt(I) := (1,N), fconvrt(II) := (2,N), fconvrt(1) := (N, 1), fconvrt(2) := (1, 1),
fconvrt(3) := (2, 1) and fconvrt(4) := (2, 2). From the description of fconvrt, we have the form of ciphertexts
(resp. vTexts) in the signcryptions (resp. vTextKeys) of sf-type I and sf-type II are always normal.

– SFSetup(1κ, j): It runs (PP,MSK)←− Setup(1κ, j) and in addition it returns semi-functional param-

eters, g2
U←− Gp2 , θ̂1, θ̂2

U←− ZN and ĥ
U←− ZnN . We set ĥM := (θ̂1, θ̂2, ĥ).

– SFKeyGen(PP,MSK, x, g2, type, ĥ): It runs (kx,m2)←− Enc1(x,N) with |kx| = m1. It chooses α̂
U←−

ZN , r, r̂
U←− Zm2

N and R3
U←− Gm1

p3 . It outputs the semi-functional key SKx := (x,Kx), where Kx

is given by

Kx :=


gkx(α,r,h).g

kx(0,r̂,ĥ)
2 .R3 if type= 1

gkx(α,r,h).g
kx(α̂,r̂,ĥ)
2 .R3 if type= 2

gkx(α,r,h).g
kx(α̂,0,0)
2 .R3 if type= 3

– SFEncrypt(PP,m, y, g2, type, ĥM): It runs (cy, ω2) ←− Enc2(y,N) and picks s := (s, s1, . . . , sω2), ŝ :=

(ŝ, ŝ1, . . . , ŝω2)
U←− Zω2+1

N . It computes cMy (s,hM) := (c0(s,θ), cy(s,h)) ∈ Gω1+1 and cMy (ŝ, ĥM) :=

(c0(ŝ, θ̂), cy(ŝ, ĥ)) ∈ Gω1+1, where |cy| = ω1, θ := (θ1, θ2, ~), θ̂ := (θ̂1, θ̂2, ~), ~ := H(Ccpa), Ccpa :=

(y,Cy := gcy(s,h), CINT := m.gαsT ), c0(s,θ) := s(θ1~ + θ2) and c0(ŝ, θ̂) := ŝ(θ̂1~ + θ̂2). It returns the

semi-function ciphertext as CT := (y,CM
y := gc

M
y (s,hM), CINT).

CT :=

(y,CM
y := gc

M
y (s,hM).g

cMy (ŝ,ĥM)

2 , CINT := m.gαsT if type= 1

(y,CM
y := gc

M
y (s,hM).g

cMy (ŝ,ĥM)

2 , CINT := m.gt; gt
U←− GT if type= 2

– SFSign(PP,m,SKx, y, g2, type): If x 6∼ y, returns ⊥. It runs δy ←− Sign(PP,m,SKx, y). Note that

δy = gu+vsp .R3 with R3 ∈ Gω1+1
p3 . It picks b, ι

U←− ZN and returns the semi-functional signature
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δy.g
û
2 , where û ∈ Zω1+1

N is given by

û :=

{
(b, ι, 0, . . . , 0) if type= 1

(0, ι, 0, . . . , 0) if type= 2

– SFSigncrypt(PP,m,SKx, ys, ye, g2, type, ĥM): If x 6∼ y, returns ⊥. It first runs (com, decom) ←−
Commit(m) and (vk, signk) ←− Gen(1κ). Let (i, j) := fconvrt(type). It runs δys ←−
SFSign(PP, vk,SKx, ys, g2, i) and CT ←− SFEncrypt(PP, decom, y, g2, j, ĥM), where ~e :=
H(0, com, δys , vk, Ccpa) and C0 := gs(θ1he+θ2). It computes the one-time signature δo :=
OTS.Sign(C0||ys, signk). It returns the semi-functional signcryption U := (com, δ :=
(δys , δo, vk),CT := (Ccpa, C0))

– SFAltKeyGen(PP,MSK,CT, x, g2, type): It phrases CT as (Ccpa, C0), computes ~ := H(Ccpa) and

picks τ
U←− ZN , R0

U←− Gp3 . It first generates the normal key, SKx := [x, Kx := gkx(α,r,h).R3].
Then, it creates the alt-key SKM

x := (K0,Ψ.KE
x ) ∈ Gω1+1, where K0 := g−τR0, Ψ := gψ with

ψ := (τ(θ1~ + θ2), 0, . . . , 0) ∈ Zω1
N and E ← Pair(x, y). It picks b, ι

U←− ZN and returns the semi-

functional alt-key SKM
x .g

û
2 , where û ∈ Zω1+1

N is given by

û :=

{
(b, ι, 0, . . . , 0) if type= 1

(0, ι, 0, . . . , 0) if type= 2

– SFVText(PP,m, y, g2, type, ĥM): It runs (cy, ω2) ←− Enc2(y,N) and picks s := (s, s1, . . . , sω2), ŝ :=

(ŝ, ŝ1, . . . , ŝω2)
U←− Zω2+1

N . It computes cMy (s,hM) := (c0(s,θ), cy(s,h)) ∈ Gω1+1 and cMy (ŝ, ĥM) :=

(c0(ŝ, θ̂), cy(ŝ, ĥ)) ∈ Gω1+1, where |cy| = ω1, θ := (θ1, θ2, ~), θ̂ := (θ̂1, θ̂2, ~), ~ := H(m, y),

c0(s,θ) := s(θ1~ + θ2) and c0(ŝ, θ̂) := ŝ(θ̂1~ + θ̂2). It returns the semi-function verification text
as

V :=

(V INT := gαsT ,Vy := gc
M
y (s,hM).g

cMy (ŝ,ĥM)

2 if type= 1

(V INT
U←− GT ,Vy := gc

M
y (s,hM).g

cMy (ŝ,ĥM)

2 if type= 2

– SFVTextKey(PP,MSK,U, x, ys, g2, type, ĥM): It runs SKM
x ←− SFAltKeyGen(PP,MSK,CT, x, g2, i)

and V ←− SFVText(PP, vk, ys, g2, j, ĥM), where (i, j) = fconvrt(type). It returns the semi-functional
vTextKey, VK := (SKM

x ,V).

– AltDecrypt(PP,CT,SKM
x ): This is same as Decrypt algorithm, but here we do not need to compute the

alt-key as it is supplied. For sake of completeness: It picks R
U←− Gp3 . If x 6∼ y or e(gR,C0) 6=

e(gθ1~+θ2 , C1), it returns ⊥ else CINT/e(SKM
x ,C

M
y ).

– AltVer(δys ,V): This is same as Ver algorithm, but we do not require to compute the vText as it is
supplied. Let V = (V INT,Vys). It e(δys ,Vys) = V INT returns 1, else 0.

– AltUnsigncrypt(PP,U,VK, ys): Let VK = (SKM
x ,V). This is same as Unsigncrypt algorithm, but here we

do not need to compute the alt-key SKM
x and vText V respectively involved in the routines, Decrypt

and Ver as they are supplied. In other word, it is same as Unsigncrypt algorithm, except the Decrypt
and Ver are replaced by AltDecrypt and AltVer respectively.

We note that the stuffs of a particular form defined above may not be used in both, the proof confidentiality
and unforgeability. For example, the signcryptions (resp. vTextKeys) of the forms, sf-type 1, sf-type 2,
sf-type 3 and sf-type 4 are not used in the proof unforgeability (resp. confidentiality).
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F.2 The Proof of Confidentiality

Theorem F.1. Let P be a pair encoding scheme for a predicate ∼ which satisfies Conditions 3.2 and ∼
is domain-transferable. Suppose P has both the security, SMH and CMH, the assumptions, DSG1, DSG2
and DSG3 hold in J , the one-time signature scheme, OTS has strong unforgeability, the commitment
scheme, C has the hiding property and H is a collision resistant hash function, then the proposed predicate
signcryption scheme, PSC in sec.6 for the predicate ∼ is adaptive-predicates IND-CCA secure.

Proof. Suppose there are at most q, ν1 and ν2 number of key, unsigncryption and signcryption queries
respectively made by an adversary A , then the security proof consists of hybrid argument over a sequence
of 3q1 + 2(ν1 + ν2) + 10 games, where among the q key queries, q1 and q2 respectively be the number of
phase 1 and phase 2 key queries.

Let U∗ := (com∗, δ∗ := (δy∗s , δ
∗
o , vk∗),CT∗ := (C∗cpa, C

∗
0 )) denote the challenge signcryption for the data

indices (y∗s , y
∗
e). Let (U, x, ys) with U := (com, δ := (δys , δo, vk),CT := (Ccpa, C0)) be any unsigncryption

query. We define an event E as

E := [(vk∗ = vk) ∧ (δ∗o ||C∗0 ||y∗s 6= δo||C0||ys)]

We will apply the hybrid arguments over the following games, where all the unsigncryptions queries are
answered by the suitable forms of vTextKeys using the algorithm AltUnsigncrypt :

– GameReal := The original APs-IND-CCA security game.

– Game
R̂eal

:= Same as GameReal except the challenger always returns ⊥ on unsigncryption query if E
occurs.

– GameRes := This is same as Game
R̂eal

except x 6∼N y∗ is replaced by x 6∼p2 y
∗ for each key query x

made by A .

– Game0 (= Game1−0−3) is just like GameRes except that the challenge signcryption is of sf-type 1.

– In Game1−k−1 (for 1 ≤ k ≤ q1) is same as Game1−(k−1)−3 except the kth queried key is sf-type 1.

– Game1−k−2 (for 1 ≤ k ≤ q1) is same as Game1−k−1 except the kth queried key is sf-type 2.

– Game1−k−3 (for 1 ≤ k ≤ q1) is same as Game1−k−2 except the kth queried key is sf-type 3.

– Game1−(q1+1)−i (for 1 ≤ i ≤ 3) is same as Game1−q1−3 except the last q2 queried keys are of sf-type i.

– In Game2−k−1 (for 1 ≤ k ≤ ν1) is same as Game2−(k−1)−2 except the kth unsigncryption query is answered
by vTextKey of the form, sf-type I. (In this sequel, we define Game2−0−2 = Game1−(q1+1)−3)

– Game2−k−2 (for 1 ≤ k ≤ ν1) is same as Game2−k−1 except the kth unsigncryption query is answered by
vTextKey of the form, sf-type II.

– In Game3−k−1 (for 1 ≤ k ≤ ν2) is same as Game3−(k−1)−2 except the kth replied signcryption is of sf-type
I. (In this sequel, we define Game3−0−2 = Game2−ν1−2)

– Game3−k−2 (for 1 ≤ k ≤ ν2) is same as Game3−k−1 except the kth replied signcryption is of II.

– Game4 is similar to Game3−ν2−2 except that the challenge signcryption is of sf-type 2.

– Game5 is similar to Game4 except that the challenge signcryption is of sf-type 3.
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– GameFinal is similar to Game5 except that the challenge signcryption is of sf-type 4.

In GameFinal, the decommitment decomb of the challenge message mb is masked with an independently
and uniformly chosen element from GT implying the component CINT does not leak any information about
decomb. Since, the primitive commitment schemes, C has hiding property, so comb does not reveal any
information about mb from adversary point of view. Therefore, the adversary A has no advantage in
GameFinal. The outline of the hybrid arguments over the games are structured in the box:

Real

Lem F.2
|

CMA
|

=⇒ R̂eal

Lem F.3
|

DSG2
|

=⇒ Res

Lem F.4
|

DSG1
|

=⇒ 0

Lem F.5
|

DSG2
|

=⇒ 1− 1− 1 . . . 1− (k − 1)− 3

Lem F.5
|

DSG2
|

=⇒ 1− k − 1

1− k − 1

Lem F.6
|

CHM
|

=⇒ 1− k − 2

Lem F.7
|

DSG2
|

=⇒ 1− k − 3 . . . 1− q1 − 3

Lem F.8
|

DSG2
|

=⇒ 1− (q1 + 1)− 1

1− (q1 + 1)− 1

Lem F.9
|

SHM
|

=⇒ 1− (q1 + 1)− 2

Lem F.10
|

DSG2
|

=⇒ 1− (q1 + 1)− 3

Lem F.11
|

DSG2, H

|
=⇒ 2− 1− 1

2− 1− 1 . . . 2− (k − 1)− 2

Lem F.11
|

DSG2,CRH

|
=⇒ 2− k − 1

Lem F.12
|

DSG2
|

=⇒ 2− k − 2 . . . 2− ν1 − 2

Lem F.13
|

DSG2,CRH

|
=⇒ 3− 1− 1

3− 1− 1 . . . 3− (k − 1)− 2

Lem F.13
|

DSG2,CRH

|
=⇒ 3− k − 1

Lem F.14
|

DSG2
|

=⇒ 3− k − 2 . . . 3− ν2 − 2

Lem F.15
|

DSG2,CRH

|
=⇒ 4

4

Lem F.16
|

DSG2
|

=⇒ 5

Lem F.17
|

DSG3
|

=⇒ Final

Using the above structure and Lemma F.18, we have the following reduction:

AdvPSC−CCA
A (κ) ≤ AdvOTS−sUF

B0
(κ) + AdvDSG1

B1
(κ) + (2q1 + 2ν1 + 2ν2 + 5)AdvDSG2

B2
(κ) + q1AdvP−CMH

B3
(κ)

+ AdvP−SMH
B4

(κ) + (ν1 + ν2 + 1)AdvCRH
B5

(κ) + AdvDSG3
B6

(κ) + AdvHiding
B7

(κ)

where B0,B1,B2,B3,B4,B5,B6 and B7 are PPT algorithms whose running times are same as that of
A . This completes the theorem.

Discussion F.1. By the definition of Game
R̂eal

, B returns ⊥ to A if E occurs. When E does not occur,
there are three possibilities, (a) [(vk∗ = vk) ∧ (δ∗o ||C∗0 ||y∗s = δo||C0||ys)], (b) [(vk∗ 6= vk) ∧ (δ∗o ||C∗0 ||y∗s =
δo||C0||ys)] and (c) [(vk∗ 6= vk) ∧ (δ∗o ||C∗0 ||y∗s 6= δo||C0||ys)]. Since, for a valid unsigncryption query U =
(com, δ,CT), the case (a) implies that (U∗, y∗s) = (U, ys) which is forbidden by the natural restriction of the
APs-IND-CCA game. The case (b) is impossible as C∗0 = C0 implies vk∗ = vk which is absurd. Therefore,
from the game, Game

R̂eal
onwards B answers the unsigncryption queries of A by running AltUnsigncrypt

algorithm if the case (c) only occurs else returns ⊥.
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Remark F.2. By construction of signcryption, we have ~s 6= ~e and since, the function f(X) := θ1X + θ2
is pairwise independent function, we do not need to pay attention on distributional relation between the
stuffs involved in signature and alt-key (resp. ciphertext and vText) while simulating these stuffs in sf-type
1 form.

Lemma F.2. GameReal and Game
R̂eal

are indistinguishable under the strong unforgeability of the OTS

scheme, ΠOTS. That is, for every adversary A , there exists a PPT algorithm B such that |AdvReal
A ,PSC(κ)−

AdvR̂ealA ,PSC(κ)| ≤ AdvOTS−sUF
B (κ).

Proof. Suppose A can distinguish the games with a non-negligible probability, then we will program a
PPT algorithm B for breaking the strong unforgeability of the one-time signature, OTS with the same
probability. Here B plays the role of an adversary in sUF-CMA game and the role of a challenger in
APs-IND-CCA game. Let CH be the challenger for OTS. CH runs (vk∗, signk∗)←− OTS.Gen and gives vk∗

to B. Then, B runs the Setup algorithm, keepsMSK to itself and gives the public parameters PP to A .

Query Phase-1: It consists of the following queries in adaptive manner:

– KeyGen: Let x be any key query made by A . Since, B knows MSK, it replies SKx to A .

– Signcrypt: Let (m,x, ys, ye) be any signcryption query made by A . Then, B constructs a key SKx using
MSK. Then, using this key it runs Signcrypt algorithm (in sec.6) and answers the signcryption U to
A .

– Unsigncrypt: Let (U, x, ys), where U := (com, δ,CT) be any unsigncryption query made by A . If this
query satisfies the event E, B returns δo and aborts. B first constructs the normal vTextKey
VK := (SKM

x ,V), then using VK it runs AltUnsigncrypt and returns the output to A .

Challenge Phase: A submits two equal length message m0,m1, a key index x, a challenge sender
associated data index y∗s and a challenge receiver associated data index y∗e to B. Then, B computes

the key SKx as it knows MSK. It picks b
U←− {0, 1} and runs Signcrypt(PP,mb,SKx, y∗s , y∗e), where it

queries for one-time signature to CH for the message C∗0 ||y∗s and gets the replied signature δ∗o . It returns
U∗ := (com∗, δ∗,CT∗), where δ∗ := (δy∗s , δ

∗
o , vk∗) to A .

Query Phase-2: Similar to phase-1.

Guess: A sends a guess b′ to B. (B is nothing to do with this b′)

Analysis: Since both the games are identical except the event E with probability ξ. By the event E, we
have δ∗o ||C∗0 ||y∗s 6= δo||C0||ys. Therefore, δo is a valid forge for the message C0||ys.

Lemma F.3. Game
R̂eal

and GameRes are indistinguishable under the DSG2 assumption. That is, for every

adversary A , there exists a PPT algorithm B such that |AdvR̂ealA ,PSC(κ)− AdvRes
A ,PSC(κ)| ≤ AdvDSG2

B (κ).

Proof. Similar to Lemma E.1.

Lemma F.4. GameRes and Game0 are indistinguishable under the DSG1 assumption. That is, for every
adversary A , there exists a PPT algorithm B such that |AdvRes

A ,PSC(κ)− Adv0A ,PSC(κ)| ≤ AdvDSG1
B (κ).

Proof. The only difference between the games is the form of the challenge signcryption, normal or sf-type
1. In both forms of signcryptions, the signature is appeared to be normal, but the ciphertexts are normal
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and sf-type 1 accordingly the challenge signcryptions are normal and sf-type 1. Therefore, the proof could
be done in similar way as in Lemma E.2.

Lemma F.5. Game1−(k−1)−3 and Game1−k−1 are indistinguishable under the DSG2 assumption. That

is, for every adversary A , there exists a PPT algorithm B such that |Adv
1−(k−1)−3
A ,PSC (κ)− Adv1−k−1A ,PSC(κ)| ≤

AdvDSG2
B (κ) for 1 ≤ k ≤ q1.

Proof. For proof, refer to Lemma E.3.

Lemma F.6. Game1−k−1 and Game1−k−2 are indistinguishable under CMH security of the primitive
pair encoding scheme, P. That is, for every adversary A , there exists a PPT algorithm B such that
|Adv1−k−1A ,PSC(κ)− Adv1−k−2A ,PSC(κ)| ≤ AdvP−CMH

B (κ) for 1 ≤ k ≤ q1.

Proof. Following the proof of Lemma E.4, it can be proven.

Lemma F.7. Game1−k−2 and Game1−k−3 are indistinguishable under the DSG2 assumption. That is, for
every adversary A , there exists a PPT algorithm B such that |Adv1−k−2A ,PSC(κ)−Adv1−k−3A ,PSC(κ)| ≤ AdvDSG2

B (κ)
for 1 ≤ k ≤ q1.

Proof. The proof is similar to that of Lemma E.5.

Lemma F.8. Game1−q1−3 and Game1−(q1+1)−1 are indistinguishable under the DSG2 assumption. That

is, for every adversary A , there exists a PPT algorithm B such that |Adv1−q1−3A ,PSC (κ)−Adv
1−(q1+1)−1
A ,PSC (κ)| ≤

AdvDSG2
B (κ).

Proof. For proof, we refer to Lemma E.6

Lemma F.9. Game1−(q1+1)−1 and Game1−(q1+1)−2 are indistinguishable under SMH security of the prim-
itive pair encoding scheme, P. That is, for every adversary A , there exists a PPT algorithm B such that

|Adv
1−(q1+1)−1
A ,PSC (κ)− Adv

1−(q1+1)−2
A ,PSC (κ)| ≤ AdvP−SMH

B (κ).

Proof. The proof is similar to Lemma E.7.

Lemma F.10. Game1−(q1+1)−2 and Game1−(q1+1)−3 are indistinguishable under the DSG2 assump-

tion. That is, for every adversary A , there exists a PPT algorithm B such that |Adv
1−(q1+1)−2
A ,PSC (κ) −

Adv
1−(q1+1)−3
A ,PSC (κ)| ≤ AdvDSG2

B (κ).

Proof. The proof can be done in similar manner as in Lemma E.8.

Lemma F.11. Game2−(k−1)−2 and Game2−k−1 are indistinguishable under the DSG2 assumption and
collision resistant property of H. That is, for every adversary A , there exists a PPT algorithm B such

that |Adv
2−(k−1)−2
A ,PSC (κ)− Adv2−k−1A ,PSC(κ)| ≤ AdvDSG2

B (κ) + AdvCRH
B (κ) for 1 ≤ k ≤ ν1.

Proof. The proof is similar to that of Lemma E.9. Following the Discussion F.1 for a valid unsigncryption
query, we must have vk∗ 6= vk, which in turn implies that ~∗e 6= ~e. Therefore, the proof will be simpler
than than the proof of Lemma E.9.
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Lemma F.12. Game2−k−1 and Game2−k−2 are indistinguishable under the DSG2 assumption. That is, for
every adversary A , there exists a PPT algorithm B such that |Adv2−k−1A ,PSC(κ)−Adv2−k−2A ,PSC(κ)| ≤ AdvDSG2

B (κ)
for 1 ≤ k ≤ ν1.

Proof. The proof is similar to that of Lemma E.10

Lemma F.13. Game3−(k−1)−2 and Game3−k−1 are indistinguishable under the DSG2 assumption and
collision resistant property of H. That is, for every adversary A , there exists a PPT algorithm B such

that |Adv
3−(k−1)−2
A ,PSC (κ)− Adv3−k−1A ,PSC(κ)| ≤ AdvDSG2

B (κ) + AdvCRH
B (κ) for 1 ≤ k ≤ ν2.

Proof. In both the games, the queried key is sf-type 3, the unsigncryption queries are answered by vTex-
tKeys of the form, sf-type II, the challenge signcryption is of sf-type 1 (that means signature part is normal
whereas ciphertext is sf-type 1) and the ciphertexts are normal in all queried signcryptions. The only
difference between the games is the form of kth queried signcryption, viz., the form of signature in kth

queried signcryption, i.e., it is either normal or sf-type 1. Therefore, following the proof of the Lemma
D.6, it can be done. Since, the signature part in the challenge signcryption is normal form, so the collision
resistant property of H will be used only to guarantee ~∗e 6= ~s in the proof.

Lemma F.14. Game3−k−1 and Game3−k−2 are indistinguishable under the DSG2 assumption. That is, for
every adversary A , there exists a PPT algorithm B such that |Adv3−k−1A ,PSC(κ)−Adv3−k−2A ,PSC(κ)| ≤ AdvDSG2

B (κ)
for 1 ≤ k ≤ ν2.

Proof. The only difference between the games is the forms of kth queried signcryption, viz., the form of
signature, i.e., it is either sf-type 1 or sf-type 2. We refer to proof of Lemma D.7.

Lemma F.15. Game3−ν2−2 and Game4 are indistinguishable under the DSG2 assumption and collision
resistant property of H. That is, for every adversary A , there exists a PPT algorithm B such that
|Adv3−ν2−2A ,PSC (κ)− Adv4A ,PSC(κ)| ≤ AdvDSG2

B (κ) + AdvCRH
B (κ).

Proof. In both the games, the queried key is sf-type 3, the unsigncryption queries are answered by vTex-
tKeys of the form, sf-type II, the queried signcryptions are of sf-type II (signature part is sf-type 2 whereas
ciphertext normal) and the ciphertext in the challenge signcryption is sf-type 1. The only difference be-
tween the games is the form of signature in the challenge signcryption, i.e., it is either normal or sf-type
1. Therefore, the proof can be done following the proof of the Lemma D.6.

Lemma F.16. Game4 and Game5 are indistinguishable under the DSG3 assumption. That is, for every
adversary A , there exists a PPT algorithm B such that |Adv4A ,PSC(κ)− Adv5A ,PSC(κ)| ≤ AdvDSG2

B (κ).

Proof. The only difference between the games is the form of the signature in the challenge signcryption,
i.e., it is either sf-type 1 or sf-type 2. We refer to proof of the Lemma D.7.

Lemma F.17. Game5 and GameFinal are indistinguishable under the DSG3 assumption. That is, for every
adversary A , there exists a PPT algorithm B such that |Adv5A ,PSC(κ)− AdvFinalA ,PSC(κ)| ≤ AdvDSG3

B (κ).

Proof. The only difference between the games is the form of the ciphertext in the challenge signcryption,
i.e., it is either sf-type 1 or sf-type 2. For proof, we refer to the Lemma E.11

Lemma F.18. For every adversary A , there exists a PPT algorithm B such that AdvFinalA ,PSC(κ) ≤
AdvHiding

B (κ).
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Proof. In the final game, GameFinal the decommitment part, decomb of the challenge message mb is
information theoretically hidden in the challenge signcryption, viz., ciphertext. The only counter part
of mb remains in challenge signcryption is the commitment part comb. Since, the commitment scheme
ΠCommit has hiding property, comb does not leak any information about mb from adversary point of view.
We skip the details of the simulation.

Theorem F.19. Let P be a pair encoding scheme for a predicate ∼ which satisfies Conditions 3.2 and
∼ is domain-transferable. Suppose P has the PMH security, the assumptions, DSG1, DSG2 and DSG3
hold in J , the one-time signature scheme, OTS has strong unforgeability, the commitment scheme, C has
the hiding property and H is a collision resistant hash function, then the proposed predicate signcryption
scheme, PSC in sec.6 for the predicate ∼ is adaptive-predicates IND-CCA secure.

Proof. Similar to the proof of Theorem F.1. The reduction of the proof is given by

AdvPSC−CCA
A (κ) ≤ AdvOTS−sUF

B0
(κ) + AdvDSG1

B1
(κ) + (2q + 2ν1 + 2ν2 + 3)AdvDSG2

B2
(κ)

+ (ν1 + ν2 + 1)AdvCRH
B3

(κ) + AdvDSG3
B4

(κ) + AdvHiding
B5

(κ)

where q, ν1 and ν2 respectively be the number of key, unsigncryption and signcryption queries and
B0,B1,B2,B3,B4,B5 are PPT algorithms whose running times are same as that of A . This completes
the theorem.

F.3 The Proof of Unforgeability

Theorem F.20. Let P be a pair encoding scheme for a predicate ∼ which satisfies Conditions 3.2 and ∼
is domain-transferable. Suppose P has the CMH security, the assumptions, DSG1, DSG2 and DSG3 hold
in J , the one-time signature scheme, OTS has strong unforgeability and H is a collision resistant hash
function, then the proposed predicate signcryption scheme, PSC in sec.6 for the predicate ∼ is adaptive-
predicates strong unforgeable.

Proof. Let A be an adversary in APs-sUF-CMA model who can break the strong unforgeability of
the proposed predicate signcryption scheme with non-negligible advantage ε. Let ν2 be the number of

signcryption queries made by A . Let (m(i), x(i), y
(i)
s , y

(i)
e ) be the ith query and U(i) := (comi, δ

(i) :=

(δ
y
(i)
s
, δ

(i)
o , vk(i)),CT(i)) be the corresponding replied signcryption. Let U∗ := (com∗, δ∗,CT∗) be the forgery

made by A for the message (m∗, y∗s , y
∗
e). We define an event as

Forged := vk∗ 6∈ {vk(i)
∣∣ i ∈ [ν2]}

Then, we have

ε ≤ Pr[A Succeeds] := Pr[A Succeeds ∧ Forged] + Pr[A Succeeds ∧ ¬Forged]

=⇒ Pr[A Succeeds ∧ Forged] ≥ ε/2 or Pr[A Succeeds ∧ ¬Forged] ≥ ε/2

Case ¬(Forged): We will develop an algorithm BOTS for breaking the string unforgeability of the primitive
one-time signature scheme, OTS with advantage at least ε/2ν2. Let CH be the challenger for the
primitive one-time signature scheme, OTS. The challenger CH runs (vk∗, signk∗) ←− OTS.Gen(1κ)
and gives vk∗ to BOTS. BOTS runs the Setup algorithm (as described in section 6), keeps MSK to

itself and sends PP to A . Then, it picks i
U←− [ν2] as a guess such that vk∗ = vk(i). For notational

simplicity, we ignore the superscript (i).
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– KeyGen Query: BOTS answers this query using MSK.

– Signcrypt Query: Let (m,x, ys, ye) be the jth signcryption query to BOTS by A .

− (j 6= i) :
BOTS executes (com, decom) := Commit(m), (vk, signk) := OTS.Gen(1κ). It con-
structs the key SKx using MSK. Then, it runs δys ← PS.Sign(vk,SKx, ys), Ccpa ←
PE.Encrypt∗(decom, ye) and computes ~e := H(com, δys , vk, Ccpa). Then, it computes

C0 := gs(θ1~e+θ2) and δo := OTS.Sign(C0||ys, signk). It returns the signcryption U :=
(com, δ := (δys , δo, vk),CT := (Ccpa, C0)) to A .

− (j = i) :
Same as above except BOTS does not execute OTS.Gen(1κ) but it sets vk := vk∗ and it makes
an one-time signature query to CH for the message C0||ys and gets the replied signature δo.

– Unsigncrypt Query: It can answer the query as it knows MSK.

– Forgery: A outputs a tuple (U∗, y∗s , y
∗
e), where U∗ := (com∗, δ∗,C∗) and δ∗ := (δy∗s , δ

∗
o , vk∗). Then,

BOTS forges the signature δ∗o for C∗0 ||y∗s to the one-time signature scheme, OTS.

Analysis: With probability 1/ν2, BOTS correctly guesses i such that the event Forged is happened.
Now, we only have to show that δ∗o ||C∗0 ||y∗s 6= δo||C0||ys (we ignore the superscript, (i)). Indeed, if
δ∗o ||C0||y∗s = δo||C∗0 ||ys, we have δ∗o = δo, y

∗
s = ys and C∗0 = C0. Now C∗0 = C0 implies ~∗e = ~e, so

we have com∗ = com, δy∗s = δys and C∗cpa = Ccpa. Overall, we have (U∗,m∗, y∗s , y
∗
e) = (U,m, ys, ye)

which leads a contradiction to APs-sUF-CMA security model.

Case Forged : Suppose there are at most q key queries and ν1 unsigncryption queries, then the security
proof consists of hybrid argument over a sequence of 3q + 2(ν1 + ν2) + 7 games defined below.

– GameReal := The original APs-sUF-CMA game.

– Game
R̂eal

:= Same as GameReal except the event Forged is always happened.

– GameRes := This is same as Game
R̂eal

except x 6∼N y∗ is replaced by x 6∼p2 y
∗ for each key query

x made by A .

– Game0 (= Game1−0−3) is just like GameRes except that the vTextKey for verifying the forgery is
of sf-type 1.

– In Game1−k−1 (for 1 ≤ k ≤ q) is same as Game1−(k−1)−3 except the kth queried key is sf-type 1.

– Game1−k−2 (for 1 ≤ k ≤ q) is same as Game1−k−1 except the kth queried key is sf-type 2.

– Game1−k−3 (for 1 ≤ k ≤ q) is same as Game1−k−2 except the kth queried key is sf-type 3.

– In Game2−k−1 (for 1 ≤ k ≤ ν1) is same as Game2−(k−1)−2 except the kth unsigncryption query is
answered by the vTextKey of sf-type I. (In this sequel, we define Game2−0−2 = Game1−q−3)

– Game2−k−2 (for 1 ≤ k ≤ ν1) is same as Game2−k−1 except the kth unsigncryption query is answered
by the vTextKey of sf-type II.

– In Game3−k−1 (for 1 ≤ k ≤ ν2) is same as Game3−(k−1)−2 except the kth replied signcryption is of
sf-type I. (So, in this sequel Game3−0−2 = Game2−ν1−2)

– Game3−k−2 (for 1 ≤ k ≤ ν2) is same as Game3−k−1 except the kth replied signcryption is of sf-type
II.

– Game4 is similar to Game3−ν2−2 except that the vTextKey for verifying the forgery is sf-type 2.

– Game5 is similar to Game4 except that the vTextKey for verifying the forgery is sf-type 3.

56



– GameFinal is similar to Game5 except that the vTextKey for verifying the forgery is sf-type 4

The outline of the hybrid arguments over the games are structured in the box:

Real

Forged

|
=⇒ R̂eal

Lem F.21
|

DSG2
|

=⇒ Res

Lem F.22
|

DSG1
|

=⇒ 0

Lem F.23
|

DSG2
|

=⇒ 1− 1− 1 . . . 1− (k − 1)− 3

Lem F.23
|

DSG2
|

=⇒ 1− k − 1

1− k − 1

Lem F.24
|

CHM
|

=⇒ 1− k − 2

Lem F.25
|

DSG2
|

=⇒ 1− k − 3 . . . 1− q − 3

Lem F.26
|

DSG2
|

=⇒ 2− 1− 1

2− 1− 1 . . . 2− (k − 1)− 2

Lem F.26
|

DSG2,CRH

|
=⇒ 2− k − 1

Lem F.27
|

DSG2
|

=⇒ 2− k − 2 . . . 2− ν1 − 2

Lem F.28
|

DSG2,CRH

|
=⇒ 3− 1− 1

3− 1− 1 . . . 3− (k − 1)− 2

Lem F.28
|

DSG2,CRH

|
=⇒ 3− k − 1

Lem F.29
|

DSG2
|

=⇒ 3− k − 2 . . . 3− ν2 − 2

Lem F.30
|

DSG2,CRH

|
=⇒ 4

4

Lem F.31
|

DSG2
|

=⇒ 5

Lem F.32
|

DSG3
|

=⇒ Final

Using the above structure, we have the following reduction:

AdvPSC−sUF
A (κ) ≤ ν2AdvOTS−sUF

B0
(κ) + AdvDSG1

B1
(κ) + (2q + 2ν1 + 2ν2 + 3)AdvDSG2

B2
(κ)

+ qAdvP−CMH
B3

(κ) + (ν1 + ν2 + 1)AdvCRH
B4

(κ) + AdvDSG3
B5

(κ)

where B0,B1,B2,B3,B4 and B5 are PPT algorithms whose running times are same as that of A . This
completes the theorem.

Lemma F.21. Game
R̂eal

and GameRes are indistinguishable under the DSG2 assumption. That is, for

every adversary A , there exists a PPT algorithm B such that |AdvR̂ealA ,PSC(κ)−AdvRes
A ,PSC(κ)| ≤ AdvDSG2

B (κ).

Proof. Similar to Lemma D.1.

Lemma F.22. GameRes and Game0 are indistinguishable under the DSG1 assumption. That is, for every
adversary A , there exists a PPT algorithm B such that |AdvRes

A ,PSC(κ)− Adv0A ,PSC(κ)| ≤ AdvDSG1
B (κ).

Proof. The proof could be done in similar way as in Lemma D.2.

Lemma F.23. Game1−(k−1)−3 and Game1−k−1 are indistinguishable under the DSG2 assumption. That

is, for every adversary A , there exists a PPT algorithm B such that |Adv
1−(k−1)−3
A ,PSC (κ)− Adv1−k−1A ,PSC(κ)| ≤

AdvDSG2
B (κ) for 1 ≤ k ≤ q.

Proof. For proof, refer to Lemma D.3.
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Lemma F.24. Game1−k−1 and Game1−k−2 are indistinguishable under CMH security of the pair encoding
scheme, P. That is, for every adversary A , there exists a PPT algorithm B such that |Adv1−k−1A ,PSC(κ) −
Adv1−k−2A ,PSC(κ)| ≤ AdvP−CMH

B (κ) for 1 ≤ k ≤ q.

Proof. Following the proof of Lemma D.4, it can be proven.

Lemma F.25. Game1−k−2 and Game1−k−3 are indistinguishable under the DSG2 assumption. That is, for
every adversary A , there exists a PPT algorithm B such that |Adv1−k−2A ,PSC(κ)−Adv1−k−3A ,PSC(κ)| ≤ AdvDSG2

B (κ)
for 1 ≤ k ≤ q.

Proof. The proof is similar to that of Lemma D.5.

Lemma F.26. Game2−(k−1)−2 and Game2−k−1 are indistinguishable under the DSG2 assumption and
collision resistant property of H. That is, for every adversary A , there exists a PPT algorithm B such

that |Adv
2−(k−1)−2
A ,PSC (κ)− Adv2−k−1A ,PSC(κ)| ≤ AdvDSG2

B (κ) + AdvCRH
B (κ) for 1 ≤ k ≤ ν1.

Proof. The proof is similar to that of Lemma E.9. The collision resistant property of H will be used only

to guarantee ~∗s = ~(k)e (following the remark F.2).

Lemma F.27. Game2−k−1 and Game2−k−2 are indistinguishable under the DSG2 assumption. That is, for
every adversary A , there exists a PPT algorithm B such that |Adv2−k−1A ,PSC(κ)−Adv2−k−2A ,PSC(κ)| ≤ AdvDSG2

B (κ)
for 1 ≤ k ≤ ν1.

Proof. The proof is similar to that of Lemma E.10

Lemma F.28. Game3−(k−1)−2 and Game3−k−1 are indistinguishable under the DSG2 assumption and
collision resistant property of H. That is, for every adversary A , there exists a PPT algorithm B such

that |Adv
3−(k−1)−2
A ,PSC (κ)− Adv3−k−1A ,PSC(κ)| ≤ AdvDSG2

B (κ) + AdvCRH
B (κ) for 1 ≤ k ≤ ν2.

Proof. In both the games, the vTextKey for verifying the forgery is of sf-type 1, the queried key is sf-type
3, the unsigncryption queries are answered by vTextKeys of sf-type II and the ciphertexts are normal in all
the queried signcryptions. The only difference between the games is the form of kth queried signcryption,
viz, the form of signature in kth queried signcryption, i.e., it is either normal or sf-type 1. By the event

Forged, we have vk∗ 6= vk(k), so ~∗s 6= ~(k)s . Therefore, the proof can be done following the proof of the
Lemma D.6.

Lemma F.29. Game3−k−1 and Game3−k−2 are indistinguishable under the DSG2 assumption. That is, for
every adversary A , there exists a PPT algorithm B such that |Adv3−k−1A ,PSC(κ)−Adv3−k−2A ,PSC(κ)| ≤ AdvDSG2

B (κ)
for 1 ≤ k ≤ ν2.

Proof. The only difference between the games is the forms of kth queried signcryption, viz, the form of
signature, sf-type 1 or sf-type 2. We refer to proof of Lemma D.7.

Lemma F.30. Game3−ν2−2 and Game4 are indistinguishable under the DSG2 assumption and collision
resistant property of H. That is, for every adversary A , there exists a PPT algorithm B such that
|Adv3−ν2−2A ,PSC (κ)− Adv4A ,PSC(κ)| ≤ AdvDSG2

B (κ) + AdvCRH
B (κ).
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Proof. In both the games, the queried key is sf-type 3, the unsigncryption queries are answered by vTex-
tKeys of sf-type II, the queried signcryptions are of sf-type II (signature part is sf-type 2 whereas ciphertext
normal) and the vText in the vTextKey for verifying the forgery is of sf-type 1. The only difference between
the games is the form of alt-key in the vTextKey for verifying the forgery, i.e., it is either normal or sf-type
1. Therefore, the proof can be done following the proof of the Lemma D.6. The collision resistant property
of H will be used only to guarantee ~∗s = ~∗e (following the remark F.2) in the construction of vTextKey
for verifying the forgery.

Lemma F.31. Game4 and Game5 are indistinguishable under the DSG3 assumption. That is, for every
adversary A , there exists a PPT algorithm B such that |Adv4A ,PSC(κ)− Adv5A ,PSC(κ)| ≤ AdvDSG2

B (κ).

Proof. The only difference between the games is the form of the alt-key in the vTextKey for verifying the
forgery, i.e., it is either normal or sf-type 1. We refer to proof of the Lemma D.7.

Lemma F.32. Game5 and GameFinal are indistinguishable under the DSG3 assumption. That is, for every
adversary A , there exists a PPT algorithm B such that |Adv5A ,PSC(κ)− AdvFinalA ,PSC(κ)| ≤ AdvDSG3

B (κ).

Proof. The only difference between the games is the form of the vText in the vTextKey for verifying the
forgery, i.e., vText is either sf-type 1 or sf-type 2. For proof, we refer to the Lemma E.11

Theorem F.33. Let P be a pair encoding scheme for a predicate ∼ which satisfies Conditions 3.2 and ∼
is domain-transferable. Suppose P has the PMH security, the assumptions, DSG1, DSG2 and DSG3 hold
in J , the one-time signature scheme, OTS has strong unforgeability and H is a collision resistant hash
function, then the proposed predicate signcryption scheme, PSC in sec.6 for the predicate ∼ is adaptive-
predicates strong unforgeable.

Proof. Similar to the proof of Theorem F.20. The reduction of the proof is given by

AdvPSC−sUF
A (κ) ≤ ν2AdvOTS−sUF

B0
(κ) + AdvDSG1

B1
(κ) + (2q + 2ν1 + 2ν2 + 3)AdvDSG2

B2
(κ)

+ (ν1 + ν2)AdvCRH
B3

(κ) + AdvDSG3
B4

(κ)

where q, ν1 and ν2 respectively be the number of key, unsigncryption and unsigncryption queries made
by A and B0,B1,B2,B3,B4 are PPT algorithms whose running times are same as that of A . This
completes the theorem.
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