
One-key Double-Sum MAC with
Beyond-Birthday Security

Nilanjan Datta1, Avijit Dutta1, Mridul Nandi1, Goutam Paul1, Liting Zhang23

1 Indian Statistical Institute, Kolkata
2 State Key Laboratory of Computer Science,

Trusted Computing and Information Assurance Laboratory, Institute of Software,
Chinese Academy of Sciences

3 Nanyang Technological University .
nilanjan isi jrf@yahoo.com, avirocks.dutta13@gmail.com,

mridul.nandi@gmail.com, goutam.paul@isical.ac.in,

liting.zhang@hotmail.com

Abstract. MACs (Message Authentication Codes) are widely adopted
in communication systems to ensure data integrity and data origin au-
thentication, e.g. CBC-MACs in the ISO standard 9797-1. However, all
the current designs either suffer from birthday attacks or require long key
sizes. In this paper, we focus on designing beyond-birthday-bound MAC
modes with a single key, and investigate their design principles. First,
we review the current proposals, e.g. 3kf9 and PMAC Plus, and identify
that the security primarily comes from the construction of a cover-free
function and the advantage of the sum of PRPs. The main challenge in
reducing their key size is to find a mechanism to carefully separate the
block cipher inputs to the cover-free construction and the sum of PRPs
that work in cascade with such a construction. Secondly, we develop
several tools on sampling distributions that are quite useful in analysis
of the MAC mode of operations and by which we unify the proofs for
three/two-key beyond-birthday-bound MACs. Thirdly, we establish our
main theorem that upper-bounds the PRF security of the one-key con-
structions by extended-cover-free, pseudo-cover-free, block-wise universal
and the normal PRP assumption on block ciphers. Finally, we apply our
main theorem to 3kf9 and PMAC Plus, and successfully reduce their
key sizes to the minimum possible. Thus, we solve a long-standing open
problem in designing beyond-birthday-bound MAC with a single key.

Keywords: Beyond Birthday, 3kf9, PMAC Plus, MAC, Sum of PRP, Cover-
free, Rank, Strucutre Graph

1 Introduction

MAC. Message Authentication Code (MAC) is one of the important primi-
tives in symmetric key cryptography to preserve the integrity of the message
being transmitted. A MAC algorithm produces a fixed-length message digest,
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called a tag, from a variable-length message. For a secure MAC, it would be
hard to forge a tag for a completely new message for which tag has not been
observed. A stronger requirement of a MAC is pseudo-random function (PRF)
which informally says that the distribution of the tags be indistinguishable from
uniform random distribution for any “efficient” adversary. The commonly used
prf-advantage of a keyed construction F against an adversary A is defined as
follows:

Advprf
F (A) = Pr

[
AF = 1

]
− Pr

[
AΓ = 1

]
where Γ denotes the random function over the same domain and range as F .
In practical applications, in addition to security, the issue of efficiency of MAC
computation and the key-size are also very important.

Designing MAC/PRF. There are mainly three different approaches for design-
ing a MAC: (a) universal hash function based, (b) compression function based,
and (c) block cipher based. The drawback of universal hash based MAC design
is that the performance of the MAC depends on the platform; some universal
hash based MAC performs well in software, whereas the performance of others is
noticeable only in hardware. In case of a compression function based MAC, the
security of the MAC is established in terms of the prf-security of the underlying
compression function. But designing a provably secure compression function got
less attention than designing collision and (2nd) preimage compression function.
On the other hand, analyzing block cipher becomes more popular.

Block Cipher Based MAC. Constructions that are based on block ciphers
overcome the above difficulties. Performance of block cipher based MAC con-
struction is balanced in both software and hardware. Examples of popular block
cipher based MACs are CBC-MAC [3], OMAC [8], PMAC [5], TMAC [10] etc.
However, for each of them, the so far best prf-security advantage is O(Lq2/2n)
where q is the maximum number of queries, L is maximum allowed message size
and n is the block-length of the underlying block cipher. For example, if PMAC
is being implemented by PRINCE [5] (a 64-bit lightweight block cipher) in some
small device and if we allow to encrypt up to 1MB (= 220) messages then after
1 Million (≈ 220) encryption, one may be able to distinguish it from random
function with about 1/16 probability. Thus, when n is small (e.g., <= 64 bits),
as in lightweight cryptographic applications like RFIDs and smart cards, the
birthday-bound security is no longer practical and so we need to seek for the
construction achieving beyond birthday security.

Beyond-Birthday Secure MACs and Challenges. Among the block ci-
pher based MACs that are beyond-birthday secure, two efficient (rate-1) con-
structions are PMAC Plus and 3kf9.

1. In CRYPTO 2011, Yasuda proposed PMAC Plus, a simple three key variant
of parallelizable and efficient PMAC. The author mentioned that – “This
raises a challenge to come up with a 1-key rate-1 MAC construction which is
secure beyond the birthday bound.”
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2. In ASIACRYPT 2012, Zhang et al proposed 3kf9 that improves the f9 MAC
mode adopted in the 3rd Generation Partnership Project (3GPP). 3kf9 also
requires three independent keys to lift its security beyond birthday-bound.
Zhang et al. mentioned in their conclusion that, “However, its key size seems
to be too large in some particular environments, requiring further improvements
therefore.”

There is also another deterministic MAC mode provides security beyond
the birthday bound. As Dodis and Steinberger have shown, MD[f, g] reaches
O(εqpoly(n)) MAC security. However, this design requires even longer keys and
more block cipher invocations.

1.1 Motivation for Key-size Reduction in Block Cipher Based
MACs

While beyond birthday bound block cipher modes are especially useful for small-
size block ciphers, their large key sizes prevent themselves from practical usages.
This is more serious when implementing it in hardware, where registers to store
key materials are expensive or otherwise injecting keys from outside brings secu-
rity risks and slows down its overall efficiency. Furthermore, three block cipher
keys imply three block cipher key schedulings, and this means, for most block
ciphers (e.g. AES), three more block cipher invocation time and energy con-
sumption.

A trivial way to reduce the key size, as commonly adopted in many practical
protocols [1], is using a subkey generation algorithm f . Given a master key and
some intermediate values, f can derive several subkeys for each invocation on
block ciphers. Despite of inconvenience, implementing and running f requires
extra memory and computation load, and its outputs pseudo-randomness is also
a potential security risk, because to secure PMAC Plus and 3kf9 we need three
independently random keys.

A more technical method is to use tweakable block ciphers [13], which are
expected to be independently random permutations with a single secret key and
distinct-and-public tweaks. However, there are still some problems. If we adopt
dedicated tweakable block ciphers, (e.g. [9]) in PMAC Plus and 3kf9, we benefit
from optimized efficiency but can hardly get provable security on normal block
ciphers (PRP assumption); if we adopt birthday-bound tweakable block ciphers,
e.g. [23, 7, 17], we in fact lose the beyond-birthday bound in PMAC Plus and 3kf9.
Then we have to adopt the provably secure tweakable block ciphers with beyond-
birthday-bound security, e.g. [16, 12, 11, 15]. As far as we know, current solutions
provide no good efficiency in our setting, because they need at least two normal
block cipher invocations to build a tweakable block cipher, and their key sizes
are not small either.

The Open Problem. Up to now, how to construct a beyond-birthday-bound
MAC mode under a single key and reduce its security to the PRP assumption
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of its underlying block ciphers is still technically hard and remains as an open
problem.

1.2 Our Contributions

With a view to solving the above problem, first we review the techniques used
in3kf9 and PMAC Plus. Despite their specific mechanisms to process message
blocks, they both have doubled internal states sizes and then “encrypt” their
last internal state by the well-known “Sum of PRPs”. In proofs, cover-freeness
of the final internal states is strictly necessary, and then by the previous results
on “Sum of PRPs”, the modes can reach a bound beyond the birthday paradox.
With respect to the usages of key materials, the final “Sum of PRPs” needs two
keys, and one more individual key is required by the message blocks processing
phase. Then, if we just adopt a single key in these modes, we encounter two
problems.

1. The first problem is “Sum of PRPs” may not work properly, because it will
always output an all zero block once its two inputs collide.

2. The second problem is, the qL block cipher inputs within internal structures
may collide with the last two inputs (2q in total) to “Sum of PRPs”, and
this seems to happen with a birthday bound probability. Once occurred, even
though a specific attack is hard to present, a proof is however easily ruined
because we can get no new randomness for the final output.

Obviously, designing a single-key such mode requires more techniques and its
corresponding formal proof would be even harder and complex.

Contribution 1. To solve the first problem, we revisit the proofs for “Sum of
PRPs”, and propose a generalized but even simpler proof. Our basic observation
is that the original provable security results hold even when the input domain
is restricted. That is, over restricted domain and range, the sum of two same
PRPs remains a PRF. Then we examine it by deriving “1-interpolation prob-
ability of sum of WOR (WithOut Replacement) samples”, and generalize it to
the q-interpolation case. As applications, we apply them to three/two-key sum
constructions, and get successful proofs.

Contribution 2. To solve the second problem, we first define several notions,
e.g. extended-cover-free, pseudo-cover-free, and block-wise universal, which are
in fact abstracted from our analysis on one-key constructions. Taking advan-
tages of this, we propose and prove our main theorem that can upper bound any
one-key such construction by these items and an additional value.

Contributions 3 and 4. Finally, we turn to reduce the key size for 3kf9 and
PMAC Plus. Taking advantage of our main theorem, in both proofs we just
need to upper bound three items, i.e., extended-cover-free, pseudo-cover-free, and
block-wise universal, for the corresponding CBC-like and PMAC-like structures.
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Though the proofs are more involved, interestingly, our obtained bounds for the
one-key versions are only slightly larger than those for 3kf9 and PMAC Plus,
and they essentially have the same form O(qLmax/2

n + q3L3
max/2

2n).

2 Preliminaries

Notation. We denote X
$← S to mean that X is chosen uniformly from S and

independently to all other random variables defined so far. We write X ⊥ Y
for independent random variables X and Y . Let [a..b] := {a, a+ 1, . . . , b}, [a] =
[1..a]. By a q-set or q-tuple, we mean a set or a tuple of size q. Given a q-tuple
x = (xi : i ∈ I), where I is the index set, we abuse the notation x also to mean
the set {xi : i ∈ I}. When all elements xi’s are distinct we simply write x ∈ distq
or x ∈ dist and we call x element wise distinct. For a subset J ⊆ I, the sub-tuple
xJ := (xj)j∈J . In this paper, we fix a positive integer n and all block ciphers
considered in this paper have the block size n and L denotes the number of
message blocks and ` denotes the length of the message it bits. Let P denote the
set of all permutations over {0, 1}n. For any function f , and two tuples x, y over
same set of indices I, we write

x
f7−→ y to mean that f(xi) = yi, ∀i ∈ I and

Let Px→y := {π ∈ P : x
π7−→ y}. For two tuples x and y over a same index

set, we write x −→ y (or x ←→ y) if there exists a function (or permutation)

respectively π such that x
π7−→ y. In this case, we call (x, y) function-compatible

or (permutation-compatible) respectively.

2.1 Oracle Algorithm and Its Transcript

An oracle algorithm A (e.g., distinguisher or some block cipher based con-
structions in which block ciphers are viewed as oracles) interacting with one
or more oracles O makes queries depending on the previous query responses.
We denote the oracle interaction by AO(m) or A(m) → O. During the inter-
action AO(m), let X1 := (X1,1, . . . , X1,r) be the tuple of all queries to O and
Y1 := (Y1,1, . . . , Y1,r) be the tuple of corresponding responses. The transcript
(X1, Y1) is denoted as τ(A(m) → O). In case of a deterministic algorithm A,
X1,i is some function of Y1,1, . . . , Y1,i−1 and m. Finally, it returns some output c
which must be a function of Y and m.4 Let A be a deterministic oracle algorithm
and a q-tuple m = (m1, . . . ,mq). For any function f , we write the q-transcript of
all query-responses (X := (X1, . . . , Xq), Y := (Y1, . . . , Yq)) as τ(A(m)→q f) or
simply as τ(A(m)→ f) (whenever q is understood from the context) by abusing
notation where (Xi, Yi) = τ(A(mi)→ f).

Definition 1. A pair of tuples (x, y) is called A(m)-realizable for a q-tuple m,
if there exists a function f such that τ(A(m)→q f) = (x, y).

4 We ignore the previous queries X in the query computations and in the final output,
as these are eventually defined recursively in terms of Y and m.
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The following simple observation is very useful which abstracts a useful fea-
ture of query-responses for an interaction of a deterministic algorithm with a
random function.

Lemma 1. Let A be a deterministic oracle algorithm. For any A(m)-realizable

pair (x, y), we have x
f7−→ y if and only if τ(A(m)→ f) = (x, y). Thus, for any

event E and for any random function F,

PrF[E | τ(A(m)→ F) = (x, y)] = PrF[E | x
F7−→ y].

Proof. Clearly, if τ(A(m) −→ f) = (x, y) then x
f7−→ y. Conversely, let (X,Y ) =

τ(A(m) → f) then we can prove Xi = xi, Yi = yi by induction on the query
index i. When i = 1, X1 = x1 since otherwise (x, y) can not be realizable and
so Y1 = y1. Now suppose Xj = xj , Yj = yj for all j < i. As A is a deterministic
algorithm Xi = xi (otherwise (x, y) can not be realizable). So Yi = yi. ut

Random Functions. A random function is a function which is chosen from
the set of all functions following some distribution. In particular, uniform ran-
dom function, denoted Γn, (or uniform random permutation Πn) is cho-
sen uniformly from the set of all functions (or permutations respectively) from
a specified finite domain to {0, 1}n.

Interpolation Probability. For any tuples x, y with same index set, and a

random function F we call Pr[x
F7→ y] interpolation probability. Let x and y be

a tuple of elements from the domain and range of Γn (or Πn) over a same
set of indices. Moreover, let s be the number of distinct elements in x. It is

easy to see that the interpolation probability Pr[x
Γn7→ y] is positive and equals

to 2−ns if and only if (x, y) function compatible. Similarly, Pr[x
Π7→ y] is posi-

tive and equals to 1/P 2n

s if and only if (x, y) is permutation-compatible where
PNs := N(N − 1) · · · (N − s+ 1). This observation can be extended to the con-
ditional probability for the uniform random permutation. Let ((x, a), (y, b)) be
a permutation-compatible pair such that a ∩ x = φ and a ∈ dists then

Pr[a
Πn7→ b | x Πn7→ y] ≥ 2−ns.

2.2 Security Definitions

Pseudorandom Function and Permutation. We define distinguishing
advantage of an oracle algorithm A for distinguishing two random functions F
from G as

AdvA(F ; G) := Pr[AF = 1]− Pr[AG = 1]. (1)

We define prf-advantage and prp-advantage of A for an n-bit construction F

respectively by

Advprf
F (A) := AdvA(F ; Γn), Advprp

F (A) = AdvA(F ; Πn)
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. By a (q, `, t)-distinguisher A we mean, A makes at most q queries (query-
complexity) with at most `-bits in each query (data-complexity) and runs in
time at most t (time-complexity). One may include some other complexities,
e.g., memory complexity. We write Advxxx

F (q, `, t) = maxAAdvxxx
F (A) where

maximum is taken over all (q, `, t)-distinguishers A and xxx denotes either prf
or prp. A non-adaptive adversary fixes all its queries before it sees the responses.

Universal and Cover-Free. Now we define some other information-theoretic
security advantages (in which there is no presence of an adversary). Let F be an
n-bit random function then

Advuniv
F (L`) = max

m1 6=m2∈{0,1}≤`
Pr[F(m1) = F(m2)].

Let F be a random function which outputs two blocks, denoted (Σ,Θ) ∈ ({0, 1}n)2.
For a q-tuple of distinct messages m = (m1, . . . ,mq), we write F(mi) = (Σi, Θi).
For a q-tuple of pairs (σi, θi)i, we say that

1. σi (or θi) is fresh if it is not same as σj (or θj respectively) for some j 6= i.
2. We say that a tuple (σi, θi)i is cover-free if for all i, either σi or θi is fresh.

Definition 2. We define (q, L)-cover-free advantage as

Advcf
F (q, L) = max

m∈distq
Pr[(Σi, Θi)i is not cover-free].

Clearly, Advcf
F (q, L) ≤ q3Advcf

F (3, L). So it would be sufficient to concen-
trate on a triple of messages while bounding cover-free advantages. We say that a
construction F is (q, L, t, ε)-xxx if Advxxx

F (q, L, t) ≤ ε where xxx denotes either
univ or cf.

2.3 Coefficient H-Technique

In this section we discuss briefly Coefficient-H Tehcnique [20] which is also known
as Decorrelation Theorem due to Vaudenay [25].

Definition 3 (statistical distance). Let X and Y two random variables over
a set S. We define the statistical distance between X and Y as

∆(X ; Y ) = max
T⊆S

Pr[X ∈ T ]− Pr[Y ∈ T ].

We write X �ε Y if Pr[X = s] ≥ (1 − ε) × Pr[Y = s],∀s and we say
that X �ε Y over E, if this holds only for all s ∈ E. We state a tool which
would be used to bound the statistical distance between two random variables.
The coefficient H-technique is the generalized version of this result for bounding
distinguishing advantage of two random systems or probabilistic oracles.
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Lemma 2 (coefficient H-technique for random variables). Let X,Y be
two random variables over S such that X �ε Y over Vgood ⊆ S then,

∆(X ; Y ) ≤ ε+ Pr[Y 6∈ Vgood].

Proof. Let T ⊆ S . Then, X �ε Y over Vgood implies that

Pr[Y ∈ Vgood ∩ T ]− Pr[X ∈ Vgood ∩ T ] ≤ ε× Pr[Y ∈ Vgood ∩ T ] ≤ ε.

So,

Pr[Y ∈ T ]− Pr[X ∈ T ] ≤ ε+ (Pr[Y ∈ T \ Vgood]− Pr[X ∈ T \ Vgood])

≤ ε+ Pr[Y 6∈ Vgood]

Hence the result follows. ut

Theorem 1 (coefficient H-technique for random functions). Let F and G

be two random functions. Let Vgood ⊆ X q ×Yq. If (i) for all q-distinct messages
m = (m1, . . . ,mq), (F(mi))i �ε1 (G(mi))i over Vgood (ii) Pr[τ(AG) 6∈ Vgood] ≤ ε2
then AdvA(F ; G) ≤ ε1 + ε2.

Proof. Condition (i) says that, for all v ∈ Vgood, Pr[τ(AG) = v] − Pr[τ(AF) =
v] ≤ ε1.Pr[τ(AF) = v]. Now,

AdvA(F ; G) = Pr[AG = 1]− Pr[AF = 1]

=
∑
v∈V

(Pr[τ(AG) = v]− Pr[τ(AF) = v])

=
∑

v∈V
⋂
Vgood

(Pr[τ(AG) = v]− Pr[τ(AF) = v])

+
∑

v/∈Vgood

(Pr[τ(AG) = v]− Pr[τ(AF) = v])

≤ (
∑

v∈V
⋂
Vgood

ε1.Pr[τ(AF) = v] ) + Pr[τ(AG) /∈ Vgood]

≤ ε1 + ε2 ut

3 New Proposals for Beyond-Birthday Secure One Key
MAC

We introduce here the construction of two separate MACs. One is 1kf9 MAC
and another is 1k-PMAC+ both of the constructions require a single key K.
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Input: K
$←− K, M ← {0, 1}∗

Output: T ∈ {0, 1}n
M ← 0n||M ||10n−1−len(M) mod n;1

M1,M2, . . . ,Ml ← Partition(M);2

Y0 ← EK(0n);3

Z ← Y0;4

for j = 1 to l do5

Xj = Yj−1 ⊕Mj ;6

Yj = EK(Xj);7

Z = (Z ⊕ Yj);8

end

Θ
′

= 2Z;9

Σ
′

= 2Yl;10

Σ = fix0(Σ
′
);11

Θ = fix1(Θ
′
);12

T ← EK(Σ)⊕ EK(Θ);13

Return T ;14

Algorithm 1: Algorithm of 1kf9-MAC

3.1 1kf9-MAC

In this section we present the algorithm for 1kf9 MAC followed by its schematic
diagram. For any message M ∈ {0, 1}∗, 1kf9 Algorithm first prepends a all
zero block to the message and pads it to make the length multiple of the block
length n. Then M is iteratively processed through block cipher EK as shown in
Fig. 3.1 and the final tag T is obtained by XOR-ing EK(Σ) and EK(Θ).

EK EK EK EK EK

⊕ ⊕ ⊕ ⊕ ⊕

� fix0
Σ
′

2� � � � �2 2 2 2 2

⊕ ⊕ ⊕ ⊕ ⊕ fix1Θ
′

EK

EK

Σ

Θ

⊕

0n M1 M2 M3 Ml

X0 X1 X2 X3 Xl

Y0 Y1 Y2 Y3 Yl

T

0n

0n

Fig. 3.1. Construction of 1kf9-MAC
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3.2 1k-PMAC+

In this section we present the algorithm for 1k-PMAC+ followed by its schematic
diagram. ∆i is the encryption of field element Csti for i = 1, 2. After suitable

Input: K
$←− K, M ← {0, 1}∗

Output: T ∈ {0, 1}n
∆i ← EK(Csti) for i = 1, 2;1

M ←M ||10n−1−len(M) mod n;2

M1,M2, . . . ,Ml ← Partition(M);3

for j = 1 to l do

Xj = Mj ⊕ 2j−1 ·∆1 ⊕ 22(j−1) ·∆2;4

Yj = EK(Xj);5

end

Σ
′

= Y1 ⊕ Y2 ⊕ . . .⊕ Yl;6

Θ
′

= 2l · Y1 ⊕ 2l−1 · Y2 ⊕ . . .⊕ 2 · Yl;7

Σ = fix0(Σ
′
);8

Θ = fix1(Θ
′
);9

T ← EK(Σ)⊕ EK(Θ);10

Return T ;11

Algorithm 2: Algorithm of 1-Key PMAC+

padding of the message M , each block is processed in parallel fashion as shown
in Fig. 3.2. Σ

′
is obtained by sum of the all the intermediate outputs and Θ

′
is

obtained by a linear combination of the intermediate outputs. Σ is obtained by
fix0 on Σ

′
and Θ is obtained by fix1 on Θ

′
. Then the xor of EK(Σ) and EK(Θ)

is returned as the tag T of message M .

0n ⊕ ⊕ ⊕ . . . ⊕ ⊕ θ

M1 M2 M3 Ml−1 Ml

⊕∆1

∆2 ⊕
X1

⊕2 ·∆1

22 ·∆2 ⊕
X2

⊕22 ·∆1

24 ·∆2 ⊕
X3

⊕2l−2 ·∆2

22l−4 ·∆2 ⊕
Xl−1

⊕2l−1 ·∆2

22l−2 ·∆2⊕
Xl

Ek Ek Ek . . .
. . .

Ek Ek

Σ
′

fix0

θ
′

fix1

Ek

Ek

⊕ T

0n ⊕

�2l

⊕

�2l−1

⊕

�2l−2

⊕

�22

⊕

�21

Σ

Fig. 3.2. Construction of 1Key PMAC+



One-key Double-Sum MAC with Beyond-Birthday Security 11

3.3 Comparison Chart of Our Construction with 3kf9 and PMAC+

Construction Reference No.of Keys Required Security Bound

Sum of CBC [26] 4-Keys O(l4q3/22n)/O(l3q3/22n)

PMAC+ [27] 3-keys O(l3q3/22n + lq/2n)

3kf9 [28] 3-keys O(l3q3/22n + lq/2n)

1kf9 This Paper 1-key O(ql2/2n + q3l4/22n + q4l4/23n + q4l6/24n)

1k-PMAC+ This Paper 1-key O(ql2/2n + q3l4/22n + q4l4/23n + q4l6/24n)

3.4 Design Rationale

In 1kf9, we prepend a 0 block message to ensure that Σ,Θ 6= 0. Moreover, in
order to ensure that Σ 6= Θ, we fix the last bit of Σ

′
to 0 and that of Θ

′
to 1.To

ensure the deired rank as described in Section 9, we multiply the intermediate
output with 2 and add them.

In 1k-PMAC+ we use a double mask that ensures the rank of bad equations
described in Section 9 is at least 2 and we use fix0 and fix1 to ensure Σ 6= Θ.

4 Some Results on Sampling Distributions

4.1 With (out) replacement sampling

Let (Y1, . . . , Yr)
wor← S be a set of r samples drawn without replacement from a

set S. In other words, the conditional distribution

Yi | (Y1, . . . , Yi−1)
$← S \ {Y1, . . . , Yi−1}.

Similarly, for the with replacement sampling, we write U := (U1, . . . , Ur)
wr← S

which is same as drawing Ui’s uniformly and independently from the set S. Let
us consider the following question.

How close the sum of two WOR sampling to WR ?

More precisely, let U := (U1, . . . , Uq)
wr← {0, 1}n. We would like to obtain an

upper bound of the statistical distance

∆((Z1, . . . , Zq) ; (U1, . . . , Uq))

where Zi = Y1,i ⊕ Y2,i, 1 ≤ i ≤ q, and the joint distributions of Y ’s are any one
of the followings cases.

Case-1 (sum of two independent WOR over {0, 1}n): Y1 = (Y1,1, . . . , Y1,q)
wor← {0, 1}n

and Y2 = (Y2,1, . . . , Y2,q)
wor← {0, 1}n and Y1 ⊥ Y2.
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Case-2 (sum of two dependent WOR over {0, 1}n): (Y1,1, Y2,1, . . . , Y1,q, Y2,q)
wor←

{0, 1}n.

Case-3 (sum of two dependent WOR over S): (Y1,1, Y2,1, . . . , Y1,q, Y2,q)
wor← S ⊆

{0, 1}n for a set S with size 2n − σ, σ ≥ 0.

For the first two cases, Bellare et.al [2] had shown that ∆(Z ; U) ≤
q
2n + O(n × ( q

2n )1.5). Their analysis uses some advanced results of probabil-
ity theory (e.g., Azuma’s inequality and Chernoff theorem). For the first case,
later Lucks [14] provided an elementary proof with the upper bound O(q3/22n)
and Patarin [22] provides a much involved complex proof with the upper bound
O(q/2n).

In this paper, we consider the third case which also generalizes case 2 when
S = {0, 1}n. Our analysis is similar to that of Lucks [14] but much more sim-
plified and can be similarly applicable to the first case. In the next section, we
see the application of this result for analyzing one-key constructions of a specific
form. We now state the key lemma which would be used to bound the statistical
distance between sum of WOR sampling and WR sampling.

Lemma 3 (1-interpolation probability of sum of WOR samples). Let

S′ ⊆ {0, 1}n be a subset of size (2n−s′) and Un
$← {0, 1}n. Let (V,W )

wor← S′ be a
WOR sample of size 2 drawn from S′. Then, V ⊕W �ε Un over F∗2n := F2n\{0n}
where ε := s′2

(2n−s′)2 .

Proof. Let t ∈ F∗2n . For i = 1, 2, let Ai = {(a1, a2) : a1 ⊕ a2 = t, ai /∈ S′}.
Clearly, |Ai| ≤ s′. Note that {(x, y) ∈ S′ × S′ : x ⊕ y = t} = {(x, t ⊕ x) : x ∈
{0, 1}n} \ (A1 ∪A2). So,

Pr[V ⊕W = t] =
2n − |A1 ∪A2|

(2n − s′)(2n − s′ − 1)

≥ 2n − 2s′

(2n − s′)2
= 2−n(1− s′2

(2n − s′)2
). ut

Observation 1. The above result is also valid if (V,W )
$← S′ × T ′ such that

|S′| = |T ′| = 2n − s′. Then, exactly same argument and hence result holds (i.e.,
V ⊕W �ε Un over F∗2n . When s′ ≤ 2n−1, ε ≤ 4s′2/22n.

Theorem 2 (q-interpolation probability of sum of dependent WOR

samples over S). Let S ⊆ {0, 1}n of size 2n−s, (Y1,1, Y2,1, . . . , Y1,q, Y2,q)
wor← S

and let Z = (Z1 := (Y1,1 ⊕ Y2,1), . . . , Zq := (Y1,q ⊕ Y2,q)). Then,

Z �ε U over F∗2n where ε :=
qs2 + 2sq2 + 4q3/3

(2n − s− 2q)2
.
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Proof. Let Sc = {a0, a−1, . . . , a−s+1}. Let us fix i ≥ 1, t = (t1, . . . , tq) ∈ (F∗2n)q

and a1, a2, . . . , a2i−3, a2i−2 be distinct elements from S such that a2j−1⊕a2j = tj ,
1 ≤ j < i. By using Lemma 3 with S′ = {0, 1}n \ {aj : −s < j ≤ 2i − 2} and
s′ = s+ 2(i− 1), we have

Pr[Zi = ti | Y1,1 = a1, Y2,1 = a2, . . . , Y1,i−1 = a2i−3, Y2,i−1 = a2i−2] ≥ 1

2n
(1− εi)

where εi = (s+2(i−1))2
(2n−s−2(i−1))2 . Since this bound holds for any ai’s, we can conclude

that Pr[Zi = ti | Z1 = t1, . . . , Zi−1 = ti−1] ≥ 1
2n (1 − εi). After applying chain

rule for these conditional probabilities, we obtain that

Pr[Z = t] ≥ 2−nq(1−
∑
i

εi) ≥ 2−nq(1− qs2 + 2sq2 + 4q3/3

(2n − s− 2q)2
). ut (2)

Observation 2. Same argument also works when Y1 := (Y1,1, Y1,2 . . . , Y1,q)
wor←

S, Y2 := (Y2,1, Y2,2, . . . , Y2,q)
wor← T are two q-samples and Y1 ⊥ Y2 where S and

T are two subsets of {0, 1}n of size 2n − s. On the calculation of the conditional
probability of Zi, we set S′ = {0, 1}n \ (Sc ∪ {a1, a3, . . . , a2i−3}) and T ′ =
{0, 1}n \ (T c ∪{a2, a4, . . . , a2i−2}) and so we set s′i = s+ (i− 1). Then using our
Observation 1, the Equation (2) holds with εi = s′2i /(2

n−s′i)2. After simplifying∑
i εi, we can conclude that Z �ε U where ε = qs2+sq2+q3/3

(2n−s−q)2 ≤ 4qs2+4sq2+4q3/3
22n

provided s+ q < 2n−1.

Now we summarize our results in the view of all cases we initially aimed to
answer. We denote Zi = Xi⊕Yi and Z = (Z1, . . . , Zq) and U := (U1, . . . , Uq)

wr←
{0, 1}n.

Corollary 1. Let X
wor← S and Y

wor← T be two independent q-samples such that
S, T ⊆ {0, 1}n of size 2n − s. If s ≤ 2n−1 − q then

∆(Z ; U) ≤ q

2n
+

4qs2 + 4sq2 + 4q3/3

22n

over F∗2n .
In particular, for Case-1 we have S = T = {0, 1}n (i.e., s = 0) and so

∆(Z ; U) ≤ q
2n + 4q3/3

22n over F∗2n .

Corollary 2. Let (X1, Y1, . . . , Xq, Yq)
wor← S ⊆ {0, 1}n such that |Sc| := s ≤

2n−1 − 2q. Then (a) in (Case-3),

∆(Z ; U) ≤ q

2n
+

4qs2 + 8sq2 + 6q3

22n

over F∗2n .

If in addition if q ≤ s then ∆(Z ; U) ≤ q
2n + 18s3

22n . (b) For s = 0 (i.e, in Case-2)

we have ∆(Z ; U) ≤ q
2n + 6q3

22n over F∗2n .



14 Nilanjan Datta, Avijit Dutta, Mridul Nandi, Goutam Paul, Liting Zhang

4.2 Applications to PRF Security of Sum of Uniform Random
Permutation

Let Π be a uniform random permutation on {0, 1}n. Then, for any distinct

x1, . . . , xq, it is easy to see that Π(q)(x) := (Π(x1), . . . ,Π(xq))
wor← {0, 1}n.

So when Π1 and Π2 are two independent uniform random permutations then,

Π
(q)
1 (x)

wor← {0, 1}n, Π
(q)
2 (x)

wor← {0, 1}n and Π
(q)
1 (x) ⊥ Π(q)

2 (x) where x ∈ dist.

Case-a. The Case-1 actually talks about the pseudorandomness of sum of two
independent random permutations. More precisely, let SUMΠ1,Π2

1 (x) = Π1(x)⊕
Π2(x) where Π1 and Π2 are two independent random permutations. Then, using
Corollary 1, we have

Advprf

SUM
Π1,Π2
1

(q) ≤ q

2n
+

4q3/3

22n
.

Case-b. Case-2 talks about the pseudorandomness of (Π(x1) ⊕ Π(x2), . . .,
Π(x2q−2) ⊕ Π(x2q)) where x = (x1, . . . , x2q) is element wise distinct. We can

define a function SUMΠ
2 : {0, 1}n−1 → {0, 1}n mapping an (n − 1) bit string y

to Π(0‖y)⊕Π(1‖y). So using (b) of Corollary 2 we have,

Advprf

SUMΠ2
(q) ≤ q

2n
+

6q3

22n
.

The above construction has been analyzed in [2].

Case-c. Now we come to the Case-3 which deals with the pseudorandomness of

(Π∗(x1)⊕Π∗(x2), . . . ,Π∗(x2q−2)⊕Π∗(x2q)) where Π∗
$← Pa→b for two element

wise distinct s-tuples a, b, and x ∩ a = φ. Suppose we restrict the domain of
SUMΠ∗

2 (as defined above) to D := {y ∈ {0, 1}n−1 : 0‖y, 1‖y 6∈ a}. Then, for all
q ≤ s, we have

Advprf

SUMΠ
∗

2

(q) ≤ q

2n
+

18s3

22n
.

We also state a theorem involving interpolation probability which would be
used later for prf security analysis of sum-based construction. The proof of the
theorem is obvious from (a) of Corollary 2.

We define sum function over two blocks as follows: sumπ(x, y) = π(x)⊕ π(y)
and sumπ1,π2(x, y) = π1(x)⊕ π2(y)

Theorem 3. Let (x, y) be a permutation compatible pair of s-tuples. Let σ1, θ1,
. . ., σq, θq be 2q distinct elements from the set {0, 1}n \x. If s+ 2q ≤ 2n−1 then,
for any non-zero t1, . . . , tq ∈ {0, 1}n,

1

(2n − s)q
≥ Pr[(σi, θi)i

sumΠ7−→ t | x Π7−→ y] ≥ 2−nq(1− ε)

where ε = 4qs2+8sq2+6q3

22n .
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Proof. Set Y1,i = Πx→y(σi), Y2,i = Πx→y(θi) then (Y1, Y2)
wor← S := {0, 1}n \ y.

Hence we can apply Theorem 2 to conclude our theorem. ut
A simpler version of the above theorem when s = 0 and we consider sum of

two uniform random permutations, we have the following result. The proof is
again straightforward from Observation 2.

Theorem 4. Let (x, y) and (x′, y′) be two permutation compatible pair of s-
tuples. Let σ1, . . . σq be q distinct elements from the set {0, 1}n \ x and θ1, . . . θq
be q distinct elements from the set {0, 1}n \ x′. If s + q ≤ 2n−1 then, for any

non-zero t1, . . . , tq ∈ {0, 1}n, 1
(2n−s)q ≥ Pr[(σi, θi)i

sumΠ1,Π2

7−→ t | x Π17−→ y, x′
Π17−→

y′] ≥ 2−nq(1− 4qs2+4sq2+4q3/3
22n ).

5 A Generic Hash-then-Sum Construction

An affine mode is a deterministic oracle algorithm whose query computations
(functions) are affine functions and its oracle is some random function.

Block-Separated Double Block Construction. Let Cπ : {0, 1}∗ → R be
a permutation-based deterministic construction. When e is a blockcipher then for
any key K, eK is an n-bit permutation. Thus, a blockcipher based construction
CeK can be viewed as a permutation-based construction Cπ. When R = {0, 1}2n,
it is called a double block construction and we write the two output blocks as
Cπ(m) = (Σ,Θ). We say that C is block-separated if the range of possible
values of Σ and Θ are disjoint. More formally, for all m1 6= m2, and for all
permutation π if

Cπ(m1) = (Σ1, Θ1), Cπ(m2) = (Σ2, Θ2) ⇒ Σ1 6= Θ2.

For any double construction, with a minor modification, one can make it block-
separated. For example, let fix0 : {0, 1}n → {0, 1}n be a function mapping
x1x2 · · ·xn to 0x2 · · ·xn. Similarly, we define fix1 which fixes the first bits to 1.
Now, the double block construction defined as C′ = (Σ′, Θ′) is block-separated
where Σ′ = fix0(Σ) and Θ′ = fix1(Θ).

A Composition Theorem: PRF(U) ≡ PRF. It is well known [24] that com-
position of ε universal hash function H and a PRF g is a PRF which has been
proved using game-playing technique. For the sake of completeness, we formally
prove the theorem using Patarin’s Coefficient-H Techhnique.

Theorem 5. Let FK1,K2 := gK2 ◦ HK1 : {0, 1}∗ → {0, 1}n. Then,

Advprf
F (q, `, t) ≤ Advprf

g (q, `, t′) +

(
q

2

)
×Advuniv

H (`)

where t′ = t + O(qT`) and T` denotes the maximum time for computing H(m)
for any `-bit message m.
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Proof. For the sake of completeness, we quickly revise the proof of the statement
by using coefficient H-technique. By using standard reduction argument, we can
consider the composition function Γn ◦HK1

at the cost of Advprf
g (q, `, t′). Now,

for any q-tuplem = (m1, . . . ,mq) of distinct messages, we denoteHK1
(mi) = Xi.

For all t = (t1, . . . , tq) ∈ ({0, 1}n)q, the interpolation probability

PrΓn,K1 [m
Γn◦HK17−→ t] ≥

∑
x∈distq

Pr[x
Γn7−→ t | X = x]× Pr[X = x]

= 2−nq × Pr[X ∈ distq]

≥ 2−nq × (1−
∑

1≤i<j≤q

Pr[Xi = Xj ])

≥ 2−nq × (1−
(
q

2

)
Advuniv

H (`)). ut

Beyond Birthday Security. To achieve the beyond birthday security, one
can consider HK1

: {0, 1}∗ → {0, 1}2n and gK2
: {0, 1}2n → {0, 1}n. So if

Advuniv
H (`) = O(2−2n) and g has beyond birthday prf-security then we can

achieve beyond birthday prf-security for the composition function 5 . However,
obtaining a double-block beyond birthday secure prf based on a (single-keyed)
block cipher would not be easy and efficient. One may try some variants of 6
rounds Luby-Rackoff [19] or Benes-Butterfly construction [21]. However, we do
not know any such single key efficient construction.

5.1 Hash-Then-Sum Construction

In this paper, we consider a special and very simple form of g function, namely
the sum function over two blocks, which is considered in [2, 14]. We define

sumπ1(x, y) = π1(x)⊕ π1(y), and sumπ1,π2(x, y) = π1(x)⊕ π2(y)

where π1 and π2 are two independent n-bit functions (possibly permutations).
Given a double-block construction HK , let’s consider the following three com-
position rules depending on key reuse.

1. three-key construction CK,π1,π2

3 := sumπ1,π2 ◦ HK .

2. two-key construction CK,π1

2 := sumπ1 ◦ HK .
3. one-key construction Cπ1 := sumπ ◦ Hπ.

Note that we can not apply the above composition result as the sum con-
struction is clearly not a prf over two blocks. So we need a different type of
composition result for sum-based construction. In [6], it has been proved that
sumfK1

,fK2 ◦ HK is unforgeable whenever H is cover-free and f is unforgeable.
The same can be proved for PRF security instead of unforgeable.

5 This could be feasible as it is a collision probability for double-block construction.
However, a term ` denoting the maximum message size may appear.
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HK

π1 π2

⊕

CK,π1,π2
3 CK,π1

2 Cπ1

HK

π1 π1

⊕

Hπ

π π

⊕

Fig. 5.1. Hash-then-Sum construction

5.1.1 Hash-then-sum based on PRF.

Lemma 4. For any q, `, the three-key construction C3 := sumfK1
,fK2 ◦ HK sat-

isfies the following:

Advprf
C3 (t, q, `) ≤ Advcf

H(q, `) + 2Advprf
f (t′, q, `).

Proof. Fix a cover-free tuple (σi, θi)i∈[q]. We denote the event

E(σ, θ) ≡
(
(HK(mi))i∈[q] = (σi, θi)i∈[q]).

Therefore,

E(σ, θ) ≡
(
(HK(mi))i∈[q] = (σi, θi)i∈[q]).

Therefore,

Pr[m
C37→ t | E] = Pr[m

C37→ t] = Pr[Γ1(σi)⊕ Γ2(θi) = ti,∀i] = 2−nq.

The first equation follows from the argument that the randomness for H is inde-
pendent of Γ1’s and Γ2’s. The last equality follows from the following argument.
Let ψi denote the one of the fresh blocks from σi and θi and ψ′i denotes the
other. Then, by conditioning on the output of ψ′i’s the above probability be-
comes the interpolation probability of a uniform random function for q distinct
inputs which equals to 2−nq. As the conditional probability is same for all con-
dition events, the unconditional probability is also equal to 2−nq. Therefore,

Pr[m
C37→ t] = Pr[m

C37→ t | E]× Pr[ E]

≤ (1− ε)
2nq

where ε := Pr[Ec]. ut
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Remark 1 The above three-key construction is a potential candidate for having
beyond birthday security. Note that from Definition2, Advcf

H(q, `) ≤ q3Advcf
H(3, `).

So, for any three messages m1,m2,m3 with m1 6= m2,m3, if

Pr[Σ1 = Σ2, Θ1 = Θ3] = O(`c2−2n)

for some small constant c then we have the beyond birthday security for small `.
Intuitively, the event Σ1 = Σ2, Θ1 = Θ3 deals two (possibly linear independent)
equations and it is feasible to have such a bound.

5.1.2 Hash-then-Sum based on Pseudorandom Permutation.

Abstraction of PMAC+, 3kf9 PMAC Plus [27] and 3kf9 [28] are block-
cipher (assumed to be a pseudorandom permutation) based sum constructions.
These are three-key construction like C3. After modeling a blockcipher to be a
prf, one can apply the above Lemma 4. However, block cipher can ensure prf with
a maximum birthday bound security. So we need to treat it differently to have
beyond birthday analysis. The designers of PMAC Plus and 3kf9 have proved the
security for these individual constructions. Here, we abstract their analysis and
provide a generic composition results. In the following, let Π,Π1, Π2 be random
permutations over the domain {0, 1}n and range {0, 1}n. We state the results for
the constructions using uniform random permutations instead of pseudorandom
permutation as the standard reduction can be applied for the later constructions.
As HK is a double block construction, we write HK = (HK,1,HK,2) where
HK,1,HK,2 are single block functions.

Theorem 6. Let HK be a (q, εcf )-cover-free function and for all i = 1, 2, HK,i
are εuniv-universal hash functions. Then, the following holds.

1. C3 := sumΠ1,Π2 ◦ HK is (q, `, ε)-prf where

ε = εcf + (q +
q2

2n
)εuniv +

6q3`3

22n
.

2. C2 := sumΠ ◦ HK is (q, `, ε)-prf where

ε = εcf + (2q +
2q2

2n
)εuniv +

6q3`3

22n
.

Proof. The proofs for both constructions are similar except that we have to
analyze sum of two independent or dependent uniform random random permu-
tations. As the later involves more dependency, we only prove for C2. We provide
the proof by using coefficient H-technique for which it would be sufficient to ob-
tain a lower bound of interpolation probability.

Informally, given that we obtain cover-free outputs (σi, θi)i fromH, for all i at
least one block is fresh. If both are fresh then we call i free. For all non-free indices
i, exactly one, denoted ψi, of σi and θi is not fresh and the other denoted by ψ

′

i, is

fresh. We sample the outputΠ(ψ
′

i) which will be forced as the sum of these values
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are fixed. Note that in the interpolation probability calculation, we fix some
values for sum beforehand. Now, this will have high interpolation probability
due to low collision probability of HK,i’s and independence of sampling Π. In
this way, we obtain high interpolation probability except for free i. Now we can
apply sum of a uniform random permutation sampled from a restricted class of
permutation to complete the interpolation probability for free indices.

Bad view. A tuple t := (t1, . . . , tq) is said to have a r-collision if there exists an
r-set I such that ti = tj for all i, j ∈ I. Let

Vbad = {t : ∃i, ti = 0} ∪ {t : t has 3-collision}. (3)

For a random function Γ and for any adversary A,

Pr[τ(AΓ ) ∈ Vbad] ≤
q

2n
+

q3

22n
. (4)

Now we fix any t 6∈ Vbad and a q-tuple m of distinct messages. We write
HK(mi) = (Σi, Θi), 1 ≤ i ≤ q. Let (σi, θi)i∈[q] be any tuple.

For any i exactly one of the these will happen:
(i) i is free
(ii) σi is fresh and θi is not
(iii) θi is fresh and σi is not
(iv) both σi and θi are not fresh.

Now let IΣ = {i : σi is not fresh } and similarly we define IΘ. We define

(ψi, ψ
′
i) =

{
(σi, θi), if i ∈ IΣ
(θi, σi), if i ∈ IΘ

Note that ψ′i’s are always fresh and ψi’s are not. We write I = IΣ ∪ IΘ.

We call a tuple ((σi, θi)i∈[q], (ψj , wj)j∈I) good w.r.t. t if all of the followings
happen:

1. E1 ≡: ((σi, θi)i∈[q] is a cover-free tuple,
2. E2 ≡: whenever ti = tj , σi 6= σj and θi 6= θj ,
3. E3 ≡: for w′i = wi + ti, i ∈ I, the tuple w′I ∈ dist and
4. E4 ≡: w′I ∩ wI = φ.

Note that, wj is the Π(ψj).
Note, due to the choice of the q-tuple t, at most for q/2 pairs (i, j), ti = tj can
happen.

Interpolation probability for good tuple. Let us fix a good tuple as defined
above. We denote the event

E(σ, θ, w) ≡
(
(HK(mi))i∈[q] = (σi, θi)i∈[q], Π(ψj) = wj∀j ∈ I

)
.

It is easy to see that given E the interpolation event mI
C27−→ tI is same as

ψ′I
Π7−→ w′I . Also, observe that, ψ′I ∈ dists and ψ ∩ ψ′ = φ where s = |I|. Due to



20 Nilanjan Datta, Avijit Dutta, Mridul Nandi, Goutam Paul, Liting Zhang

the definition of good tuple, w′I ∈ dists, w
′
I ∩wI = φ. Whenever ti = tj , we have

wi 6= wj as w′i 6= w′j . At the same time, by definition of good tuple we know that
σi 6= σj and θi 6= θj . So, (ψ′I , ψI)←→ (w′I , wI).

Combining all these, we have

Pr[mI
C27−→ tI | E] = Pr[ψ′I

Π7−→ w′I | E]

= Pr[ψ′I
Π7−→ w′I | ψI

Π7−→ wI ] (As K and Π are independent)

≥ 1

2ns
(As (ψ′I , ψI)←→ (w′I , wI), ψ

′
I ∩ ψI = φ and ψ′I ∈ dists )

Using the above result, we find the following conditional probability

Pr[m
C27−→ t | E] = Pr[mIc

C27−→ tIc | E ∧mI
C27−→ tI ]× Pr[mI

C27−→ tI | E]

≥ Pr[(σi, θi)i∈Ic
sumΠ7−→ tIc | (ψI , ψ

′
I)

Π7−→ (wI , w
′
I)]×

1

2ns

≥ (1− 6s3/22n)

2nq
[From (b) of Corollary 2]

Now, we find our desired interpolation probability as we sum over all good tuples:

Pr[m
C27−→ t] ≥

∑
E

Pr[m
C27−→ t | E]× Pr[E]

≥ (1− 6s3/22n)

2nq
× (1− ε)

where ε = Pr[(Σi, Θi)i∈[q], (Ψi, Π(Ψi))i∈I is not good ].

Bounding ε. By using the definition of good tuple and using the union bound,
we have ε ≤ ε1 + ε2 + ε3 + ε4 where εi = Pr[Eci ], 1 ≤ i ≤ 4. Now we bound each
εi as follows:

(a) ε1 = Pr[(Σi, Θi)i is not cover-free] ≤ εcf .
(b) ε2 =

∑
i6=j:ti=tj (Pr[Σi = Σj ] + Pr[Θi = Θj ]) ≤ 2qεuniv.

(c) ε3 = Pr[w′I ∈ dist] ≤ q2

2n εuniv. The proof is given below:

ε3 =
∑

i 6=j:ti 6=tj

Pr[i, j ∈ I,Π(Ψi)⊕Π(Ψj) = ti ⊕ tj ]

≤
∑

i,j,k,ψi,ψj :i 6=j,ti 6=tj

Pr[Π(Ψi)⊕Π(Ψj) = ti ⊕ tj | Ψi = Ψk = ψi, Ψj = ψj ]

× Pr[Ψi = Ψk = ψi, Ψj = ψj ]

≤
∑

i,j,k,ψi,ψj :i 6=j,ti 6=tj

Pr[Π(ψi)⊕Π(ψj) = ti ⊕ tj ]

× Pr[Ψi = Ψk = ψi, Ψj = ψj ]

≤
∑
i,k

1

2n − 1
× Pr[Ψi = Ψk]
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The last two inequalities follows from the two fact: (i) K is independent of Π
and (ii) for any a, b,Pr[Π(a)⊕Π(b) = c] ≤ 1/(2n − 1)

(d) ε4 = Pr[w′I ∩wI = φ] =
∑
i 6=j:ti 6=tj Pr[i, j ∈ I,Π(Ψi)⊕Π(Ψj) = ti] ≤ q2

2n εuniv.

This proof is identical to case (c).

Adding these four error terms, we obtain an upper bound of ε. By using coeffi-
cient H-technique, our result follows. ut

5.2 PRF-security of Single Key Hash-then-Sum Construction

In this paper, we show a prf-security bound for one-key hash-then-sum construc-
tions C1 := sumΠ ◦ Hπ. Note that the hash function is also permutation based
and uses same permutation Π used in the outer layer sum function. The PRF
security analysis is similar to that of Theorem 6. However, it requires to handle
more bad cases. Now we first develop the basic notations and definitions similar
to the two-key and three-key constructions.

Given any permutation π, let τ(H(m)→q π) = (x, y) (the pair of inputs and
outputs of π during the computations of Hπ(mi) = (σi, θi) for all i ∈ [q]. We
also write x = (xi,j : i ∈ [q], j ∈ [Li]) and similarly y for the same index set.
Note that (σi, θi)i is uniquely determined by (x, y).

Definition 4. For any i, we say that σi is x-fresh if it is not same as σj for
some j 6= i or xk for any k. Similarly, we define for x-freshness of θi. We say
that a tuple (σi, θi)i is x-cover-free (or (x, y) is extended-cover-free) if for all
i, either σi or θi (or both) is x-fresh. If both σi and θi are x-fresh we call i to
be free.

We denote IΣ = {i : σi is not x-fresh } and similarly IΘ and let I = IΣ ∪ IΘ.
For all i ∈ IΣ , we define (ψi, ψ

′
i) = (σi, θi) and similarly, for all i ∈ IΘ, we

define (ψ′i, ψi) = (σi, θi) and so ψi’s are always non-fresh and ψ′i’s are fresh. We
say that ψi is old if there exists xj such that ψi = xj , otherwise ψi is called
new. We define Iold = {i : ψi is old} and similarly Inew = {i : ψi is new}. Let
I = Iold ∪ Inew.

Definition 5. We say that a tuple ((x, y), wInew) good if followings happen:

1. E1 ≡ (x, y) is extended-cover-free,
2. E2 ≡ whenever ti = tj, σi 6= σj and θi 6= θj,
3. E3 ≡ (x, ψI , ψ

′
I) ←→ (y, wI , w

′
I) where wi = yj,a for all i ∈ Iold with ψi =

xj,a and w′i = wi + ti, ∀i ∈ I.

By definition of I and (ψI , ψ
′
I) we have (i) ψ′I ∈ dist and (ii) ψ′I ∩ (x, ψI) = φ.

Thus, the event Ec3 (in presence of E1 and E2) is equivalent to at least one of
the following events happen:

1. wi ⊕ wj = ti ⊕ tj for some i, j ∈ I such that ti 6= tj .
2. wi ⊕ ti = yj,a or = wk for some k ∈ I,
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3. wi = yj,a for some i ∈ Inew,
4. (ψInew , wInew) is permutation compatible.

Note that the 4th bad equations can be easily avoided by choosing wInew such
that (ψInew , wInew) is a permutation compatible. Now we identify and explicitly
list down all the bad equations for which the tuple ((x, y), wInew) is not good, in
Table 5.2.

(L11) Σi = Σj , Θi = Θk
Fully Covered (L12) Σi = Xj,a, Θi = Θk

(L13) Σi = Σj , Θi = Xk,b
(L14) Σi = Xj,a, Θi = Xk,b
(L21) Σi = Xj,a, Yj,a ⊕ ti = Yk,s

(X,Y )-Pseudo Cover-1 (L22) Θi = Xj,a, Yj,a ⊕ ti = Yk,s
(L23) Σi = Xk,a, Σj = Xl,b, Yk,a ⊕ Yl,b = ti ⊕ tj

(X,Y )-Pseudo Cover-2 (L24) Θi = Xk,a, Θj = Xl,b, Yk,a ⊕ Yl,b = ti ⊕ tj
(L25) Σi = Xk,a, Θj = Xl,b, Yk,a ⊕ Yl,b = ti ⊕ tj
(L31) Σi = Xj,a, Yj,a ⊕ ti = wk,s
(L32) Θi = Xj,a, Yj,a ⊕ ti = wk,s

(X,Y,wInew ) (L33) Σi = Σj , wi + ti = wj + tj
Pseudo Covered (L34) Σi = Σj , wi + ti = wj

(L35) Θj = Xl,b, Yk,a ⊕ Yl,b = ti ⊕ tj

Table 1. Table representing bad equations for fully covered, pseudo-covered cases.

Definition 6. 1. A construction HΠ is called (q, `, ε)-extended-cover-free if
for all q-tuple m of distinct messages of size at most `, PrΠ [∃ fully covered i] ≤
ε.

2. It is called (q, `, ε)-pseudo-cover-free w.r.t. t if for all q-tuple m of distinct
messages of size at most `, if PrΠ [∃i : i is(X,Y ) pseudo-covered] ≤ ε :=
ε1 + ε2 where ε1 := PrΠ [∃i : i is(X,Y )-pseudo-cover-1] and ε2 := PrΠ [∃i :
i is(X,Y )-pseudo cover-2].

3. It is called ε-extended universal if HΠi ’s are ε universal and for all pairs
m = (m1,m2) of distinct messages PrΠ [Σ1 = Xi,j ],Pr[Θ1 = Xi,j ] ≤ ε for all
i = 1, 2 and j ∈ [Li].

Theorem 7. If H is block-separated, (q, `, εecf )-extended-cover-free, (q, `, εpcf )-
pseudo-cover-free for a q-tuple t and εeuniv-extended universal then C1 := sumΠ ◦
HΠ is (q, ε)-prf where

ε = εecf + εpcf + 2qεeuniv + +
18s3

22n
.

Note that we should expect O(s3/22n) errors for εecf and εpcf as it deals two
(apparently) non-trivial equations. If so, then only we can claim beyond birthday
security for the construction.
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Proof. Bad view: A tuple t := (t1, . . . , tq) is said to have r-collision if there
exists an r-set I such that ti = tj for all i, j ∈ I. Let

Vbad = {t : ∃i, ti = 0} ∪ {t : t has 3-collision}.

For a random function Γ and for any adversary A,

Pr[τ(AΓ ) ∈ Vbad] ≤
q

2n
+

q3

22n
.

Now we fix any t 6∈ Vbad and a q-tuple m of distinct messages.

Interpolation probability for good tuple. Let us fix a good tuple ((x, y), wInew)
as defined in Definition 5. We denote the event

E(x, y, w) ≡
(
x

Π7−→ y,Π(Ψi) = wi∀i ∈ Inew)

. It is easy to see that given E the interpolation event mI
C17−→ tI is same as

ψ′I
Π7−→ w′I . Also observe that ψ′I ∈ dist and (ii) ψ′I ∩ (x, ψI) = φ where s = |I|.

Due to the definition of good tuple wI′ ∈ dist and wI′ ∩wI = φ. Moreover (x, y)
is permutation computable for Π. Therefore, (x, ψI , ψ

′
I) ←→ (y, wI , w

′
I), where

ψ′I is element-wise distinct and distinct from other inputs.

Combining all these, we have

Pr[mI
C17−→ tI | E] = Pr[ψ′I

Π7−→ w′I | E]

= Pr[ψ′I
Π7−→ w′I | (x, ψI)

Π7−→ (y, wI)].

≥ 1

2ns
As, (ψ

′

I , ψI)←→ (w
′

I , wI), ψ
′

I ∩ (x, ψI) = φ, ψ
′

I ∈ dist

Using the above result, we find the following conditional probability

Pr[m
C17−→ t | E] = Pr[mIc

C27−→ tIc | E ∧mI
C17−→ tI ]× Pr[mI

C17−→ tI | E]

≥ Pr[(σi, θi)i∈Ic
sumΠ7−→ tIc | (x, ψI , ψ

′
I)

Π7−→ (y, wI , w
′
I)]×

1

2ns

≥ 2−nq × (1− 18s3/22n.) [From Corollary 2].

Now, we find our desired interpolation probability as we sum over all good tuples:

Pr[m
C17−→ t] ≥

∑
E

Pr[m
C17−→ t | E]× Pr[E]

≥ (1− 18s3/22n)

2nq
× (1− ε)

where ε = Pr[(X,Y )i∈[q], (Π(Ψj))j∈I is not good ].

Bounding ε. By using the definition of good tuple and using the union bound,
we have ε ≤ ε1 + ε2 + ε3 where εi = Pr[ Eci ], 1 ≤ i ≤ 3. Now we bound each εi as
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follows

(a) ε1 = Pr[(x, y) is not extended-cover-free] ≤ εecf .
(b) ε2 =

∑
i6=j:ti=tj (Pr[Σi = Σj ] + Pr[Θi = Θj ]) ≤ 2qεuniv.

(c) ε3 = εpcf as the event Ec3 in presence of E1 and E2 is same as violating
pseudo-cover-free.
Summing these four error terms, we obtain an upper bound of ε. The rest follows
by using coefficient H-technique. ut

6 A Generic PRF Bound using Rank and Accident

6.1 Some Notes from Linear Algebra

A linear equation L(X1, . . . , Xs) := L1 ·X1 + · · · + Ls ·Xs over the finite field
F2n

6 of size 2n with s variables can be identified as an s-tuple (L1, . . . , Ls). Let
L = {L1, . . . , Lq} be a q-set of linear equations with s-variable, then L can be
viewed as an q × s matrix L := ((Li,j))i,j where Li,j is the jth coefficient of Li.
rank(L) denotes the rank of the matrix L.

Reducing Linear Equations By Eliminating Dependent Variables. Let
L be a s-variable linear equation over F2n . Then, given any equivalence relation
∼ over [s] one can reduce the equation L by eliminating dependent variables
assuming that the variables induces the collision relation ∼. For example let
L = X1 + aX2 + X3 + bX4 + cX5 for some constant a, b, c and let ∼ be an
equivalence relation on [5] corresponding to the partition {{1, 3, 4}, {2, 5}}. If
X := (X1, X2, X3, X4, X5) induces ∼ then X1 = X3 = X4 and X2 = X5. So, by
eliminating X3, X4, X5, the equation L(X) can be simplified to bX1 +(a+ c)X2.
One can also eliminate X1, X3, X5 and so the choice of free and determined
variables are not unique. In this paper we keep the variables whose indices are
minimum w.r.t. some natural order. Let ∼ have c classes and I = {i1, . . . , ic}
be the set consisting of all minimum elements from each c classes. The XI is a
tuple of free variables and the rest of the variables can be uniquely determined
from XI . After eliminating the determined variables, the simplified (also called
reduced) equation would be denoted by L∼(XI). Note that

for all x, ∼x=∼ ⇒ L∼(xI) = L(x). (5)

We can also reduce when the restrictions among variables are some general linear
equations instead of equality or collision relation (which is also a special form of
linear equations). Let R be a set of linear equations over s-tuple of variables X
and L(X) be the target linear equation which is going to be reduced by applying
the restrictionR. We can then similarly reduce the equation L by eliminating the
dependent variables with free variablesof R after applying the linear restrictions

6 We implicitly fixed a primitive polynomial through which the multiplication is de-
fined. In this paper, the whole analysis is independent of the choice of the polynomial
and so we do not explicitly specify it.
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R. Let XI be the free variables in R which determine the rest of the variables.7

Note that |I| = s − rank(R). Then by applying the linear dependencies of XIc

on XI , we can reduce L(X) to an equation of the form LR(XI). We similarly
have

∀L′ ∈ R, L′(x) = 0⇒ LR(xI) = L(x). (6)

In the last section, we have seen that one-key sum-based construction can
be bounded in term of the advantages of extended-cover-free, pseudo-cover-free
and universal properties of the underlying construction CΠ . In case of an affine
mode, all these advantages are probability of some affine equations over Y , the
intermediate output tuple. Even if the equations happens to be linearly inde-
pendent, we cannot have an estimate of these events (i.e extended-cover-free,
pseudo-cover-free and universal) as Yi’s are dependent. So we need to identify
a sub-tuple YI which behaves “like uniform and independent random variables”
and then express the linear equations in terms of YI . In the following subsection,
we formally define what we mean by “behaves like uniform and independent”.

6.2 Almost Independent Sampling

WR sampling is an independent sampling, but WOR is not. But they share
common features in terms of conditional entropy. In particular, the conditional
distribution of ith sample has high entropy when i is not very close to total
population size. We formally define it by almost-independence.

Definition 7. (X1, . . . , Xq) is called ε-almost-independent if for all t1, . . . , tq,
and for all i, the conditional probability

Pr[Xi = ti | X1 = t1, . . . , Xi−1 = ti−1] ≤ ε.

If (X1, . . . , Xq)
wr← S then (X1, . . . , Xq) is also |S|−1-almost-independent.

Similarly, if (X1, . . . , Xq)
wor← S then (X1, . . . , Xq) is also (|S| − q)−1-almost-

independent. Now we consider a different example of almost-independent random
variables obtained by conditioning WR samples.

Example 1. Suppose {Ei(x) : 1 ≤ i ≤ s} is a set of s affine equations8 over
GF (2n) in q variables x1, . . . , xq. We write ¬Ei(x) to denote the affine inequation.
We write the set

E ′ = {(x1, . . . , xq) ∈ GF (2n)q : ∀i,¬Ei(x)}.

Let X := (X1, . . . , Xq) be a WR samples from S. Then, the conditional distri-
bution of

X | (¬Ei(X))i is (2n − s)−1-almost-independent.

7 Like collision relation, choice of I is not unique. However, we implicitly fix a choice.
8 For example, when E(x) = {xi = xj : i 6= j}.
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As X is uniform, the conditional distribution is actually uniformly sampled from
the set E ′ and hence the conditional distribution of Xi given (Xj)j 6=i is uniform
over a set of size at least 2n − s.

Lemma 5. Let X1, . . . , Xq is ε-almost-independent over GF (2n), and let L1,
. . ., Lr be r linearly independent equations with q variables over the finite field
GF (2n). Then, for any constants c1, . . . , cr ∈ GF (2n), we have

Pr[Li(X1, . . . , Xq) = ci, 1 ≤ i ≤ q] ≤ εr. (7)

Proof. By using elementary operations on the vectors Li’s we can equivalently
express the set of equations as L′i(X1, . . . , Xai) = c′i, 1 ≤ i ≤ r. Now, note that
Xi is almost independent conditioned on X1, . . . , Xi−1 with probability at most
ε. As there are r many linearly independent equations we can find r many such
X ′is. Thus the result holds. ut

Remark 2 Almost-independent is important for bounding the set of linearly
independent equations. In general, we can not bound it..

6.2.1 Conditional WOR Sampling Now we consider a variant of WOR
sampling, called conditional WOR sampling. This sampling scheme is mo-
tivated from the affine mode. More precisely, during the computation of per-
mutation based affine mode, the intermediate outputs forms a conditional WOR
sample. Informally, depending on the previous sample values, a conditional WOR
sampling scheme either makes a fresh WOR sample or it choose one of the spe-
cific previous values. Clearly, it can not be almost-independent as the sample
values can be same as the previous values. Later we identify a (random) subset
of the sample which would constitute an almost independent random variables.

Let Ai be an affine equation over GF (2n) with i − 1 variables, 1 ≤ i ≤ σ
′
.

The samples Y = (Y1, . . . , YL) is defined as follows.

1. For i = 1 to L, we define Xi and Yi recursively as follows:
• Xi = Ai(Y1, . . . , Yi−1) and

• Yi =

{
Yj if for some j < i,Xi = Xj ;
$← {0, 1}n \ {Yj : 1 ≤ j < i} otherwise.

Definitely Yi’s are not almost-independent as Yi = Yj for some conditional
choices of Y1, . . . , Yi−1. So we now identify a set of (random) indices I for which
Yi’s behave almost-independently for all i ∈ I. But, this I is a random set and
so we will consider the conditional distribution of YI := (Yi)i∈I given I (more
precisely given an equivalence relation ∼ which uniquely determines I). Then,
this conditional distribution would behave almost-independently. The details are
given below.

Definition 8. Let Y = (Y1, . . . , YL) be an A-conditional WOR L-sample. We
define an (induced) equivalence relation ∼Y on [L] as i ∼ j if and only if Ai(Y ) =
Aj(Y ) (and hence Yi = Yj. We say that an equivalence relation ∼ is realizable
if Pr[∼Y =∼] > 0.
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Let J := (J1, . . . , Js) be the first indices at which Xi-values (i.e., Ai values)
are fresh. In other words, these are the minimum value for the equivalence classes
and hence Ji’s are uniquely determined from ∼. Note that J1 = 1. Moreover, Xi

can be expressed as some affine function, denoted Ai, over YJi ’s. In other words,
Ai(YJ) = Ai(Y ) for all i. Now, consider the following set of linear equations

Ai(YJ1 , . . . , YJs) = Aj(YJ1 , . . . , YJs), ∀i ∼ j.

These conditions restrict the values of YJi ’s.

Definition 9 (accident [4, 18]). Let ∼ be a realizable equivalence relation. We
define accident of ∼, denoted acc(∼), the rank of the set of linear equations:

Ai(YJ1 , . . . , YJs) = Aj(YJ1 , . . . , YJs), ∀i ∼ j.

Let I ⊂ {J1, . . . , Js} be the set of free variables of size s− a, which appear first,
such that YIj ’s will determine rest of the Y values. We call I to be the set of free
indices associated with ∼.

Proposition 1. Let ∼ be a realizable equivalence relation and let I be the corre-
sponding indices as defined above. Then, the conditional distribution of YI | ∼Y =∼
is (2n − L2)−1-almost-independence.

Proof. We identify a set of inequations ¬E and then we show that YI | ∼Y =∼
and UI | ¬E(UI) have same distributions where UI is the WR sample. Thus from
Example 1 the result follows. ut

6.3 Connection between conditional WOR sample and blockcipher
based Affine Construction

Let C be an affine construction meaning that the intermediate inputs (the inputs
of the blockcipher) is an affine function of previous intermediate outputs and
message blocks. Then, all intermediate outputs of the computation of one or
more messages can be viewed as a conditional WOR sampling for a suitable
choices of affine functions. We can similarly define accident of a permutation for
a tuple of messages.

For any pair (m,π) of q-tuple of distinct messages and a permutation, we
associate the following objects:

1. equivalence relation (which is same as the structure graph in case of CBC
construction) [4] on intermediate outputs Y with s many classes,

2. accident a := accm(π), representing the number of linearly independent re-
strictions and

3. and a set of indices I of size s − a such that YI is (2n − (σ
′
)2)-almost-indp

where σ
′

is the total number of message blocks.

We say that a permutation is not allowed w.r.t. a q-tuple of distinct mes-
sages m := (m1, . . . ,mq), if
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1. for all i, accmi(π) ≥ 1,
2. for all i, j, k, accmi,mj ,mk(π) ≥ 2 and
3. for all i, j, k, l, accmi,mj ,mk,ml(π) ≥ 3,

Lemma 6 ( [18]). For any realizable equivalence relation ∼ with accident a
Pr[∼Y =∼] ≤ 1

(2n−L)a . The number of realizable equivalence relation with acci-

dent a is at most (
(
s
2

)a
).

We skip the proof of bounding the number of realizable equivalence relations
with accident a. Informally, to each an a accident realizable relation, we would
be able to uniquely identify a basis of a linear equations (there are several choices
of basis, but a special way of selecting basis will ensure the uniqueness of the
choice). Since each equation can be chosen at most

(
s
2

)
ways, the number of ways

we can choose a special basis is at most
(
s
2

)a
.

Lemma 7. Probability that a random permutation is not allowed for a tuple of
q messages is at most

qL2

2n
+
q2L4

22n
+
q3L6

23n
.

A not allowed permutation will be treated as a bad permutation. We make
our analysis for allowed permutation. Note that a permutation is allowed for
a q-tuple of messages if and only if for all distinct i, j, k; π is also allowed for
(mi,mj ,mk).

6.4 PRF Bound of Single-Key Hash-then-Sum Construction
through rank analysis

Lemma 8. If C is (ε, 3)-extended-cover-free then C is (
(
q
3

)
ε, q)-cover-free. Sim-

ilarly, if C is (ε, 3)-pseudo-cover-free-1 then C is (
(
q
3

)
ε, q)-pseudo-cover-free-1.

Moreover if C is (ε, 4)-pseudo-cover-free-2 then C is (
(
q
4

)
ε, q)-pseudo-cover-free-

2.

Applying this result to Theorem 7, it would be sufficient to bound, extended-
cover-free for three messages and pseudo-cover-free advantages for three and four
messages. However, for some constructions, we may not be able to obtain desired
bound. So we need to consider allowed permutations.

Given, a set of affine equations L and an equivalence relation ∼, we define the
extended-rank of the pair (L(Y ),∼) as acc(∼)+rank(L′(YI)) where L′(YI) is the
reduced form of the equation L(Y ) after applying equivalence relation and the
′a′ restrictions induced by the accidents. Let {Li : i ∈ B} be a set of systems of
linear equations. Note that for all i ∈ B, Li is a system of linear equations. Now
we identify the set of systems of linear equations which are actually obtained
from different bad cases for three messages m := (m1,m2,m3) as shown in
Table 5.2. We have another set of single equations indexed by B′ as shown in
Table 6.4. Let B1,B2,B3,B4 denote the set of system of bad equations defined as
follows B1 := {L11, L12, L13, L14}, B2 := {L21, L22}, B3 := {L23, L24}(Refer to
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(L31) Σi = Σj
(L32) Σi = Xj,a
(L33) Θi = Θj
(L34) Θi = Xj,a

Table 2. Table representing single bad equations.

Table 5.2), and B4 := {L31, L32, L33, L34}(Refer to Table 6.4). Let Nr,j denote
the number of pairs of the form (∼,Li) for some i ∈ Bj , for j ∈ {1, 2, 3, 4} such
that ∼ is allowed and the extended-rank of the pair is r. Then, we have the
following general bound for any sum-based construction.

Lemma 9. Let m = (m1,m2, . . . ,mq) be a q-tuple of distinct messages and
t = (t1, t2, . . . , tq) /∈ Vbad. Let L3 ≤ 2n. Then,

Pr[Π is bad] ≤ O(q/22n/3) + q3εecf + q3εpcf1 + q4εpcf2 + qεeuniv

Lemma 10. Let m = (m1,m2,m3) be a 3-tuple of distinct messages and t =
(t1, t2, t3) /∈ Vbad. Let L3 ≤ 2n. Then,

(1) εecf ≤
∑4
r=0Nr,1/2

nr

(2) εpcf1 ≤
∑4
r=0Nr,2/2

nr

(3) εeuniv ≤
∑2
r=0Nr,4/2

n(r+1)

Moreover, if m = (m1,m2,m3,m4) be a 4-tuple of distinct messages and t =

(t1, t2, t3, t4) /∈ Vbad then εpcf2 ≤
∑5
r=0Nr,3/2

nr.

7 PRF Security Analysis of 1kf9

In this section we analyze the security of our propopsed construction 1kf9. Mainly
we prove the following theorem.

Theorem 8.

Advprf
1kf9(q, `, t) ≤ Advprp

E (q, `, t′) +O(ql2/2n + q3l4/22n + q4l4/23n + q4l6/24n)

where t′ = t+O(qL) for any L-blocks message m.

7.1 Revisiting Structure Graph

In this section we revisit the structure graph introduced by Bellare et.al in [4].
We recall that given a q-tuple of distinct messages m and a permutation π,
the transcript τ(H → π) = (x, y) represents the set of all inputs and outputs
of π. Here the function H is nothing but CBCπ. We write x = (xi,j)(i,j)∈I
and similarly for y where I := {(i, j) : i ∈ [q], j ∈ [Li]}. We have defined an
equivalence relation ∼y over I. Let us assume that the permutation π does not
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map to 0, i.e., yi,j 6= 0 for all i, j. Let {V1, . . . , Vs} be the set of all partitions
of I induced by ∼y. So Vi is a subset of I whose elements are related to each
other by the relation ∼. We define a vertex set V = {V0, V1, . . . , Vs}. We give an
edge from V0 to Vb if there exists (i, 1) ∈ Vb. We also put an edge label mi,1, the
first block of the ith message. Similarly, we give an edge from Va to Vb if there
exists (i, j) ∈ Va and (i, j + 1) ∈ Vb and we put an edge label mi,j+1. We write

a labeled edge as V
m→ V ′. It is straightforward to see that the graph is well

defined. We call this labeled graph structure graph and denoted Gπ(m). For
each message mi, we can consider the walk starting from V0 to Va for some a,
following the edge labels mi,1, . . . ,mi,`i one by one. We denote the walk by Wπ

i

or simply Wi. Note that the structure graph G would be the union of all walks
Wi, 1 ≤ i ≤ q.

A node V is said to be a collision node (or true collision) in a structure graph
G if the in-degree of the node is at least two. The number of true collision is
defined to be the the sum TC(G) :=

∑s
i=1(indeg(Vi)− 1).

Definition 10. A collection of edges C = {Vi1 → Vi2 , Vi3 → Vi2 , . . . , Vi2k →
Vi1} in a structure graph G is called an alternating cycle (AC) where k ≥ 2.

We provide an equivalent definition of the number of accidents of a structure
graph as defined in [4].

Definition 11. Let G0 := G be a structure graph. Now we do the following steps
until we find an alternating cycle. For i ≥ 1, we define Gi = Gi−1 \ e where e
is a labeled edge of an alternating cycle in Gi−1. Let Gt be the final graph (may
not be unique as it depends on the choice of the edges from the AC which are
removed. The number of accidents of the graph G0 is defined to be the number
of true collision of Gt.

One can check that this definition is well defined. In other words, the number
of true collision for the final graphs is independent of the choice of the edges
removed. We denote the number of accidents and true collision of a structure
graph Gπ(m) by accπ(m) and TCπ(m) respectively.

7.2 Characterization of Valid Structure Graphs with 3 and 4
Messages

Definition 12. A Structure Graph G is said to be a Valid Structure Graph, if
it meets the following three conditions : (i) |Acc(G)| ≤ 2, (ii) No accident within
a message mi, (iii) At most one accident within three messages mi,mj ,mk.

7.2.1 Important Properties of Valid Structure Graphs for 3 Messages

Lemma 11. A valid structure graph with 3 messages cannot contain an alter-
nating cycle of length 4.
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Proof. Let us consider an alternating cycle Cycl of length at least 4. Let Ealt :=
{(AB), (AD), (CD), (CB)} be the set of edges of Cycl as shown in Fig. 7.1. Now
we make the following two important observations :

A B

D C

Fig. 7.1. Alternating cycle of length 4

(i) As we have three messages, at least one message covers two edges from
Ealt.

Without loss of generality let mi be the message that covers two edges.

(ii) The covered edges will be parallel, otherwise there will be an accident within
the walk of mi.

W.l.o.g, let the covered edges of mi be (AB) and (CD). Let mj covers consider
the message which covers the edge (CB). W.l.o.g, let it be mj . Now to cover
that edge, mj could come to node C in either of the two ways :

(a) mj follows the walk of mi and reaches to C

(b) mj does not follow the walk of mi.

For case (a) when mj covers the edge (CB), then there will be an accident within
the walk of mj . For case (b) when mj covers the edge (CB) then mi,mj will
collide twice and hence the number of accident in (mi,mj) pair will be 2. As,
in both the cases the condition for a valid structure graph is violated, the result
follows. ut

Lemma 12. A valid structure graph with 3 messages cannot contain an alter-
nating cycle of length 6.

Proof. Let Cycl6 be an alternating cycle of length 6 in the valid structure graph
G with 3 messages. Let m1 be the message taking part in two collision points say
C1 and C2. Now consider other messages (say m2 and m3) taking part in these
collisions, i.e. C1 = coll(m1,m2), C2 = coll(m1,m3). Now it is easy to see that
there are 2 accidents in m1,m2 and m3 that violates the validity of a structure
graph. Hence no valid graph is possible with 6-alternating cycle. ut
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7.2.2 Important Properties of Valid Structure Graphs for 4 Messages

Claim 1 For any 4-length alternating cycle in a valid structure graph with 4
messages, the 4 edges must come from distinct messages

Proof. If not, then 3 distinct messages cover 4 edges of the 4-length alternating
cycle. But according to Lemma 11, a valid structure graph with 3 messages
cannot contain a 4-length alternating cycle. ut

Lemma 13. A valid structure graph with 4 messages cannot contain a 4-length
alternating cycle with number of accidents 2.

Proof. Due to Claim 1 without loss of generality, we can assume that the edges
AB, AD, CB and CD of an alternating cycle belong to messages m1,m2,m3,m4

respectively, where m1 and m3 have an accident at B and m2 and m4 meet at B
to close the alt-cycle with an induced collision. Now, if there is a second accident,
it cannot involve any one of m1 or m3, otherwise it will violate condition 2 (#acc
at most one with any 3 messages). Thus, the second accident, if any, must involve
m2 and m4. But again this is not allowed, since m2 and m4 has already collided
at B.

Lemma 14. A valid structure graph with 4 messages cannot contain multiple
alternating cycle of length 4.

Proof. Due to Claim 1, without loss of generality, we can assume that the edges
AB, AD, CB and CD of an alternating cycle belong to messages m1,m2,m3,m4

respectively. Now, if another 4-alternating cycle exists, Claim 1 must hold for this
second cycle as well. This implies that two edges (from two different messages)
must be shared between the two cycles.The shared edges may be any one of the
4 pairs from AB, AD, CB and CD. Case a) Pairs that do not have a common
node from A, B, C, D, i.e., pair (AB, CD) or pair (AD, BC): Then the other
two edges of the second cycle will add two more accidents, one in node B and
another in node C, violating condition 3. Case b) Pairs that have a common
node. In this case, two possible graphs are possible, as shown in the diagram.
The other two edges must meet at a fifth node, say E. [Show the table].

Lemma 15. A valid structure graph with 4 messages cannot contain an alter-
nating cycle of length 6.

Proof. Let Cycl6 be the alternating cycle of length 6 in the valid structure graph
G with 4 messages. As there are 3 accident points C1, C2, C3 in Cycl6, there will
be at least one message say m1 taking part in two collision points say C1 and C2.
Now consider other messages (say m2 and m3) taking part in these collisions,
i.e. C1 = coll(m1,m2), C2 = coll(m1,m3). Now it is easy to see that there are
2 accidents in m1,m2 and m3 that violates the validity of a structure graph.
Hence no valid graph is possible with 6-length alternating cycle
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7.2.3 List of Valid Structure Graphs with 3 and 4 messages Given all
the properties, now we list down all the possible structure graphs with 3 and 4
messages as follows:

(I) Acc = 0 for 3 messages: As no accident is present, the only possible
structure graph has the following structure depicted in Fig. 7.2:

(II) Acc = 1 for 3 messages: From Lemma 11, we observe that, there can

A B C D

E F

Fig. 7.2. Structure graph of 3 messages with Acc = 0

be no valid graph 4-length alternating cycles. So we consider structure graphs
where number of true-collision is 1 and the graph is shown in Fig 7.3.

(III) Acc = 0 for 4 messages As no accident is present, the only possible

A B C

D

E

J

F

G

H

Fig. 7.3. Structure graph of 3 messages with Acc = 1 (at node C)

structure graph has the following structure depicted in Fig. 7.4:

(IV) Acc = 1 for 4 messages: We can have two types of graph in this
case:
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A B C D

E

F

G H

Fig. 7.4. Structure graph of 4 messages with Acc = 0

• 1 accident with 1 collision point: This graph is shown in Fig. 7.5 .

• Graph with 1-alternating cycle: This graph is shown in Fig. 7.6 .

A B C

D

E

F

G

H

J

K

Fig. 7.5. Structure graph of 4 messages with Acc = 1 (at node C)

(V) Acc = 2 for 4 messages: From Lemma 13 and 15, we observe that,
there can be no valid graphs with alternating 4-cycle or alternating 6 cycle.
Hence there is only one possible structure graph - with one accident C1 occuring
between two messages (say m1 and m2) and the other accident C2 occuring for
the remaining messages (here m3 and m4). This graph also satisfy the condition:
(m1, m2) and (m3, m4) doesn’t meet after collision C1 and C2 respectively as
depicted in Fig. 7.7.
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E F A B

D C

Fig. 7.6. Structure graph of 4 messages with Acc = 1 (at node B) and an induced
collision (at node D)

A B

C

D

E

F

G

H

J

K

J

R

Fig. 7.7. Structure graph of 4 messages with Acc = 2 (at nodes E and F )
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8 Rank Analysis of Systems of Equations for Bad Cases

8.1 Rank Analysis of Fully Covered Bad Equations

8.1.1 Calculating the rank of L(Y ) = (Σi = Σj, Θi = Θk) for Acc =
0 and Acc = 1.
Case (a) When Acc = 0, then Σi = Σj implies αYi,li + αYj,lj = On−11. Let
us aussme that p is the length of the longest common prefix of Mi and Mk and
wihput loss of generality li > lk. Therefore, we have following equations:

αYi,li + αYj,lj = 0n−11 (8)

Yi,p+1 + . . . Yi,li + Yk,p+1 + . . . Yk,lj = 0 (9)

Now it is to be noted that, if Mk is a prefix of Mi, then Yi,p+1 + . . . Yi,li contains
at least 3 variables. Therefore, Yj,lj could be equal to one of these three variables,
and other two variables will remain free. In that case we will identify one such
variable Yi,s which is not equal to Yj,lj and choose Yi,li . If Mk is not a prefix
of Mi then Yi,p+1 + . . . Yi,li + Yk,p+1 + . . . Yk,lj conatins at least 3 variables and
therefore, Yj,lj could be equal to one of these three variables; we will identify one
of the remaining free variable Yi,s which is not equal to Yj,lj and choose Yi,li .
Therefore we identify two such variables, one in each equation, giving us rank 2.
Case (b) When Acc = 1, we argue that rank of L(Y ) will be 2. For Acc = 1,
we introduce one more equation

Yi,β + Yj,γ = m (10)

along with Equation (8) and (9). Note that if Acc = 1, then Σi = Σj implies
eiher of the following two cases: (i) αYi,li = αYj,lj . or (ii) αYi,li 6= αYj,lj but
fix0(αYi,li) = fix0(αYj,lj ). Note that, considering case (i), this is equivalent
to considering the equation Yi,β + Yj,γ = m. According to our assumption p
be the last index where Mi and Mk is identical. Therefore, as argued before,
Yi,p+1 + . . . Yi,li + Yk,p+1 + . . . Yk,lj contains at least three variables. Now Yj,γ
could be equal to any one of the three variables; thus we will be left with at least
two variable which are free . Let us consider Yi,s 6= Yj,γ . Therefore we identify
two free variables Yi,β and Yi,s, one in each equation, giving us rank 2. If case
(ii) occurs then we consider the Equation (8). In that case Yj,γ and Yj,lj could
be equal to any two of the three variables. Then also we will be left with at least
one variable Yi,s. Therefore, we identify two free variables Yi,β and Yi,s, one in
each equation, such that the rank becomes 2.

8.1.2 Calculating the rank of L(Y ) = (Σi = Xj,r, Θi = Θk) for
Acc = 0 and Acc = 1.
Case (a): When #Acc = 0, then we argue that rank of L(Y ) is 2. We have the
following two equations:

αYi,li + Yj,r−1 +M j,r = 0 (11)

Yi,p+1 + . . . Yi,li + Yk,p+1 + . . . Yk,lk = 0 (12)
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where p is the length of the longest common prefix of Mi and Mk. It is to be
noted that there are at least three distinct variables in Equation (12). Now,
we identify Yi,li and one of the remaining free variable Yi,s out of above three
variables which is distinct from Yi,li and Yj,r−1, giving us rank 2. Case (b):
When Acc = 1, then one additional equation

Yi,β + Yj,γ = m (13)

is introduced. Now if Yi,β 6= Yi,li and Yj,γ 6= Yi,li , then we identify two variables
Yi,β and Yi,li such that rank of L(Y ) with Acc = 1 is 2. If this is not the case, we
identify Yi,β and Yi,s which is one of the out of three variables in Equation (12),
such that the rank becoms 2 again.

8.1.3 Calculating the rank of L(Y ) = (Σi = Σj, Θi = Xk,r) for
Acc = 0 and Acc = 1
Case (a): Let us first consider that Acc = 0. Now we have the following two
equations:

αYi,li + αYj,lj = 0n−11 (14)

α(Yi,0 + Yi,1 + . . . Yi,li) = Yk,r−1 +mr (15)

From Equation (14) and (15), we identify two free variables Yi,li and Yi,0, giving
us rank 2. Case(b): When Acc = 1, then along with Equation (14) and (15),
we have an additional equation

Yi,β + Yj,γ = m.

Now, Σi = Σj can occur in either of the following ways: (i) αYi,li = αYj,lj or (ii)
αYi,li 6= αYj,lj but fix0(αYi,li) = fix0(αYj,lj ). Note that, considering case (i)
is equivalent to considering the equation Yi,β + Yj,γ = m. Therefore we identify
two free variables Yi,0 and Yi,β , such that the rank becomes 2. Considering case
(ii) is boiling down to considering Equation (14). Therefore, we identify Yi,li and
Yi,0, such that the rank becomes 2 again.

8.1.4 Calculating the rank of L(Y ) = (Σi = Xj,s, Θi = Xk,r) for
Acc = 0 and Acc = 1.
Case (a): Let us consider Acc = 0. We have the following equations:

αYi,li + Yj,s−1 = m∗ (16)

α(Yi,0 + Yi,1 + . . . Yi,li) = Yk,r−1 +m∗∗ (17)

In this case we identify two free variables Yi,0 and Yi,li . Case (b): When Acc = 1,
we have an additional equation

Yi,β + Yj,γ = m.

Thus, again we can identify two free variables Yi,0 and Yi,li and the rank does
not decrease.
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8.2 Rank Analysis of Single Equations

8.2.1 Calculating the rank of L(Y ) = (Σi = Σj) for Acc = 0 and
Acc = 1.
Case (a): For Acc = 0, Σi = Σj implies αYi,li + αYj,lj = 0n−11. Since Yi,li is
not trivially equal to Yj,lj , L(Y ) will have rank 1 for choosing variable Yi,li .

Case (b): For Acc = 1, Σi = Σj implies either (i) αYi,li +αYj,lj = 0n−11 or (ii)
αYi,li = αYj,lj but fix0(αYi,li) = fixo(αYj,lj ). Therefore, considering case (ii)
boils down to considering the Equation (18) which is induced by the accident.

Yi,β + Yj,γ = m. (18)

Therefore, choosing Yi,β gives the rank of L(Y ) to be 1.

8.2.2 Calculating the rank of L(Y ) = (Σi = Xj,r) for Acc = 0 and
Acc = 1.
Case (a): For Acc = 0, we choose Yi,li such that rank of L(Y ) is 1 as equality
of Σi and Xj,r is not trivial equality.

Case (b): For Acc = 1, we introduce the collision relation Yi,β+Yj,γ = m. Since
any accident gives a linearly indpendent equation, therefore we choose Yi,β to
show the rank of L(Y ) with Acc = 1 is 1.

8.2.3 Calculating the rank of L(Y ) = (Θi = Xk,r) for Acc = 0 and
Acc = 1.
Case (a): For Acc = 0, we choose Yi,0 such that rank of L(Y ) is 1 as equality
of Θi and Xk,r is not trivial equality.

Case (b): For Acc = 1, we introduce the collision relation Yi,β+Yk,γ = m. Since
any accident gives a linearly indpendent equation, therefore we choose Yi,β to
show the rank of L(Y ) with Acc = 1 is 1.

8.2.4 Calculating the rank of L(Y ) = (Θi = Θk) for Acc = 0 and
Acc = 1.
Case (a): Let p be the longest common prefix of Mi and Mj . Therefore, Θi = Θk
gives the following equation

Yi,p+1 + . . . Yi,li + Yj,p+1 + . . . Yj,lj = 0 (19)

Note that there must be at least three distinct variables in Equation (19). There-
fore, for Acc = 0, we choose any of the three variables Yi,s such that rank of
L(Y ) is 1.

Case (b): For Acc = 1, we introduce the collision relation Yi,β+Yk,γ = m. Since
any accident gives a linearly indpendent equation, therefore we choose Yi,β to
show the rank of L(Y ) with Acc = 1 is 1.
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8.3 Rank Analysis of Pseudo-Covered Bad Equations with 3
Messages

8.3.1 Calculating the rank of L(Y ) = (Σi = Xj,r, Yj,r + Y∗ = ti) for
Acc = 0 and Acc = 1.
Case (a): Let us consider Acc = 0. We have the following Equations:

αYi,li + Yj,r−1 = mj,r (20)

Yj,r + Y∗ = ti (21)

We identify two variables Yj,r and Yj,r−1 such that the contribution matrix E
becomes non-singular. It is easy to note that Yj,r can never be equal to Yj,r−1
as we are not allowing any loop in the structure graph.

Case (b): When Acc = 1, we additionally introduce one more equation

Yi,s + Yj,t = m

We identify the same two variables Yj,r and Yj,r−1 such that one can show the
rank of L(Y ) with Acc = 1 is 2.

8.3.2 Calculating the rank of L(Y ) = (Θi = Xj,r, Yj,r + Y∗ = ti) for
Acc = 0 and Acc = 1.
One can argue the rank of L(Y ) for Acc = 0 and Acc = 1 is 2 in the same line
of argument for the rank analysis of the previous case.

8.4 Rank Analysis of Pseudo-Covered Bad Equations with 4
Messages

8.4.1 Calculating the rank of L(Y ) = (Σi = Xk,e, Σj = Xl,f , Yk,e +
Yl,f = ti + tj for Acc = 0, 1 and 2).
Case (a): Let us consider Acc = 0. We have the following equations:

αYi,li + Yk,e−1 = m∗ (22)

αYj,lj + Yl,f−1 = m∗∗ (23)

Yk,e + Yl,f = ti + tj (24)

Now we analyse the rank in three cases. Case (i) when Yk,e 6= Yi,li and Yk,e 6= Yj,lj
then we identify three variables Yi,li , Yj,lj and Yk,e such that the rank of L(Y )
is 3.

Case (ii) when Yl,f 6= Yi,li and Yl,f 6= Yj,lj then we can identify the variables
Yi,li , Yj,lj and Yl,f such that the rank will become 3.

Case (iii) If none of the above two cases occur (i.e., Yi,li = Yk,e, Yj,lj = Yl,f )
then we identify three variables Yi,li , Yj,lj and Yk,e−1 such that the rank becomes
3.
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Case (b): When Acc = 1 we introduce Equation (35) along with the previous
three equations.

Yi,s + Yj,t = m. (25)

Even if Yi,s or Yj,t is equal to any of the previously chosen free variables, the
rank does not decrease.
Case (c): When Acc = 2, we introduce an additional equation, namely, Equa-
tion (36) as below.

Yk,s′ + Yl,t′ = m′. (26)

According to our assumptions, the second accident must occur between two other
messages that were not involved in the first accident. Hence, we can choose an
additional free variable and hence the rank becomes 4.

8.4.2 Calculating the rank of L(Y ) = (Σi = Xk,e, Θj = Xl,f , Yk,e +
Yl,f = ti + tj for Acc = 0, 1 and 2).
Case (a): Let us consider Acc = 0. We have the following Equations:

αYi,li + Yk,e−1 = m∗ (27)

α(Yj,0 + Yj,1 + . . .+ Yj,lj ) + Yl,f−1 = m∗∗ (28)

Yk,e + Yl,f = ti + tj (29)

Now we analyse the rank in three cases. Case (i) when Yk,e 6= Yi,li and Yk,e 6= Yj,0
then we identify three variables Yi,li , Yj,0 and Yk,e such that the rank of L(Y ) is
3.

Case (ii) when Yl,f 6= Yi,li and Yl,f 6= Yj,0 then we can identify the variables
Yi,li , Yj,0 and Yl,f such that the rank will become 3.

Case (iii) If none of the above two cases occur (i.e., Yi,li = Yk,e, Yj,0 = Yl,f )
then we identify three variables Yi,li , Yj,0 and Yk,e−1 such that the rank becomes
3.
Case (b): When Acc = 1 we introduce Equation (35) along with the previous
three equations.

Yi,s + Yj,t = m. (30)

Even if Yi,s or Yj,t is equal to any of the previously chosen free variables, the
rank does not decrease.
Case (c): When Acc = 2, we introduce an additional equation, namely, Equa-
tion (36) as below.

Yk,s′ + Yl,t′ = m′. (31)

According to our assumptions, the second accident must occur between two other
messages that were not involved in the first accident. Hence, we can choose an
additional free variable and hence the rank becomes 4.

8.4.3 Calculating the rank of L(Y ) = (Θi = Xk,e, Σj = Xl,f , Yk,e +
Yl,f = ti + tj for Acc = 0, 1 and 2).
This case is similar to the previous case, where L(Y ) = (Σi = Xk,e, Θj =
Xl,f , Yk,e + Yl,f = ti + tj .
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8.4.4 Calculating the rank of L(Y ) = (Θi = Xk,e, Θj = Xl,f , Yk,e +
Yl,f = ti + tj for Acc = 0, 1 and 2).
Case (a): Let us consider Acc = 0. We have the following Equations:

α(Yi,0 + Yi,1 + . . .+ Yi,li) + Yk,e−1 = m∗ (32)

α(Yj,0 + Yj,1 + . . .+ Yj,lj ) + Yl,f−1 = m∗∗ (33)

Yk,e + Yl,f = ti + tj (34)

Now we analyse the rank in three cases. Case (i) when Yk,e 6= Yi,li and Yk,e 6= Yj,0
then we identify three variables Yi,li , Yj,0 and Yk,e such that the rank of L(Y ) is
3.

Case (ii) when Yl,f 6= Yi,li and Yl,f 6= Yj,0 then we can identify the variables
Yi,li , Yj,0 and Yl,f such that the rank will become 3.

Case (iii) If none of the above two cases occur (i.e., Yi,li = Yk,e, Yj,0 = Yl,f )
then we identify three variables Yi,li , Yj,0 and Yk,e−1 such that the rank becomes
3.
Case (b): When Acc = 1 we introduce Equation (35) along with the previous
three equations.

Yi,s + Yj,t = m. (35)

Even if Yi,s or Yj,t is equal to any of the previously chosen free variables, the
rank does not decrease.
Case (c): When Acc = 2, we introduce an additional equation, namely, Equa-
tion (36) as below.

Yk,s′ + Yl,t′ = m′. (36)

According to assumptions, the second accident must occur between two other
messages that were not involved in the first accident. Hence, we can choose an
additional free variable and hence the rank becomes 4.

9 PRF Security Analysis of 1kPMAC Plus

9.1 Preparation

Taking advantage of Theorem 7, to prove the PRF security of 1kPMAC Plus, we
need to upper bound its three items, extended-cover-free εecf , pseudo-cover-free
εpcf , and block-wise universal εau.

To show they are sufficiently small, we would define some bad events on
inputs to block ciphers. Each bad event is equivalent to a equation set over
block cipher outputs as variables. By solving the equations we get an upper
bound of permutations over {0, 1}n that can induce the bad events. Then notice
that there are totally 2n! permutations, we get the occurrence probability for
each bad event.

1. ∃Xi,l ∈ {Cst1,Cst2}, for some i ∈ [q] and l ∈ [`i]. This implies no more than∑2
j=1

∑q
i=1

∑`i
l=1 equations of the form,

Xi,l = Mi,l ⊕ 2l−1∆1 ⊕ 22l−2∆2 = Cstj .
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Notice that ∆1 = π(Cst1) and ∆2 = π(Cst2), we have no more than
(2n−1)! permutations satisfying each equation, and totally we have at most

ς−1 =
∑2
j=1

∑q
i=1

∑`i
l=1((2n−1)!) permutations over {0, 1}n. Then, the non-

occurrence of this event ensures the ∆1, ∆2 values are independent of Yi,l
values.

2. ∃Xi1,l1 = Xi2,l2 = Xi3,l3 for some i1, i2, i3 ∈ [q] and distinct l1, l2, l3 ∈ [`].

This implies no more than
(
q`
3

)
equations of the form,[

2l1−1 ⊕ 2l2−1, 22(l1−1) ⊕ 22(l2−1)

2l1−1 ⊕ 2l3−1, 22(l1−1) ⊕ 22(l3−1)

]
×
[
∆1

∆2

]
=

[
Mi1,l1 ⊕Mi2,l2

Mi1,l1 ⊕Mi3,l3

]
.

The determinant of its coefficient matrix is (2l1−1 ⊕ 2l2−1)(2l1−1 ⊕ 2l3−1)
(2l2−1⊕2l3−1) 6= 0n for any distinct l1, l2, l3, so this matrix has rank=2 and
we have (2n − 2)! solutions on ∆1 and ∆2 for each equation. Then by this
we get at most ς0 =

(
q`
3

)
((2n − 2)!) ≤ q3`3/6((2n − 2)!) permutations from

Perm(n).

Based on the above, let us formally upper bound the three items. In each
case, we show how to find a rank=2 coefficients matrix.

9.2 Upper Bounding extended-cover-free εecf

According to the definition of extended-cover-freeness, we have 9 bad events in
this case, because in the previous inputs to block ciphers, we have both ∆1 =
π(Cst1), ∆2 = π(Cst2), and Yi,l = π(Xi,l), as listed in Table. 4.

1. ∃Σi = Cstj1 for some j1 ∈ [2] and Θi = Cstj2 for some j2 ∈ [2]. This implies[
1, 1, · · · , 1

2`i , 2`i−1, · · · , 21

]
× [Yi,1, Yi,2, · · · , Yi,`i ]T =

[
Cstj1
Cstj2

]
.

Let us analyze in more detail.
(a) If `i = 1 and Cstj2 = 2Cstj1. We get only one equation Yi,1 = Cstj1,

and for q messages, we have at most
∑q
i=1((2n − 1)!) permutations.

(b) Else if `i = 1 and Cstj2 6= 2Cstj1. There is no solution.
(c) Else if `i ≥ 2, and @Yi,l1 = Yi,l2 for any distinct l1, l2 ∈ [`i]. Then we

have a non-singular submatrix [1, 1; 22, 21] on the left side. For any values
of Yi,l (l ≥ 3), we have a unique solution for Y i1 and Y i2 . For q messages,

we have at most
∑q
i=1

∑2
j1=1

∑2
j2=1((2n − 2)!) permutations in total.

(d) Else `i ≥ 2, and ∃Yi,l1 = Yi,l2 for distinct l1, l2 ∈ [`i]. We have an
equation (2l1−1 ⊕ 2l2−1)∆1 ⊕ (22(l1−1) ⊕ 22(l2−1))∆2 = M i

l1 ⊕M i
l2, and

an equation set of the form[
1⊕ 1, · · ·

2`i−l1+1 ⊕ 2`i−l2+1, · · ·

]
× [Yi,l1, · · · ]T =

[
Cstj1
Cstj2

]
.

Since 2`i−l1+1 ⊕ 2`i−l2+1 6= 0n, for any values of Yi,l (l 6= l1, l2), we have
at most one value for Yi,l1. By the independence of ∆1, ∆2 and Yi,l. In

total we have at most
∑q
i=1

(
`i
2

)∑2
j2=1((2n − 2)!) permutations.
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To summarize Case 1, we have at most ς1 = (q`2 + q(2n − 1))((2n − 2)!)
permutations.

2. ∃Σi = Cstj for some j ∈ [2] and Θi = Xu,v for some u ∈ [q], v ∈ [`u]. This
implies[

1, 1, · · · , 1, 0, 0
2`i , 2`i−1, · · · , 21, 2v−1, 22(v−1)

]
×[Yi,1, Yi,2, · · · , Yi,`i , ∆1, ∆2]T =

[
Cstj
Mu,v

]
.

By the independence of ∆1, ∆2 and Yi,l, let us analyze in detail.

(a) If @Yi,l1 = Yi,l2 for any distinct l1, l2 ∈ [`i]. The coefficient matrix on the
left side has a non-singular submatrix [1, 0; 21, 2v−1]. For q messages, we

have at most
∑q
i=1

∑`i
l=1

∑q
u=1

∑`u
v=1

∑2
j=1((2n − 2)!) permutations.

(b) Else ∃Yi,l1 = Yi,l2 for distinct l1, l2 ∈ [`i]. Then, we have one equation
over ∆1 and ∆2 by the 2-collision, and another equation over Yi,l1 (with
coefficient 2`i−l1+1 ⊕ 2`i−l2+1 6= 0), ∆1 and ∆2. By their independence,

we have at most
∑q
i=1

(
`i
2

)∑q
u=1

∑`u
v=1((2n − 2)!) permutations.

To summarize Case 2, we have at most ς2 = (2q2`2 + q2`3/2)((2n − 2)!)
permutations.

3. ∃Σi = Xu,v for some u ∈ [q], v ∈ [`u] and Θi = Cstj for some j ∈ [2]. This
implies[

1, 1, · · · , 1, 2v−1, 22(v−1)

2`i , 2`i−1, · · · , 21, 0 0

]
×[Yi,1, Yi,2, · · · , Yi,`i , ∆1, ∆2]T =

[
Mu,v

Cstj

]
.

The analysis is similar with Case 2, and we have at most ς3 = (2q2`2 +
q3`3)((2n − 2)!) permutations.

4. ∃Σi = Xu1,v1 and Θi = Xu2,v2 for some i, u1, u2 ∈ [q], v1 ∈ [`u1], v2 ∈ [`u2].
Then we have an equation set[

1, 1, · · · , 1, 2v1−1, 22(v1−1)

2`i , 2`i−1, · · · , 21, 2v2−1, 22(v2−1)

]
×[Yi,1, Yi,2, · · · , Yi,`i , ∆1, ∆2]T =

[
Mu1,v1

Mu2,v2

]
.

(a) If v1 6= v2. On the left side we get a non-singular submatrix [2v1−1, 22(v1−1);

2v2−1, 22(v2−1)]. So by this we have at most
∑q
i=1

∑q
u1=1

∑`u1
v1=1

∑q
u2=1

∑`u2
v2=1

((2n − 2)!) permutations.
(b) Else if v1 = v2 = v ∈ [min{`u1, `u2}] and @Yi,l1 = Yi,l2 for any dis-

tinct l1, l2 ∈ [`i]. We get a non-singular submatrix [1, 2v−1; 21, 2v−1]. By

this we have at most
∑q
i=1

∑`i
l=1

∑q
u1=1

∑q
u2=1

∑min{`u1,`u2}
v=1 ((2n− 2)!)

permutations.
(c) Else v1 = v2 = v ∈ [min{`u1, `u2}], and ∃Yi,l1 = Yi,l2 for distinct l1, l2 ∈

[`i], we get a non-singular submatrix [0n, 2v−1; 2`i−l1+1⊕2`i−l2+1, 2v−1],
by combing the columns for Yi,l1 and Yi,l2. So by this we have at most∑q
i=1

(
`i
2

)∑q
u1=1

∑q
u2=1

∑min{`u1,`u2}
v=1 ((2n − 2)!) permutations.

Totally, we have at most ς4 = (2q3`2 + q3`3/2)((2n − 2)!) permutations can
induce this.
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5. ∃Σi = Cstj for some j ∈ [2] and Θi = Θu for some u 6= i. This implies[
1, 1, · · · , 1, 0, 0, · · · , 0

2`i , 2`i−1, · · · , 21, 2`u , 2`u−1, · · · , 21

]
×
−−−−→
Y [i, u] =

[
Cstj
0n

]
, (37)

where
−−−−→
Y [i, u] = [Yi,1, Yi,2, · · · , Yi,`i , Yu,1, Yu,2, · · · , Yu,`u ]T , SetY [i, u] =

{Yi,1, Yi,2, · · · , Yi,`i , Yu,1, Yu,2, · · · , Yu,`u}.
(a) If @Y ′l1, Y ′′l2 ∈ SetY [i, u] s.t. Y ′l1 = Y ′′l2 with any distinct l1, l2 ∈ [max{`i, `u}].

i. If `i = `u, notice that Mi 6= Mu, so ∃l ∈ [`i] s.t. Mi,l 6= Mu,l. Then,
we get a non-singular submatrix [1, 0; 2`i−l+1, 2`u−l+1].

ii. Else if `i = `u + 1, then we focus on the coefficients of Yi,`i , Yi,`i−1
and Yu,`u , and get a non-singular submatrix [1, 1; 21, 22 ⊕ 21] (when
Yi,`i−1 = Yu,`u is a trivial collision) or [1, 1; 21, 22] (when Yi,`i−1 6=
Yu,`u).

iii. Else if `i ≥ `u+ 2, let us focus on the coefficients of Yi,`i and Yi,`i−1,
and we get a non-singular submatrix [1, 1; 22, 21].

iv. Else `u ≥ `i + 1, let us focus on the coefficients of Yu,`u , Yu,`u−1
and Yi,`i , and get a non-singular submatrix [1, 0; 21 ⊕ 22, 21] (when
Yu,`u−1 = Yi,`i is a trivial collision) or [1, 0; 21, 21] (when Yu,`u−1 6=
Yi,`i).

To summarize this subcase, each case in the above presents us a non-
singular coefficients matrix on the left side, and by this we get at most∑q
i=1

∑q
u=1,u6=i

∑2
j=1 ((2n − 2)!) permutations.

(b) Else ∃Y ′l1, Y ′′l2 ∈ SetY [i, u] s.t. Y ′l1 = Y ′′l2 with distinct l1, l2 ∈ [max{`i, `u}].
i. If `i 6= `u, then

⊕`i
l=1 2l ⊕

⊕`u
l=1 2l 6= 0. On one side, the 2-collision

Y ′l1 = Y ′′l2 implies (2l1−1⊕2l2−1)∆1⊕ (22(l1−1)⊕22(l2−1))∆2 = M ′l1⊕
M ′′l2, which is over ∆1 and ∆2. On the other side, some coefficients of
Eq. (37) should be combined, if their corresponding variables belong
to 2-collisions or trivial collisions. This makes the final coefficients
matrix of Eq. (37) complex. However, notice in this final coefficients
matrix that, there is at least one element in its second row should not
be 0, otherwise the sum of all coefficients in the second row should
be 0, and this contradicts with the fact that

⊕`i
l=1 2l ⊕

⊕`u
l=1 1 =

(21 ⊕ 2`i+1)/3 or (21 ⊕ 2`i+1)/3 ⊕ 1, neither of which is 0 when
1 ≤ `i ≤ 22n/3. By this we get an equation over Yi,l with l ∈ [`i],
whose coefficient is not 0. Then, according to the independence of
Yi,l, ∆1 and ∆2, we have two independent equations and get at most∑q
i=1

∑q
u=1,u 6=i

(
max{`i,`u}

2

)∑2
j=1 ((2n − 2)!) permutations.

ii. Else `i = `u, on one side by the 2-collision Y ′l1 = Y ′′l2 we have an
equation over ∆1 and ∆2. On the other side, let us find another
equation independent of ∆1 and ∆2. Notice that Mi 6= Mu, so ∃l ∈
[`i] s.t. Mi,l 6= Mu,l, and this implies Xi,l 6= Xu,l and Yi,l 6= Yu,l.
For Y ′l′ ∈ SetY [i, u] \ {Yi,l}, if @Y ′l′ = Yi,l, then we get an equation
over Yi,l, whose coefficient is 2`i−l+1 6= 0. Else ∃Y ′l′ = Yi,l, obviously
we have l′ 6= l. Then we get an equation over Yi,l, whose coefficient
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is either 2`i−l+1 ⊕ 2`i−l
′+1 6= 0 (when Yi,l′ 6= Yu,l′) or 2`i−l+1 6= 0

(when Yi,l′ = Yu,l′).

To summarize this subcase, we get at most
∑q
i=1

∑q
u=1,u 6=i(

max{`i,`u}
2

)∑2
j=1 ((2n − 2)!) permutations.

To summarize Case 5, we get at most ς5 = (2q2 + q2`2)((2n − 2)!) permuta-
tions.

6. ∃Σi = Σu for some u 6= i and Θi = Cstj for some j ∈ [2]. This implies[
1, 1, · · · , 1, 1, 1, · · · , 1

2`i , 2`i−1, · · · , 21, 0, 0, · · · , 0

]
×
−−−−→
Y [i, u] =

[
0n

Cstj

]
.

(a) If @Y ′l1, Y ′′l2 ∈ SetY [i, u] s.t. Y ′l1 = Y ′′l2 with any distinct l1, l2 ∈ [max{`i, `u}].
i. If `i = `u, notice that Mi 6= Mu, so ∃l ∈ [`i] s.t. Mi,l 6= Mu,l. Then,

we get a non-singular submatrix [1, 1; 2`i−l+1, 0].
ii. Else if `i = `u+1, then we focus on the coefficients of Yi,`i , Yi,`i−1 and

Yu,`u , and get a non-singular submatrix [0, 1; 22, 21] (when Yi,`i−1 =
Yu,`u is a trivial collision) or [1, 1; 22, 21] (when Yi,`i−1 6= Yu,`u).

iii. Else if `i ≥ `u+ 2, let us focus on the coefficients of Yi,`i and Yi,`i−1,
and we get a non-singular submatrix [1, 1; 22, 21].

iv. Else `u ≥ `i + 1, let us focus on the coefficients of Yu,`u , Yu,`u−1 and
Yi,`i , and get a non-singular submatrix [1, 0; 0, 21] (when Yu,`u−1 =
Yi,`i is a trivial collision) or [1, 1; 0, 21] (when Yu,`u−1 6= Yi,`i).

Each case in the above presents us a non-singular coefficients matrix
on the left side, and by this we can get at most

∑q
i=1

∑q
u=1,u 6=i

∑2
j=1

((2n − 2)!) permutations.
(b) Else ∃Y ′l1, Y ′′l2 ∈ SetY [i, u] s.t. Y ′l1 = Y ′′l2 with distinct l1, l2 ∈ [max{`i, `u}].

Notice that
⊕`i

l=1 2l 6= 0, and then the analysis is similar with Case (5.bi).

To summarize, we can get at most
∑q
i=1

∑q
u=1,u 6=i

(
max{`i,`u}

2

)∑2
j=1

((2n − 2)!) permutations.

To summarize Case 6, we can get at most ς6 = (2q2 + q2`2)((2n − 2)!)
permutations.

7. ∃Σi = Xu,v for some u ∈ [q], v ∈ [`u] and Θi = Θj for some j 6= i. This
implies[

1, 1, · · · , 1, 0, 0, · · · , 0, 2v−1, 22(v−1)

2`i , 2`i−1, · · · , 21, 2`j , 2`j−1, · · · , 21, 0, 0

]
×
−−−−−−→
Y [i, j,∆] =

[
Mu,v

0n

]
,

where
−−−−−−→
Y [i, j,∆] = [Yi,1, Yi,2, · · · , Yi,`i , Yj,1, Yj,2, · · · , Yj,`j , ∆1, ∆2]T , The anal-

ysis is similar with that in Case 5, and their only difference is that, here we
have two more variables ∆1 and ∆2. Specially, their coefficients matrix is ex-
actly the same, except for the coefficients for ∆1 and ∆2. Then, we can apply
the same analysis, and we can either get a non-singular submatrix on the left
side, or get one equation over ∆1 and ∆2, and another equation over Yi,l, ∆1

and ∆2. Finally, in this case we can get at most ς7 = (q3`+q3`3/2)((2n−2)!)
permutations.
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8. ∃Σi = Σj for some j 6= i and Θi = Xu,v for some u ∈ [q], v ∈ [`u]. This
implies[

1, 1, · · · , 1, 1, 1, · · · , 1, 0, 0
2`i , 2`i−1, · · · , 21, 0, 0, · · · , 0, 2v−1, 22(v−1)

]
×
−−−−−−→
Y [i, j,∆] =

[
0n

Mu,v

]
.

The analysis is similar with that in Case 7, and in this case we get at most
ς8 = (q3`+ q3`3/2)((2n − 2)!) permutations.

9. Σi = Σj for some j 6= i and Θi = Θu for some u 6= i, and we have[
1, 1, · · · , 1, 1, 1, · · · , 1, 0, 0, · · · , 0

2`i , 2`i−1, · · · , 21, 0, 0, · · · , 0, 2`u , 2`u−1, · · · , 21

]
×
−−−−−→
Y [i, j, u] =

[
0n

0n

]
,

where
−−−−−→
Y [i, j, u] = [Yi,1, Yi,2, · · · , Yi,`i , Yj,1, Yj,2, · · · , Yj,`j , Yu,1, Yu,2, · · · , Yu,`u ]T .

(a) If j = u ∧ @Y ′l′ , Y ′′l′′ ∈ SetY [i, u] s.t. Y ′l′ = Y ′′l′′ with any distinct l′, l′′ ∈
[max{`i, `u}]. The equation set turns to be[

1, 1, · · · , 1, 1, 1, · · · , 1
2`i , 2`i−1, · · · , 21, 2`u , 2`u−1, · · · , 21

]
×
−−−−→
Y [i, u] =

[
0n

0n

]
. (38)

i. If `i = `u, let us denote Y∗,l = Yi,l ⊕ Yu,l, then Eq. (38) becomes[
1, 1, · · · , 1

2`i , 2`i−1, · · · , 21

]
× [Y∗,1, Y∗,2, · · · , Y∗,`i ]T =

[
0n

0n

]
.

On the left side the coefficients matrix is an MDS matrix, and on the
right side we have two 0n, so by the property of MDS matrix and
the fact Mi 6= Mu, we have at least 3 non-zero Y∗,l. This means in
Eq. (38) we have distinct l1, l2, l3 ∈ [`i] s.t. Yi,l1 6= Yu,l1, Yi,l2 6= Yu,l2
and Yi,l3 6= Yu,l3. Then in Eq. (38) we find a non-singular submatrix
[1, 1; 2`i−l1+1, 2`i−l2+1].

ii. Else if `i = `u + 1, then we focus on the coefficients of Yi,`i , Yi,`i−1
and Yu,`u , and get a non-singular submatrix [1, 0; 21, 22 ⊕ 21] (when
Yi,`i−1 = Yu,`u is a trivial collision) or [1, 1; 21, 22] (when Yi,`i−1 6=
Yu,`u).

iii. Else if `i ≥ `u+ 2, let us focus on the coefficients of Yi,`i and Yi,`i−1,
and we get a non-singular submatrix [1, 1; 22, 21].

iv. Else `u ≥ `i + 1, the analysis is the same as (ii) and (iii).

(b) Else if j = u ∧ ∃Y ′l′ , Y ′′l′′ ∈ SetY [i, u] s.t. Y ′l′ = Y ′′l′′ with distinct l′, l′′ ∈
[max{`i, `u}]. On one side by the 2-collision Y ′l′ = Y ′′l′′ we have an equa-
tion over ∆1 and ∆2. On the other side, let us find another equation
independent of ∆1 and ∆2.

i. If `i 6= `u, then
⊕`i

l=1 2l ⊕
⊕`u

l=1 2l 6= 0, we get an equation over Yi,l,
and the analysis is similar with (5.b).

ii. Else `i = `u, notice that Mi 6= Mu, so ∃l ∈ [`i] s.t. Mi,l 6= Mu,l, and
this implies Yi,l 6= Yu,l. For Y ′l′ ∈ SetY [i, u] \ {Yi,l}, if @Y ′l′ = Yi,l,
then we get an equation over Yi,l, whose coefficient is 2`i−l+1 6= 0.
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Else ∃Y ′l′ = Yi,l, obviously we have l′ 6= l. Then we get an equation

over Yi,l, whose coefficient is either 2`i−l+1 ⊕ 2`i−l
′+1 6= 0 (when

Yi,l′ 6= Yu,l′) or 2`i−l+1 6= 0 (when Yi,l′ = Yu,l′).
(c) Else if j 6= u ∧ @Y ′l′ , Y ′′l′′ ∈ SetY [i, j, u] s.t. Y ′l′ = Y ′′l′′ with any distinct

l′, l′′ ∈ [max{`i, `j , `u}]. By Mi 6= Mj we know ∃l1 ∈ [max{`i, `j}] s.t.
Yi,l1 6= Yj,l1. Here Yi,l1 = 0n if l1 > `i and Yj,l1 = 0n if l1 > `j . Notice
that Yi,l1 ⊕ Yj,l1 6= 0n can be seen as a new variable. We ignore Yu,l1
here because its coefficient is 0n in the first row of coefficients matrix.
Similarly, by Mi 6= Mu we know ∃l2 ∈ [max{`i, `u}] s.t. Yi,l2 6= Yu,l2.
Here Yi,l2 = 0n if l2 > `i and Yu,l2 = 0n if l2 > `u. Then 2`i−l2+1Yi,l2 ⊕
Yu,l2 is a new variable. We ignore Yj,l2 here because its coefficient is
0n in the second row of coefficients matrix. Also by Mj 6= Mu we have
∃l3 ∈ [max{`j , `u}] s.t. Yj,l3 6= Yu,l3. Here Yj,l3 = 0n if l3 > `j and
Yu,l3 = 0n if l3 > `u.
If l1 6= l2, it is easy to see that Yi,l1⊕Yj,l1 and 2`i−l2+1Yi,l2⊕2`u−l2+1Yu,l2
are independent of each other, because we have Y ′l′ 6= Y ′′l′′ with any
distinct l′, l′′ ∈ [max{`i, `j , `u}]. If l1 = l2 and Yj,l1 6= Yu,l2, then Yi,l1 ⊕
Yj,l1 and 2`i−l2+1Yi,l2 ⊕ 2`u−l2+1Yu,l2 are also independent. If l1 = l2
and Yj,l1 = Yu,l2, notice that Yj,l3 6= Yu,l3 and l2 6= l3, we have variables
Yi,l1 ⊕ Yj,l1 ⊕ Yj,l3 and 2`i−l2+1Yi,l2 ⊕ 2`u−l2+1Yu,l2 ⊕ 2`u−l3+1Yu,l3 are
independent.
Then we find a non-singular submatrix in the above coefficients matrix,
i.e. [1, 0; 0, 1] for independent variables Yi,l1 ⊕ Yj,l1 and 2`i−l2+1Yi,l2 ⊕
2`u−l2+1Yu,l2 or Yi,l1 ⊕ Yj,l1 ⊕ Yj,l3 and 2`i−l2+1Yi,l2 ⊕ 2`u−l2+1Yu,l2 ⊕
2`u−l3+1Yu,l3.

(d) Else j 6= u ∧ ∃Y ′l′ , Y ′′l′′ ∈ SetY [i, j, u] s.t. Y ′l′ = Y ′′l′′ with distinct l′, l′′ ∈
[max{`i, `j , `u}]. On one side by the 2-collision Y ′l′ = Y ′′l′′ we have an
equation over ∆1 and ∆2. On the other side, let us find another equation
independent of ∆1 and ∆2.

i. If `i 6= `u, we have
⊕`i

l=1 2l ⊕
⊕`u

l=1 2l 6= 0, so we get an equation
over Yi,l for some l ∈ [`i].

ii. Else `i = `u, notice that Mi 6= Mu, so ∃l ∈ [`i] s.t. Mi,l 6= Mu,l, and
this implies Yi,l 6= Yu,l. For Y ′l′ ∈ SetY [i, j, u] \ {Yi,l}, if @Y ′l′ = Yi,l,
then we get an equation over Yi,l, whose coefficient is 2`i−l+1 6= 0.
Else ∃Y ′l′ = Yi,l, let us focus on the second row of the coefficients
matrix. By this we can ignore the influence from Mj , then we have
Y ′l′ = Yi,l′ or Y ′l′ = Yu,l′ , so it is obvious that l′ 6= l. Then we get an

equation over Yi,l, whose coefficient is either 2`i−l+1 ⊕ 2`i−l
′+1 6= 0

(when Yi,l′ 6= Yu,l′) or 2`i−l+1 6= 0 (when Yi,l′ = Yu,l′).

To summarize, we can get at most ς9 = (
∑q
i=1

∑q
j=1,j 6=i(1 +

(
max{`i,`j}

2

)
) +∑q

i=1

∑q
j=1,j 6=i

∑q
u=1,u6=i,j(1+

(
max{`i,`j ,`u}

2

)
))((2n−2)!) ≤ (q2 + q2`2max/2+

q3 + q3`2max/2)((2n − 2)!) permutations.

Finally, we can get

εecf ≤
∑9
i=−1 ςi

2n!
≤ 3q`((2n − 1)!) + 20q3`3((2n − 2)!)

2n!
≤ 3q`

2n
+

5q3`3

22n−3
.
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9.3 Upper Bounding pseudo-cover-free εpcf

According to the definition of εpcf , we need to upper bound the occurrence
probability of 36 bad events, as listed in Table. 5 and 6.

1. For the cases from 1 to 6, Σi = Cstj1 for some j1 ∈ [2] is equivalent to⊕`i
l=1 Yi,l = Cstj1, i.e. an equation over variables Yi,l.

On the other side, notice that by Σi = Cstj1 we have π(Σi) = π(Cstj1) =
∆j1. This means, π(Σi) ⊕ ci = ∆j1 ⊕ ci. Then, though the cases from 1 to
6 imply different equations, they all depend on random variable ∆j1. Notice
that we have restrict ci 6= 0n for all i ∈ [q], so the equation from case 6 can’t
trivially hold.
Then, we find two equations independent of each other, and by this we have
at most

∑6
i=1 ςi ≤ 12q2`((2n − 2)!) permutations.

2. For the cases from 7 to 12, Σi = Xu,v for some u 6= i, v ∈ [`j1] is equivalent

to
⊕`i

l=1 Yi,l = 2v−1∆1⊕22(v−2)∆2⊕Mu
v , i.e. an equation over variables Yi,l,

∆1 and ∆2.
(a) For case 7, π(Σi)⊕ ci = ∆j2, we get a non-singular submatrix [1, 1; 1, 0]

or [1, 1; 0, 1] with variables ∆1 and ∆2.
(b) For case 8, π(Σi) ⊕ ci = Yj2,l2 depends only on Yj2,l2, where ci 6= 0n

excludes trivial collisions Yj2,l2 = Y ′l2. Then we get two independent
equations.

(c) For cases from 9 to 12, we need only to consider π(Σi) ⊕ ci = ci′,j′
with ci′,j′ /∈ {ci,1, ci,2} and ci′,j′ /∈ {∆u, Yk,l}. Such ci′,j′ are produced
by ci′,j′ = π(Σi′,j′) with Σi′,j′ /∈ {Cstu, Xk,l} or ci′,j′ = π(Θi′,j′) with
Θi′,j′ /∈ {Cstu, Xk,l} (otherwise such cases should have been analyzed in
(a) and (b)), so they have independent randomness from {∆u, Yk,l}.

Then, by two independent equations we have at most
∑12
i=7 ςi ≤ 6q3`2((2n−

2)!) permutations.

3. For cases from 13 to 18, Σi = Σj is equivalent to
⊕`i

l=1 Yi,l =
⊕`j

l=1 Yj,l,
depending only on Yi,l and Yj,l. Also, we have ci,1 = π(Σi) = π(Σj) = cj,1,
which implies π(Σi)⊕ ci = cj,1 ⊕ ci.
(a) For case 13, cj,1 ⊕ ci = ∆j2 depending on ∆1 or ∆2, and this always

holds regardless of whether cj,1 ∈ {Cstu, Xk,l} or not.
(b) For case 14, cj,1 ⊕ ci = Yu,v for some u ∈ [q] and v ∈ [Lu]. When cj,1 ∈
{∆1, ∆2} or cj,1 = P (Σj) with Σj /∈ {Cstu, Xk,l}, the two equations are
independent; when cj,1 ∈ {Yk,l}, say cj,1 = Yu′,v′ , then ci 6= 0n excludes
trivial collisions and so Yu′,v′ and Yu,v are independent, both with co-
efficients 1. Notice in the first equation that we have at least one Yi,l1
on its left side, with coefficient 1. If Yi,l1 /∈ {Yu′,v′ , Yu,v}, the two equa-
tions are independent. If Yi,l1 ∈ {Yu′,v′ , Yu,v}, we can get a non-singular
submatrix [1, 0; 1, 1]. It is possible that {Yi,l1, Yj,l1} = {Yu′,v′ , Yu,v},
which results in a singular submatrix [1, 1; 1, 1]. In such a case, notice
that there must be some other Yi,l or Yu,l in the first equation, other-
wise we get a contradiction Yi,l1 = Yj,l1. This helps the first equation
to be independent of the second one. If there exist 2-collisions among
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{Yi,1, Yi,2, · · · , Yi,`i , Yj,1, Yj,2, · · · , Yj,`j} in the first equation, then itself
implies two independent equations.

(c) For cases from 15 to 18, cj,1⊕ci /∈ {∆1, ∆1, Yk,l}, then it has independent
randomness from the first equation.
At last, by noticing that in each subcase we have two independent equa-
tions, here we can get at most

∑18
i=13 ςi ≤ 6q3`((2n − 2)!) permutations.

1. For the cases from 19 to 24, Θi = Cstj1 for some j1 ∈ [2] is equivalent to⊕`i
l=1 2`i−l+1Yi,l = Cstj1, i.e. an equation over variables Yi,l.

On the other side, notice that by Θi = Cstj1 we have π(Θi) = π(Cstj1) =
∆j1. This means, π(Θi) ⊕ ci = ∆j1 ⊕ ci. Then, though the cases from 1 to
6 imply different equations, they all depend on random variable ∆j1. Notice
that we have restrict ci 6= 0n for all i ∈ [q], so the equation from case 6 can’t
trivially hold.
Then, we find two equations independent of each other, and by this we have
at most

∑24
i=19 ςi ≤ 12q2`((2n − 2)!) permutations.

2. For the cases from 25 to 30, Θi = Xu,v for some u 6= i, v ∈ [`j1] is equiva-

lent to
⊕`i

l=1 2`i−l+1Yi,l = 2v−1∆1 ⊕ 22(v−2)∆2 ⊕Mu
v , i.e. an equation over

variables Yi,l, ∆1 and ∆2.
(a) For case 25, π(Θi)⊕ci = ∆j2, we get a non-singular submatrix [2v−1, 22(v−2);

1, 0] or [2v−1, 22(v−2); 0, 1] with variables ∆1 and ∆2.
(b) For case 26, π(Θi) ⊕ ci = Yj2,l2 depends only on Yj2,l2, where ci 6= 0n

excludes trivial collisions Yj2,l2 = Y ′l2. Then we get two independent
equations.

(c) For cases from 27 to 30, we need only to consider π(Θi) ⊕ ci = ci′,j′
with ci′,j′ /∈ {ci,1, ci,2} and ci′,j′ /∈ {∆u, Yk,l}. Such ci′,j′ are produced
by ci′,j′ = π(Σi′,j′) with Σi′,j′ /∈ {Cstu, Xk,l} or ci′,j′ = π(Θi′,j′) with
Θi′,j′ /∈ {Cstu, Xk,l} (otherwise such cases should have been analyzed in
(a) and (b)), so they have independent randomness from {∆u, Yk,l}.

Then, by two independent equations we have at most
∑30
i=25 ςi ≤ 6q2`2((2n−

2)!) permutations.

3. For cases from 31 to 36, Θi = Θj is equivalent to
⊕`i

l=1 2`i−l+1Yi,l =⊕`j
l=1 2`j−l+1Yj,l, depending only on Yi,l and Yj,l. Also, we have ci,2 =

π(Θi) = π(Θj) = cj,2, which implies π(Θi)⊕ ci = cj,2 ⊕ ci.
(a) For case 31, cj,2 ⊕ ci = ∆j2 depending on ∆1 or ∆2, and this always

holds regardless of whether cj,1 ∈ {Cstu, Xk,l} or not.
(b) For case 32, cj,2 ⊕ ci = Yu,v for some u ∈ [q] and v ∈ [Lu]. When

cj,2 ∈ {∆1, ∆2} or cj,2 = P (Θj) with Θj /∈ {Cstu, Xk,l}, the two
equations are independent; when cj,2 ∈ {Yk,l}, say cj,2 = Yu′,v′ , then
ci 6= 0n excludes trivial collisions and so Yu′,v′ and Yu,v are indepen-
dent, both with coefficients 1. Notice in the first equation that Mi 6= Mj

implies ∃l1 ∈ [max{`i, `j}] s.t. Yi,l1 6= Yj,l1, where Yi,l1 = 0n if l1 > `i
and Yj,l1 = 0n if l1 > `j . The variable Yi,l1 ⊕ Yj,l1 has a coefficient
2max{`i,`j}−l1+1 6= 1. If Yi,l1⊕Yj,l1 /∈ {Yu′,v′ , Yu,v}, the two equations are
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independent. If Yi,l1 ⊕ Yj,l1 ∈ {Yu′,v′ , Yu,v}, we can get a non-singular
submatrix [2max{`i,`j}−l1+1, 0; 1, 1] or [2max{`i,`j}−l1+1, 1; 1, 1]. If there
exist 2-collisions among {Yi,1, Yi,2, · · · , Yi,`i , Yj,1, Yj,2, · · · , Yj,`j} in the
first equation, then itself implies two independent equations.

(c) For cases from 33 to 36, cj,2⊕ci /∈ {∆1, ∆1, Yk,l}, then it has independent
randomness from the first equation.

By noticing that in each subcase we have two independent equations,
here we can get at most

∑36
i=31 ςi ≤ 6q3`((2n − 2)!) permutations.

Finally, we can get

εpcf ≤
∑36
i=1 ςi
2n!

≤ 24q3`2((2n − 2)!)

2n!
≤ 3q3`2

22n−4
.

9.4 Upper Bounding block-wise universal εau

By its definition, we have two bad events in upper bounding εau.

1. Σi = Σj for some j 6= i. This implies an equation

`i⊕
l=1

Yi,l =

`j⊕
l=1

Yj,l.

Notice that Mi 6= Mj , so there exists l′ ∈ [max{`i, `j}] s.t. Yi,l′ 6= Yj,l′ , where
Yi,l′ = 0n if l′ > `i and Yj,l′ = 0n if l′ > `j . Then, the variable Yi,l′ ⊕ Yj,l′
has a non-zero coefficient, so we have

Pr[Σi = Σj ] ≤
1

2n − (q`− 2− 2q)
≤ 1

2n−1
.

2. Θi = Θj for some j 6= i. This implies an equation

`i⊕
l=1

2`i−l+1Yi,l =

`j⊕
l=1

2`j−l+1Yj,l.

Notice that Mi 6= Mj , so there exists l′ ∈ [max{`i, `j}] s.t. Yi,l′ 6= Yj,l′ ,
where Yi,l′ = 0n if l′ > `i and Yj,l′ = 0n if l′ > `j . Then, the variable

2`i−l
′+1Yi,l′ ⊕ 2`j−l

′+1Yj,l′ has a non-zero coefficient, so we have

Pr[Σi = Σj ] ≤
1

2n − (q`− 2− 2q)
≤ 1

2n−1
.

In conclusion, we have εau ≤ 21−n.
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10 Conclusion

With the fast developments of computing power, birthday attacks gradually be-
come practical threats to cryptographic algorithms, and this is especially serious
for modes of operation on small-size block ciphers. Compared with the passive
ways that just enlarge the sizes of internal states and outputs, designing beyond-
birthday-bound schemes is active and promising.

We successfully unify the three independent keys in the current beyond-
birthday-bound MAC modes in this paper, by developing several theorems that
can reduce the security of three/two/one-key such constructions to some proper-
ties on internal structures and PRP assumption on block ciphers. Our developed
tools are also useful to simplify the analysis for other modes of operations, which
is of independent interests.
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L(Y ) #acc(∼) #choices
Rank of

Total
(L(y),∼)

3-message
fully-covered

Σi = Σj , Θi = Θk

0 2 2

1 l2 2 l2

22n

Σi = Σj , Θi = Xk

0 l 2

1 l3 2 l3

22n

Σi = Xj , Θi = Θk

0 l 2

1 l3 2 l3

22n

Σi = Xj , Θi = Xk

0 l2 2

1 l4 2 l4

22n

2-message
single-covered

Σi = Σj

0 2 1

1 l2 1 l2

2n

Σi = Xj

0 l 1

1 l3 1 l3

2n

Θi = Xk

0 l 1

1 l3 1 l3

2n

Θi = Θk

0 2 1

1 l2 1 l2

2n

3-message
pseudo-covered

Σi = Xj , Yj + ti = Yk

0 9l2 2

1 l4 2 l4

2n

Θi = Xj , Yj + ti = Yk

0 9l2 2

1 l4 2 l4

2n

4-message
pseudo-covered

Σi = Xe, Σj = Xf , Ye + Yf = ti + tj

0 l2 3

1 l4 3 l4

23n
+ l6

24n

2 l6 4

Σi = Xe, Θj = Xf , Ye + Yf = ti + tj

0 l2 3

1 l4 3 l4

23n
+ l6

24n

2 l6 4

Θi = Xe, Σj = Xf , Ye + Yf = ti + tj

0 l2 3

1 l4 3 l4

23n
+ l6

24n

2 l6 4

Θi = Xe, Θj = Xf , Ye + Yf = ti + tj

0 l2 3

1 l4 3 l4

23n
+ l6

24n

2 l6 4

Table 3. Table for different cases of bad equations with no. of choice and ranks corre-
sponding to accidents 0, 1 and 2.

Table 4. 9 Bad Events in Upper Bounding εecf .

PPPPPPPΣi =
Θi =

Cstj2 Xj2,l Θj2

Cstj1 1 2 5

Xj1,l 3 4 7

Σj1 6 8 9
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Table 5. 18 out of 36 Bad Events in Upper Bounding εpcf : 1st Half.

XXXXXXXXXΣi =
π(Σi)⊕ ci

π(Σj2)⊕ cj2 π(Θj2)⊕ cj2 π(Θj2) π(Σj2) Yj2,l ∆j2

Cstj1 1 2 3 4 5 6

Xj1,l 9 10 11 12 8 7

Σj1 15 16 17 18 14 13

Table 6. 18 out of 36 Bad Events in Upper Bounding εpcf : 2nd half.

XXXXXXXXXΘi =
π(Θi)⊕ ci

π(Θj2)⊕ cj2 π(Σj2)⊕ cj2 π(Σj2) π(Θj2) Yj2,l ∆j2

Cstj1 19 20 21 22 23 24

Xj1,l 27 28 29 30 26 25

Θj1 36 35 34 33 32 31


