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Abstract. MACs (Message Authentication Codes) are widely adopted
in communication systems to ensure data integrity and data origin au-
thentication, e.g. CBC-MACs in the ISO standard 9797-1. However, all
the current designs based on block cipher either suffer from birthday
attacks or require long key sizes. In this paper, we focus on designing
single keyed block cipher based MAC achieving beyond-birthday-bound
(BBB) security (in terms of number of queries) in the standard model.
Here, we develop several tools on sampling distributions which would
be quite useful in the analysis of mode of operations. In this paper, we
also show that the sum of two dependent pseudorandom permutation
with some loss of randomness is still PRF with BBB security. Then, we
demonstrate a generic composition (including the single keyed) achieving
BBB security provided that the underlying internal construction satisfies
some variants of cover-free (we call them extended cover-free and pseudo-
cover-free) and block-wise universal properties. By applying this result,
we finally provide two concrete single keyed constructions which achieve
BBB security. These two constructions, called 1kf9 and 1k PMAC+, are
basically simple one key variants of 3kf9 and PMAC Plus respectively.
Thus, we solve a long-standing open problem in designing single-keyed
BBB-secure MAC.

Keywords: 1kf9, 1k PMAC+, Beyond Birthday Bound, Cover-free, PRF, Sum
of PRP.

1 Introduction

Message Authentication Code (MAC) is one of the important primitives in sym-
metric key cryptography to preserve the integrity of the message being trans-
mitted. A MAC algorithm produces a fixed-length message digest, called a tag,
from a variable-length message. For a secure MAC, it will be hard to forge a
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tag for a completely new message for which tag has not been observed. In this
paper we focus on a stronger requirement of a MAC, namely pseudorandom
function (PRF). Throughout the paper we fix a positive integer n. A random
function F is a function which is chosen from the set of all functions follow-
ing some distribution, not necessarily uniform. In particular, uniform ran-
dom function, denoted Γn, (or uniform random permutation Πn) is cho-
sen uniformly from the set of all functions (or permutations respectively) from
a specified finite domain D to {0, 1}n. We define distinguishing advantage
of an oracle algorithm A for distinguishing two random functions F from G as
AdvA(F ; G) := Pr[AF = 1]− Pr[AG = 1]. We define PRF-advantage and PRP-
advantage of A for an n-bit construction F respectively by

Advprf
F (A) := AdvA(F ; Γn), Advprp

F (A) = AdvA(F ; Πn).

Beyond Birthday Bound (BBB) Security. If A makes at most q queries
(query-complexity) with at most `-blocks (a block contains n-bits) in each query
(data-complexity) and runs in time at most t (time-complexity) we also call it a
(q, `, t)-distinguisher. We write Advxxx

F (q, `, t) = maxAAdvxxx
F (A) where max-

imum is taken over all (q, `, t)-distinguisher A and xxx is either PRF or PRP.
In an information theoretic situation, we also ignore the time parameter t. We
call a keyed construction F is (q, `, ε)-PRF if Advprf

F (q, `) ≤ ε. We say that F

achieves beyond-birthday bound security if for some reasonable choice of `, ε is
negligible even if q = 2n/2. Note that, in this paper we mean BBB security in
terms of q, unlike Zhang [36] where BBB security is implied in terms of `. More-
over, our security bound drops down to the birthday-bound if we consider large
values of `. Since long messages are not popular in practical communications and
lightweight applications, as observed in [20], in most practical protocols typical
messages are relatively short. Therefore, in such settings, the BBB security in
terms of ` does not benefit much, and lower bound on q is more in desire. Thus,
our BBB security notion is relevant in lightweight application where l is small.

Beyond Birthday Secure Constructions. In cryptographic community, de-
signing a PRP-secure block cipher got more attention than designing PRF-secure
compression functions. The performance of a block cipher based MAC construc-
tion is balanced in both software and hardware. Thus, block-cipher (assumed
to be PRP) based PRF constructions would be practically useful. Examples of
popular block-cipher based MACs are CBC-MAC [6], OMAC [12], PMAC [8],
TMAC [15] etc. However, for each of them, the so far best PRF-security ad-
vantage is O(`q2/2n). For example, if PMAC is being implemented based on
PRINCE [9] (a 64-bit lightweight block cipher, i.e., n = 64) in some small de-
vice and if we allow to process up to 210 message-blocks per query then after 225

message-tag queries, one may be able to distinguish it from random function with
about 1/16 probability. But when the PRF-security advantage is O(`4q3/22n)
then using the same block-cipher PRINCE with block length 64 bits and the
maximum number of message blocks 210, one may be able to distinguish it from
random function with the same probability after 228 message-tag queries.
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The difference becomes more visible when we consider the same setting (i.e
` = 210) for AES block-cipher: If the PRF-advantage is O(`q2/2n) then at least
256 message-tag queries are required to distinguish it from a random function
with probability 1/64 whereas O(`4q3/22n) PRF-advantage requires at least 270

message-tag queries.

Related Works on Beyond-Birthday Secure MACs. Among the block
cipher based MACs that are beyond-birthday secure, two rate-1 (efficient) con-
structions4 are PMAC Plus [34] and 3kf9 [35]. In CRYPTO 2011, Yasuda pro-
posed PMAC Plus, a simple three key variant of parallelizable and efficient PMAC.
In ASIACRYPT 2012, Zhang et al. proposed 3kf9 that improves the f9 MAC
mode adopted in the 3rd Generation Partnership Project (3GPP). 3kf9 also re-
quires three independent keys to lift its security beyond birthday-bound. In both
the papers, it is mentioned that constructing 1-key rate 1 MAC is challenging.

There is also another deterministic MAC mode provides security beyond the
birthday bound. As Dodis et al. [10] have shown, MD[f, g] reaches O(εqpoly(n))
MAC security. However, this design requires even longer keys and more block
cipher invocations. By parity method, Bellare et al. present MACRX [4] with
BBB security, conditioned on the input parameters are random and distinct.
In [13], Jaulmes et al. proposed a randomized MAC that provides BBB security
based on the ideal model (or possibly based on tweakable block cipher). Another
BBB secure randomized construction called generic enhanced hash then MAC
has been proposed in [23] by Minematsu. In [33] Yasuda proved that the sum of
two independent ECBC has beyond birthday bound. However, it requires four
keys and it is rate 1/2 construction as it requires two block cipher calls for pro-
cessing each message block.

Key-size Reduction in Block Cipher Based MACs. While beyond birth-
day bound block cipher modes are especially useful for small-size block ciphers,
their large key sizes prevent themselves from practical usages. This is more se-
rious when implementing it in hardware, where registers to store key materials
are expensive or otherwise injecting keys from outside brings security risks and
slows down its overall efficiency. Furthermore, using three block cipher keys(as
an example) imply three block cipher key scheduling algorithms (even though
the keys are generated from a master key like many practical protocols [1]), and
this means, for most block ciphers (e.g. AES), three more block cipher invoca-
tion time and energy consumption. Moreover, the results of [34, 35], can not be
applied where three keys are generated from a single master key.

A more technical method is to use tweakable block ciphers [18], which are
expected to be independently random permutations with a single secret key and
distinct-and-public tweaks. However, there are still some problems. If we adopt
dedicated tweakable block ciphers, (e.g. [14]) in PMAC Plus and 3kf9, we benefit
from optimized efficiency but can hardly get provable security on normal block
ciphers (PRP assumption); if we adopt birthday-bound tweakable block ciphers,
e.g. [30, 11, 24], we in fact loose the beyond-birthday bound in PMAC Plus and

4 By rate, we mean the no. of blocks processed per block-cipher invocation
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3kf9. Then we have to adopt the provably secure tweakable block ciphers with
beyond-birthday-bound security, e.g. [22, 17, 16, 21]. As far as we know, current
solutions provide no good efficiency in our setting, because they need at least
two normal block cipher invocations to build a tweakable block cipher, and their
key sizes are not small either.

The Open Problem. Up to now, how to construct a BBB MAC mode under a
single key and reduce its security to the PRP assumption of its underlying block
ciphers is still technically hard and remains as an open problem.

1.1 Our Contributions

With a view to solving the above problem, first we review the techniques used
in 3kf9 and PMAC Plus. Despite their specific mechanisms to process message
blocks, they both have double internal state-sizes and then encrypt their last
internal states by the well-known “Sum of PRPs” technique [19, 5]. In proofs,
cover-freeness of the final internal states is strictly necessary, and then by the
previous results on “Sum of PRPs”, the modes can reach a bound beyond the
birthday paradox. With respect to the usages of key materials, the final “Sum of
PRPs” needs two keys, and one more individual key is required by the message
blocks processing phase. So, if we just adopt a single key in these modes, we
encounter the following two problems:

(i) The first problem is that the “Sum of PRPs” may not work properly, since the
outputs of the last two PRP calls do not have full entropy due to some previous
assignments of output values of the internal structure. So we need some general
results for sum of PRP which allows some loss of randomness in the output of
PRPs and still achieves beyond birthday bound security.

(ii) The second problem is, the O(q`) block cipher inputs within internal struc-
tures may collide with the last two inputs (2q blocks in total) to “Sum of PRPs”.
So we need to extend the definition of cover-freeness. In other words, more bad
cases are involved and one has to incorporate all these bad events carefully.

Obviously, designing a single-key such mode requires more techniques and its
corresponding formal proof would be even harder and complex.

Contribution 1. Generalized Result on Sum of PRP: To solve the first
problem, we revisit the proofs for “Sum of PRPs”, and propose a generalized but
even simpler proof. Our basic observation is that the original provable security
results hold even when the output space is restricted to a subset instead of the
full set {0, 1}n. That is, over restricted domain and range, the sum of two same
PRPs remains a PRF. We examine this by considering the appropriate popular
sampling model, namely WOR (without replacement). We show that the sum
of (dependent) WOR samples is a very good approximation of the uniform dis-
tribution. We believe that this result could have its own interest and could be
applicable in other settings.

Contribution 2. (Single Keyed) Generic Composition: To solve the sec-
ond problem, we first define several notions, e.g. extended-cover-free, pseudo-
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cover-free, and block-wise universal, which are in fact abstracted from our anal-
ysis on one-key constructions. Taking advantages of this, we propose and prove
our main theorem that can upper bound any one-key construction following
“hash-then-sum” paradigm by these items.

Contributions 3. Two BBB-secure Single Keyed Constructions: Fi-
nally, we propose two BBB-secure single keyed constructions namely 1kf9 and
1k PMAC+, which are single-key variants of 3kf9 and PMAC Plus respectively
- solving the long-standing open problem of designing single-keyed BBB secure
MAC. Taking advantage of our main theorem and upper bounding the three
items, i.e., extended-cover-free, pseudo-cover-free, and block-wise universal, we
prove the BBB security of our single-keyed constructions. Though the proofs

are more involved, interestingly, our bounds O( q
3`4

22n ) for 1kf9 and 1k PMAC+
essentially have the similar PRF advantage. Proving such a result for single key
almost rate-1 is not done before, (may be done for nonce based AE) which is
beyond our scope, but not in PRF without nonce. Our proof technique highly
depends on sum of PRP with loss of randomness.

We would like to remark that a direct one-key substitution of 3kf9 and
PMAC Plus can be easily shown to be insecure. This is why we need simple
variants of one-key version.

2 Preliminaries

Notation. We denote X
$← S to mean that X is chosen uniformly from S

and independently to all other random variables defined so far. We write X ⊥
Y for independent random variables X and Y . Let [a..b] := {a, a + 1, . . . , b},
[a] = [1..a]. By a q-set or q-tuple, we mean a set or a tuple of size q. Given
a q-tuple x = (xi : i ∈ I), where I is the index set, we abuse the notation x
also to mean the set {xi : i ∈ I}. When all elements xi’s are distinct we simply
write x ∈ distq or x ∈ dist and we call x element-wise distinct. For a subset
J ⊆ I, the sub-tuple xJ := (xj)j∈J . Fix a positive integer n. Let P denote the
set of all permutations over {0, 1}n. For any function f , and two tuples x, y

over same set of indices I, we write x
f7−→ y to mean that f(xi) = yi, ∀i ∈ I.

Let Px→y := {π ∈ P : x
π7−→ y}. For two tuples x and y over a same index

set, we write x −→ y (or x ←→ y) if there exists a function (or permutation

respectively) π such that x
π7−→ y. In this case, we call (x, y) function-compatible

or (permutation-compatible respectively).

2.1 Oracle Algorithm and Its Transcript

An oracle algorithm A (e.g., distinguisher or some block cipher based construc-
tions in which block ciphers are viewed as oracles) interacting with one or more
oracles O makes queries depending on the previous query responses. We denote
the oracle interaction by AO(m) or A(m) → O where m is an initial input of
A. During the interaction AO(m), let X1 := (X1,1, . . . , X1,r) be the tuple of all
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queries to O and Y1 := (Y1,1, . . . , Y1,r) be the tuple of corresponding responses.
The transcript (X1, Y1) is denoted as τ(A(m) → O). In case of a deterministic
algorithm A, X1,i is some function of Y1,1, . . . , Y1,i−1 and m. Finally, it returns
some output c which must be a function of Y and m.5 Let A be a deterministic
oracle algorithm andm = (m1, . . . ,mq) be a q-tuple. For any function f , we write
the q-transcript of all query-responses (X := (X1, . . . , Xq), Y := (Y1, . . . , Yq)) as
τ(A(m) →q f) or simply as τ(A(m) → f) (whenever q is understood from the
context) where (Xi, Yi) = τ(A(mi)→ f).

Definition 1. A pair of tuples (x, y) is called A(m)-realizable for a q-tuple m,
if there exists a function f such that τ(A(m)→q f) = (x, y).

The following simple observation is very useful which abstracts a feature of
query-responses for an interaction of a deterministic algorithm with a random
function. We skip the proof as it is straight forward.

Lemma 1. Let A be a deterministic oracle algorithm. For any A(m)-realizable

pair (x, y), we have x
f7−→ y if and only if τ(A(m)→ f) = (x, y). Thus, for any

event E and for any random function F,

PrF[E | τ(A(m)→ F) = (x, y)] = PrF[E | x
F7−→ y].

Note that the right hand side of the probability does not depend on any choice of
adversary. This would be useful while we compute the interpolation probability.

Interpolation Probability. For any tuples x, y with the same index set and

a random function F, we call Pr[x
F7→ y] interpolation probability. Let x and

y be a tuple of elements from the domain and range of Γn (or Πn) over a
same set of indices. Moreover, let s be the number of distinct elements in x.

It is easy to see that the interpolation probability Pr[x
Γn7→ y] is positive and

equals to 2−ns if and only if (x, y) is function-compatible. Similarly, Pr[x
Π7→ y]

is positive and equals to 1/P 2n

s if and only if (x, y) is permutation-compatible
where PNs := N(N − 1) · · · (N − s+ 1). This observation can be extended to the
conditional probability for the uniform random permutation.

Lemma 2. Let ((x, a), (y, b)) be a permutation-compatible pair such that a∩x =
∅ and a ∈ dists then

Pr[a
Πn7→ b | x Πn7→ y] ≥ 2−ns. (1)

2.2 Coefficient H-Technique

In this section we briefly discuss Patarain’s Coefficient-H Technique [27]. It was
also known as Decorrelation Theorem due to Vaudenay [32].

5 We ignore the previous queries X in the query computations and in the final output,
as these are eventually defined recursively in terms of Y and m.
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Definition 2 (statistical distance). Let X and Y two random variables over
a set S. We define the statistical distance between X and Y as

∆(X ; Y ) = max
T⊆S

Pr[X ∈ T ]− Pr[Y ∈ T ].

We state some tools which would be used to bound the statistical distance
between two random variables. The coefficient H-technique is the generalized
version of this result for bounding distinguishing advantage of two random func-
tions. We write X �ε Y if Pr[X = s] ≥ (1− ε)× Pr[Y = s],∀s and we say that
X �ε Y over E, if this holds only for all s ∈ E.

Lemma 3 (coefficient H-technique for random variables). Let X,Y be
two random variables over S such that X �ε Y over Vgood ⊆ S then,

∆(X ; Y ) ≤ ε+ Pr[Y 6∈ Vgood].

Proof of this lemma is given in Appendix A.

Theorem 1 (coefficient H-technique for random functions). Let F and G

be two random functions. Let Vgood ⊆ X q×Yq. If (i) ∀ m = (m1, . . . ,mq) ∈ distq,
(F(mi))i �ε1 (G(mi))i over Vgood and (ii) Pr[τ(A → G) 6∈ Vgood] ≤ ε2, then
AdvA(F ; G) ≤ ε1 + ε2.

We give the proof of this theorem in Appendix A.

3 Some Results on Sampling Distributions

In this section, we discuss some general results on sampling distribution with
replacement and without replacement.

3.1 With (out) replacement sampling

Let (Y1, . . . , Yr)
wor← S be a set of r samples drawn without replacement from a set

S. In other words, we sample the conditional distribution as Yi | (Y1, . . . , Yi−1)
$←

S \ {Y1, . . . , Yi−1}. Similarly, for the with replacement sampling, we write U :=

(U1, . . . , Ur)
wr← S which is same as drawing Ui’s uniformly and independently

from the set S. Let us consider the following question.

How close the sum of two WOR sampling to WR ?

More precisely, let U := (U1, . . . , Uq)
wr← {0, 1}n. We would like to obtain an

upper bound of the statistical distance ∆((Z1, . . . , Zq) ; (U1, . . . , Uq)) where
Zi = Y1,i ⊕ Y2,i, 1 ≤ i ≤ q, and the joint distributions of Y ’s are any one of the
followings cases.

• Case-1: (sum of two independent WOR samples over two equal sized subsets

of {0, 1}n): Y1 = (Y1,1, . . . , Y1,q)
wor← S and Y2 = (Y2,1, . . . , Y2,q)

wor← T and
Y1 ⊥ Y2 where (a) |S| = |T | = 2n − s, (b) S = T = {0, 1}n.
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• Case-2: (sum of two dependent WOR samples over a subset of {0, 1}n):

(Y1,1, Y2,1, . . . , Y1,q, Y2,q)
wor← S ⊆ {0, 1}n for a set S with size (a) 2n − s,

s ≥ 0, (b) S = {0, 1}n.

Existing Results. For the first two cases (i.e. case 1(a) and case 1(b) ), Bellare
et.al [5] had shown that ∆(Z ; U) ≤ q

2n + O(n × ( q
2n )1.5). Their analysis uses

some advanced results of probability theory (e.g., Azuma’s inequality and Cher-
noff theorem). For case 1(b), later Lucks [19] provided an elementary proof with
the upper bound O(q3/22n) and Patarin [29] provides a much involved complex
proof with the upper bound O(q/2n).

Our Results. We have two main results, one for each of Case-1 and Case-2, as
stated below.

Theorem 2 (Case-1(a)). Let X
wor← S and Y

wor← T be two independent q-
samples such that S, T ⊆ {0, 1}n of size 2n − s. If s ≤ 2n−1 − q then

∆(Z ; U) ≤ q

2n
+

4qs2 + 4sq2 + 4q3/3

22n
.

In particular, for Case-1(b) we have S = T = {0, 1}n (i.e., s = 0) and so

∆(Z ; U) ≤ q
2n + 4q3/3

22n .

Theorem 3 (Case-2(a)). Let (X1, Y1, . . . , Xq, Yq)
wor← S ⊆ {0, 1}n such that

|Sc| := s ≤ 2n−1 − 2q. Then

∆(Z ; U) ≤ q

2n
+

4qs2 + 8sq2 + 6q3

22n
.

When q ≤ s, we have ∆(Z ; U) ≤ q
2n + 18s3

22n . In particular, for Case-2(b), we

additionally have s = 0, leading to ∆(Z ; U) ≤ q
2n + 6q3

22n .

Our Approach. In this paper, we only prove for Case-1(a) and Case-2(a).
Our result is a generalization of that of Lucks [19], albeit with a much simpler
analysis. Later, we will show the application of these results for analyzing one-key
constructions of a specific form.

We start our proof with Lemma 4 which bounds the interpolation probability
of sum of two WOR samples drawn from arbitrary subset of {0, 1}n. Then we
extend Lemma 4 in Lemma 5 for 2q many samples over an arbitrary subset of
{0, 1}n. Then in Corollary 1 we consider the interpolation probability of sum of
two independent WOR samples drawn from two arbitrary equal-sized subsets of
{0, 1}n. Similarly, Corollary 2 is a natural extension of Corollary 1 for 2q many
samples over two arbitrary equal-sized subsets of {0, 1}n. Then we resume the
proof of Theorem 2 and 3.

High Interpolation Probability for Sum of Dependent WOR Samples.
We now state the key lemma which would be used to bound the statistical
distance between sum of WOR sampling and WR sampling.
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Lemma 4 (1-interpolation probability of sum of WOR samples). Let

S′ ⊆ {0, 1}n be a subset of size (2n−s′) and Un
$← {0, 1}n. Let (V,W )

wor← S′ be a
WOR sample of size 2 drawn from S′. Then, V ⊕W �ε Un over F∗2n := F2n\{0n}
where ε := s′2

(2n−s′)2 .

Proof. Let t ∈ F∗2n . For i = 1, 2, let Ai = {(a1, a2) : a1 ⊕ a2 = t, ai /∈ S′}.
Clearly, |Ai| ≤ s′. Note that {(x, y) ∈ S′ × S′ : x ⊕ y = t} = {(x, t ⊕ x) : x ∈
{0, 1}n} \ (A1 ∪A2). So,

Pr[V ⊕W = t] =
2n − |A1 ∪A2|

(2n − s′)(2n − s′ − 1)

≥ 2n − 2s′

(2n − s′)2
= 2−n(1− s′2

(2n − s′)2
). ut

Corollary 1. Let S′ ⊆ {0, 1}n and T ′ ⊆ {0, 1}n be two subsets of equal size

(2n − s′). Let (V,W )
$← S′ × T ′ 3 V ⊥W . Then V ⊕W �ε Un over F∗2n . When

s′ ≤ 2n−1, ε ≤ 4s′2/22n.

We now state and prove the extension of Lemma 4 for 2q many samples.

Lemma 5 (q-interpolation probability of sum of dependent WOR sam-

ples over S). Let S ⊆ {0, 1}n of size 2n− s, (Y1,1, Y2,1, . . . , Y1,q, Y2,q)
wor← S and

let Z = (Z1 := (Y1,1 ⊕ Y2,1), . . . , Zq := (Y1,q ⊕ Y2,q)). Then,

Z �ε U over F∗2n where ε :=
qs2 + 2sq2 + 4q3/3

(2n − s− 2q)2
.

Proof. Let Sc = {a0, a−1, . . . , a−s+1}. Let us fix i ≥ 1, t = (t1, . . . , tq) ∈ (F∗2n)q

and a1, a2, . . . , a2i−3, a2i−2 be distinct elements from S such that a2j−1⊕a2j = tj ,
1 ≤ j < i. By using Lemma 4 with S′ = {0, 1}n \ {aj : −s < j ≤ 2i − 2} and
s′ = s+ 2(i− 1), we have

Pr[Zi = ti | Y1,1 = a1, Y2,1 = a2, . . . , Y1,i−1 = a2i−3, Y2,i−1 = a2i−2] ≥ 1
2n (1− εi)

where εi = (s+2(i−1))2

(2n−s−2(i−1))2 . Since this bound holds for any ai’s, we can conclude

that Pr[Zi = ti | Z1 = t1, . . . , Zi−1 = ti−1] ≥ 1
2n (1 − εi). After applying chain

rule for these conditional probabilities, we obtain that

Pr[Z = t] ≥ 2−nq(1−
∑
i

εi) ≥ 2−nq(1− qs2 + 2sq2 + 4q3/3

(2n − s− 2q)2
). (2)

ut
It is to be noted that in both the lemmas the samples are chosen from S

without replacement and as a result the sum of q-many samples becomes non-
zero which justifies Z �ε U over F∗2n .
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Corollary 2. Let Y1 := (Y1,1, Y1,2 . . . , Y1,q)
wor← S and Y2 := (Y2,1, Y2,2, . . . , Y2,q)

wor←
T are two q-samples and Y1 ⊥ Y2 where S and T are two equal-sized subsets of
{0, 1}n of size 2n − s. Let Z := (Z1, Z2, . . . , Zq) where each Zi = Y1,i ⊕ Y2,i.

Then Z �ε U where ε ≤ 4qs2+4sq2+4q3/3
22n provided s+ q ≤ 2n−1.

Proof. On the calculation of the conditional probability of Zi, we set S′ =
{0, 1}n \ (Sc ∪ {a1, a3, . . . , a2i−3}) and T ′ = {0, 1}n \ (T c ∪ {a2, a4, . . . , a2i−2})
and so we set s′i = s + (i − 1). Then using Corollary 1, the Equation (2) holds
with εi = s′2i /(2

n − s′i)2. After simplifying
∑
i εi, we obtain the result. ut

Now we have all the required materials to prove Theorem 2 and Theorem 3.

Proof of Theorem 2.

Let us consider a view V := (C1, C2, . . . , Cq) consisting of q samples, where Ci =

Xi ⊕ Yi such that Xi
wor← S and Yi

wor← T , Xi ⊥ Yi, i ∈ [1, q] and S, T ⊆ {0, 1}n.
We say a view V is bad if ∃Ci = 0. Let Vb be the set of all bad-views and Vg be
the set of all good views. Now, it is easy to see that Pr[ U /∈ Vg] ≤ q

2n and from

Corollary 2 we have, Z �ε U over Vg where ε ≤ 4qs2+4sq2+4q3/3
22n as s+ q ≤ 2n−1.

Thus, using Lemma 3 we have, ∆(Z ; U) ≤ q
2n + 4qs2+4sq2+4q3/3

22n .
In particular, when |S| = |T | = {0, 1}n, putting s = 0 we obtain ∆(Z ; U) ≤

q
2n + 4q3/3

22n , which is actually the bound that Lucks had shown in [19]. ut
Proof of Theorem 3.

Let us consider a view V := (C1, C2, . . . , Cq) consisting of q samples, where

Ci = Xi ⊕ Yi such that Xi, Yi
wor← S, S ⊆ {0, 1}n. We say a view V is bad if

∃Ci = 0. Let Vb be the set of all bad-views and Vg be the set of all good views.
Now, it is easy to see that Pr[ U /∈ Vg] ≤ q

2n and from Lemma 5 we have, Z �ε U
over Vg where ε ≤ 4qs2+8sq2+6q3

22n provided s+ 2q ≤ 2n−1. Thus, using Lemma 3

we have, ∆(Z ; U) ≤ q
2n + 4qs2+8sq2+6q3

22n .

It is easy to see that (i) when q ≤ s then ∆(Z ; U) ≤ q
2n + 18s3

22n . (ii) when

|S| = |T | = {0, 1}n, putting s = 0 we obtain ∆(Z ; U) ≤ q
2n + 6q3

22n . ut

3.2 Applications to PRF Security of Sum of URP(Uniform Random
Permutation)

Let Π be a uniform random permutation on {0, 1}n. Then, for any distinct

x1, . . . , xq, it is easy to see that Π(q)(x) := (Π(x1), . . . ,Π(xq))
wor← {0, 1}n.

So when Π1 and Π2 are two independent uniform random permutations then,

Π
(q)
1 (x)

wor← {0, 1}n, Π
(q)
2 (x)

wor← {0, 1}n and Π
(q)
1 (x) ⊥ Π(q)

2 (x) where x ∈ dist.

• Case-1(b) actually talks about the pseudorandomness of sum of two inde-

pendent random permutations. More precisely, let SUMΠ1,Π2

1 (x) = Π1(x)⊕
Π2(x) where Π1 and Π2 are two independent random permutations. Then,
using Theorem 2, we have

Advprf

SUM
Π1,Π2
1

(q) ≤ q

2n
+

4q3/3

22n
.
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The above construction has been analyzed in [19].
• Case-2(b) talks about the pseudorandomness of (Π(x1)⊕Π(x2), . . .,Π(x2q−2)
⊕ Π(x2q)) where x = (x1, . . . , x2q) is element wise distinct. We can define

a function SUMΠ
2 : {0, 1}n−1 → {0, 1}n mapping an (n − 1) bit string y to

Π(0‖y)⊕Π(1‖y). So using Theorem 3 we have,

Advprf

SUMΠ2
(q) ≤ q

2n
+

6q3

22n
.

The above construction has been analyzed in [5].
• Case-2(a) talks about the more general case that deals with the pseudoran-

domness of (Π∗(x1)⊕Π∗(x2), . . . ,Π∗(x2q−2)⊕Π∗(x2q)) where Π∗
$← Pa→b

for two element wise distinct s-tuples a, b, and x∩a = φ. Suppose we restrict
the domain of SUMΠ∗

2 (as defined above) to D := {y ∈ {0, 1}n−1 : 0‖y, 1‖y 6∈
a}. Then, according to Theorem 3, for all q ≤ s, we have

Advprf

SUMΠ
∗

2

(q) ≤ q

2n
+

18s3

22n
.

We also state a theorem involving interpolation probability which would be
used later for PRF security analysis of sum-based construction. The proof of the
theorem is obvious from Theorem 3. We define sum function over two blocks as
follows: sumπ(x, y) = π(x)⊕ π(y) and sumπ1,π2(x, y) = π1(x)⊕ π2(y). It is easy
to see that the two block sum function can not be PRF. However, we have some
lower bounds on interpolation probability provided that inputs are in special
form. More formally we have the following theorem.

Theorem 4. Let (x, y) be a permutation compatible pair of s-tuples. Let σ1, θ1,
. . ., σq, θq be 2q distinct elements from the set {0, 1}n \x. If s+ 2q ≤ 2n−1 then,
for any non-zero t1, . . . , tq ∈ {0, 1}n,

1

(2n − s)q
≥ Pr[(σi, θi)i

sumΠ7−→ t | x Π7−→ y] ≥ 2−nq(1− ε),

where ε = 4qs2+8sq2+6q3

22n .

Proof. Set Y1,i = Πx→y(σi), Y2,i = Πx→y(θi) then (Y1, Y2)
wor← S := {0, 1}n \ y.

Hence we can apply Lemma 5 to conclude our theorem. ut
A simpler version of the above theorem when we consider sum of two uni-

form random permutations, we have the following result. The proof is again
straightforward from Corollary 2.

Theorem 5. Let (x, y) and (x′, y′) be two permutation compatible pair of s-
tuples. Let σ1, . . . σq be q distinct elements from the set {0, 1}n \ x and θ1, . . . θq
be q distinct elements from the set {0, 1}n \ x′. If s + q ≤ 2n−1 then, for any
non-zero t1, . . . , tq ∈ {0, 1}n,

1

(2n − s)q
≥ Pr[(σi, θi)i

sumΠ1,Π2

7−→ t | x Π27−→ y, x′
Π17−→ y′] ≥ 2−nq(1− ε),

where ε = 4qs2+4sq2+4q3/3
22n .
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4 A Generic Hash-then-Sum Construction for Building
BBB Secure MAC

Road Map. In this section, we describe a generic method to build a BBB secure
MAC. We start with a well known result of composition theorem to compose
a universal hash function with a PRF. Now to achieve BBB security for this
composed construction, one can consider a 2n bit output universal hash function
composing with a BBB secure PRF. But obtaining double block BBB secure PRF
based on a single key block cipher would not be easy and efficient.

Then we consider three types of hash-then-sum paradigm of constructions
based on three, two and one key. We also build various cover-free notions and
using those notions, we first find the sufficient condition for three key and two
key versions of such constructions to achieve BBB security. Finally, using the
similar idea, we provide the suffcient condition for single keyed hash-then-sum
construction to achieve BBB security.

A Composition Theorem: PRF(U) ≡ PRF. It is well known [31] that
composition of ε universal hash function H and a PRF g is a PRF which has
been proved using game-playing technique. For the sake of completeness, we
formally define universal hash function and prove the theorem using Patarin’s
Coefficient-H Technique. Let HK be an n-bit random function then

Advuniv
H (`) = max

m1 6=m2∈{0,1}≤`
PrK [HK(m1) = HK(m2)].

We say that a construction F is (`, ε)-universal if Advuniv
F (`) ≤ ε.

Theorem 6 ([31]). Let FK1,K2
:= gK2

◦ HK1
: {0, 1}∗ → {0, 1}n. Then,

Advprf
F (q, `, t) ≤ Advprf

g (q, `, t′) +

(
q

2

)
×Advuniv

H (`),

where t′ = t + O(qT`) and T` denotes the maximum time for computing H(m)
for any m with maximum number of blocks `.

Proof of this lemma is given in Appendix C.

Beyond Birthday Security. To achieve the beyond birthday security, one
can consider HK1

: {0, 1}∗ → {0, 1}2n and gK2
: {0, 1}2n → {0, 1}n. So if

Advuniv
H (`) = O(2−2n) and g has beyond birthday PRF-security then we can

achieve beyond birthday PRF-security for the composition function 6 . However,
obtaining a double-block beyond birthday secure PRF based on a (single-keyed)
block cipher would not be easy and efficient. One may try some variants of 6
rounds Luby-Rackoff [26] or Benes-Butterfly construction [28]. However, no such
single key efficient construction is known.

Block-Separated Double Block Construction. Let Hπ : {0, 1}∗ → R be a

6 This could be feasible as it is a collision probability for double-block construction.
However, a term ` denoting the maximum message size may appear.
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permutation-based deterministic construction. When e is a block cipher then for
any key K, eK is an n-bit permutation. Thus, a block cipher based construction
HeK can be viewed as a permutation-based constructionHπ. When R = {0, 1}2n,
it is called a double block construction and we write the two output blocks as
Hπ(m) = (Σ,Θ). We say that H is block-separated if the range of possible
values of Σ and Θ are disjoint. More formally, for all m1 6= m2, and for all
permutation π if

Hπ(m1) = (Σ1, Θ1),Hπ(m2) = (Σ2, Θ2) ⇒ Σi 6= Θj , i, j ∈ {1, 2}.

For any double construction (Σ′, Θ′), with a minor modification, one can make it
block-separated. For example, let fix0 : {0, 1}n → {0, 1}n be a function mapping
x1x2 · · ·xn to 0x2 · · ·xn. Similarly, we define fix1 which fixes the first bits to 1.
Now, the double block construction defined as H = (Σ,Θ) is block-separated
where Σ = fix0(Σ′) and Θ = fix1(Θ′). We use this to define block-separated
constructions. Later we see that PRF analysis of block separated cases are easier
as it does not need to handle bad events dealing collision betweenΣ andΘ values.

In the subsequent sections by double block construction we mean the block-
separated double-block construction.

4.1 Hash-Then-Sum Construction

In this paper, we consider a special and very simple form of g function, namely
the sum function over two blocks, which is considered in [5, 19]. We define

sumπ1(x, y) = π1(x)⊕ π1(y), and sumπ1,π2(x, y) = π1(x)⊕ π2(y)

where π1 and π2 are two independent n-bit functions (possibly permutations).
Given a double-block construction HK , let’s consider the following three com-
position rules depending on key reuse.

HK

π1 π2

⊕

CK,π1,π2
3 CK,π1

2 Cπ1

HK

π1 π1

⊕

Hπ

π π

⊕

Fig. 4.1. Three different types of Hash-then-Sum constructions: (1) three-key construc-
tion CK,π1,π2

3 := sumπ1,π2 ◦ HK . (2) two-key construction CK,π1
2 := sumπ1 ◦ HK . (3)

one-key construction Cπ1 := sumπ ◦ Hπ.
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Note that we can not apply the above composition result as the sum con-
struction is clearly not a PRF over two blocks. So we need a different type of
composition result for sum-based construction. In [10], it has been proved that
sumfK1

,fK2 ◦ HK is unforgeable whenever H is cover-free and f is unforgeable.
The same can be proved for PRF security instead of unforgeable. To do so,
we formally define cover-free which would be used to analyze hash-then-sum
constructions.

Let HK := (Σ,Θ) be a random function which outputs two blocks. For a
q-tuple of distinct messages m = (m1, . . . ,mq), we write HK(mi) = (Σi, Θi).
For a q-tuple of pairs (σi, θi)i, we say that

1. σi (or θi) is fresh 7 if it is not same as σj (or θj respectively) for some j 6= i.

2. We say that a tuple (σi, θi)i is cover-free if for all i, either σi or θi is fresh.

We define (q, `)-cover-free advantage of H as

Advcf
H(q, `) = max

m∈distq
Pr[(Σi, Θi)i is not cover-free],

where maximum is taken over all q-tuple of distinct messages having at most
` blocks. We say that a construction F is (q, `, ε)-cover-free if Advcf

F (q, `) ≤ ε.

4.1.1 Hash-then-sum based on PRF.

Lemma 6. For any q, `, the three-key construction C3 := sumfK1
,fK2 ◦ HK sat-

isfies the following:

Advprf
C3 (t, q, `) ≤ Advcf

H(q, `) + 2Advprf
f (t′, q, `).

Proof. Fix a cover-free tuple (σi, θi)i∈[q]. We denote the event E(σ, θ) ≡
(
(HK(mi))i∈[q]

= (σi, θi)i∈[q]). Therefore, Pr[m
C37→ t | E] = Pr[m

C37→ t] = Pr[Γ1(σi) ⊕ Γ2(θi) =
ti,∀i] = 2−nq where m = (m1, . . . ,mq) be the distinct q-tuple of messages and
t = (t1, . . . , tq) be a q-tuple response such that ti be the response of C3 for the
corresponding message mi. The first equation follows from the argument that
the randomness for H is independent of Γ1’s and Γ2’s. The last equality follows
from the following argument. Let ψi denote the one of the fresh blocks from σi
and θi and ψ′i denotes the other. Then, by conditioning on the output of ψ′i’s the
above probability becomes the interpolation probability of a uniform random
function for q distinct inputs which equals to 2−nq. As the conditional probabil-
ity is same for all condition events, the unconditional probability is also equal

to 2−nq. So Pr[m
C37→ t] ≥ (1−ε)

2nq where ε := Pr[Ec] which is at most Advcf
H(q, `).

The above analysis is done for uniform random functions. The rest follows by
applying standard reduction. ut
7 Some paper considers the definition when j < i, but here we consider the definition

for all j 6= i to simplify our analysis as in terms of order the security bound does not
change.
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Remark 1 The above three-key construction is a potential candidate for having
beyond birthday security. Note that from definition of cover-free, Advcf

H(q, `) ≤(
q
3

)
Advcf

H(3, `). So, for any three messages m1,m2,m3 with m1 6= m2,m3, if

Pr[Σ1 = Σ2, Θ1 = Θ3] = O(`c2−2n)

for some small constant c then we have the beyond birthday security for small `.
Intuitively, the event Σ1 = Σ2, Θ1 = Θ3 deals two (possibly linear independent)
equations and it may be feasible to have such a bound.

4.1.2 Hash-then-Sum based on Pseudorandom Permutation.

Block cipher (which is assumed to be PRP) based three key Hash-then-Sum con-
structions (C3) are well known from PMAC Plus [34] and 3kf9 [35]. After modeling
a block cipher to be a PRF, one can apply the above Lemma 6. However, block
cipher can ensure PRF with a maximum birthday bound security. So we need
to treat it differently to have beyond birthday analysis. In the following, let
Π,Π1, Π2 be random permutations over the domain {0, 1}n and range {0, 1}n.
We state the results for the constructions using uniform random permutations
instead of pseudorandom permutation as the standard reduction can be applied
for the later constructions.
LetHK be a block separated double block construction, we writeHK = (HK,1,HK,2)
where HK,1,HK,2 are single block functions.

4.2 PRF-security of Hash-then-Sum Construction based on Two
and Three Key Constructions.

Theorem 7. Let HK be a (q, `, εcf )-cover-free function and for all i = 1, 2, HK,i
are (`, εuniv)-universal hash functions. Then, C2 := sumΠ ◦HK is (q, `, ε2)-PRF
and C3 := sumΠ1,Π2 ◦ HK is (q, `, ε3)-PRF, where

1. ε2 = εcf + (2q + 2q3

2n−1 )εuniv + 38q3`3

22n + ρbad.

2. ε3 = εcf + (q + q3

2n−1 )εuniv + 10q3`3

22n + ρbad.

The proofs for both constructions are similar except that we have to analyze
sum of two independent or dependent uniform random random permutations.
As the later involves more dependency, we only prove for C2. We provide the
proof by using coefficient H-technique for which it would be sufficient to obtain
a lower bound of interpolation probability.

Proof Sketch. Informally, given that we obtain cover-free outputs (σi, θi)i from
H, for all i at least one block is fresh. If both are fresh then we call i free. For
all non-free indices i, exactly one, denoted ψi, of σi and θi is not fresh and the
other denoted by ψ

′

i, is fresh. We sample the output Π(ψ
′

i) which will be forced
as the sum of these values are fixed. Note that in the interpolation probability
calculation, we fix some values for sum beforehand. Now, we will have high inter-
polation probability due to low collision probability of HK,i’s and independence
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of sampling Π. In this way, we obtain high interpolation probability except for
free i. Now we can apply sum of a uniform random permutation sampled from
a restricted class of permutation (as analyzed in section 4) to complete the in-
terpolation probability for free indices.

Formal Proof. As we mentioned above, we provide the formal proof of this the-
orem using Coefficient-H Technique. For that, we proceed in three streps: (A)
Bound the probability of obtaining a bad view in ideal world, (B) Show high
interpolation probability for the good view, and (C) Combine these two.

(A) Bounding the probability of Bad view. We first define the Bad view.

Definition 3 (Bad view). A tuple t := (t1, . . . , tq) is said to have a r-collision
if there exists an r-set I such that ti = tj for all i, j ∈ I. Let

Vbad = {t : ∃i, ti = 0} ∪ {t : t has 3-collision}. (3)

A view t is said to be a bad view if t ∈ Vbad.

Let Vgood be the complement of Vbad. Any element t ∈ Vgood is called a good
view. Note that this view is observable by the adversary. For a random function
Γ and for any adversary A,

ρbad := Pr[τ(AΓ ) ∈ Vbad] ≤
q

2n
+

q3

22n
. (4)

Now, we fix any t ∈ Vgood and a q-tuple m of distinct messages. We write
HK(mi) = (Σi, Θi), 1 ≤ i ≤ q.
(B) High Interpolation Probability for the Good view. In order to show
the high interpolation probability for the good view, we will define a good inter-
nal transcript corresponding to the fixed good view. Then we will calculate the
interpolation probability for good internal transcript followed by providing the
bound for the probability for bad internal transcripts.

(B.1) Identify Good Internal Transcript. We first define some notations
and definitions for defining good internal transcript. Let (σi, θi)i∈[q] be any tu-
ple. It is easy to see that for any i exactly one of the these will happen: (i) i
is free, (ii) σi is fresh and θi is not, (iii) θi is fresh and σi is not and (iv) both
σi and θi are not fresh. We call the tuple cover-free if the item (iv) does not
happen for all i. Now let IΣ = {i : σi is not fresh } and similarly we define IΘ.
We define

(ψi, ψ
′
i) =

{
(σi, θi), if i ∈ IΣ
(θi, σi), if i ∈ IΘ

Note that ψ′i’s are always fresh and ψi’s are not. We write I = IΣ ∪ IΘ. For all
i ∈ I, we again choose a tuple (wj)j∈I which is permutation compatible with
(ψj)j∈I . Let T = {((σi, θi)i∈[q], (wj)j∈I) : wI ←→ ψI} be the set of all internal
transcripts. Given any such tuple from T , we define w′i = wi + ti, i ∈ I. Now we
define goodness of internal transcripts.
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Definition 4. A tuple ((σi, θi)i∈[q], (wj)j∈I) ∈ T is called good w.r.t. t if all of
the followings happen:

1. E1 ≡: ((σi, θi)i∈[q] is a cover-free tuple,
2. E2 ≡: whenever ti = tj, σi 6= σj and θi 6= θj,
3. E3 ≡: for w′i = wi + ti, i ∈ I, the tuple w′I ∈ dist and
4. E4 ≡: w′I ∩ wI = φ.

Note, due to the choice of the q-tuple t, at most for q/2 pairs (i, j), ti = tj
can happen. Now we see why we call this internal transcript good. Informally,
for a good internal transcript, we can have permutation-compatible input out-
puts and so we have high interpolation probability (otherwise, the interpolation
probability would be zero).

Claim. If ((σi, θi)i∈[q], (wj)j∈I) ∈ T is good then (ψ′I , ψI) ←→ (w′I , wI), ψ
′
I ∈

dists, and ψ ∩ ψ′ = φ where s = |I|.
Proof of the claim. Due to the definition of good tuple, w′I ∈ dists, w

′
I∩wI = φ.

Whenever ti = tj , we have wi 6= wj as w′i 6= w′j . At the same time, by definition
of good tuple we know that σi 6= σj and θi 6= θj . So, (ψ′I , ψI)←→ (w′I , wI).

(B.2) High Interpolation probability for Good Internal Transcript. Let
us fix a good tuple as defined above. We denote the event

E(σ, θ, w) ≡
(
(HK(mi))i∈[q] = (σi, θi)i∈[q], Π(ψj) = wj∀j ∈ I

)
.

It is easy to see that given E, the interpolation event mI
C27−→ tI is same as

ψ′I
Π7−→ w′I . Also, we have observed that, ψ′I ∈ dists and ψ ∩ ψ′ = φ where

s = |I|. So, we can use the lemma 2 given in section 2. More precisely, we have

Pr[mI
C27−→ tI | E] = Pr[ψ′I

Π7−→ w′I | E]

= Pr[ψ′I
Π7−→ w′I | ψI

Π7−→ wI ] (As K and Π are independent)

≥ 1

2ns
(As (ψ′I , ψI)←→ (w′I , wI), ψ

′
I ∩ ψI = φ and ψ′I ∈ dists )

Using the above result, we find the following conditional probability

Pr[m
C27−→ t | E] = Pr[mIc

C27−→ tIc | E ∧mI
C27−→ tI ]× Pr[mI

C27−→ tI | E]

≥ Pr[(σi, θi)i∈Ic
sumΠ7−→ tIc | (ψI , ψ

′
I)

Π7−→ (wI , w
′
I)]×

1

2ns
≥ (1− 38s3/22n)

2nq

The last inequality follows from theorem 4. For the first statement of the theo-
rem, we can apply Theorem 5 instead of Theorem 4 as we have two independent

PRP. In this case the lower bound becomes (1−10s3/22n)
2nq .

Now, we find our desired interpolation probability as we sum over all good tuples
for ε = Pr[(Σi, Θi)i∈[q], (Ψi, Π(Ψi))i∈I is not good ]:

Pr[m
C27−→ t] ≥

∑
E

Pr[m
C27−→ t | E]× Pr[E] ≥ (1− 38s3/22n)

2nq
× (1− ε). (5)
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(B.3) Find ε : Bounding Probability of Bad Internal Transcript. Now,
we are left with bounding ε. By using the definition of good tuple and using the
union bound, we have ε = ε1 + ε2 + ε3 + ε4 where εi = Pr[Eci ], 1 ≤ i ≤ 4. Now
we bound each εi as follows:

(a) ε1 = Pr[(Σi, Θi)i is not cover-free] ≤ εcf .

(b) ε2 =
∑
i 6=j:ti=tj (Pr[Σi = Σj ] + Pr[Θi = Θj ]) ≤ 2qεuniv.

(c) ε3 = Pr[w′I ∈ dist] ≤ q3

2n εuniv. The proof is given below:

ε3 =
∑

i6=j:ti 6=tj

Pr[i, j ∈ I,Π(Ψi)⊕Π(Ψj) = ti ⊕ tj ]

≤
∑

i,j,k,ψi,ψj :i 6=j,ti 6=tj

Pr[Π(Ψi)⊕Π(Ψj) = ti ⊕ tj | H ≡ (Ψi = Ψk = ψi, Ψj = ψj)]× Pr[H]

≤
∑

i,j,k,ψi,ψj :i 6=j,ti 6=tj

Pr[Π(ψi)⊕Π(ψj) = ti ⊕ tj ]× Pr[H]

≤
∑
i6=j,k

1

2n − 1
× Pr[Ψi = Ψk] ≤ q3

2n − 1
εuniv.

The last two inequalities follows from the two fact: (i) K is independent of Π
and (ii) for any a, b,Pr[Π(a)⊕Π(b) = c] ≤ 1/(2n − 1)

(d) ε4 = Pr[w′I ∩ wI = φ] =
∑
i6=j:ti 6=tj Pr[i, j ∈ I,Π(Ψi) ⊕ Π(Ψj) = ti] ≤

q3

2n−1εuniv. This proof is identical to case (c).
Summing these four error terms, we obtain an upper bound of ε ≤ εcf + (2q +

2q3

2n−1 )εuniv. Now, plugging it in Equation (5) we obtain,

Pr[m
C27−→ t] ≥ εcf + (2q +

2q3

2n − 1
)εuniv +

38q3l3

22n
(6)

(C) Combining the Results:. The proof completes as we apply Patarin’s
Coefficient Technique by putting Eqn. 4 and Eqn. 6 in Theorem 1.

4.3 PRF-security of Hash-then-Sum Construction based on Single
keyed PRP

In this paper, we show a PRF-security bound for one-key hash-then-sum con-
structions C1 := sumΠ ◦ HΠ . Note that the hash function is also permutation
based and uses same permutation Π used in the outer layer sum function. The
PRF security analysis is similar to that of Theorem 7. However, it requires to
handle more bad cases.

Notation. Given any permutation π, let τ(H(m) →q π) = (x, y), the pair of
inputs and outputs of π during the computations of Hπ(mi) = (σi, θi) for all
i ∈ [q]. We also write x = (xi,j : i ∈ [q], j ∈ [`i]) and similarly y for the same
index set. Note that (σi, θi)i is uniquely determined by (x, y).
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Definition 5. For any i, we say that σi is x-fresh if it is not same as σj for
some j 6= i or xr,s for any r ∈ [q], s ∈ [`r]. Similarly, we define for x-freshness of
θi. We say that a tuple (σi, θi)i is x-cover-free (or (x, y) is extended-cover-
free) if for all i, either σi or θi (or both) is x-fresh8. If both σi and θi are
x-fresh we call i to be free.

We denote IΣ = {i : σi is not x-fresh } and similarly IΘ and let I = IΣ ∪ IΘ.
For all i ∈ IΣ , we define (ψi, ψ

′
i) = (σi, θi) and similarly, for all i ∈ IΘ, we define

(ψ′i, ψi) = (σi, θi) and so ψi’s are always non-fresh and ψ′i’s are fresh. We say
that ψi is old if there exists xr,s such that ψi = xr,s, otherwise ψi is called new.
We define Iold = {i : ψi is old} and similarly Inew = {i : ψi is new}. Clearly,
I = Iold ∪ Inew.

(L11) σi = σj , θi = θk
(x, y) is extended Covered (L12) σi = xj,a, θi = θk

(L13) σi = σj , θi = xk,b
(L14) σi = xj,a, θi = xk,b
(L21) σi = xj,a, yj,a ⊕ ti = yk,s

(x, y) is Pseudo Covered (type-1) (L22) θi = xj,a, yj,a ⊕ ti = yk,s
(L31) σi = xk,a, σj = xl,b, yk,a ⊕ yl,b = ti ⊕ tj

(x, y) is Pseudo Covered (type-2) (L32) θi = xk,a, θj = xl,b, yk,a ⊕ yl,b = ti ⊕ tj
(L33) σi = xk,a, θj = xl,b, yk,a ⊕ yl,b = ti ⊕ tj
(L41) σi = xj,a, yj,a ⊕ ti = wk
(L42) θi = xj,a, yj,a ⊕ ti = wk

(x, y, wInew ) (L43) σi = σj , wi + ti = wj + tj
Mixed Covered (L44) σi = σj , wi + ti = wj

(L45) θj = xl,b, yk,a ⊕ yl,b = ti ⊕ tj
(L51) xj,a = σi/θi

universal-collision (L52) θi = θj / σi = σj
(L61) σi = σj for some ti = tj

t-collision (L62) θi = θj for some ti = tj

Table 1. Table representing bad equations for fully covered, pseudo-covered and mix-
covered cases. Moreover we also consider collision for extended universal hash.

Definition 6. 1. A double block construction HΠ is called (q, `, ε)-extended-
cover-free if for all q-tuple m = (m1, . . . ,mq) of distinct messages of size
at most `,

PrΠ [(HΠ(mi))i)i∈[q] is extended-covered ] ≤ ε.
2. HΠ is called (q, `, ε)-pseudo-cover-free w.r.t. t if for all q-tuple m of dis-

tinct messages of size at most `, if

PrΠ [(HΠ(mi))i)i∈[q] is pseudo-covered ] ≤ ε.
8 Here we consider the definition for all i, r such that r 6= i. Defining x-fresh, assuming
r < i would give a better bound but as the order of the bound does not change, for
simplification of the analysis, we keep this definition
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3. It is called ε-extended universal if HΠi ’s are ε-universal, i.e., for all pairs
m = (m1,m2) of distinct messages PrΠ [Σ1 = Xi,j ],Pr[Θ1 = Xi,j ] ≤ ε for all
i = 1, 2 and j ∈ [`i].

Now, we state our main theorem which provides PRF security for hash-then-sum
construction based on a single PRP.

Theorem 8. If H is block-separated, (q, `, εecf )-extended-cover-free, (q, `, εpcf )-
pseudo-cover-free for any q-tuple t ∈ Vgood and εeuniv-extended universal then
C1 := sumΠ ◦ HΠ is (q, ε)-PRF where

ε = εecf + εpcf + (2q + q3/2n)εeuniv +
18(`+ 2)3q3

22n
+ ρbad.

Proof. We again prove the theorem using Coefficient-H Technique. Likewise the
proof of Theorem 7, we identify three steps of the technique and combine them
altogether to obtain the result.

(A) Bound the probability of Bad view. We will use the same defintion of
Bad view as used in Definition 3. Recall that the set of bad views Vbad = {t :
∃i, ti = 0} ∪ {t : t has 3-collision} observed by A and for any random function

Γ , ρbad := Pr[τ(AΓ ) ∈ Vbad] ≤ q
2n + q3

22n (from Eqn. 4)

(B) High Interpolation Probability for Good View. We fix any t ∈ Vgood
and a q-tuple m of distinct messages. We write Hπ(mi) = (Σi, Θi), 1 ≤ i ≤ q.
(B.1) Identify Good Internal Transcript. Similar to proof of Theorem 7 (the
two keyed constructions), we define T = {((σi, θi)i∈[q], (wj)j∈Inew) : wInew ←→
ψInew} be the set of all internal transcripts. Given any such tuple from T , we
first define wi = yj,a for all i ∈ Iold with ψi = xj,a. So we have defined wI . Now
we define w′i = wi + ti, for all i ∈ I.

Definition 7. We say that a tuple ((x, y), wInew) ∈ T good if followings happen:

1. E1 ≡ (x, y) is extended-cover-free,
2. E2 ≡ whenever ti = tj, σi 6= σj and θi 6= θj,
3. E3 ≡ (x, ψI , ψ

′
I)←→ (y, wI , w

′
I).

Thus, for a good tuple all permutation compatible input output values arise.
Now we categorize different possibilities of not being good. We have already
defined extended cover-free of (x, y). Now we define two more possibilities.

Definition 8. 1. We say that a tuple (x, y) is pseudo-covered if it satisfies
either type-1 or type-2 pseudo-covered equations given in the Table 1.

2. We say that a tuple ((x, y), wInew) ∈ T is mix-covered if one of equations of
mixed-covered in Table 2 satisfies.

Now state that these newly defined bad events are actually equivalent to not
being good tuple as defined before. The verification of this statement is more
or less straightforward. We basically, need to consider all possible collisions of
inputs and outputs.
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Lemma 7. A tuple ((x, y), wInew) ∈ T is bad if and only if (x, y) is extended
covered or pseudo-covered or t-collision or ((x, y), wInew) is mix-covered.

Let us fix a good tuple ((x, y), wInew) as defined in Definition 7. We denote the
event

E(x, y, w) ≡ τ(A → HΠ) = (x, y), Π(Ψi) = wi∀i ∈ Inew).

It is easy to see that given E the interpolation event mI
C17−→ tI is same as

ψ′I
Π7−→ w′I . Also observe that ψ′I ∈ dist and (ii) ψ′I ∩ (x, ψI) = φ where s = |I|.

So we can proceed exactly similar to the proof of the Theorem 7.

(B.2) High Interpolation Probability for good Internal Transcript. We
have

Pr[mI
C17−→ tI | E] = Pr[ψ′I

Π7−→ w′I | E]

= Pr[ψ′I
Π7−→ w′I | (x, ψI)

Π7−→ (y, wI)].

≥ 1

2ns
As, (ψ

′

I , ψI)←→ (w
′

I , wI), ψ
′

I ∩ (x, ψI) = φ, ψ
′

I ∈ dist.

Using the above result, we find the following conditional probability

Pr[m
C17−→ t | E] = Pr[mIc

C27−→ tIc | E ∧mI
C17−→ tI ]× Pr[mI

C17−→ tI | E]

≥ Pr[(σi, θi)i∈Ic
sumΠ7−→ tIc | (x, ψI , ψ

′
I)

Π7−→ (y, wI , w
′
I)]×

1

2ns

≥ 2−nq × (1− 18(`+ 2)3q3/22n) [From Theorem 4 with q ≤ s ].

Now, we find our desired interpolation probability as we sum over all good tuples
for ε = Pr[(X,Y )i∈[q], (Π(Ψj))j∈I is not good ]:

Pr[m
C17−→ t] ≥

∑
E

Pr[m
C17−→ t | E]×Pr[E] ≥ (1− 18(`+ 2)3q3/22n)

2nq
×(1−ε)

(7)
(B.3) Bounding ε : Probability of Bad Internal Transcript. By using
the equivalent definition of good tuple (as described in lemma 7) and using the
union bound, we have ε = ε1 + ε2 + ε3 + ε4 where εi’s are described and bounded
as below.

(a) ε1 = Pr[(x, y) is extended-covered] ≤ εecf .

(b) ε2 =
∑
i 6=j:ti=tj (Pr[Σi = Σj ] + Pr[Θi = Θj ]) ≤ 2qεuniv.

(c) ε3 = Pr[(x, y) is pseudo-covered] ≤ εpcf .

(d) ε4 = Pr[(x, y) is mix-covered] ≤ q3

2n × εuniv.

To bound ε4 we use the similar observation that the bad equations are combi-
nation of an event defined by (X,Y ) only and an event related to the output of
Π(ψ′) where ψ′ is new.
Summing these four error terms, we obtain an upper bound of ε ≤ εecf + εpcf +

(2q + q3

2n )εuniv. Plugging it in into Equation (7), we obtain

Pr[m
C17−→ t] ≥ εecf + εpcf + (2q +

q3

2n
)εuniv +

18(`+ 2)3q3

22n
(8)
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(C) Summing up all the Results. The proof completes as we apply Patarin’s
Coefficient Technique by putting Eqn. 4 and Eqn. 8 in Theorem 1.

5 A Generic Bound for εecf , εpcf and εuniv using Rank
and Accident

Road Map. We consider block cipher-based constructions in affine mode and
show that all intermediate outputs of the computation of one or more messages
can be viewed as a conditional WOR sampling, that are not independent. To
analyze these samples, we introduce the notion of almost independent sampling.
All the bad cases can then be viewed as restrictions on these linear equations
obtained from the affine mode analysis, thereby forming a reduced set of equa-
tions. We also use the idea of accidents as in [7, 25] and represent the total rank
of the linear system as the sum of accidents and the rank of the reduced system.
This formulation gives a tool to bound the different types of cover-free advantage
corresponding to the bad cases described in the last section.

5.1 Almost Independent Sampling

WR sampling is an independent sampling, but WOR is not. But they share
common features in terms of conditional entropy. In particular, the conditional
distribution of ith sample has high entropy when i is not very close to total
population size. We formally define it by almost-independence.

Definition 9. (X1, . . . , Xq) is called ε-almost-independent if for all t1, . . . , tq,
and i, the conditional probability Pr[Xi = ti | X1 = t1, . . . , Xi−1 = ti−1] ≤ ε.

If (X1, . . . , Xq)
wr← S then (X1, . . . , Xq) is also |S|−1-almost-independent. Simi-

larly, if (X1, . . . , Xq)
wor← S then (X1, . . . , Xq) is also (|S|−q)−1-almost-independent.

Now we consider a different example of almost-independent random variables
obtained by conditioning WR samples.

Lemma 8. Let X1, . . . , Xq is ε-almost-independent over GF (2n), and let L1,
. . ., Lr be r linearly independent equations with q variables over the finite field
GF (2n). Then, for any constants c1, . . . , cr ∈ GF (2n), we have

Pr[Li(X1, . . . , Xq) = ci, 1 ≤ i ≤ q] ≤ εr. (9)

5.1.1 Conditional WOR Sampling. We consider a variant of WOR sam-
pling, called conditional WOR sampling. This sampling scheme is motivated
from the affine mode. Let Ai be an affine equation over GF (2n) with i− 1 vari-
ables, 1 ≤ i ≤ `. The samples Y = (Y1, . . . , Y`) and X = (X1, . . . , X`) are defined
recursively as follows:

• Xi = Ai(Y1, . . . , Yi−1) and
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• Yi =

{
Yj if for some j < i,Xi = Xj ;
$← {0, 1}n \ {Yj : 1 ≤ j < i} otherwise.

Definitely Yi’s are not almost-independent as Yi = Yj for some conditional
choices of Y1, . . . , Yi−1. So we now identify a set of (random) indices I for which
Yi’s behave almost-independently for all i ∈ I. But, this I is a random set and
so we will consider the conditional distribution of YI := (Yi)i∈I given I (more
precisely given an equivalence relation ∼ which uniquely determines I). Then,
this conditional distribution would behave almost-independently.

Definition 10. Let Y = (Y1, . . . , Y`) be an A-conditional WOR `-sample. We
define an (induced) equivalence relation ∼Y on [`] as i ∼ j if and only if Ai(Y ) =
Aj(Y ) (and hence Yi = Yj). We say that an equivalence relation ∼ is realizable
if Pr[∼Y =∼] > 0.

Proposition 1. Let ∼ be a realizable equivalence relation and let I be the corre-
sponding indices as defined above. Then, the conditional distribution of YI | ∼Y =∼
is (2n − `2)−1-almost-independence.

5.2 Conditional WOR sample vs. Block cipher based Construction

Let C be an affine construction meaning that the intermediate inputs X (the
inputs of the block cipher) is an affine function of previous intermediate outputs
Y and message blocks. Then, all intermediate outputs of the computation of one
or more messages can be viewed as a conditional WOR sampling for a suitable
choices of affine functions. We can similarly define accident of a permutation for
a tuple of messages.

For any pair (m,π) of q-tuple of distinct messages and a permutation, we
associate the following objects:

1. equivalence relation ∼ (which is same as the structure graph in case of
CBC construction) [7] on intermediate outputs Y with s many classes,

2. accident a := accm(π), as defined in [7, 25], representing the number of lin-
early independent restrictions and

3. and a set of indices I ⊂ {J1, . . . , Js} be the set of free variables of size s− a
such that YI is (2n−(σ

′
)2)-almost-independent where σ

′
is the total number

of message blocks.

For a detailed discussion on affine system and the above notions, please refer to
Appendix D.

Lemma 9 ( [25]). For any realizable equivalence relation ∼ with accident a
Pr[∼Y =∼] ≤ 1

(2n−`)a . The number of realizable equivalence relation with accident

a is at most (
(
s
2

)a
).
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We skip the proof of bounding the number of realizable equivalence relations
with accident a. Informally, to each an a accident realizable relation, we would
be able to uniquely identify a basis of a linear equations (there are several choices
of basis, but a special way of selecting basis will ensure the uniqueness of the
choice). Since each equation can be chosen at most

(
s
2

)
ways, the number of ways

we can choose a special basis is at most
(
s
2

)a
.

Definition 11. A permutation is not allowed or bad w.r.t. a q-tuple of dis-
tinct messages m := (m1, . . . ,mq), if

1. for all i, accmi(π) ≥ 1,

2. for all i, j, k, accmi,mj ,mk(π) ≥ 2 and

3. for all i, j, k, l, accmi,mj ,mk,ml(π) ≥ 3.

Lemma 10. Probability that a random permutation is bad for a tuple of q mes-
sages is at most

q`2

2n
+
q2`4

22n
+
q3`6

23n
.

Now onwards, we make our analysis for allowed permutation. Note that a per-
mutation is allowed for a q-tuple of messages if and only if for all distinct i, j, k;
π is also allowed for (mi,mj ,mk).

5.3 PRF Bound of Single-Key Hash-then-Sum Construction
through rank analysis

Lemma 11. If C is (ε, 3)-extended-cover-free, then C is (
(
q
3

)
ε, q)-cover-free; if C

is (ε, 3)-pseudo-cover-free-1, then C is (
(
q
3

)
ε, q)-pseudo-cover-free-1; and if if C is

(ε, 4)-pseudo-cover-free-2, then C is (
(
q
4

)
ε, q)-pseudo-cover-free-2.

Applying this result to Theorem 8, it would be sufficient to bound, extended-
cover-free for three messages and pseudo-cover-free advantages for three and four
messages. However, for some constructions, we may not be able to obtain desired
bound. So we need to consider allowed or good permutations.

Given, a set of affine equations L and an equivalence relation ∼, we define the
extended-rank of the pair (L(Y ),∼) as acc(∼) + rank(L′(YI)), where rank of a
linear system means the rank of the corresponding coefficient matrix and L′(YI)
is the reduced form of the equation L(Y ) after applying equivalence relation and
the a many restrictions induced by the accidents. Let {Lij} be a set of systems of
linear equations. Note that, Lij is a system of linear equations. Now we identify
the set of systems of linear equations which are actually obtained from different
bad cases for three messages m := (m1,m2,m3) as shown in Table 1.

Let Nr
ij denote the number of pairs of the form (∼,Lij) such that ∼ is allowed

and the extended-rank of the pair is r. Then, we have the following general bound
for any sum-based construction.
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Theorem 9. For the construction C1,

Advprf
C1 (q, `) ≤ 18(`+ 2)3q3

22n
+ q3(ε′ecf + ε′pcf1) + q4ε′pcf2 +

(
2q +

q3

2n

)
εgeuniv

+

(
q

2n
+

q3

22n

)
+ (

q`2

2n
+
q2`4

22n
+
q3`6

23n
).

where ε′ecf :=
∑4
j=1

∑4
r=0

Nr1j
2nr , ε

′
pcf1 :=

∑2
j=1

∑4
r=0

Nr2j
2nr , ε

′
pcf2 :=

∑3
j=1

∑5
r=0

Nr3j
2nr

and εgeuniv :=
∑5
j=1

∑2
r=0

Nr5j
2nr .

Proof. Letm = (m1,m2,m3) be a 3-tuple of distinct messages and t = (t1, t2, t3) /∈
Vbad. Let us consider A denotes the event [(x, y) is extended-covered]. Similarly
B,C and D denote the event [HΠi ’s are ε-universal], [(x, y) is pseudo-covered ]
and [(x, y) is mix-covered ] respectively.
Now, recall the proof of Theorem 8 in which ε = ε1+ε2+ε3+ε4 where ε1 = Pr[A],
ε2 = Pr[B], ε3 = Pr[C] and ε4 = Pr[D]. Therefore, ε1 ≤ Pr[A|Π is good ] +
Pr[Π is bad ], ε2 ≤ Pr[B|Π is good ] + Pr[Π is bad ], ε3 ≤ Pr[C|Π is good ] +
Pr[Π is bad ], ε4 ≤ Pr[D|Π is good ] + Pr[Π is bad ].

Now we define εgecf to be the maximum extended-cover free advantage when Π

is randomly sampled from set of good permutations. Similalrly, we define εgpcf
to be the maximum pseudo-cover-free advantage and εgeuniv to be the maximum
extended-universal advantage when Π is randomly sampled from set of good per-
mutations. Moreover, εgpcf = εgpcf1 + εgpcf2. Therefore, ε ≤ εgecf + εgpcf1 + εgpcf2 +

(2q + q3

2n )εgeuniv + Pr[Π is bad ]. Thus,

Advprf
C1 (q, `) ≤ εgecf + εgpcf1 + εgpcf2 + (2q + q

q3

2n
)εgeuniv + Pr[Π is bad ]

+
18(`+ 2)3q3

22n
+ (

q

2n
+

q3

22n
). (10)

Now, Pr[Π is bad] can be upper-bounded by Lemma 10. By Lemma 11, εgecf ≤
q3ε′ecf , εgpcf1 ≤ q3ε′pcf1, εgpcf2 ≤ q4ε′pcf2 where, according to the Definition 6,
Lemma 11 and Table 1, it is easy to check that the following holds:

(a) ε′ecf ≤
∑4
j=1

∑4
r=0

Nr1j
2nr , (b) ε′pcf1 ≤

∑2
j=1

∑4
r=0

Nr2j
2nr , (c) εgeuniv ≤

∑2
j=1

∑2
r=0

Nr5j
2nr .

Moreover, if m = (m1,m2,m3,m4) be a 4-tuple of distinct messages and t =
(t1, t2, t3, t4) /∈ Vbad then from Definition 6, Lemma 11 and from Table 1, one

can easily check that εpcf2 ≤
∑3
j=1

∑5
r=0

Nr3j
2nr . Therefore plugging the bound of

ε′ecf , ε
′
pcf1, ε′pcf2 and εgeuniv in Equation (10) we obtain the result. ut

6 New Proposals for BBB Secure One Key MAC

We introduce here the construction of two separate MACs. One is 1kf9 MAC
and another is 1k PMAC+, both of the constructions require a single key K. For
simplicity we assume that all messages have size multiple of n. Otherwise, we
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can apply an injective padding rule to make it multiple of n. For example, we
define the padded message M ← M‖10d where d is the smallest non-negative
integer such that |M |+ 1 + d is multiple of n. Note that the PRF advantage of
the construction after applying any injective function does not change. So we
implicitly assume this padding rule and we denote message M by (M1, . . . ,Ml)
where Mi ∈ {0, 1}n for all 1 ≤ i ≤ l. We propose two constructions 1kf9 and
1k PMAC+ (see Fig. 6.1) which are simple variants of one key versions of 3kf9
and PMAC Plus respectively.

Algorithm 1kf9(K,M)

1. Z ← Y0 ← EK(0n)
2. for j = 1 to l
3. Xj = Yj−1 ⊕Mj

4. Yj = EK(Xj)
5. Z = (Z ⊕ Yj)
6. Σ

′
= 2Yl, Θ

′
= 2Z;

7. Σ = fix0(Σ
′
); Θ = fix1(Θ

′
)

8. T ← EK(Σ)⊕ EK(Θ)
9. return T

Algorithm 1k PMAC+(K,M)

1. ∆i ← EK(Csti) for i = 1, 2
2. for j = 1 to l
3. Xj = Mj ⊕ 2j−1∆1 ⊕ 22(j−1)∆2

4. Yj = EK(Xj)

5. Σ
′

= Y1 ⊕ Y2 ⊕ . . .⊕ Yl;
6. Θ

′
= 2l · Y1 ⊕ 2l−1 · Y2 ⊕ . . .⊕ 2 · Yl;

7. Σ = fix0(Σ
′
), Θ = fix1(Θ

′
);

8. T ← EK(Σ)⊕ EK(Θ)
9. return T

Fig. 6.1. Algorithm of our proposed 1-key block cipher based BBB Secure MAC.

6.1 PRF Security Analysis of 1kf9 and 1k PMAC+

In this section we analyze the security of our proposed construction 1kf9 and
1k PMAC+. Mainly we prove the following theorem.

Theorem 10. For any q-tuple of message m := (m1,m2, . . . ,mq) such that the
maximum number of message blocks is `. Then

Advprf
1kf9(q, `, t) ≤ Advprp

E (q, `, t′) +O(q3`3/22n + q3`4/22n + q4`4/23n + q4`6/24n)

+

(
2q +

q3

2n

)
`3

2n
+

(
q

2n
+

q3

22n

)
+

(
q`2

2n
+
q2`4

22n
+
q3`6

23n

)
.

where t′ = t+O(q`).

Proof. Proof of this theorem directly follows from Theorem 9 and Table 2.

Note that, from Table 2 we obtain εecf = O( q
3`4

22n ), εpcf1 = O( q
3`4

22n ), εpcf2 =

O( q
4`4

23n + q4`6

24n ), εeuniv ≤ `3

2n . Similarly one can see the rest of the terms. Moreover,

according to Lemma 10, probability of not allowed permutation is q`2

2n + q2`4

22n +
q3`6

23n . Therefore combining altogether, we obtain the result. ut
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Lij #acc(∼) N
r
ij

r Nrij/2
nr

Extended
Cover

Σi = Σj,Θi = Θk

0 2 2

1 l2 2 l2

22n

Σi = Σj,Θi = Xk

0 l 2

1 l3 2 l3

22n

Σi = Xj,Θi = Θk

0 l 2

1 l3 2 l3

22n

Σi = Xj,Θi = Xk

0 l2 2

1 l4 2 l4

22n

Extended
Universal

Hash

Σi = Σj

0 2 1

1 l2 1 l2

2n

Σi = Xj

0 l 1

1 l3 1 l3

2n

Θi = Xk

0 l 1

1 l3 1 l3

2n

Θi = Θk

0 2 1

1 l2 1 l2

2n

Pseudo
Cover
Type-I

Σi = Xj, Yj + ti = Yk

0 9l2 2

1 l4 2 l4

22n

Θi = Xj, Yj + ti = Yk

0 9l2 2

1 l4 2 l4

22n

Pseudo
Cover

Type-II

Σi = Xe,Σj = Xf , Ye + Yf = ti + tj

0 l2 3

1 l4 3 l4

23n
+ l6

24n

2 l6 4

Σi = Xe,Θj = Xf , Ye + Yf = ti + tj

0 l2 3

1 l4 3 l4

23n
+ l6

24n

2 l6 4

Θi = Xe,Θj = Xf , Ye + Yf = ti + tj

0 l2 3

1 l4 3 l4

23n
+ l6

24n

2 l6 4

Table 2. Table of bad equations of 1kf9 with no. of choice and ranks corresponding
to accidents 0, 1 and 2 of Extended Cover, Extended-Universal Hash, Pseudo-Cover
Type-I and Pseudo-Cover Type-II. Details of the calculations can be found in Appendix
E.

Theorem 11. For any q-tuple of message m := (m1,m2, . . . ,mq) such that the
maximum number of message blocks is `. Then

Advprf
1k PMAC+(q, `, t) ≤ Advprp

E (q, `, t′) +O(q3`3/22n + q3`4/22n + q4`4/23n)

+

(
2q +

q3

2n

)
`3

2n
+

(
q

2n
+

q3

22n

)
+

(
q`2

2n
+
q2`4

22n

)
.

where t′ = t+O(q`).

Proof. Proof of the theorem goes in the same line as that of Theorem 10 except

that (i) probability of not allowed permutation is q`2

2n + q2`4

22n as (a) we do not
allow any accident within a single message and (b) number of accident at least
2 in a pair of messages and (ii) we refer to Table 3. for proving the theorem. ut

6.2 Comparison wih Existing Constructions

Here we compare our results with the existing related constructions.
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Lij #acc(∼) N
r
ij

r Nrij/2
nr

Extended
Cover

Σi = Σj,Θi = Θk

0 2 2

1 l2 2 l2

22n

Σi = Σj,Θi = Xk

0 l 2

1 l3 2 l3

22n

Σi = Σj,Θi = Cstj2

0 l 2

1 l2 2 l2

22n

Σi = Xj,Θi = Θk

0 l 2

1 l3 2 l3

22n

Σi = Xj,Θi = Xk

0 l2 2

1 l4 2 l4

22n

Σi = Xj,Θi = Cstj2

0 l2 2

1 l3 2 l3

22n

Σi = Cstj1, Θi = Θk

0 l 2

1 l2 2 l2

22n

Σi = Cstj1, Θi = Xk

0 l2 2

1 l3 2 l3

22n

Σi = Cstj1, Θi = Cstj2

0 l2 2

1 l2 2 l2

22n

Extended
Universal

Hash

Σi = Σj / Θi = Θk

0 2 1

1 l2 1 l2

2n

Σi = Xj / Θi = Xk

0 l 1

1 l3 1 l3

2n

Σi = Csta / Θi = Cstb

0 1 1

1 l2 1 l2

2n

Pseudo
Cover
Type-I

Σi = Xj, Yj + ti = Yk

0 l2 2

1 l4 2 l4

22n

Θi = Xj, Yj + ti = Yk

0 l2 2

1 l4 2 l4

22n

Lij #acc(∼) Nrij r N
r
ij/2

nr

Σi = Xk,a,Σj = Xl,b,
0 l2 3

Yk,a + Yl,b = ti + tj 1 l4 3 l4

23n

Σi = Csta,Σj = Xl,b,
0 l 3

∆a + Yl,b = ti + tj 1 l3 3 l3

23n

Σi = Csta,Σj = Cstb,
0 1 3

∆a +∆b = ti + tj 1 l2 3 l2

23n

Θi = Xk,a,Θj = Xl,b,
0 l2 3

Yk,a + Yl,b = ti + tj 1 l4 3 l4

23n

Θi = Csta,Θj = Xl,b,
0 l 3

∆a + Yl,b = ti + tj 1 l3 3 l3

23n

Θi = Csta,Θj = Cstb,
0 1 3

∆a +∆b = ti + tj 1 l2 3 l2

23n

Σi = Xk,a,Θj = Xl,b,
0 l2 3

Yk,a + Yl,b = ti + tj 1 l4 3 l4

23n

Σi = Csta,Θj = Xl,b,
0 l 3

∆a + Yl,b = ti + tj 1 l3 3 l3

23n

Σi = Xk,a,Θj = Cstb,
0 l 3

Yk,a +∆b = ti + tj 1 l3 3 l3

23n

Σi = Csta,Θj = Cstb,
0 1 3

∆a +∆b = ti + tj 1 l2 3 l2

23n

Table 3. Table of bad equations of 1k PMAC+ with no. of choice and ranks cor-
responding to (a) accidents 0, 1 of Extended Cover, Extended-Universal Hash and
Pseudo-Cover Type-I [left] and (b) accidents 0, 1 and 2 of Pseudo-Cover Type-II [right].
Details of the calculations can be found in Appendix F.

Construction Reference No. Keys Security Bound

Sum of ECBC [33] 4-Keys O(l3q3/22n)

PMAC Plus [34] 3-keys O(l3q3/22n + lq/2n)

3kf9 [35] 3-keys O(l3q3/22n + lq/2n)

1kf9 This Paper 1-key O(ql2/2n + q3l4/22n + q4l4/23n + q4l6/24n)

1k PMAC+ This Paper 1-key O(ql2/2n + q3l4/22n + q4l4/23n)

7 Conclusion

With the fast developments of computing power, birthday attacks gradually be-
come practical threats to cryptographic algorithms, and this is especially serious
for modes of operation on small-size block ciphers. Compared with the passive
ways that just enlarge the sizes of internal states and outputs, designing beyond-
birthday-bound schemes is active and promising.

We successfully unify the three independent keys in the current beyond-
birthday-bound MAC modes in this paper, by developing several theorems that
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can reduce the security of three/two/one-key such constructions to some proper-
ties on internal structures and PRP assumption on block ciphers. Our developed
tools are also useful to simplify the analysis for other modes of operations, which
is of independent interests.
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9. Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Kneze-
vic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar, Christian
Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin. PRINCE - A
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Supplementary Materials

Appendix A: Coefficient H Techniques

Lemma 3 (coefficient H-technique for random variables) Let X,Y be
two random variables over S such that X �ε Y over Vgood ⊆ S then,

∆(X ; Y ) ≤ ε+ Pr[Y 6∈ Vgood].

Proof. Let T ⊆ S . Then, X �ε Y over Vgood implies that

Pr[Y ∈ Vgood ∩ T ]− Pr[X ∈ Vgood ∩ T ] ≤ ε× Pr[Y ∈ Vgood ∩ T ] ≤ ε.

So,

Pr[Y ∈ T ]− Pr[X ∈ T ] ≤ ε+ (Pr[Y ∈ T \ Vgood]− Pr[X ∈ T \ Vgood])

≤ ε+ Pr[Y 6∈ Vgood]

Hence the result follows. ut

Theorem 1 (coefficient H-technique for random functions) Let F and G

be two random functions. Let Vgood ⊆ X q × Yq. If

1. ∀ m = (m1, . . . ,mq) ∈ distq, (F(mi))i �ε1 (G(mi))i over Vgood and
2. Pr[τ(A → G) 6∈ Vgood] ≤ ε2,

then AdvA(F ; G) ≤ ε1 + ε2.
Proof. W.l.o.g. we can assume that A is deterministic. Let V denote the set
of all views for which A returns 1. Condition (i) says that, for all v ∈ Vgood,
Pr[τ(A → G) = v] − Pr[τ(A → F) = v] ≤ ε1.Pr[τ(A → F) = v] and hence∑
v∈Vgood(Pr[τ(A → G) = v]− Pr[τ(A → F) = v]) ≤ ε1. Now,

AdvA(F ; G) = Pr[AG = 1]− Pr[AF = 1] =
∑
v∈V

(Pr[τ(AG) = v]− Pr[τ(AF) = v])

≤
∑

v∈V
⋂
Vgood

(Pr[τ(A → G) = v]− Pr[τ(A → F) = v])

+
∑

v/∈Vgood

Pr[τ(A → G) = v] ≤ ε1 + ε2 ut

Appendix B: Figures of Our Constructions

Appendix C: Proof of Theorem 6

Theorem 6 Let FK1,K2
:= gK2

◦ HK1
: {0, 1}∗ → {0, 1}n. Then,

Advprf
F (q, `, t) ≤ Advprf

g (q, `, t′) +

(
q

2

)
×Advuniv

H (`),
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� fix0
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Fig. 7.1. Construction of 1kf9-MAC
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Fig. 7.2. Construction of 1Key PMAC+
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where t′ = t +O(qT`) and T` denotes the maximum time for computing H(m)
for any m with maximum number of blocks `.
Proof. By using standard reduction argument, we can consider the compo-
sition function Γn ◦ HK1

at the cost of Advprf
g (q, `, t′). Now, for any q-tuple

m = (m1, . . . ,mq) of distinct messages, we denote HK1
(mi) = Xi. For all

t = (t1, . . . , tq) ∈ ({0, 1}n)q, the interpolation probability

PrΓn,K1 [m
Γn◦HK17−→ t] ≥

∑
x∈distq

Pr[x
Γn7−→ t | X = x]× Pr[X = x]

= 2−nq × Pr[X ∈ distq] (Pr[x
Γn7−→ t | X = x] = 2−nq)

≥ 2−nq × (1−
∑

1≤i<j≤q

Pr[Xi = Xj ])

≥ 2−nq × (1−
(
q

2

)
Advuniv

H (`)). ut

Appendix D: Block Cipher in Affine Mode, Rank and
Accident

Linear Equations and Rank. A linear equation L1(X1, . . . , Xs) := L1,1 ·X1 +
· · ·+L1,s ·Xs over the finite field F2n

9 of size 2n with s variables can be identified
as an s-tuple (L1,1, . . . , L1,s). Let L = {L1, . . . , Lq} be a q-set of linear equations
with s-variable, then L can be viewed as an q × s matrix L := ((Li,j))i,j where
Li,j is the jth coefficient of Li. rank(L) denotes the rank of the matrix L.

Reducing Linear Equations By Eliminating Dependent Variables. Let
L be a s-variable linear equation over F2n . Then, given any equivalence relation
∼ over [s] one can reduce the equation L by eliminating dependent variables
assuming that the variables induces the collision relation ∼. For example let
L = X1 + aX2 + X3 + bX4 + cX5 for some constant a, b, c and let ∼ be an
equivalence relation on [5] corresponding to the partition {{1, 3, 4}, {2, 5}}. If
X := (X1, X2, X3, X4, X5) induces ∼ then X1 = X3 = X4 and X2 = X5. So, by
eliminating X3, X4, X5, the equation L(X) can be simplified to bX1 +(a+ c)X2.
Note that the choice of free and determined variables are not unique and as
a matter of fact we keep the minimum indexed variables (w.r.t some natural
order). Let ∼ have c classes and I = {i1, . . . , ic} be the set consisting of all
minimum elements from each c classes. The XI is a tuple of free variables and
the rest of the variables can be uniquely determined from XI . After eliminating
the determined variables, the simplified (also called reduced) equation would be
denoted by L∼(XI). Note that

for all x, ∼x=∼ ⇒ L∼(xI) = L(x). (11)

9 We implicitly fixed a primitive polynomial through which the multiplication is de-
fined. In this paper, the whole analysis is independent of the choice of the polynomial
and so we do not explicitly specify it.



34 Nilanjan Datta, Avijit Dutta, Mridul Nandi, Goutam Paul, Liting Zhang

In addition to these equalities, we also have some inequalities since xI should be
element-wise distinct. We can also reduce when the restrictions among variables
are some general linear equations instead of equality or collision relation (which
is also a special form of linear equations). Let R be a set of linear equations over
s-tuple of variables X and L(X) be the target linear equation which is going to be
reduced by applying the restrictionR. We can then similarly reduce the equation
L by eliminating the dependent variables with free variables of R after applying
the linear restrictions R. Let XI be the free variables in R which determine the
rest of the variables.10 Note that |I| = s− rank(R). Then by applying the linear
dependencies of XIc on XI , we can reduce L(X) to an equation of the form
LR(XI). We similarly have, ∀L′ ∈ R, L′(x) = 0⇒ LR(xI) = L(x).

Conditional WOR Sampling in Affine Mode. During the computation
of permutation based affine mode, the intermediate outputs forms a conditional
WOR sample. Informally, depending on the previous sample values, a conditional
WOR sampling scheme either makes a fresh WOR sample or it choose one of the
specific previous values. Clearly, it can not be almost-independent as the sample
values can be same as the previous values. Later we identify a (random) subset
of the sample which would constitute an almost independent random variables.

Let Ai be an affine equation over GF (2n) with i − 1 variables, 1 ≤ i ≤ `.
The samples Y = (Y1, . . . , Y`) and X = (X1, . . . , X`) are defined recursively as
follows:

• Xi = Ai(Y1, . . . , Yi−1) and

• Yi =

{
Yj if for some j < i,Xi = Xj ;
$← {0, 1}n \ {Yj : 1 ≤ j < i} otherwise.

Clearly Yi’s are not almost-independent as Yi = Yj for some conditional
choices of Y1, . . . , Yi−1. So we now identify a set of (random) indices I for which
Yi’s behave almost-independently for all i ∈ I. But, this I is a random set and
so we will consider the conditional distribution of YI := (Yi)i∈I given I (more
precisely given an equivalence relation ∼ which uniquely determines I). Then,
this conditional distribution would behave almost-independently. The details are
given below.

Let Y = (Y1, . . . , Y`) be an A-conditional WOR `-sample. We define an (in-
duced) equivalence relation ∼Y on [`] as i ∼ j if and only if Ai(Y ) = Aj(Y )
(and hence Yi = Yj . We say that an equivalence relation ∼ is realizable if
Pr[∼Y =∼] > 0.

Let J := (J1, . . . , Js) be the first indices at which Xi-values (i.e., Ai values)
are fresh. In other words, these are the minimum value for the equivalence classes
and hence Ji’s are uniquely determined from ∼. Note that J1 = 1. Moreover, Xi

can be expressed as some affine function, denoted Ai, over YJi ’s. In other words,
Ai(YJ) = Ai(Y ) for all i. Now, consider the following set of linear equations

Ai(YJ1 , . . . , YJs) = Aj(YJ1 , . . . , YJs), ∀i ∼ j.
10 Like collision relation, choice of I is not unique. However, we implicitly fix a choice.



Building Single-Key Beyond Birthday Bound Message Authentication Code 35

These conditions restrict the values of YJi ’s.

Definition 12 (accident [7, 25]). Let ∼ be a realizable equivalence relation.
We define accident of ∼, denoted acc(∼), the rank of the set of linear equations:

Ai(YJ1 , . . . , YJs) = Aj(YJ1 , . . . , YJs), ∀i ∼ j.

Let I ⊂ {J1, . . . , Js} be the set of free variables of size s− a, which appear first,
such that YIj ’s will determine rest of the Y values. We call I to be the set of free
indices associated with ∼.

Appendix E: Rank Analysis of 1kf9

Revisiting Structure Graph [7]

In this section we revisit the structure graph introduced by Bellare et.al in [7].
We recall that given a q-tuple of distinct messages m and a permutation π,
the transcript τ(H → π) = (x, y) represents the set of all inputs and outputs
of π. Here the function H is nothing but CBCπ. We write x = (xi,j)(i,j)∈I
and similarly for y where I := {(i, j) : i ∈ [q], j ∈ [Li]}. We have defined an
equivalence relation ∼y over I. Let us assume that the permutation π does not
map to 0, i.e., yi,j 6= 0 for all i, j. Let {V1, . . . , Vs} be the set of all partitions
of I induced by ∼y. So Vi is a subset of I whose elements are related to each
other by the relation ∼. We define a vertex set V = {V0, V1, . . . , Vs}. We give an
edge from V0 to Vb if there exists (i, 1) ∈ Vb. We also put an edge label mi,1, the
first block of the ith message. Similarly, we give an edge from Va to Vb if there
exists (i, j) ∈ Va and (i, j + 1) ∈ Vb and we put an edge label mi,j+1. We write

a labeled edge as V
m→ V ′. It is straightforward to see that the graph is well

defined. We call this labeled graph structure graph and denoted Gπ(m). For
each message mi, we can consider the walk starting from V0 to Va for some a,
following the edge labels mi,1, . . . ,mi,`i one by one. We denote the walk by Wπ

i

or simply Wi. Note that the structure graph G would be the union of all walks
Wi, 1 ≤ i ≤ q.

A node V is said to be a collision node (or true collision) in a structure graph
G if the in-degree of the node is at least two. The number of true collision is
defined to be the the sum TC(G) :=

∑s
i=1(indeg(Vi)− 1).

Definition 13. A collection of edges C = {Vi1 → Vi2 , Vi3 → Vi2 , . . . , Vi2k →
Vi1} in a structure graph G is called an alternating cycle (AC) where k ≥ 2.

We provide an equivalent definition of the number of accidents of a structure
graph as defined in [7].

Definition 14. Let G0 := G be a structure graph. Now we do the following steps
until we find an alternating cycle. For i ≥ 1, we define Gi = Gi−1 \ e where e
is a labeled edge of an alternating cycle in Gi−1. Let Gt be the final graph (may
not be unique as it depends on the choice of the edges from the AC which are
removed. The number of accidents of the graph G0 is defined to be the number
of true collision of Gt.
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One can check that this definition is well defined. In other words, the number
of true collision for the final graphs is independent of the choice of the edges
removed. We denote the number of accidents and true collision of a structure
graph Gπ(m) by accπ(m) and TCπ(m) respectively.

Characterization of Valid Structure Graphs with 3 and 4 Messages

Definition 15. A Structure Graph G is said to be a Valid Structure Graph, if
it meets the following three conditions : (i) |Acc(G)| ≤ 2, (ii) No accident within
a message mi, (iii) At most one accident within three messages mi,mj ,mk.

Important Properties of Valid Structure Graphs for 3 Messages

Lemma 12. A valid structure graph with 3 messages cannot contain an alter-
nating cycle of length 4.

Proof. Let us consider an alternating cycle Cycl of length at least 4. Let Ealt :=
{(AB), (AD), (CD), (CB)} be the set of edges of Cycl as shown in Fig. 7.3. Now
we make the following two important observations :

A B

D C

Fig. 7.3. Alternating cycle of length 4

(i) As we have three messages, at least one message covers two edges from
Ealt.

Without loss of generality let mi be the message that covers two edges.

(ii) The covered edges will be parallel, otherwise there will be an accident within
the walk of mi.

W.l.o.g, let the covered edges of mi be (AB) and (CD). Let mj covers consider
the message which covers the edge (CB). W.l.o.g, let it be mj . Now to cover
that edge, mj could come to node C in either of the two ways :

(a) mj follows the walk of mi and reaches to C

(b) mj does not follow the walk of mi.
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For case (a) when mj covers the edge (CB), then there will be an accident within
the walk of mj . For case (b) when mj covers the edge (CB) then mi,mj will
collide twice and hence the number of accident in (mi,mj) pair will be 2. As,
in both the cases the condition for a valid structure graph is violated, the result
follows. ut

Lemma 13. A valid structure graph with 3 messages cannot contain an alter-
nating cycle of length 6.

Proof. Let Cycl6 be an alternating cycle of length 6 in the valid structure graph
G with 3 messages. Let m1 be the message taking part in two collision points say
C1 and C2. Now consider other messages (say m2 and m3) taking part in these
collisions, i.e. C1 = coll(m1,m2), C2 = coll(m1,m3). Now it is easy to see that
there are 2 accidents in m1,m2 and m3 that violates the validity of a structure
graph. Hence no valid graph is possible with 6-alternating cycle. ut

Important Properties of Valid Structure Graphs for 4 Messages

Claim 1 For any 4-length alternating cycle in a valid structure graph with 4
messages, the 4 edges must come from distinct messages

Proof. If not, then 3 distinct messages cover 4 edges of the 4-length alternating
cycle. But according to Lemma 12, a valid structure graph with 3 messages
cannot contain a 4-length alternating cycle. ut

Lemma 14. A valid structure graph with 4 messages cannot contain a 4-length
alternating cycle with number of accidents 2.

Proof. Due to Claim 1 without loss of generality, we can assume that the edges
AB, AD, CB and CD of an alternating cycle belong to messages m1,m2,m3,m4

respectively, where m1 and m3 have an accident at B and m2 and m4 meet at B
to close the alt-cycle with an induced collision. Now, if there is a second accident,
it cannot involve any one of m1 or m3, otherwise it will violate condition 2 (#acc
at most one with any 3 messages). Thus, the second accident, if any, must involve
m2 and m4. But again this is not allowed, since m2 and m4 has already collided
at B. ut

Lemma 15. A valid structure graph with 4 messages cannot contain multiple
alternating cycle of length 4.

Proof. Due to Claim 1, without loss of generality, we can assume that the edges
AB, AD, CB and CD of an alternating cycle belong to messages m1,m2,m3,m4

respectively. Now, if another 4-alternating cycle exists, Claim 1 must hold for this
second cycle as well. This implies that two edges (from two different messages)
must be shared between the two cycles.The shared edges may be any one of the
4 pairs from AB, AD, CB and CD. Case a) Pairs that do not have a common
node from A, B, C, D, i.e., pair (AB, CD) or pair (AD, BC): Then the other
two edges of the second cycle will add two more accidents, one in node B and
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F G A B

D C

E

Fig. 7.4. Multiple Alternating Cycle with 4 messages.

F G A B

D C

E

Fig. 7.5. Multiple Alternating Cycle with 4 messages.
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Msg contain AE Conclusion

m1 loop in m1 at node A
m2 loop in m2 at node A
m3 #acc = 2 in m1 and m3

m4 #acc = 2 in m2 and m4

Table 4. Impossibilities of any message covers edge AE corresponding to Fig. 7.4.

another in node C, violating condition 3. Case b) Pairs that have a common
node. In this case, two possible graphs are possible, as shown in the Fig. 7.4 and
Fig. 7.5 Note that, the other two edges must meet at a fifth node E which
cannot be realized with distinct 4 messages (refer to Table 5 and 6). ut

Msg contain CE Conclusion

m1 #acc = 2 in m1 and m3

m2 #acc = 2 in m1 and m4

m3 loop in m1 at node C
m4 loop in m4 at node A

Table 5. Impossibilities of any message covers edge CE corresponding to Fig. 7.5.

Lemma 16. A valid structure graph with 4 messages cannot contain an alter-
nating cycle of length 6.

Proof. Let Cycl6 be the alternating cycle of length 6 in the valid structure graph
G with 4 messages. As there are 3 accident points C1, C2, C3 in Cycl6, there will
be at least one message say m1 taking part in two collision points say C1 and C2.
Now consider other messages (say m2 and m3) taking part in these collisions,
i.e. C1 = coll(m1,m2), C2 = coll(m1,m3). Now it is easy to see that there are
2 accidents in m1,m2 and m3 that violates the validity of a structure graph.
Hence no valid graph is possible with 6-length alternating cycle. ut

List of Valid Structure Graphs with 3 and 4 messages Given all the
properties, now we list down all the possible structure graphs with 3 and 4 mes-
sages as follows:

(I) Acc = 0 for 3 messages: As no accident is present, the only possible
structure graph has the following structure depicted in Fig. 7.6:

(II) Acc = 1 for 3 messages: From Lemma 12, we observe that, there can
be no valid graph 4-length alternating cycles. So we consider structure graphs
where number of true-collision is 1 and the graph is shown in Fig 7.7.

(III) Acc = 0 for 4 messages As no accident is present, the only possible
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A B C D

E F

Fig. 7.6. Structure graph of 3 messages with Acc = 0

A B C

D

E

J

F

G

H

Fig. 7.7. Structure graph of 3 messages with Acc = 1 (at node C)
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structure graph has the following structure depicted in Fig. 7.8:

A B C D

E

F

G H

Fig. 7.8. Structure graph of 4 messages with Acc = 0

(IV) Acc = 1 for 4 messages: We can have two types of graph in this
case:

• 1 accident with 1 collision point: This graph is shown in Fig. 7.9 .
• Graph with 1-alternating cycle: This graph is shown in Fig. 7.10 .

A B C

D

E

F

G

H

J

K

Fig. 7.9. Structure graph of 4 messages with Acc = 1 (at node C)

(V) Acc = 2 for 4 messages: From Lemma 14 and 16, we observe that,
there can be no valid graphs with alternating 4-cycle or alternating 6 cycle.
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E F A B

D C

Fig. 7.10. Structure graph of 4 messages with Acc = 1 (at node B) and an induced
collision (at node D)

Hence there is only one possible structure graph - with one accident C1 occuring
between two messages (say m1 and m2) and the other accident C2 occuring for
the remaining messages (here m3 and m4). This graph also satisfy the condition:
(m1, m2) and (m3, m4) doesn’t meet after collision C1 and C2 respectively as
depicted in Fig. 7.11.

A B

C

D

E

F

G

H

J

K

J

R

Fig. 7.11. Structure graph of 4 messages with Acc = 2 (at nodes E and F )

Rank Analysis of Systems of Equations for Bad Cases

Case (A) : Rank Analysis of Extended Covered Bad Equations
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Calculating the rank of L(Y ) = (Σi = Σj, Θi = Θk) for Acc = 0 and
Acc = 1.
Case (a) When Acc = 0, then Σi = Σj implies αYi,li + αYj,lj = On−11. Let
us aussme that p is the length of the longest common prefix of Mi and Mk and
wihput loss of generality li > lk. Therefore, we have following equations:

αYi,li + αYj,lj = 0n−11 (12)

Yi,p+1 + . . . Yi,li + Yk,p+1 + . . . Yk,lj = 0 (13)

Now it is to be noted that, if mk is a prefix of mi, then Yi,p+1 + . . . Yi,li contains
at least 3 variables. Therefore, Yj,lj could be equal to one of these three variables,
and other two variables will remain free. In that case we will identify one such
variable Yi,s which is not equal to Yj,lj and choose Yi,li . If mk is not a prefix
of mi then Yi,p+1 + . . . Yi,li + Yk,p+1 + . . . Yk,lj conatins at least 3 variables and
therefore, Yj,lj could be equal to one of these three variables; we will identify one
of the remaining free variable Yi,s which is not equal to Yj,lj and choose Yi,li .
Therefore we identify two such variables, one in each equation, giving us rank 2.
Case (b) When Acc = 1, we argue that rank of L(Y ) will be 2. For Acc = 1,
we introduce one more equation

Yi,β + Yj,γ = mδ,τ (14)

along with Equation (12) and (13). Note that if Acc = 1, then Σi = Σj implies
eiher of the following two cases: (i) αYi,li = αYj,lj . or (ii) αYi,li 6= αYj,lj but
fix0(αYi,li) = fix0(αYj,lj ). Note that, considering case (i), this is equivalent to
considering the equation Yi,β + Yj,γ = mδ,τ . According to our assumption p
be the last index where mi and mk is identical. Therefore, as argued before,
Yi,p+1 + . . . Yi,li + Yk,p+1 + . . . Yk,lj contains at least three variables. Now Yj,γ
could be equal to any one of the three variables; thus we will be left with at least
two variable which are free . Let us consider Yi,s 6= Yj,γ . Therefore we identify
two free variables Yi,β and Yi,s, one in each equation, giving us rank 2. If case
(ii) occurs then we consider the Equation (12). In that case Yj,γ and Yj,lj could
be equal to any two of the three variables. Then also we will be left with at least
one variable Yi,s. Therefore, we identify two free variables Yi,β and Yi,s, one in
each equation, such that the rank becomes 2.

Calculating the rank of L(Y ) = (Σi = Xj,r, Θi = Θk) for Acc = 0 and
Acc = 1.
Case (a): When #Acc = 0, then we argue that rank of L(Y ) is 2. We have the
following two equations:

αYi,li + Yj,r−1 +mj,r = 0 (15)

Yi,p+1 + . . . Yi,li + Yk,p+1 + . . . Yk,lk = 0 (16)

where p is the length of the longest common prefix of mi and mk. It is to be
noted that there are at least three distinct variables in Equation (16). Now,
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we identify Yi,li and one of the remaining free variable Yi,s out of above three
variables which is distinct from Yi,li and Yj,r−1, giving us rank 2.

Case (b): When Acc = 1, then one additional equation

Yi,β + Yj,γ = mδ,τ (17)

is introduced. Now if Yi,β 6= Yi,li and Yj,γ 6= Yi,li , then we identify two variables
Yi,β and Yi,li such that rank of L(Y ) with Acc = 1 is 2. If this is not the case, we
identify Yi,β and Yi,s which is one of the out of three variables in Equation (16),
such that the rank becoms 2 again.

Calculating the rank of L(Y ) = (Σi = Σj, Θi = Xk,r) for Acc = 0 and
Acc = 1
Case (a): Let us first consider that Acc = 0. Now we have the following two
equations:

αYi,li + αYj,lj = 0n−11 (18)

α(Yi,0 + Yi,1 + . . . Yi,li) = Yk,r−1 +mk,r (19)

From Equation (18) and (19), we identify two free variables Yi,li and Yi,0, giving
us rank 2.

Case(b): When Acc = 1, then along with Equation (18) and (19), we have an
additional equation

Yi,β + Yj,γ = mδ,τ .

Now, Σi = Σj can occur in either of the following ways: (i) αYi,li = αYj,lj or (ii)
αYi,li 6= αYj,lj but fix0(αYi,li) = fix0(αYj,lj ). Note that, considering case (i) is
equivalent to considering the equation Yi,β + Yj,γ = mδ,τ . Therefore we identify
two free variables Yi,0 and Yi,β , such that the rank becomes 2. Considering case
(ii) is boiling down to considering Equation (18). Therefore, we identify Yi,li and
Yi,0, such that the rank becomes 2 again.

Calculating the rank of L(Y ) = (Σi = Xj,s, Θi = Xk,r) for Acc = 0
and Acc = 1.
Case (a): Let us consider Acc = 0. We have the following equations:

αYi,li + Yj,s−1 = m∗,s (20)

α(Yi,0 + Yi,1 + . . . Yi,li) = Yk,r−1 +mk,r (21)

In this case we identify two free variables Yi,0 and Yi,li .

Case (b): When Acc = 1, we have an additional equation

Yi,β + Yj,γ = mδ,τ .

Thus, again we can identify two free variables Yi,0 and Yi,li and the rank does
not decrease.

Case (B) : Rank Analysis of Extended-Universal Hash Equations
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Calculating the rank of L(Y ) = (Σi = Σj) for Acc = 0 and Acc = 1.
Case (a): For Acc = 0, Σi = Σj implies αYi,li + αYj,lj = 0n−11. Since Yi,li is
not trivially equal to Yj,lj , L(Y ) will have rank 1 for choosing variable Yi,li .

Case (b): For Acc = 1, Σi = Σj implies either (i) αYi,li + αYj,lj = 0n−11 or
(ii) αYi,li = αYj,lj but fix0(αYi,li) = fix0(αYj,lj ). Therefore, considering case (ii)
boils down to considering the Equation (22) which is induced by the accident.

Yi,β + Yj,γ = mδ,τ . (22)

Therefore, choosing Yi,β gives the rank of L(Y ) to be 1.

Calculating the rank of L(Y ) = (Σi = Xj,r) for Acc = 0 and Acc = 1.
Case (a): For Acc = 0, we choose Yi,li such that rank of L(Y ) is 1 as equality
of Σi and Xj,r is not trivial equality.

Case (b): For Acc = 1, we introduce the collision relation Yi,β + Yj,γ = mδ,τ .
Since any accident gives a linearly indpendent equation, therefore we choose Yi,β
to show the rank of L(Y ) with Acc = 1 is 1.

Calculating the rank of L(Y ) = (Θi = Xk,r) for Acc = 0 and Acc = 1.
Case (a): For Acc = 0, we choose Yi,0 such that rank of L(Y ) is 1 as equality
of Θi and Xk,r is not trivial equality.

Case (b): For Acc = 1, we introduce the collision relation Yi,β + Yk,γ = mδ,τ .
Since any accident gives a linearly indpendent equation, therefore we choose Yi,β
to show the rank of L(Y ) with Acc = 1 is 1.

Calculating the rank of L(Y ) = (Θi = Θk) for Acc = 0 and Acc = 1.
Case (a): Let p be the longest common prefix of mi and mj . Therefore, Θi = Θk
gives the following equation

Yi,p+1 + . . . Yi,li + Yj,p+1 + . . . Yj,lj = 0 (23)

Note that there must be at least three distinct variables in Equation (23). There-
fore, for Acc = 0, we choose any of the three variables Yi,s such that rank of
L(Y ) is 1.

Case (b): For Acc = 1, we introduce the collision relation Yi,β + Yk,γ = mδ,τ .
Since any accident gives a linearly indpendent equation, therefore we choose Yi,β
to show the rank of L(Y ) with Acc = 1 is 1.

Case (C) : Rank Analysis of Pseudo Cover-I Bad Equations
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Calculating the rank of L(Y ) = (Σi = Xj,r, Yj,r +Y∗ = ti) for Acc = 0
and Acc = 1.
Case (a): Let us consider Acc = 0. We have the following Equations:

αYi,li + Yj,r−1 = mj,r (24)

Yj,r + Y∗ = ti (25)

We identify two variables Yj,r and Yj,r−1 such that the contribution matrix E
becomes non-singular. It is easy to note that Yj,r can never be equal to Yj,r−1

as we are not allowing any loop in the structure graph.

Case (b): When Acc = 1, we additionally introduce one more equation

Yi,s + Yj,t = mδ,τ

We identify the same two variables Yj,r and Yj,r−1 such that one can show the
rank of L(Y ) with Acc = 1 is 2.

Calculating the rank of L(Y ) = (Θi = Xj,r, Yj,r +Y∗ = ti) for Acc = 0
and Acc = 1.
One can argue the rank of L(Y ) for Acc = 0 and Acc = 1 is 2 in the same line
of argument for the rank analysis of the previous case.

Case (D) : Rank Analysis of Pseudo Cover-II Bad Equations

Calculating the rank of L(Y ) = (Σi = Xk,e, Σj = Xl,f , Yk,e + Yl,f =
ti + tj for Acc = 0, 1 and 2).
Case (a): Let us consider Acc = 0. We have the following equations:

αYi,li + Yk,e−1 = mk,e (26)

αYj,lj + Yl,f−1 = ml,f (27)

Yk,e + Yl,f = ti + tj (28)

Now we analyse the rank in three cases. Case (i) when Yk,e 6= Yi,li and Yk,e 6= Yj,lj
then we identify three variables Yi,li , Yj,lj and Yk,e such that the rank of L(Y )
is 3.

Case (ii) when Yl,f 6= Yi,li and Yl,f 6= Yj,lj then we can identify the variables
Yi,li , Yj,lj and Yl,f such that the rank will become 3.

Case (iii) If none of the above two cases occur (i.e., Yi,li = Yk,e, Yj,lj = Yl,f )
then we identify three variables Yi,li , Yj,lj and Yk,e−1 such that the rank becomes
3.
Case (b): When Acc = 1 we introduce Equation (39) along with the previous
three equations.

Yi,s + Yj,t = mδ,τ . (29)

Even if Yi,s or Yj,t is equal to any of the previously chosen free variables, the
rank does not decrease.
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Case (c): When Acc = 2, we introduce an additional equation, namely, Equa-
tion (40) as below.

Yk,s′ + Yl,t′ = mδ′ ,τ ′ . (30)

According to our assumptions, the second accident must occur between two other
messages that were not involved in the first accident. Hence, we can choose an
additional free variable and hence the rank becomes 4.

Calculating the rank of L(Y ) = (Σi = Xk,e, Θj = Xl,f , Yk,e + Yl,f =
ti + tj for Acc = 0, 1 and 2).
Case (a): Let us consider Acc = 0. We have the following Equations:

αYi,li + Yk,e−1 = mk,e (31)

α(Yj,0 + Yj,1 + . . .+ Yj,lj ) + Yl,f−1 = ml,f (32)

Yk,e + Yl,f = ti + tj (33)

Now we analyse the rank in three cases. Case (i) when Yk,e 6= Yi,li and Yk,e 6= Yj,0
then we identify three variables Yi,li , Yj,0 and Yk,e such that the rank of L(Y ) is
3.

Case (ii) when Yl,f 6= Yi,li and Yl,f 6= Yj,0 then we can identify the variables
Yi,li , Yj,0 and Yl,f such that the rank will become 3.

Case (iii) If none of the above two cases occur (i.e., Yi,li = Yk,e, Yj,0 = Yl,f )
then we identify three variables Yi,li , Yj,0 and Yk,e−1 such that the rank becomes
3.
Case (b): When Acc = 1 we introduce Equation (39) along with the previous
three equations.

Yi,s + Yj,t = mδ,τ . (34)

Even if Yi,s or Yj,t is equal to any of the previously chosen free variables, the
rank does not decrease.
Case (c): When Acc = 2, we introduce an additional equation, namely, Equa-
tion (40) as below.

Yk,s′ + Yl,t′ = mδ′ ,τ ′ . (35)

According to our assumptions, the second accident must occur between two other
messages that were not involved in the first accident. Hence, we can choose an
additional free variable and hence the rank becomes 4.

Calculating the rank of L(Y ) = (Θi = Xk,e, Θj = Xl,f , Yk,e + Yl,f =
ti + tj for Acc = 0, 1 and 2).
Case (a): Let us consider Acc = 0. We have the following Equations:

α(Yi,0 + Yi,1 + . . .+ Yi,li) + Yk,e−1 = mk,e (36)

α(Yj,0 + Yj,1 + . . .+ Yj,lj ) + Yl,f−1 = ml,f (37)

Yk,e + Yl,f = ti + tj (38)
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Now we analyse the rank in three cases. Case (i) when Yk,e 6= Yi,li and Yk,e 6= Yj,0
then we identify three variables Yi,li , Yj,0 and Yk,e such that the rank of L(Y ) is
3.

Case (ii) when Yl,f 6= Yi,li and Yl,f 6= Yj,0 then we can identify the variables
Yi,li , Yj,0 and Yl,f such that the rank will become 3.

Case (iii) If none of the above two cases occur (i.e., Yi,li = Yk,e, Yj,0 = Yl,f )
then we identify three variables Yi,li , Yj,0 and Yk,e−1 such that the rank becomes
3.

Case (b): When Acc = 1 we introduce Equation (39) along with the previous
three equations.

Yi,s + Yj,t = mδ,τ . (39)

Even if Yi,s or Yj,t is equal to any of the previously chosen free variables, the
rank does not decrease.

Case (c): When Acc = 2, we introduce an additional equation, namely, Equa-
tion (40) as below.

Yk,s′ + Yl,t′ = mδ′ ,τ ′ . (40)

According to assumptions, the second accident must occur between two other
messages that were not involved in the first accident. Hence, we can choose an
additional free variable and hence the rank becomes 4.

Appendix F: Rank Analysis of 1k PMAC+

Preparation

Taking advantage of Theorem 8, to prove the PRF security of 1k-PMAC Plus, we
need to upper bound its three items, extended-cover-free εecf , pseudo-cover-free
εpcf , and extended universal εeuniv. To show they are sufficiently small, we would
define some bad cases on inputs to block ciphers. Each bad case is equivalent to
a equation set over block cipher outputs as variables. By solving the equations
we get an upper bound of permutations over {0, 1}n that can induce the bad
cases. Then notice that there are totally 2n! permutations, we get the occurrence
probability for each bad case.

1. ∃Xi,l ∈ {Cst1,Cst2}, for some i ∈ [q] and l ∈ [`i]. This implies no more than∑2
j=1

∑q
i=1

∑`i
l=1 equations of the form,

Xi,l = Mi,l ⊕ 2l−1∆1 ⊕ 22l−2∆2 = Cstj .

Notice that ∆1 = π(Cst1) and ∆2 = π(Cst2), we have no more than
(2n−1)! permutations satisfying each equation, and totally we have at most

ς−1 =
∑2
j=1

∑q
i=1

∑`i
l=1((2n−1)!) permutations over {0, 1}n. Then, the non-

occurrence of this event ensures the ∆1, ∆2 values are independent of Yi,l
values.
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2. ∃Xi1,l1 = Xi2,l2 = Xi3,l3 for some i1, i2, i3 ∈ [q] and distinct l1, l2, l3 ∈ [`].

This implies no more than
(
q`
3

)
equations of the form,[

2l1−1 ⊕ 2l2−1, 22(l1−1) ⊕ 22(l2−1)

2l1−1 ⊕ 2l3−1, 22(l1−1) ⊕ 22(l3−1)

]
×
[
∆1

∆2

]
=

[
Mi1,l1 ⊕Mi2,l2

Mi1,l1 ⊕Mi3,l3

]
.

The determinant of its coefficient matrix is (2l1−1 ⊕ 2l2−1)(2l1−1 ⊕ 2l3−1)
(2l2−1⊕2l3−1) 6= 0n for any distinct l1, l2, l3, so this matrix has rank=2 and
we have (2n − 2)! solutions on ∆1 and ∆2 for each equation. Then by this
we get at most ς0 =

(
q`
3

)
((2n − 2)!) ≤ q3`3/6((2n − 2)!) permutations from

Perm(n).

Based on the above, let us formally upper bound the three items. In each
case, we show how to find a rank=2 coefficients matrix.

Upper Bounding extended-cover-free εecf

According to the definition of extended-cover-freeness, we need to upper bound
the probabilities for four linear equations (L11), (L12), (L13), (L14) to occur. By
1kPMAC Plus definition, we in fact have 9 cases with respect to this, because in
the previous inputs to block ciphers, we have both ∆1 = π(Cst1), ∆2 = π(Cst2),
and Yi,l = π(Xi,l), as listed in Table. 6.

Table 6. 9 Bad Cases in Upper Bounding εecf .

PPPPPPPΣi =
Θi =

Cstj2 Xj2,l Θj2

Cstj1 1 2 5

Xj1,l 3 4 7

Σj1 6 8 9

1. ∃Σi = Cstj1 for some j1 ∈ [2] and Θi = Cstj2 for some j2 ∈ [2]. This implies[
1, 1, · · · , 1

2`i , 2`i−1, · · · , 21

]
× [Yi,1, Yi,2, · · · , Yi,`i ]T =

[
Cstj1
Cstj2

]
.

Let us analyze in more detail.
(a) If `i = 1 and Cstj2 = 2Cstj1. We get only one equation Yi,1 = Cstj1,

and for q messages, we have at most
∑q
i=1((2n − 1)!) permutations.

(b) Else if `i = 1 and Cstj2 6= 2Cstj1. There is no solution.
(c) Else if `i ≥ 2, and @Yi,l1 = Yi,l2 for any distinct l1, l2 ∈ [`i]. Then we

have a non-singular submatrix [1, 1; 22, 21] on the left side. For any values
of Yi,l (l ≥ 3), we have a unique solution for Y i1 and Y i2 . For q messages,

we have at most
∑q
i=1

∑2
j1=1

∑2
j2=1((2n − 2)!) permutations in total.
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(d) Else `i ≥ 2, and ∃Yi,l1 = Yi,l2 for distinct l1, l2 ∈ [`i]. We have an
equation (2l1−1 ⊕ 2l2−1)∆1 ⊕ (22(l1−1) ⊕ 22(l2−1))∆2 = M i

l1 ⊕M i
l2, and

an equation set of the form[
1⊕ 1, · · ·

2`i−l1+1 ⊕ 2`i−l2+1, · · ·

]
× [Yi,l1, · · · ]T =

[
Cstj1
Cstj2

]
.

Since 2`i−l1+1 ⊕ 2`i−l2+1 6= 0n, for any values of Yi,l (l 6= l1, l2), we have
at most one value for Yi,l1. By the independence of ∆1, ∆2 and Yi,l. In

total we have at most
∑q
i=1

(
`i
2

)∑2
j2=1((2n − 2)!) permutations.

To summarize Case 1, we have at most ς1 = (q`2 + q(2n − 1))((2n − 2)!)
permutations.

2. ∃Σi = Cstj for some j ∈ [2] and Θi = Xu,v for some u ∈ [q], v ∈ [`u]. This
implies[

1, 1, · · · , 1, 0, 0
2`i , 2`i−1, · · · , 21, 2v−1, 22(v−1)

]
×[Yi,1, Yi,2, · · · , Yi,`i , ∆1, ∆2]T =

[
Cstj
Mu,v

]
.

By the independence of ∆1, ∆2 and Yi,l, let us analyze in detail.

(a) If @Yi,l1 = Yi,l2 for any distinct l1, l2 ∈ [`i]. The coefficient matrix on the
left side has a non-singular submatrix [1, 0; 21, 2v−1]. For q messages, we

have at most
∑q
i=1

∑`i
l=1

∑q
u=1

∑`u
v=1

∑2
j=1((2n − 2)!) permutations.

(b) Else ∃Yi,l1 = Yi,l2 for distinct l1, l2 ∈ [`i]. Then, we have one equation
over ∆1 and ∆2 by the 2-collision, and another equation over Yi,l1 (with
coefficient 2`i−l1+1 ⊕ 2`i−l2+1 6= 0), ∆1 and ∆2. By their independence,

we have at most
∑q
i=1

(
`i
2

)∑q
u=1

∑`u
v=1((2n − 2)!) permutations.

To summarize Case 2, we have at most ς2 = (2q2`2 + q2`3/2)((2n − 2)!)
permutations.

3. ∃Σi = Xu,v for some u ∈ [q], v ∈ [`u] and Θi = Cstj for some j ∈ [2]. This
implies[

1, 1, · · · , 1, 2v−1, 22(v−1)

2`i , 2`i−1, · · · , 21, 0 0

]
×[Yi,1, Yi,2, · · · , Yi,`i , ∆1, ∆2]T =

[
Mu,v

Cstj

]
.

The analysis is similar with Case 2, and we have at most ς3 = (2q2`2 +
q3`3)((2n − 2)!) permutations.

4. ∃Σi = Xu1,v1 and Θi = Xu2,v2 for some i, u1, u2 ∈ [q], v1 ∈ [`u1], v2 ∈ [`u2].
Then we have an equation set[

1, 1, · · · , 1, 2v1−1, 22(v1−1)

2`i , 2`i−1, · · · , 21, 2v2−1, 22(v2−1)

]
×[Yi,1, Yi,2, · · · , Yi,`i , ∆1, ∆2]T =

[
Mu1,v1

Mu2,v2

]
.

(a) If v1 6= v2. On the left side we get a non-singular submatrix [2v1−1, 22(v1−1);

2v2−1, 22(v2−1)]. So by this we have at most
∑q
i=1

∑q
u1=1

∑`u1
v1=1

∑q
u2=1

∑`u2
v2=1

((2n − 2)!) permutations.
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(b) Else if v1 = v2 = v ∈ [min{`u1, `u2}] and @Yi,l1 = Yi,l2 for any dis-
tinct l1, l2 ∈ [`i]. We get a non-singular submatrix [1, 2v−1; 21, 2v−1]. By

this we have at most
∑q
i=1

∑`i
l=1

∑q
u1=1

∑q
u2=1

∑min{`u1,`u2}
v=1 ((2n− 2)!)

permutations.
(c) Else v1 = v2 = v ∈ [min{`u1, `u2}], and ∃Yi,l1 = Yi,l2 for distinct l1, l2 ∈

[`i], we get a non-singular submatrix [0n, 2v−1; 2`i−l1+1⊕2`i−l2+1, 2v−1],
by combing the columns for Yi,l1 and Yi,l2. So by this we have at most∑q
i=1

(
`i
2

)∑q
u1=1

∑q
u2=1

∑min{`u1,`u2}
v=1 ((2n − 2)!) permutations.

Totally, we have at most ς4 = (2q3`2 + q3`3/2)((2n − 2)!) permutations can
induce this.

5. ∃Σi = Cstj for some j ∈ [2] and Θi = Θu for some u 6= i. This implies[
1, 1, · · · , 1, 0, 0, · · · , 0

2`i , 2`i−1, · · · , 21, 2`u , 2`u−1, · · · , 21

]
×
−−−−→
Y [i, u] =

[
Cstj
0n

]
, (41)

where
−−−−→
Y [i, u] = [Yi,1, Yi,2, · · · , Yi,`i , Yu,1, Yu,2, · · · , Yu,`u ]T , SetY [i, u] =

{Yi,1, Yi,2, · · · , Yi,`i , Yu,1, Yu,2, · · · , Yu,`u}.
(a) If @Y ′l1, Y ′′l2 ∈ SetY [i, u] s.t. Y ′l1 = Y ′′l2 with any distinct l1, l2 ∈ [max{`i, `u}].

i. If `i = `u, notice that Mi 6= Mu, so ∃l ∈ [`i] s.t. Mi,l 6= Mu,l. Then,
we get a non-singular submatrix [1, 0; 2`i−l+1, 2`u−l+1].

ii. Else if `i = `u + 1, then we focus on the coefficients of Yi,`i , Yi,`i−1

and Yu,`u , and get a non-singular submatrix [1, 1; 21, 22 ⊕ 21] (when
Yi,`i−1 = Yu,`u is a trivial collision) or [1, 1; 21, 22] (when Yi,`i−1 6=
Yu,`u).

iii. Else if `i ≥ `u+ 2, let us focus on the coefficients of Yi,`i and Yi,`i−1,
and we get a non-singular submatrix [1, 1; 22, 21].

iv. Else `u ≥ `i + 1, let us focus on the coefficients of Yu,`u , Yu,`u−1

and Yi,`i , and get a non-singular submatrix [1, 0; 21 ⊕ 22, 21] (when
Yu,`u−1 = Yi,`i is a trivial collision) or [1, 0; 21, 21] (when Yu,`u−1 6=
Yi,`i).

To summarize this subcase, each case in the above presents us a non-
singular coefficients matrix on the left side, and by this we get at most∑q
i=1

∑q
u=1,u6=i

∑2
j=1 ((2n − 2)!) permutations.

(b) Else ∃Y ′l1, Y ′′l2 ∈ SetY [i, u] s.t. Y ′l1 = Y ′′l2 with distinct l1, l2 ∈ [max{`i, `u}].
i. If `i 6= `u, then

⊕`i
l=1 2l ⊕

⊕`u
l=1 2l 6= 0. On one side, the 2-collision

Y ′l1 = Y ′′l2 implies (2l1−1⊕2l2−1)∆1⊕ (22(l1−1)⊕22(l2−1))∆2 = M ′l1⊕
M ′′l2, which is over ∆1 and ∆2. On the other side, some coefficients of
Eq. (41) should be combined, if their corresponding variables belong
to 2-collisions or trivial collisions. This makes the final coefficients
matrix of Eq. (41) complex. However, notice in this final coefficients
matrix that, there is at least one element in its second row should not
be 0, otherwise the sum of all coefficients in the second row should
be 0, and this contradicts with the fact that

⊕`i
l=1 2l ⊕

⊕`u
l=1 1 =

(21 ⊕ 2`i+1)/3 or (21 ⊕ 2`i+1)/3 ⊕ 1, neither of which is 0 when
1 ≤ `i ≤ 22n/3. By this we get an equation over Yi,l with l ∈ [`i],
whose coefficient is not 0. Then, according to the independence of
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Yi,l, ∆1 and ∆2, we have two independent equations and get at most∑q
i=1

∑q
u=1,u 6=i

(
max{`i,`u}

2

)∑2
j=1 ((2n − 2)!) permutations.

ii. Else `i = `u, on one side by the 2-collision Y ′l1 = Y ′′l2 we have an
equation over ∆1 and ∆2. On the other side, let us find another
equation independent of ∆1 and ∆2. Notice that Mi 6= Mu, so ∃l ∈
[`i] s.t. Mi,l 6= Mu,l, and this implies Xi,l 6= Xu,l and Yi,l 6= Yu,l.
For Y ′l′ ∈ SetY [i, u] \ {Yi,l}, if @Y ′l′ = Yi,l, then we get an equation
over Yi,l, whose coefficient is 2`i−l+1 6= 0. Else ∃Y ′l′ = Yi,l, obviously
we have l′ 6= l. Then we get an equation over Yi,l, whose coefficient

is either 2`i−l+1 ⊕ 2`i−l
′+1 6= 0 (when Yi,l′ 6= Yu,l′) or 2`i−l+1 6= 0

(when Yi,l′ = Yu,l′).

To summarize this subcase, we get at most
∑q
i=1

∑q
u=1,u6=i(

max{`i,`u}
2

)∑2
j=1 ((2n − 2)!) permutations.

To summarize Case 5, we get at most ς5 = (2q2 + q2`2)((2n − 2)!) permuta-
tions.

6. ∃Σi = Σu for some u 6= i and Θi = Cstj for some j ∈ [2]. This implies[
1, 1, · · · , 1, 1, 1, · · · , 1

2`i , 2`i−1, · · · , 21, 0, 0, · · · , 0

]
×
−−−−→
Y [i, u] =

[
0n

Cstj

]
.

(a) If @Y ′l1, Y ′′l2 ∈ SetY [i, u] s.t. Y ′l1 = Y ′′l2 with any distinct l1, l2 ∈ [max{`i, `u}].
i. If `i = `u, notice that Mi 6= Mu, so ∃l ∈ [`i] s.t. Mi,l 6= Mu,l. Then,

we get a non-singular submatrix [1, 1; 2`i−l+1, 0].
ii. Else if `i = `u+1, then we focus on the coefficients of Yi,`i , Yi,`i−1 and

Yu,`u , and get a non-singular submatrix [0, 1; 22, 21] (when Yi,`i−1 =
Yu,`u is a trivial collision) or [1, 1; 22, 21] (when Yi,`i−1 6= Yu,`u).

iii. Else if `i ≥ `u+ 2, let us focus on the coefficients of Yi,`i and Yi,`i−1,
and we get a non-singular submatrix [1, 1; 22, 21].

iv. Else `u ≥ `i + 1, let us focus on the coefficients of Yu,`u , Yu,`u−1 and
Yi,`i , and get a non-singular submatrix [1, 0; 0, 21] (when Yu,`u−1 =
Yi,`i is a trivial collision) or [1, 1; 0, 21] (when Yu,`u−1 6= Yi,`i).

Each case in the above presents us a non-singular coefficients matrix
on the left side, and by this we can get at most

∑q
i=1

∑q
u=1,u6=i

∑2
j=1

((2n − 2)!) permutations.
(b) Else ∃Y ′l1, Y ′′l2 ∈ SetY [i, u] s.t. Y ′l1 = Y ′′l2 with distinct l1, l2 ∈ [max{`i, `u}].

Notice that
⊕`i

l=1 2l 6= 0, and then the analysis is similar with Case (5.bi).

To summarize, we can get at most
∑q
i=1

∑q
u=1,u6=i

(
max{`i,`u}

2

)∑2
j=1

((2n − 2)!) permutations.

To summarize Case 6, we can get at most ς6 = (2q2 + q2`2)((2n − 2)!)
permutations.

7. ∃Σi = Xu,v for some u ∈ [q], v ∈ [`u] and Θi = Θj for some j 6= i. This
implies[

1, 1, · · · , 1, 0, 0, · · · , 0, 2v−1, 22(v−1)

2`i , 2`i−1, · · · , 21, 2`j , 2`j−1, · · · , 21, 0, 0

]
×
−−−−−−→
Y [i, j,∆] =

[
Mu,v

0n

]
,
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where
−−−−−−→
Y [i, j,∆] = [Yi,1, Yi,2, · · · , Yi,`i , Yj,1, Yj,2, · · · , Yj,`j , ∆1, ∆2]T , The anal-

ysis is similar with that in Case 5, and their only difference is that, here we
have two more variables ∆1 and ∆2. Specially, their coefficients matrix is ex-
actly the same, except for the coefficients for ∆1 and ∆2. Then, we can apply
the same analysis, and we can either get a non-singular submatrix on the left
side, or get one equation over ∆1 and ∆2, and another equation over Yi,l, ∆1

and ∆2. Finally, in this case we can get at most ς7 = (q3`+q3`3/2)((2n−2)!)
permutations.

8. ∃Σi = Σj for some j 6= i and Θi = Xu,v for some u ∈ [q], v ∈ [`u]. This
implies[

1, 1, · · · , 1, 1, 1, · · · , 1, 0, 0
2`i , 2`i−1, · · · , 21, 0, 0, · · · , 0, 2v−1, 22(v−1)

]
×
−−−−−−→
Y [i, j,∆] =

[
0n

Mu,v

]
.

The analysis is similar with that in Case 7, and in this case we get at most
ς8 = (q3`+ q3`3/2)((2n − 2)!) permutations.

9. Σi = Σj for some j 6= i and Θi = Θu for some u 6= i, and we have[
1, 1, · · · , 1, 1, 1, · · · , 1, 0, 0, · · · , 0

2`i , 2`i−1, · · · , 21, 0, 0, · · · , 0, 2`u , 2`u−1, · · · , 21

]
×
−−−−−→
Y [i, j, u] =

[
0n

0n

]
,

where
−−−−−→
Y [i, j, u] = [Yi,1, Yi,2, · · · , Yi,`i , Yj,1, Yj,2, · · · , Yj,`j , Yu,1, Yu,2, · · · , Yu,`u ]T .

(a) If j = u ∧ @Y ′l′ , Y ′′l′′ ∈ SetY [i, u] s.t. Y ′l′ = Y ′′l′′ with any distinct l′, l′′ ∈
[max{`i, `u}]. The equation set turns to be[

1, 1, · · · , 1, 1, 1, · · · , 1
2`i , 2`i−1, · · · , 21, 2`u , 2`u−1, · · · , 21

]
×
−−−−→
Y [i, u] =

[
0n

0n

]
. (42)

i. If `i = `u, let us denote Y∗,l = Yi,l ⊕ Yu,l, then Eq. (42) becomes[
1, 1, · · · , 1

2`i , 2`i−1, · · · , 21

]
× [Y∗,1, Y∗,2, · · · , Y∗,`i ]T =

[
0n

0n

]
.

On the left side the coefficients matrix is an MDS matrix, and on the
right side we have two 0n, so by the property of MDS matrix and
the fact Mi 6= Mu, we have at least 3 non-zero Y∗,l. This means in
Eq. (42) we have distinct l1, l2, l3 ∈ [`i] s.t. Yi,l1 6= Yu,l1, Yi,l2 6= Yu,l2
and Yi,l3 6= Yu,l3. Then in Eq. (42) we find a non-singular submatrix
[1, 1; 2`i−l1+1, 2`i−l2+1].

ii. Else if `i = `u + 1, then we focus on the coefficients of Yi,`i , Yi,`i−1

and Yu,`u , and get a non-singular submatrix [1, 0; 21, 22 ⊕ 21] (when
Yi,`i−1 = Yu,`u is a trivial collision) or [1, 1; 21, 22] (when Yi,`i−1 6=
Yu,`u).

iii. Else if `i ≥ `u+ 2, let us focus on the coefficients of Yi,`i and Yi,`i−1,
and we get a non-singular submatrix [1, 1; 22, 21].

iv. Else `u ≥ `i + 1, the analysis is the same as (ii) and (iii).



54 Nilanjan Datta, Avijit Dutta, Mridul Nandi, Goutam Paul, Liting Zhang

(b) Else if j = u ∧ ∃Y ′l′ , Y ′′l′′ ∈ SetY [i, u] s.t. Y ′l′ = Y ′′l′′ with distinct l′, l′′ ∈
[max{`i, `u}]. On one side by the 2-collision Y ′l′ = Y ′′l′′ we have an equa-
tion over ∆1 and ∆2. On the other side, let us find another equation
independent of ∆1 and ∆2.

i. If `i 6= `u, then
⊕`i

l=1 2l ⊕
⊕`u

l=1 2l 6= 0, we get an equation over Yi,l,
and the analysis is similar with (5.b).

ii. Else `i = `u, notice that Mi 6= Mu, so ∃l ∈ [`i] s.t. Mi,l 6= Mu,l, and
this implies Yi,l 6= Yu,l. For Y ′l′ ∈ SetY [i, u] \ {Yi,l}, if @Y ′l′ = Yi,l,
then we get an equation over Yi,l, whose coefficient is 2`i−l+1 6= 0.
Else ∃Y ′l′ = Yi,l, obviously we have l′ 6= l. Then we get an equation

over Yi,l, whose coefficient is either 2`i−l+1 ⊕ 2`i−l
′+1 6= 0 (when

Yi,l′ 6= Yu,l′) or 2`i−l+1 6= 0 (when Yi,l′ = Yu,l′).
(c) Else if j 6= u ∧ @Y ′l′ , Y ′′l′′ ∈ SetY [i, j, u] s.t. Y ′l′ = Y ′′l′′ with any distinct

l′, l′′ ∈ [max{`i, `j , `u}]. By Mi 6= Mj we know ∃l1 ∈ [max{`i, `j}] s.t.
Yi,l1 6= Yj,l1. Here Yi,l1 = 0n if l1 > `i and Yj,l1 = 0n if l1 > `j . Notice
that Yi,l1 ⊕ Yj,l1 6= 0n can be seen as a new variable. We ignore Yu,l1
here because its coefficient is 0n in the first row of coefficients matrix.
Similarly, by Mi 6= Mu we know ∃l2 ∈ [max{`i, `u}] s.t. Yi,l2 6= Yu,l2.
Here Yi,l2 = 0n if l2 > `i and Yu,l2 = 0n if l2 > `u. Then 2`i−l2+1Yi,l2 ⊕
Yu,l2 is a new variable. We ignore Yj,l2 here because its coefficient is
0n in the second row of coefficients matrix. Also by Mj 6= Mu we have
∃l3 ∈ [max{`j , `u}] s.t. Yj,l3 6= Yu,l3. Here Yj,l3 = 0n if l3 > `j and
Yu,l3 = 0n if l3 > `u.
If l1 6= l2, it is easy to see that Yi,l1⊕Yj,l1 and 2`i−l2+1Yi,l2⊕2`u−l2+1Yu,l2
are independent of each other, because we have Y ′l′ 6= Y ′′l′′ with any
distinct l′, l′′ ∈ [max{`i, `j , `u}]. If l1 = l2 and Yj,l1 6= Yu,l2, then Yi,l1 ⊕
Yj,l1 and 2`i−l2+1Yi,l2 ⊕ 2`u−l2+1Yu,l2 are also independent. If l1 = l2
and Yj,l1 = Yu,l2, notice that Yj,l3 6= Yu,l3 and l2 6= l3, we have variables
Yi,l1 ⊕ Yj,l1 ⊕ Yj,l3 and 2`i−l2+1Yi,l2 ⊕ 2`u−l2+1Yu,l2 ⊕ 2`u−l3+1Yu,l3 are
independent.
Then we find a non-singular submatrix in the above coefficients matrix,
i.e. [1, 0; 0, 1] for independent variables Yi,l1 ⊕ Yj,l1 and 2`i−l2+1Yi,l2 ⊕
2`u−l2+1Yu,l2 or Yi,l1 ⊕ Yj,l1 ⊕ Yj,l3 and 2`i−l2+1Yi,l2 ⊕ 2`u−l2+1Yu,l2 ⊕
2`u−l3+1Yu,l3.

(d) Else j 6= u ∧ ∃Y ′l′ , Y ′′l′′ ∈ SetY [i, j, u] s.t. Y ′l′ = Y ′′l′′ with distinct l′, l′′ ∈
[max{`i, `j , `u}]. On one side by the 2-collision Y ′l′ = Y ′′l′′ we have an
equation over ∆1 and ∆2. On the other side, let us find another equation
independent of ∆1 and ∆2.

i. If `i 6= `u, we have
⊕`i

l=1 2l ⊕
⊕`u

l=1 2l 6= 0, so we get an equation
over Yi,l for some l ∈ [`i].

ii. Else `i = `u, notice that Mi 6= Mu, so ∃l ∈ [`i] s.t. Mi,l 6= Mu,l, and
this implies Yi,l 6= Yu,l. For Y ′l′ ∈ SetY [i, j, u] \ {Yi,l}, if @Y ′l′ = Yi,l,
then we get an equation over Yi,l, whose coefficient is 2`i−l+1 6= 0.
Else ∃Y ′l′ = Yi,l, let us focus on the second row of the coefficients
matrix. By this we can ignore the influence from Mj , then we have
Y ′l′ = Yi,l′ or Y ′l′ = Yu,l′ , so it is obvious that l′ 6= l. Then we get an
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equation over Yi,l, whose coefficient is either 2`i−l+1 ⊕ 2`i−l
′+1 6= 0

(when Yi,l′ 6= Yu,l′) or 2`i−l+1 6= 0 (when Yi,l′ = Yu,l′).

To summarize, we can get at most ς9 = (
∑q
i=1

∑q
j=1,j 6=i(1 +

(
max{`i,`j}

2

)
) +∑q

i=1

∑q
j=1,j 6=i

∑q
u=1,u6=i,j(1+

(
max{`i,`j ,`u}

2

)
))((2n−2)!) ≤ (q2 + q2`2max/2+

q3 + q3`2max/2)((2n − 2)!) permutations.

Finally, we can get

εecf ≤
∑9
i=−1 ςi

2n!
≤ 3q`((2n − 1)!) + 20q3`3((2n − 2)!)

2n!
≤ 3q`

2n
+

5q3`3

22n−3
.

Upper Bounding pseudo-cover-free εpcf

pseudo-cover-1 ε1 This is defined by two equation sets, (L21) and (L22),
and we further turn them into two bad events respectively, according to our
1kPMAC Plus specification.

For (L21) Σi = Xj,a, Yj,a ⊕ ti = Yk,s, we have

1. Σi = Cstj for some j ∈ [2] is equivalent to
⊕`i

l=1 Yi,l = Cstj , i.e. an equation
over variables Yi,l. On the other side, notice that by Σi = Cstj we have
Yj,a = π(Σi) = π(Cstj) = ∆j . This means, Yj,a ⊕ ti = ∆j ⊕ ti. Then, the
equation Yj,a ⊕ ti = Yk,s depends on random variable ∆j . Notice that we
have restrict ti 6= 0n for all i ∈ [q], so the equation can’t trivially hold. Then,
we find two equations independent of each other.

2. Σi = Xj,a for some j 6= i, a ∈ [`j ] is equivalent to
⊕`i

l=1 Yi,l = 2a−1∆1 ⊕
22(a−2)∆2 ⊕ Mj,a, i.e. an equation over variables Yi,l, ∆1 and ∆2. When
Yj,a ⊕ ti = ∆s, we get a non-singular submatrix [1, 1; 1, 0] or [1, 1; 0, 1] with
variables ∆1 and ∆2. When Yj,a ⊕ ti = Yk,s, this equation depends only on
Y variables, where ti 6= 0n excludes trivial collisions Ys = Y ′s . Then we get
two independent equations.

For (L22) Θi = Xj,a, Yj,a ⊕ ti = Yk,s, we have

1. Θi = Cstj for some j ∈ [2] is equivalent to
⊕`i

l=1 2`i−l+1Yi,l = Cstj , i.e. an
equation over variables Yi,l. On the other side, notice that by Θi = Cstj we
have Yj,a = π(Θi) = π(Cstj) = ∆j . This means, Yj,a ⊕ ti = ∆j ⊕ ti. So,
Yj,a ⊕ ti = Yk,s depend on random variable ∆j . Notice that we have restrict
ti 6= 0n for all i ∈ [q], so the equation can’t trivially hold. Then, we find two
independent equations.

2. Θi = Xj,a for some j 6= i, a ∈ [`j ] is equivalent to
⊕`i

l=1 2`i−l+1Yi,l =
2a−1∆1 ⊕ 22(a−2)∆2 ⊕Mj,a, i.e. an equation over variables Yi,l, ∆1 and ∆2.
When π(Θi)⊕ti = ∆s, we get a non-singular submatrix [2a−1, 22(a−2); 1, 0] or
[2a−1, 22(a−2); 0, 1] with variables∆1 and∆2. When π(Θi)⊕ti = Yk,s depends
only on Y variables, where ti 6= 0n excludes trivial collisions Ys = Y ′s . Then
we get two independent equations.

By this, we can get ε1 ≤
4
∑q
i=1

∑q
j=1

∑`j
a=1

∑q
k=1

∑`k
s=1

(2n−ql−2−2q)2 ≤ q3`2

22n−3 .
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pseudo-cover-2 ε2 According to the definition of pseudo-cover-2, we need to
upper bound the occurrence probability of (L31), (L32) and (L33).

For L23, we have the following four equation sets

1.


⊕`i

l=1 Yi,l = 2a−1∆1 ⊕ 22(a−1)∆2 ⊕Mk,a⊕`j
l=1 Yj,l = 2b−1∆1 ⊕ 22(b−1)∆2 ⊕Ml,b

Yk,a ⊕ Yl,b = ti ⊕ tj ,

2.


⊕`i

l=1 Yi,l = Csta⊕`j
l=1 Yj,l = 2b−1∆1 ⊕ 22(b−1)∆2 ⊕Ml,b

∆a ⊕ Yl,b = ti ⊕ tj ,

3.


⊕`i

l=1 Yi,l = 2a−1∆1 ⊕ 22(a−1)∆2 ⊕Mk,a⊕`j
l=1 Yj,l = Cstb

Yk,a ⊕∆b = ti ⊕ tj ,

4.


⊕`i

l=1 Yi,l = Csta⊕`j
l=1 Yj,l = Cstb

∆a ⊕∆b = ti ⊕ tj ,

For the first subcase, if a 6= b, it is easy to see that its coefficients matrix has
rank 3. If a = b, then we get one equation over ∆1 and ∆2, and the other two
independent equations over variables Y . They are independent because they
are defined on four distinct messages, and if there exists collisions among Y
values, we get one more equation over ∆1 and ∆2. So, we still get a rank=3
coefficients matrix. For the rest three subcases, there are also rank=3 coefficients
matrices, and their message queries (w.r.t. i, j, k, l) and lengths (w.r.t. a, b) are
even smaller.

For L24, we have the following four equation sets

1.


⊕`i

l=1 2`i−l+1Yi,l = 2a−1∆1 ⊕ 22(a−1)∆2 ⊕Mk,a⊕`j
l=1 2`j−l+1Yj,l = 2b−1∆1 ⊕ 22(b−1)∆2 ⊕Ml,b

Yk,a ⊕ Yl,b = ti ⊕ tj ,

2.


⊕`i

l=1 2`i−l+1Yi,l = Csta⊕`j
l=1 2`j−l+1Yj,l = 2b−1∆1 ⊕ 22(b−1)∆2 ⊕Ml,b

∆a ⊕ Yl,b = ti ⊕ tj ,

3.


⊕`i

l=1 2`i−l+1Yi,l = 2a−1∆1 ⊕ 22(a−1)∆2 ⊕Mk,a⊕`j
l=1 2`j−l+1Yj,l = Cstb

Yk,a ⊕∆b = ti ⊕ tj ,

4.


⊕`i

l=1 2`i−l+1Yi,l = Csta⊕`j
l=1 2`j−l+1Yj,l = Cstb

∆a ⊕∆b = ti ⊕ tj ,

For L25, we have the following four equation sets

1.


⊕`i

l=1 Yi,l = 2a−1∆1 ⊕ 22(a−1)∆2 ⊕Mk,a⊕`j
l=1 2`j−l+1Yj,l = 2b−1∆1 ⊕ 22(b−1)∆2 ⊕Ml,b

Yk,a ⊕ Yl,b = ti ⊕ tj ,
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2.


⊕`i

l=1 Yi,l = Csta⊕`j
l=1 2`j−l+1Yj,l = 2b−1∆1 ⊕ 22(b−1)∆2 ⊕Ml,b

∆a ⊕ Yl,b = ti ⊕ tj ,

3.


⊕`i

l=1 Yi,l = 2a−1∆1 ⊕ 22(a−1)∆2 ⊕Mk,a⊕`j
l=1 2`j−l+1Yj,l = Cstb

Yk,a ⊕∆b = ti ⊕ tj ,

4.


⊕`i

l=1 Yi,l = Csta⊕`j
l=1 2`j−l+1Yj,l = Cstb

∆a ⊕∆b = ti ⊕ tj ,

By similar analysis as for L23, we always get rank=3 coefficients matrices.
Then, for pseudo-cover-2 we have

ε2 ≤ 3

q∑
i=1

q∑
j=1

q∑
k=1

q∑
l=1

`k∑
a=1

`l∑
b=1

1

(2n − ql − 2− 2q)3
≤ 3q4`2

23n−1
,

and together with ε1 we conclude

εpcf ≤ ε1 + ε2 ≤
q3`2

22n−3
+

3q4`2

23n−1
.

Upper Bounding extended universal εeuniv

By its definition, we have six cases.

1. Σi = Σj for some j 6= i. This implies an equation

`i⊕
l=1

Yi,l =

`j⊕
l=1

Yj,l.

Notice that Mi 6= Mj , so there exists l′ ∈ [max{`i, `j}] s.t. Yi,l′ 6= Yj,l′ , where
Yi,l′ = 0n if l′ > `i and Yj,l′ = 0n if l′ > `j . Then, the variable Yi,l′ ⊕ Yj,l′
has a non-zero coefficient, so we have

Pr[Σi = Σj ] ≤
1

2n − (q`− 2− 2q)
≤ 1

2n−1
.

2. Θi = Θj for some j 6= i. This implies an equation

`i⊕
l=1

2`i−l+1Yi,l =

`j⊕
l=1

2`j−l+1Yj,l.

Notice that Mi 6= Mj , so there exists l′ ∈ [max{`i, `j}] s.t. Yi,l′ 6= Yj,l′ ,
where Yi,l′ = 0n if l′ > `i and Yj,l′ = 0n if l′ > `j . Then, the variable

2`i−l
′+1Yi,l′ ⊕ 2`j−l

′+1Yj,l′ has a non-zero coefficient, so we have

Pr[Σi = Σj ] ≤
1

2n − (q`− 2− 2q)
≤ 1

2n−1
.
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3. Σi = Xk,a, this is equivalent to

`i⊕
l=1

Yi,l = 2a−1∆1 ⊕ 22(a−1)∆2 ⊕Mk,a.

By the randomness of ∆1, we have Pr[Σi = Xk,a] ≤ 1/2n−1.
4. Σi = Csta, this is equivalent to

`i⊕
l=1

Yi,l = Csta.

If there exists no 2-collision among Yi,l, we have Pr[Σi = Csta] ≤ 1/2n−1

by the randomness of Yi,l; otherwise we have another equation over ∆1 and
∆2, and get the same upper bound.

5. Θi = Xk,a, this is equivalent to

`i⊕
l=1

2`i−l+1Yi,l = 2a−1∆1 ⊕ 22(a−1)∆2 ⊕Mk,a.

By the randomness of ∆1, we have Pr[Θi = Xk,a] ≤ 1/2n−1.
6. Θi = Csta, this is equivalent to

`i⊕
l=1

2`i−l+1Yi,l = Csta

Notice that we have excluded 3-collision among Yi,l, so we always have the co-
efficients of Yi,l are non-zero. By their randomness, we have Pr[Θi = Csta] ≤
1/2n−1.

In conclusion, we have εeuniv ≤ 21−n.


