Linear (hull) Cryptanalysis of Round-reduced Versions of KATAN

Danping Shi ${ }^{1,2,3}$, Lei $\mathrm{Hu}^{1,2 \star}$, Siwei Sun ${ }^{1,2}$, Ling Song ${ }^{1,2}$
${ }^{1}$ State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China
${ }^{2}$ Data Assurance and Communication Security Research Center, Chinese Academy of Sciences, Beijing 100093, China
${ }^{3}$ University of Chinese Academy of Sciences, Beijing 100093, China
\{dpshi, hu, swsun, lsong\}@is.ac.cn

Abstract

KATAN is a family of block ciphers published at CHES 2009. Based on the Mixed-integer linear programming (MILP) technique, we propose the first third-party linear cryptanalysis on KATAN. Furthermore, we evaluate the security of KATAN against the linear attack without ignoring the dependence of the input bits of the 2×1 S-box (the AND operation). Note that in previous analysis, the dependence is not considered, and therefore the previous results are not accurate. Furthermore, the mounted $131 / 120$-round attack on KATAN32/48 respectively by our $84 / 90$-round linear hull is the best single-key known-plaintext attack. In addition, a best 94 -round linear hull attack is mounted on KATAN64 by our 76 -round linear hull.

Keywords. KATAN, Mixed-integer linear programming, linear hull, dependence

INTRODUCTION

Demands for lightweight ciphers used in resource-constrained devices with low cost are increasing in recent years. Many lightweight block ciphers are published in recent years, such as LBlock [1], PRESENT [2], LED [3], PRIDE [4] and SIMON [5].

Related works

KATAN is a family of lightweight block ciphers published at CHES 2009 [6]. After its publication, KATAN receives extensive cryptanalysis. For instance, the conditional differential cryptanalysis by Knellwolf et al. [7] on 78/70/68-round KATAN32/48/64, differential cryptanalysis by Albrecht et al. [8] on 115-round KATAN32, meet-in-the-middle attack by Isobe et al. [9] on 110/100/94-round KATAN32/48/64, and match box meet-in-the-middle cryptanalysis by Fuhr et al. [10] on $153 / 129 / 119$-round KATAN32/48/64. All results are presented in Table 1.

Linear cryptanalysis is an important cryptanalysis technique on modern block ciphers [11]. It aims at finding a non-random linear expression on bits
of plaintext, ciphertext, and subkey, where the expression has non-zero correlation. The extended linear hull cryptanalysis is presented by Nyberg [12] in 1995. No third-party linear cryptanalysis on KATAN has been proposed. Furthermore, the security evaluation of KATAN with respect to linear cryptanalysis proposed by the designers is not accurate owing to ignoring the dependence of the S-box, where the dependence of S-box means that different S-box share one same input.

Our contribution

In this paper, we first evaluate the linear security cryptanalysis on KATAN32 without ignoring the dependence of the S-box based on the Mixed-integer linear programming(MILP) technique [13,14]. Furthermore, 84/90/76-round linear hulls on KATAN32/48/64 respectively are proposed. Moreover, 131/120/94round attack on KATAN32/48/64 are mounted by these linear hulls. A comparison between this paper and other single-key attacks is listed in Table 1. Although, cryptanalysis provided by paper [10] can attack more rounds, their cryptanalysis is based on stricter chosen-plaintext model. As we know, the 131/120-round attacks on KATAN32/48 respectively in this paper are the best single-key knownplaintext attacks, and our 94-round attack on KATAN64 is the first linear attack on KATAN64.

The paper is organized as follows. Section 2 proposes the brief description of KATAN. Section 3 shows the searching method of linear masks. The results about the linear (hull) cryptanalysis are described in Section 4. Section 5 is the conclusion.

Table 1. The analysis results of KATAN based on single-key

Version	Cryptanalysis method	Model	Rounds	Data	Time	Reference
KATAN32	Differential	CP	78	2^{22}	2^{22}	[7]
	Differental	CP	115	2^{32}	2^{79}	[8]
	Match box MITM	CP	153	2^{5}	$2^{78.5}$	[10]
	MITM	KP	110	138	2^{77}	[9]
	Match box MITM	KP	121	4	$2^{77.5}$	[10]
	Linear hull	KP	131	$2^{28.93}$	$2^{78.93}$	Section 0.7
KATAN48	Differential	CP	70	2^{31}	2^{78}	[7]
	Match box MITM	CP	129	2^{5}	2^{76}	[10]
	MITM	KP	100	128	2^{78}	[9]
	Match box MITM	KP	110	4	$2^{77.5}$	[10]
	Linear hull	KP	120	$2^{47.22}$	$2^{75.22}$	Section 0.7
KATAN64	Differential	CP	68	2^{32}	2^{78}	[7]
	Match box MITM	CP	119	2^{5}	$2^{78.5}$	[10]
	MITM	KP	94	116	$2^{77.68}$	[9]
	Match box MITM	KP	102	4	$2^{77.5}$	[10]
	Linear hull	KP	94	2^{57}	2^{78}	Section 0.7

BRIEF DESCRIPTION OF KATAN

KATAN is a family of block ciphers with 32,48 , or 64 -bit block length, denoted by KATAN32, KATAN48 or KATAN64 respectively. All versions share the same 80-bit master key. For each version, the plaintext is loaded in two registers L_{1} and L_{2}, where the lengths of L_{1} and L_{2} for each version are listed in Table 2. In the first place, the round function for KATAN32 is illustrated. For KATAN32, the registers L_{1} and L_{2} are shifted to the left by 1 position, and two new computed bits by two nonlinear functions $f_{a}(\cdot)$ and $f_{b}(\cdot)$ are loaded in the least significant bits of L_{1} and L_{2}, where the least significant(rightmost) bit for each register will be denoted as 0 -th bit. The ciphertext is obtained after 254 rounds. The f_{a} and f_{b} are defined as follows

$$
\begin{aligned}
f_{a}\left(L_{1}\right)= & L_{1}\left[x_{1}\right] \oplus L_{1}\left[x_{2}\right] \oplus\left(L_{1}\left[x_{3}\right] \wedge L_{1}\left[x_{4}\right]\right) \oplus \\
& \left(L_{1}\left[x_{5}\right] \wedge I R\right) \oplus k_{a} \\
f_{b}\left(L_{2}\right)= & L_{2}\left[y_{1}\right] \oplus L_{2}\left[y_{2}\right] \oplus\left(L_{2}\left[y_{3}\right] \wedge L_{2}\left[y_{4}\right]\right) \oplus \\
& \left(L_{2}\left[y_{5}\right] \wedge L_{2}\left[y_{6}\right]\right) \oplus k_{b},
\end{aligned}
$$

where $I R$ is round constant, k_{a} and k_{b} are two subkey bits. The index x_{i} and y_{i} are listed in Table 2.

Table 2. The parameters for KATAN

version	$\left\|L_{1}\right\|$	L_{2}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}
KATAN32	13	19	12	7	8	5	3	18	7	12	10	8	3
KATAN48	19	29	18	12	15	7	6	28	19	21	13	15	6
KATAN64	25	39	24	15	20	11	9	38	25	33	21	14	9

For KATAN48, the shift update of the registers and the nonlinear function f_{a}, f_{b} are applied twice with same round subkey in each round, while the nonlinear functions and update of the register are applied three times for KATAN64.

Since we only consider single-key cryptanalysis in this paper, and therefore the key schedule is omitted here. More details on KATAN can be found in paper [6].

THE LINEAR CRYPTANALYSIS OF KATAN

0.1 Notations

$L_{1}^{r}[i]$: the i-th bit of the register L_{1} in r-th round
$L_{2}^{r}[i]$: the i-th bit of the register L_{2} in r-th round
k_{a}^{r} : the r-th round subkey used in f_{a}
k_{b}^{r} : the r-th round subkey used in f_{b}
α_{t} : the masks of the variable t

0.2 Definition of the linear cryptanalysis

Denote f be a boolean function, the correlation ϵ_{f} of f is defined by

$$
\operatorname{Pr}(f(x)=0)-\operatorname{Pr}(f(x)=1)
$$

The linear cryptanalysis is evaluated by the correlation.
The potential introduced by Nyberg[12] is used to evaluate the linear hull cryptanalysis. Give the input and output masks α and β for a block cipher $C=f(P, K)$, the potential $A L H(\alpha, \beta)$ is defined by

$$
A L H(\alpha, \beta)=\sum_{\gamma}(\operatorname{Pr}(\alpha \cdot P+\beta \cdot C+\gamma \cdot K=0)-1 / 2)^{2}
$$

0.3 Dependence of S-box

For simplicity, each AND operation \wedge is treated as a 2×1 S-box. The S-box is active if the output mask is non-zero. Since $I R$ is constant, $L_{1}\left[x_{5}\right] \wedge I R$ is a linear operation in each round, not a S-box. In this paper, the dependence of two S-box illustrates that the two S-box share one input. Owing to the fact that only few bits are registered in each round, S-box for KATAN are dependent.

Usually, the correlation of a linear characteristic for a block cipher is obtained from the correlation of the approximation of round function by pilling-up lemma. Whereas, the pilling-up lemma is not suitable for KATAN due to the dependence of the S-box.

For instance, suppose two approximations of two S-box of L_{1} in 0 -th round and 4 -th round, both with zero input mask and non-zero output mask, are $L_{1}^{0}[5] \wedge L_{1}^{0}[8]$ and $L_{1}^{4}[5] \wedge L_{1}^{4}[8]$. Clearly, each approximation has the same correlation(absolute) 2^{-1}. The correlation of XOR-ed function $L_{1}^{0}[5] \wedge L_{1}^{0}[8]+L_{1}^{4}[5] \wedge$ $L_{1}^{4}[8]$ of the two approximations is 2^{-2} if applying pilling-up lemma. However, the correlation of $L_{1}^{0}[5] \wedge L_{1}^{0}[8]+L_{1}^{4}[5] \wedge L_{1}^{4}[8]=L_{1}^{0}[5] \wedge\left(L_{1}^{0}[8]+L_{1}^{4}[5]\right)$ is 2^{-1} due to $L_{1}^{4}[8]=L_{1}^{0}[5]$.

The above example shows that the dependence of the S-box should be taken into consideration when computing the correlation. Consequently, the correlation of the linear characteristic will be computed directly instead of applying the pilling-up lemma in this paper. The computing method in the following is similar to paper [13, 14].

Obviously, the XOR-ed function of all approximations for active S-box is a quadratic function. Denote quadratic boolean function $f(t)=Q(t)+L(t)$, where $t=(t[1], t[2], \cdots, t[n]) \in \mathbb{F}_{2}^{n}, Q(t)=t\left[i_{1}\right] \wedge t\left[i_{2}\right]+t\left[i_{3}\right] \wedge t\left[i_{4}\right]+\cdots+t\left[i_{m-1}\right] \wedge t\left[i_{m}\right]$ is the sum of quadratic term $t[i] \wedge t[j]$, and $L(t)=t\left[j_{1}\right]+t\left[j_{2}\right]+\cdots+t\left[j_{n-1}\right]+$ $t\left[j_{n}\right]$ is linear combination of $t[i]$. This kind of function satisfying the property that $i_{1}, i_{2}, i_{3}, i_{4}, \cdots, i_{m-1}, i_{m}$ are not coincident is called the standard quadratic function in the following. Most important, the correlation ϵ_{f} of the standard function can be obtained directly as follow:

$$
-\left\{j_{1}, j_{2}, \cdots, j_{n}\right\} \subseteq\left\{i_{1}, i_{2}, \cdots, i_{m}\right\}: \epsilon_{f}=2^{-m / 2}
$$

- others: $\epsilon_{f}=0$.

In other words, if the correlation of the standard function is non-zero, there is a negative correlation between the correlation and the amount of the variables existing in the quadratic terms. Moreover, for any quadratic function, there exists a non-singular transform $s=A \cdot t$ such that $g(s)=f\left(A^{-1} \cdot s\right)=Q(s)+L(s)$ is the standard form of f. What is more, the correlation of the standard function g equals to that of f.

For instance, $f(t)=t[1] \wedge t[2]+t[1] \wedge t[3]+t[2] \wedge t[4]+t[2]$. Suppose nonsingular transform $s[1]=t[1]+t[4], s[2]=t[2]+t[3], s[3]=t[3], s[4]=t[4]$, therefore the standard form $g(s)=s[1] \wedge s[2]+s[3] \wedge s[4]+s[2]+s[3]$. Hence, the correlation of f is obtained from g by the above method, which is 2^{-2}, due to $\{2,3\} \subseteq\{1,2,3,4\}$.

In brief, three steps for computing the correlation of a linear characteristic are applied. Firstly, obtain the XOR-ed function of all approximations of each active S-box. Secondly, derive the stand form of the XOR-ed function. Finally, calculate the correlation of the standard form by the above method. The calculating method is also suitable for other ciphers with the similar S-box of KATAN, such as SIMON.

0.4 Automatic enumeration of characteristic with MILP

Similar with paper [13-15], we obtain the linear characteristic by the automatic enumeration with Mixed-integer linear Programming Modelling(MILP). The method denotes each mask bit by a $0-1$ variable, then describes the propagation of the masks by linear constraints and optimizes a objective function. Constrains for linear operations are similar to paper [13-15]. Following is the MILP modelling for searching the linear characteristic, where α_{t} denotes the mask for variable t.

Constraints for linear operations

Constraints for bitwise XOR and branching structure are same with paper $[13,16]$ in the following.

1. For XOR operation $z=x \oplus y$, their masks satisfy $\alpha_{x}=\alpha_{y}=\alpha_{z}$.
2. For three branching structure $z=x=y$, their masks satisfy

$$
\left\{\begin{array}{l}
\tau \geq \alpha_{x}, \tau \geq \alpha_{y}, \tau \geq \alpha_{z} \\
\alpha_{x}+\alpha_{y}+\alpha_{z} \geq 2 \tau \\
\alpha_{x}+\alpha_{y}+\alpha_{z} \leq 2
\end{array}\right.
$$

where τ is the introduced new dummy variable.

Constraints for S-box

For S-box $z=x \wedge y$, their masks satisfy $2 \alpha_{z} \geq \alpha_{x}+\alpha_{y}$.

Constraints dealing with dependence of S-box

In order to consider the dependence of the S-box, the $\left|L_{1}\right|+\left|L_{2}\right|$ initial variables of registers and the two new registered variables each round loaded in the

LSB of registers are treated as original variables. In this case, the XOR-ed function of approximations for each active S-box can be expressed as a quadratic function of these original $0-1$ variables. Furthermore, there is a negative correlation between the correlation (non-zero) of the standard form and the number of the variables existing in the quadratic terms as shown in Section 0.3. Usually, the more variables exist in the quadratic terms of a boolean function, the more variables exist in that of its standard form. As a consequence, the amount of the variables in the quadratic terms is chosen as the preliminary measure of the correlation. On the other hand, the fact that one original variable exists in the quadratic terms is equivalent to the thing that this variable is the input of active S-box. Accordingly, the amount of all original variables as inputs of active S-box is the our preliminary measure of the correlation.

For each original variable t, denote a new $0-1$ variable V_{t} to indicate whether the variable t is the input of one active S-box, where $V_{t}=1$ if it is. In this case, $\sum_{t \in \mathbb{A}} V_{t}$ is our preliminary measure, where \mathbb{A} denotes the set consists of all original variables.

Furthermore, each variable t may be one input of several S-box (suppose n_{t}), which means these $n_{t} \mathrm{~S}$-box are dependent as previous shows. For instance, the original variable $L_{1}^{0}[5]$ for KATAN32 affects 2 S -box, 0 -th and 4 -th round S-box of L_{1}. What is more, if all the $n_{t} \mathrm{~S}$-box are not active, $V_{t}=0$; otherwise $V_{t}=1$. This property for each original variable can be described by following constraints:

$$
\begin{gathered}
n_{t} \cdot V_{t} \geq \beta_{1}+\beta_{2}+\cdots+\beta_{n_{t}}, \\
\beta_{1}+\beta_{2}+\cdots+\beta_{n_{t}} \geq V_{t},
\end{gathered}
$$

where $\beta_{i}, i \in 1, \cdots, n_{t}$, are output masks of the n_{t} S-box, and also express whether these S-box are active.

Objective function

As previous shows, $\sum_{t \in \mathbb{A}} V_{t}$ is chosen as our preliminary measure of the correlation. Usually, the more variables exist in the quadratic terms, the smaller the correlation is. Therefore the objective function is to minimize $\sum_{t \in \mathbb{A}} V_{t}$.

0.5 The computation of potential

For each version, we will obtain the linear hull by previous methods. In the first place, obtain a linear characteristic with high correlation by Gurobi software, with MILP modeling presented in above Section 0.4. Secondly, search again to obtain as many as possible suitable characteristics with additional constraints of fixing the input and output masks equaling to that of the obtained linear characteristic with high correlation. Finally, obtain the correlation for each characteristic by the computing method shown in previous Section 0.3, then give the potential.

RESULTS

The linear cryptanalysis shown by the designers [6] did not consider the dependence of the S-box. The 126 -round linear characteristic eliminated by 42-round linear approximation is not accurate, due to the dependence of the S-box. With taking the dependence of S-box into consideration, we obtain some new results for the security cryptanalysis. Furthermore, some linear hulls with high potential are obtained by the MILP modelling shown in Section 0.4. What is more, we mount some best attacks by these linear hulls.

0.6 Results for linear characteristic

For KATAN32, the correlation for the best 42-round linear approximation is 2^{-5} according to the designers [6], with ignoring the effect of the dependence of S-box. In the case of taking the dependence of S-box into consideration, we evaluate the security of the linear cryptanalysis again. The correlation of the best 42-round linear approximation is still 2^{-5} by our method. At the same time, a best 84 round linear characteristic with correlation 2^{-15} is presented in Appendix, while the previous 84 -round linear characteristic is directly eliminated as no more than $2^{-5 * 2}$ by pilling-up lemma according to the designers. The obtained 84round linear characteristic demonstrates that KATAN32 is secure against linear cryptanalysis based on one linear characteristic, however we can mount linear hull attack on KATAN in the following.

For KATAN48/64, a best 43/37-round respectively linear characteristic with correlation $2^{-8} / 2^{-10}$ is also obtained in this paper under the consideration of the dependence of the S-box, while the previous 43/37-round linear characteristic for KATAN48/64 provided by designers has correlation $2^{-9} / 2^{-10}$. Due to the limitation of computing resources, the more accurate security analysis for KATAN48/64 are not obtained. The masks are listed in Appendix.

0.7 Results for linear hull

By setting the input and output masks presented in Table 3, linear hulls for some versions are obtained with some additional constraints owing to the limitation of computing resource. Moreover, some best attacks are mounted by these linear hulls.

For KATAN32, a 84-round linear hull consisting of 98264 linear characteristics with potential $2^{-27.93}$ is obtained with additional constraints $\sum_{t \in \mathbb{A}} V_{t} \leq 44$. In addition, a 131 -round attack with 21 -round forward and 26 -round backward is mounted by this linear hull. In the attack process, 50 -bit subkey require to be guessed, while another 10-bit subkey with linear effect to the linear approximation do not. The involved subkey bits in the attack process are listed in Table 4, and the involved bits of the registers are listed in Table 5.

For KATAN48, a 90-round linear hull consisting of 99434 linear characteristics with potential $2^{-46.22}$ is obtained with additional constraints $\sum_{t \in \mathbb{A}} V_{t} \leq 65$. Furthermore, we mount a 120 -round attack with 16 -round forward and 14-round

Table 3. The input and output masks for linear hull

version	Input masks of register L_{1}	Input masks of register L_{2}
KATAN32	1000010001000	0000000000000010000
KATAN48	0000000000000000000	00000000000000000100000000100
KATAN64	0100000000100000100000000	000000000000000000100000000100010000000
version	output masks of register L_{1}	output masks of register L_{2}
KATAN32	0010000000000	1000000000000000000
KATAN48	1000000001000000001	00000000100000000000000000000
KATAN64	1000001001001000100000000	100010000100000100101000100100000100100

backward by this linear hull. In the attack process, 28-bit subkey require to be guessed, while another 8-bit subkey do not. The involved subkey bits in the attack process are listed in Table 4, and the involved bits of the registers are listed in Table 6.

For KATAN64, a 76-round linear hull consisting of 82908 linear characteristics with potential 2^{-57} is obtained with additional constraints $\sum_{t \in \mathbb{A}} V_{t} \leq 77$. What is more, we mount a 94 -round attack with 12 -round forward and 6 -round backward by this linear hull. In the attack process, 20-bit subkey require to be guessed, while another 13-bit subkey do not. The involved subkey bits in the attack process are listed in Table 4, and the involved bits of the registers are listed in Table 7.

The constraints $\sum_{t \in \mathbb{A}} V_{t} \leq 44 / 65 / 77$ for KATAN32/48/64 respectively is added due to the limitation of computing resource. The data complexity N of the linear hull attack is set by $2 * A L H^{-1}$. Suppose the length of the guessed-key is l_{k}, thus the time complexity is $N * 2^{l_{k}}$. The complexity is summarized in Table 1.

Table 4. The involved subkey bits in the attack process

version	round of guessed-key for k_{a}
KATAN32	$13,9,8,6,4,3,2,1,0,111,114,115,116,118,119,120,121,122,123,124,125,126,127,128,129,130$
KATAN48	$7,4,3,2,1,0,107,109,110,111,112,113,114,115,116,117,118,119$,
KATAN64	$5,4,3,2,1,0,89,90,91,92,93$
version	round of guessed-key for k_{b}
KATAN32	$10,7,5,4,3,2,1,0,111,113,115,117,119,120,121,122,123,124,125,126,127,128,129,130$
KATAN48	$10,6,3,2,1,0,113,116,117,118$
KATAN64	$5,4,2,1,0,89,91,92,93$
version	non-guessed key
KATAN32	$k_{a}^{5}, k_{a}^{16}, k_{a}^{107}, k_{a}^{112, k_{a}^{117,}, k_{b}^{8}, k_{b}^{13}, k_{b}^{17}, k_{b}^{105}, k_{b}^{116}}$
KATAN48	$k_{a}^{10}, k_{a}^{14}, k_{a}^{106}, k_{b}^{5}, k_{b}^{8}, k_{b}^{110}, k_{b}^{114}, k_{b}^{119}$
KATAN64	$k_{a}^{5}, k_{a}^{8}, k_{a}^{9}, k_{a}^{88}, k_{a}^{90}, k_{a}^{91}, k_{a}^{93}, k_{b}^{2}, k_{b}^{7}, k_{b}^{9}, k_{b}^{88}, k_{b}^{89}, k_{b}^{92}$

CONCLUSION

We first propose a third-party linear cryptanalysis on KATAN in this paper. What is more, we first take the dependence of the S-box into the analysis for KATAN. At the same time, we evaluate the security analysis on KATAN32 in the

Table 5. The involved bits of the registers for KATAN32

Round	bits of register L_{1}	bits of register L_{2}
0	$0,1,2,3,4,5,6,7,8,9,10,11,12$	$0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18$
1	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12	$0,1,2,3,4,5,6,7,8,9,10,11,12,14,15,16,17,18$
2	$0,1,2,3,4,5,6,7,8,9,10,11,12$	$0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18$
3	$0,1,2,3,4,5,6,7,8,9,10,11,12$	$0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,16,17,18$
4	$0,1,2,3,4,5,6,7,8,10,11,12$	$0,1,2,3,4,5,6,7,8,9,10,11,12,14,15,17,18$
5	$0,1,2,3,4,5,6,7,8,9,11,12$	$0,1,2,3,4,5,6,7,8,9,10,12,13,15,16,18$
6	$0,1,2,3,4,5,6,7,8,9,10,12$	$0,1,2,3,4,5,6,7,8,9,10,11,14,16,17$
7	$1,2,3,4,5,6,7,10,11$	$0,1,2,3,4,5,6,7,8,9,10,11,12,15,17,18$
8	$0,2,3,4,5,6,7,8,11,12$	$1,2,3,5,6,7,8,9,10,12,13,16,18$
9	$0,1,3,4,5,7,8,12$	$0,2,3,4,6,7,8,9,10,11,14,17$
10	$1,2,4,5,6,9$	$0,1,3,4,5,7,8,9,10,11,12,15,18$
11	0, 2, 3, 5, 6, 7, 10	$16,1,2,4,5,6,8,10,12$
12	$1,3,4,6,7,8,11$	$17,2,3,5,6,7,9,11,13$
13	$2,4,5,7,8,9,12$	$18,3,4,6,7,8,10,12,14$
14	0, 10, 3, 5, 6	$0,4,5,7,9,15$
15	1, 11, 4, 6, 7	$16,1,5,6,8,10$
16	8, 2, 12, 5, 7	17, 2, 6, 7, 9, 11
17	8, 3	$0,18,3,7,8,10,12$
18	0, 9, 4	1
19	1, 10, 5	2
20	2, 11, 6	3
21	3, 12, 7	4
105	10	18
106	0, 11	8, 9, 11, 4, 13
107	1, 12	9, 10, 12, 5, 14
108	8, 9, 2, 6	$0,6,10,11,13,15$
109	9, 10, 3, 7	$16,1,7,11,12,14$
110	$8,10,11,4$	$17,2,8,12,13,15$
111	9, 11, 12, 5	$16,18,3,9,13,14$
112	0, 6, 8, 9, 10, 12	$0,4,8,9,10,11,13,14,15,17$
113	$1,4,6,7,8,9,10,11$	$0,1,5,9,10,11,12,14,15,16,18$
114	$0,2,5,7,8,9,10,11,12$	$1,2,4,6,8,9,10,11,12,13,15,16,17$
115	$1,3,4,6,8,9,10,11,12$	$0,2,3,5,7,9,10,11,12,13,14,16,17,18$
116	$0,2,4,5,6,7,8,9,10,11,12$	$0,1,3,4,6,8,9,10,11,12,13,14,15,17,18$
117	$0,1,3,4,5,6,7,8,9,10,11,12$	$0,1,2,4,5,7,8,9,10,11,12,13,14,15,16,18$
118	0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12	$0,1,2,3,4,5,6,8,9,10,11,12,13,14,15,16,17$
119	$1,2,3,4,5,6,7,8,9,10,11,12$	$0,1,2,3,4,5,6,7,9,10,11,12,13,14,15,16,17,18$
120	0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12	$0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18$
121	0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12	$0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18$
122	0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12	$0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18$
123	$0,1,2,3,4,5,6,7,8,9,10,11,12$	$0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18$
124	$0,1,2,3,4,5,6,7,8,9,10,11,12$	$0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18$
125	$0,1,2,3,4,5,6,7,8,9,10,11,12$	$0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18$
126	$0,1,2,3,4,5,6,7,8,9,10,11,12$	$0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18$
127	$0,1,2,3,4,5,6,7,8,9,10,11,12$	$0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18$
128	$0,1,2,3,4,5,6,7,8,9,10,11,12$	$0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18$
129	$0,1,2,3,4,5,6,7,8,9,10,11,12$	$0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18$
130	$0,1,2,3,4,5,6,7,8,9,10,11,12$	$0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18$
131	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18

Table 7. The involved bits of the registers L_{1} for KATAN64

case of taking the dependence of the S-box into consideration. Furthermore, the 131/120-round attack mounted by our linear hull on KATAN32/48 respectively is the best single-key known-plaintext attack for KATAN.

References

1. Wenling Wu and Lei Zhang. Lblock: A lightweight block cipher. In Javier Lopez and Gene Tsudik, editors, Applied Cryptography and Network Security, volume 6715 of Lecture Notes in Computer Science, pages 327-344. Springer Berlin Heidelberg, 2011.
2. A. Bogdanov, L.R. Knudsen, G. Leander, C. Paar, A. Poschmann, M.J.B. Robshaw, Y. Seurin, and C. Vikkelsoe. Present: An ultra-lightweight block cipher. In Pascal Paillier and Ingrid Verbauwhede, editors, Cryptographic Hardware and Embedded Systems - CHES 2007, volume 4727 of Lecture Notes in Computer Science, pages 450-466. Springer Berlin Heidelberg, 2007.
3. Jian Guo, Thomas Peyrin, Axel Poschmann, and Matt Robshaw. The led block cipher. In Bart Preneel and Tsuyoshi Takagi, editors, Cryptographic Hardware and Embedded Systems ?CHES 2011, volume 6917 of Lecture Notes in Computer Science, pages 326-341. Springer Berlin Heidelberg, 2011.
4. Martin R. Albrecht, Benedikt Driessen, Elif Bilge Kavun, Gregor Leander, Christof Paar, and Tolga Yalçin. Block ciphers - focus on the linear layer (feat. PRIDE). In Advances in Cryptology - CRYPTO 2014-34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I, pages 57-76, 2014.
5. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks, and Louis Wingers. The simon and speck families of lightweight block ciphers. IACR Cryptology ePrint Archive, 2013:404, 2013.
6. Christophe De Cannière, Orr Dunkelman, and Miroslav Knezevic. KATAN and KTANTAN - A family of small and efficient hardware-oriented block ciphers. In Cryptographic Hardware and Embedded Systems - CHES 2009, 11th International Workshop, Lausanne, Switzerland, September 6-9, 2009, Proceedings, pages 272288, 2009.
7. Simon Knellwolf, Willi Meier, and María Naya-Plasencia. Conditional differential cryptanalysis of nlfsr-based cryptosystems. In Advances in Cryptology - ASIACRYPT 2010-16th International Conference on the Theory and Application of Cryptology and Information Security, Singapore, December 5-9, 2010. Proceedings, pages 130-145, 2010.
8. Martin R. Albrecht and Gregor Leander. An all-in-one approach to differential cryptanalysis for small block ciphers. In Selected Areas in Cryptography, 19th International Conference, SAC 2012, Windsor, ON, Canada, August 15-16, 2012, Revised Selected Papers, pages 1-15, 2012.
9. Takanori Isobe and Kyoji Shibutani. All subkeys recovery attack on block ciphers: Extending meet-in-the-middle approach. In Selected Areas in Cryptography, 19th International Conference, SAC 2012, Windsor, ON, Canada, August 15-16, 2012, Revised Selected Papers, pages 202-221, 2012.
10. Thomas Fuhr and Brice Minaud. Match box meet-in-the-middle attack against KATAN. In Fast Software Encryption - 21st International Workshop, FSE 2014, London, UK, March 3-5, 2014. Revised Selected Papers, pages 61-81, 2014.
11. Mitsuru Matsui. Linear cryptanalysis method for des cipher. In Tor Helleseth, editor, Advances in Cryptology ?EUROCRYPT ?3, volume 765 of Lecture Notes in Computer Science, pages 386-397. Springer Berlin Heidelberg, 1994.
12. Kaisa Nyberg. Linear approximation of block ciphers. In Advances in CryptologyEUROCRYPT'94, pages 439-444. Springer, 1995.
13. Siwei Sun, Lei Hu, Meiqin Wang, Peng Wang, Kexin Qiao, Xiaoshuang Ma, Danping Shi, Ling Song, and Kai Fu. Towards finding the best characteristics of some bit-oriented block ciphers and automatic enumeration of (related-key) differential and linear characteristics with predefined properties. IACR Cryptology ePrint Archive, 2014:747, 2014.
14. Danping Shi, Lei Hu, Siwei Sun, Ling Song, Kexin Qiao, and Xiaoshuang Ma. Improved linear (hull) cryptanalysis of round-reduced versions of SIMON. IACR Cryptology ePrint Archive, 2014:973, 2014.
15. Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling Song. Automatic security evaluation and (related-key) differential characteristic search: Application to simon, present, lblock, des(l) and other bit-oriented block ciphers. In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology ?ASIACRYPT 2014, volume 8873 of Lecture Notes in Computer Science, pages 158-178. Springer Berlin Heidelberg, 2014.
16. Andrey Bogdanov and Vincent Rijmen. Linear hulls with correlation zero and linear cryptanalysis of block ciphers. Designs, Codes and Cryptography, 70(3):369383, 2014.

APPENDIX

Table 8. The 84-round linear characteristic for KATAN32

Round	input masks of register L_{1}	input masks of register L_{2}
0	1000010001000	0000000000000010000
1	0000000000000	0000000000000100001
2	0000000000000	0000000000001000010
3	0000000000000	0000000000010000100
4	0000000000000	0000000000100001000
5	0000000000000	0000000001000010000
6	0000000000000	0000000010000100000
7	0000000000000	0000000100001000000
8	0000000000000	0000001000010000000
9	0000000000000	0000010000100000000
10	0000000000000	0000100001000000000
11	0000000000000	0001000010000000000
12	0000000000000	0010000100000000000
13	0000000000000	0100001000000000000
14	0000000000000	1000010000000000000
15	0000000000001	0000100000100000000
16	0000000000010	0001000001000000000
17	0000000000100	0010000010000000000
18	0000000001000	0100000100000000000
19	0000000010000	1000001000000000000
20	0000000100001	0000010000100000000
21	0000001000010	0000100001000000000
22	0000010000100	0001000010000000000
23	0000100001000	0010000100000000000
24	0001000010000	0100001000000000000
25	0010000100000	1000010000000000000
26	0100001000001	0000100000100000000
27	1000010000010	0001000001000000000
28	0000000000100	0010000010000000001
29	0000000001000	0100000100000000010
30	0000000010000	1000001000000000100
31	0000000100001	0000000000100001000
32	0000001000010	0000000001000010000
33	0000010000100	0000000010000100000
34	0000100001000	0000000100001000000
35	0001000010000	0000001000010000000
36	0010000100000	0000010000100000000
37	0100001000000	0000100001000000000
38	1000010000000	0001000010000000000
39	0000000000000	0010000100000000001
40	0000000000000	0100001000000000010
41	0000000000000	1000010000000000100
42	0000000000001	0000100000100001000
43	0000000000010	0001000001000010000
44	0000000000100	0010000010000100000
45	0000000001000	0100000100001000000
46	0000000010000	1000001000010000000
47	0000000100001	0000000000000000000
48	0000001000010	0000000000000000000
49	0000010000100	0000000000000000000
50	0000100001000	0000000000000000000
51	0001000010000	0000000000000000000
52	0010000100000	0000000000000000000
53	0100001000000	0000000000000000000
54	1000010000000	000000000000000000
55	0000000000000	0000000000000000001
56	0000000000000	0000000000000000010
57	0000000000000	0000000000000000100
58	0000000000000	0000000000000001000
59	0000000000000	0000000000000010000
60	0000000000000	0000000000000100000
61	0000000000000	0000000000001000000
62	0000000000000	0000000000010000000
63	0000000000000	0000000000100000000
64	0000000000000	0000000001000000000
65	0000000000000	0000000010000000000
66	0000000000000	0000000100000000000
67	0000000000000	0000001000000000000
68	0000000000000	0000010000000000000
69	0000000000000	0000100000000000000
70	0000000000000	0001000000000000000
71	0000000000000	0010000000000000000
72	0000000000000	010000000000000000
73	0000000000000	1000000000000000000
74	0000000000001	0000000000100000000
75	0000000000010	0000000001000000000
76	0000000000100	0000000010000000000
77	0000000001000	0000000100000000000
78	0000000010000	0000001000000000000
79	0000000100000	0000010000000000000
80	0000001000000	0000100000000000000
81	0000010000000	0001000000000000000
82	0000100000000	0010000000000000000
83	0001000000000	0100000000000000000
84	0010000000000	1000000000000000000

Table 9. The 43-round linear characteristic for KATAN48

Round	input masks of register L_{1}	input masks of register L_{2}
0	0000000001000001001	00000100000000100000000000000
1	0000000100000100100	00010000000010000000000000000
2	0000010000010010000	01000000001000000000000000000
3	0001000001001000001	00000000000000000000000000000
4	01000001000100000100	000000000000000000000000000000
5	0000000010010010000	00000000000000000000000000001
6	0000001001001000000	00000000000000000000000000100
7	0000100100100000000	00000000000000000000000010000
8	0010010010000000000	00000000000000000000001000000
9	1001001000000000000	00000000000000000000100000000
10	0000000000000000000	00000000000000000010000000010
11	0000000000000000000	00000000000000001000000001000
12	0000000000000000000	00000000000000100000000100000
13	0000000000000000000	00000000000010000000010000000
14	0000000000000000000	00000000001000000001000000000
15	0000000000000000000	00000000100000000100000000000
16	0000000000000000000	00000010000000010000000000000
17	0000000000000000000	00001000000001000000000000000
18	0000000000000000000	00100000000100000000000000000
19	0000000000000000000	10000000010000000000000000000
20	0000000000000000010	00000000000000000000000000000
21	0000000000000001000	00000000000000000000000000000
22	0000000000000100000	00000000000000000000000000000
23	0000000000010000000	00000000000000000000000000000
24	0000000001000000000	00000000000000000000000000000
25	0000000100000000000	00000000000000000000000000000
26	0000010000000000000	000000000000000000000000000000
27	0001000000000000000	00000000000000000000000000000
28	0100000000000000000	00000000000000000000000000000
29	0000010000010000000	00000000000000000000000000001
30	0001000001000000000	00000000000000000000000000100
31	01000001000000000000	000000000000000000000000010000
32	0000000000000000000	000000000000000000000001000001
33	0000000000000000000	00000000000000000000100000100
34	0000000000000000000	00000000000000000010000010000
35	0000000000000000000	00000000000000001000001000000
36	0000000000000000000	00000000000000100000100000000
37	0000000000000000000	00000000000010000000000000000
38	0000000000000000000	00000000001000001000000000000
39	0000000000000000000	00000000100000100000000000000
40	0000000000000000000	00000010000010000000000000000
41	0000000000000000000	00001000001000000000000000000
42	00000000000000000000	001000001000000000000000000000
43	00000000000000000000	100000100000000000000000000000

