
Vulnerabilities of “McEliece in the World of Escher”

Dustin Moody1 and Ray Perlner1

1National Institute of Standards and Technology,
Gaithersburg, Maryland, USA

dustin.moody@nist.gov, ray.perlner@nist.gov

Abstract. Recently, Gligoroski et al. proposed code-based encryption and sig-
nature schemes using list decoding, blockwise triangular private keys, and a
nonuniform error pattern based on “generalized error sets.” The general ap-
proach was referred to as McEliece in the World of Escher. This paper demon-
strates attacks which are significantly cheaper than the claimed security level
of the parameters given by Gligoroski et al. We implemented an attack on the
proposed 80-bit parameters which was able to recover private keys for both en-
cryption and signatures in approximately 2 hours on a single laptop. We further
find that increasing the parameters to avoid our attack will require parameters
to grow by almost an order of magnitude for signatures, and (at least) two
orders of magnitude for encryption.

Key words: Information Set Decoding, Code-based Cryptography, McEliece
PKC, McEliece in the World of Escher

1 Introduction

The McEliece cryptosystem [1] is one of the oldest and most studied candidates
for a postquantum cryptosystem. McEliece’s original scheme used Goppa codes,
but other families of codes have been proposed, such as moderate density parity
check codes [2] and low rank parity check codes [3, 4]. Recently, Gligoroski et
al. [5, 6] proposed a new approach to designing a code-based cryptosystem.
Their approach uses a blockwise-triangular private key to enable decryption
and signatures through a list decoding algorithm. The error vector in both
cases is characterized, not by a maximum hamming weight t, as is typical
for code-based cryptosystems, but by an alphabet of allowed `-bit substrings
known as the generalized error set. Claimed advantages of this approach include
a straightforward signature scheme and the ability to analyze security by using
the tools of algebraic cryptanalysis.

The concept of information set decoding originates with Prange [7]. Further
optimizations were subsequently proposed by Lee and Brickell [8], Leon [9],
and Stern [10]. Information set decoding techniques can be used to attack
code-based cryptosystems in several ways. They can be used to search for a
low-weight error vector directly, or they can be used to detect hidden structure
in the public generator or parity check matrices by finding low weight code
words in the row space of the generator matrix or parity check matrix. All
of these applications of information set decoding are relevant to the scheme
of Gligoroski et al. We will refer to their scheme as McEliece Escher, since

2 D. Moody & R. Perlner

it was introduced in their paper McEliece in the World of Escher [5, 6]. We
demonstrate that information set decoding techniques are much more effective
against the McEliece Escher scheme than suggested by the authors’ original
security analysis.

Gligoroski et al. were aware of both categories of information set decoding
attacks on their scheme, however they applied such techniques suboptimally
to decoding errors. More seriously, they believed that information set decoding
only produced a distinguisher on the private key, rather than a full key recov-
ery. Landais and Tillich [11] applied similar techniques to convolutional codes,
which have similar structure to the private keys used by McEliece Escher. We
offer improvements to the existing approaches, including showing how to take
advantage of the structured permutation used by McEliece Escher to disguise
the private generator matrix.

Furthermore, we show our attacks are practical. Using the proposed pa-
rameters for 80-bits of security, we were able to recover private keys for both
encryption and signatures in less than 2 hours on a single laptop. We find that
increasing the parameters to avoid our attack will require parameters to grow
by almost an order of magnitude for signatures, and (at least) two orders of
magnitude for encryption.

2 Background: McEliece schemes

2.1 Public and Private Keys

Gligoroski et al. construct their scheme along the lines of the original McEliece
cryptosystem. The public key is a k × n generator matrix Gpub for a linear
code over F2. To encrypt a message, the sender encodes a k-bit message m as
an n bit codeword and then intentionally introduces errors by adding an error
vector e. The ciphertext is then given by:

c = mGpub + e.

Gligoroski et al. also introduce a signature scheme by applying the decoding
algorithm to a hashed message. A signature σ is verified by checking

H(m) = σGpub + e,

for a suitably chosen hash function H.
Similar to the ordinary McEliece scheme, Gpub is constructed from a struc-

tured private generator matrix G, an arbitrary k × k invertible matrix S, and
an n× n permutation matrix P .

Gpub = SGP. (1)

For encryption, Gpub must be chosen in such a way that the private key allows
unique decoding of a properly constructed ciphertext. For signatures, on the
other hand, Gpub must be constructed to allow some decoding (not necessarily
unique) of a randomly chosen message digest.

Vulnerabilities of “McEliece in the World of Escher” 3

It will sometimes be helpful to characterize the public and private codes by
their parity check matrices. The private parity check matrix, H is a (n−k)×n
matrix, related to the private generator matrix G by the relation

GHT = 0.

Similarly, it is easy to construct a public parity check matrix Hpub from Gpub,
characterized by the relation GpubH

T
pub = 0. This will be related to the private

parity check matrix as
Hpub = S′HP,

where S′ is an (n−k)×(n−k) invertible matrix and P is the same permutation
matrix as in equation (1).

2.2 Private Generator and Parity Check Matrices

To construct the binary (n, k) code used in the McEliece Escher scheme, the
(private) generator matrix is of the form illustrated in Figure 1. Each block Bi

Fig. 1. The private generator matrix

︷︸︸︷

{
n1

k1

G = ()Ik Bw

0

B1 B2

︷︸︸︷n2

{k2 · · ·

· · ·

is a random binary matrix of dimension (
∑i

j=1 kj)× ni, so that k = k1 + k2 +
· · ·+kw and n = k+n1 +n2 + · · ·+nw. The corresponding private parity check
matrix is depicted in Figure 2, and has a similar block-wise structure. For ease
of notation, we will let K = (k1, k2, .., kw) and N = (n1, n2, .., nw).

2.3 Error Sets

In the McEliece Escher scheme, the error vector is broken up into n/` seg-
ments, each `-bits. The value ` is called the granularity of the scheme, and for
all proposed parameter sets, ` is set to 2. While the original McEliece scheme
restricted the error vectors to having a low hamming weight t, the McEliece
Escher scheme instead restricts the error space by choosing each `-bit subseg-
ment from a limited alphabet, called an error set. Error sets may be analyzed
in terms of a density parameter ρ given by the formula

ρ = |E|1/`.

4 D. Moody & R. Perlner

Fig. 2. The private parity check matrix

︷︸︸︷

{
k1

H = ()
0

︷︸︸︷
{ k2

In−k

... ...

n1

n2

BT
1

BT
2

BT
w

For the proposed parameters, the error set is always E = {00, 01, 10}. This
error set has granularity ` = 2 and density ρ =

√
3.

Since public key operations require the encrypter or verifier to distinguish
between valid and invalid error vectors, the permutation P used to disguise the
private generator and parity check matrices must necessarily be of a special
form. The action of P needs to rearrange `-bit segments of the rows, but leave
the segments themselves intact. In other words, P must consist of `× ` blocks
which are either 0 or the identity matrix I`.

3 Improving Information Set Decoding for the Error Vector

Information set decoding may be used to recover m and e from the ciphertext
c = mGpub + e. The basic strategy involves guessing k bits of the error vector
and recovering the rest by linear algebra. One of the simplest information set
decoding algorithms is given in Algorithm 1.

It should be clear that the number of iterations this algorithm requires is
inversely proportional to the probability that an attacker can guess k bits of
the error vector. As in the case of standard McEliece, the most probable guess
for these k bits is the all zero vector. However, since McEliece Escher uses a
nonuniform error pattern, the choice of the permutation P ′ has a significant
effect on the probability of success. In their security analysis, Gligoroski et
al. assumed that P ′ would be of similar form to to the secret permutation
matrix P used to disguise the private key. This has the effect of forcing the
adversary to guess all the bits in each `-bit block chosen from a generalized
error set. Thus the probability of each guess is ρ−k. However, an attacker can
do better by choosing a permutation that always separates the bits of an `-bit
block. For example, each bit is 0 two-thirds of the time when the error set is
E = {00, 01, 10}, but both bits are 0 only one-third of the time. By guessing
one bit within each 2-bit block, an attacker achieves a success probability of

Vulnerabilities of “McEliece in the World of Escher” 5

Algorithm 1: Information set decoding for the error vector
Input: ciphertext c, and a parameter k
Output: message m, error e
1. Permute the bits of the ciphertext by a random permutation matrix P ′:

c′ = (mGpub + e)P ′

= mGpubP
′ + eP ′

= m(A|B) + (e′1|e′2)

= (mA + e′1)|(mB + e′2),

where A and e′1 are the first k columns of the permuted generator matrix GpubP
′

and permuted error vector eP ′, respectively.
2. If A is not invertible, go to step 1.
3. Guess e′1. If correct the message can be reconstructed as

m = ((mA + e′1)− e′1)A−1.

The error vector is then e = c−mGpub.
4. If the error vector is properly formed (i.e., the hamming weight is less than t for

standard McEliece, or composed of `-bit substrings from the proper generalized
error set in McEliece Escher), return m and e. Otherwise go back to step 1 and start
over with a new permutation P ′.

(2/3)k, which is a significant improvement over the value (1/
√

3)k assumed by
Gligoroski et al.’s security analysis. Concretely, when used against Gligoroski
et al.’s claimed 80-bit secure code with parameters (n, k) = (1160, 160), the
probability of a single guess of k bits of the error vector improves from 2−127

to 2−94. Similar improvements are available for more sophisticated decoding
algorithms.

4 Information Set Decoding for the Private Key

Information set decoding techniques can also be used to find low weight ele-
ments in the row spaces of matrices. In our case, we are interested in the public
generator and parity check matrices, Gpub and Hpub. Note that elements of
these public row spaces are related to the elements of the row spaces of the
private generator and parity check matrices by the permutation P used in the
construction of the public key:

vGpub = ((vS)G)P,

v′Hpub = ((v′S′)H)P,

where v and v′ are k and (n − k)-bit row vectors respectively. Consequently,
the result of an information set decoding attack on Gpub or Hpub will simply
be the image under P of a low weight element of the row space of G or H. We
thus examine the space of low weight vectors for encryption and signatures.

6 D. Moody & R. Perlner

Recall the description of the private generator and parity check matrices
given in Section 2.2. For encryption, the private key operation requires main-
taining a list of at least ρk1 entries. This means that k1 must be small in order
for the scheme to be efficient. The first n1 rows of H are forced by construction
to have nonzero bits only in the (n1 + k1) columns Cj(H), with 1 ≤ j ≤ k1
or k + 1 ≤ j ≤ k + n1. Linear combinations of these rows will then produce
approximately

(
n1+k1
t

)
2−k1 distinct row vectors of weight t. The general attack

strategy will be to seek to sample from the images under P of this space of
low weight row vectors, which are constrained to only contain nonzero bits in
columns Cj , with the same bounds on j as above. We thereby learn the im-
ages of those columns, and once learned they can be removed from Hpub. The
row space of the matrix formed by the remaining columns of H is the same as
for the parity check matrix of a code of the same structure with w′ = w − 1,
N ′ = (n2, .., nw), K ′ = (k2, .., kw). Applying this strategy recursively will allow
us to identify the underlying block structure and construct a new private key
of the same form.

For signatures, the private key operation requires maintaining a list of at
least (2/ρ)nw entries. In order for the scheme to be efficient, nw must be small.
The last kw rows ofG have zero bits everywhere, except possibly in the (kw+nw)
columns Cj(G), indexed by (k−kw+1) ≤ j ≤ k and (n−nw+1) ≤ j ≤ n. Linear

combinations of the rows will produce approximately
(
kw+nw

t

)
2−nw distinct row

vectors of weight t. Similarly as done for encryption, the strategy for signatures
will be to seek to sample from the images under P of this space of low weight row
vectors, learning the images of the aforementioned columns. Once the columns
have been learned, they can be removed from Gpub and the process recursively
repeated since the row space of the matrix formed by the remaining columns of
G is that of a parity check matrix for a code of the same form with w′ = w−1,
N ′ = (n1, .., nw−1), K

′ = (k1, .., kw−1). See Figure 3 for an illustration of the
strategy for both encryption and signatures.

Fig. 3. Removing columns and row-reducing leaves a smaller code of the same form.

· · ·

· · ·

Remove columns

Row reduce

︷︸︸︷

{
n1

k1

()Ik Bw

0

B1 B2

︷︸︸︷n2

{k2

︷︸︸︷

{
k1

()
0

︷︸︸︷
{ k2

In−k

... ...

n1

n2

BT
1

BT
2

BT
w

Remove columns

Row reduce

It should be noted that the space of short vectors with support on the
target columns is not the only source of low weight vectors that can be obtained
by information set decoding algorithms. However, for realistic parameters, it
is generally advantageous to simply choose t to maximize the rate at which

Vulnerabilities of “McEliece in the World of Escher” 7

vectors from the target space are produced. This is because there is an efficient
way to use a list of vectors, some of which are from the target space and some
of which are not, to produce a full list of the target columns. The algorithm
that does this uses a subroutine which is applied to a small subset of the
list of vectors, and which will usually produce the full list of target columns
if the chosen vectors are all from the target space. This subroutine will not
only terminate quickly on correct inputs, but also if one of the vectors is not
from the target space. In the latter case the algorithm will recognizably fail,
by identifying too many columns. The first obtained list of vectors, required
to recover the full target set of columns, will generally be small enough that
trying the subroutine on all appropriately sized subsets of the list will be of
insignificant cost compared to the information set decoding steps.

The subroutine proceeds as follows (see Alg. 2). The input is a list of target
columns, containing at least (k1 + 1) of the target columns for encryption (or
at least (nw+1) of the target columns for signatures). These columns may gen-
erally be obtained by combining the nonzero positions of a small number (e.g.
two) of the target vectors produced by an information set decoding algorithm,
such as Stern’s algorithm.

Algorithm 2: Subroutine to complete the list of target columns
Input: A set S of columns
Output: A set of columns S’ ⊇ S, and a flag “Success” or “Failure”
1. Check whether removing the columns of S from the public matrix reduces the rank.

– If all of the columns are from the target set, then removing the columns in S will
likely reduce the rank of the public matrix by |S| − k1 for encryption (or |S| − nw

for signatures).
2. For each column C not in S, check whether the rank of the public matrix is

decreased when C is removed in addition to those already in S.
(a) if the rank is decreased, add C to S and repeat step 2.
(b) if the rank stays the same for each C /∈ S, return S′ = S and go to the last step to

determine success.
3. The algorithm succeeds if the rank stops decreasing at n− k − n1 for encryption (or

k − kw for signatures). Otherwise output failure.

4.1 Using the Nonrandom P

The attack outlined in the previous section does not take into account the
constraints on the permutation P used to disguise the private key G (or H).
In particular, the permutation leaves blocks of ` consecutive columns intact.
Thus, there is additional information about the location of our target columns
that we did not use. In particular, if the column Cj is in our target set, we
can be confident that all the columns Cb j−1

`
c+1, ..., Cb j−1

`
c+` are also in the

target set. We modify Stern’s algorithm to take advantage of this by choosing
our random permutation P’ in such a way as to leave `-bit blocks of columns

8 D. Moody & R. Perlner

intact, just as the private matrix P does. We will also count the number of
nonzero `-bit blocks within a row vector as a substitute for hamming weight,
wherever hamming weight is used by Stern’s algorithm. We will refer to this
altered weight as block-weight. Taking into account the special form of P also
has other beneficial effects for the attacker. In particular, Algorithm 2 has a
higher probability of success when the rank effects of the inclusion of blocks
of ` columns (instead of individual columns) are considered, since it is much
less likely for these blocks to be totally linearly dependent on each other, for
reasons other than the overall block structure of the matrix.

The modified version of Stern’s algorithm proceeds as shown in Algorithm
3. Note the Stern’s algorithm window size will be denoted L, instead of the
standard l, to avoid confusion with the granularity.

Algorithm 3: Modified Stern’s Algorithm
Input: a matrix Gpub, parameters p, t, L, `
Output: a vector in the row space of Gpub which has block-weight t
1. Permute the columns of Gpub :

G′pub = GpubP
′,

where P ′ is a permutation matrix consisting of `× ` blocks which are either zero or
the identity, but otherwise chosen randomly.

2. Check that the first k columns of the new matrix G′pub form an invertible matrix A.
If A is not invertible, go back to step 1.

3. Left-multiply by A−1, resulting in a matrix of the form

M = A−1G′pub =
[
Ik | Q

]
.

4. Search for low-weight row-vectors among linear combinations involving small subsets
of the rows of M :

(a) Divide the rows of M into two equal length lists, i.e.,
for 0 < i ≤ k

2`
, and for B = (b1, .., b`) ∈ F`

2

xi,B =
∑̀
r=1

brrowi`+r(M).

Similarly, for k
2`

< j ≤ k
`

yj,B =
∑̀
r=1

brrowj`+r(M).

(b) Compute each possible sum of all subsets of size p of the xi,B , as well as for all
possible sums of p of the yj,B . Check for collisions on bits (k + 1), . . . , (k + L):

bitsk+1,...,k+L`(xi1,B1 + . . . + xip,Bp) = bitsk+1,...,k+L`(yj1,B1 + . . . + yjp,Bp).

(c) When such a collision is found, compute the sum s of the 2p colliding row vectors

s = xi1 + . . . + xip + yj1 + . . . + yjp .

If the block-weight of any such s is equal to t return sP ′. Otherwise, go back to
step 1.

Vulnerabilities of “McEliece in the World of Escher” 9

We now give an analysis of the complexity of obtaining the full list of target
columns using this modified Stern’s algorithm. For each block-weight t target
vector g, the search will succeed if and only if gP ′ has block-weight p on its
first k

2 bits, block-weight p on the next k
2 bits, and block-weight 0 on the next

L bits. For a randomly chosen P ′ this probability is

Prob(n, k, p, `, L, t) =

(
n/`

t

)−1(k/(2`)
p

)2((n− k − L)/`

t− 2p

)
,

and the equivalent probability for an attack on Hpub is

Prob(n, n− k, p, `, L, t) =

(
n/`

t

)−1((n− k)/(2`)

p

)2((k − L)/`

t− 2p

)
.

The approximate number D of distinct target vectors of a given weight t is

Dsig ≈
(

(kw + nw)/`

t

)(
2` − 1

)t
· 2−nw ,

for signature, and for encryption

Denc ≈
(

(n1 + k1)/`

t

)(
2` − 1

)t
· 2−k1 .

The expected number E of target vectors required for a successful attack is

Esig ≈

log
(

kw
kw+nw

)

log
(
kw+nw−t`
kw+nw

)

,

for signature, and for encryption

Eenc ≈

log
(

n1
n1+k1

)

log
(
n1+k1−t`
n1+k1

)

.

The total number of iterations of the modified Stern’s algorithm is therefore

isig ≈
⌈

log(kw
kw+nw

)

log(kw+nw−t`
kw+nw

)

⌉
·
(

(kw + nw)/`

t

)−1 (
2` − 1

)−t
2nw

·
(
n/`

t

)(
k/(2`)

p

)−2((n− k − L)/`

t− 2p

)−1
,

and

ienc ≈
⌈

log(n1
n1+k1

)

log(n1+k1−t`
n1+k1

)

⌉
·
(

(n1 + k1)/`

t

)−1 (
2` − 1

)−t
2k1

·
(
n/`

t

)(
(n− k)/(2`)

p

)−2((k − L)/`

t− 2p

)−1
.

10 D. Moody & R. Perlner

5 Experimental Results

We implemented the attacks described in the previous section on a stan-
dard laptop with a 2.2 GHZ Intel core i7 processor. We used the parame-
ters suggested by Gligoroski et al. for 80 bits of security. Concretely, for en-
cryption n = 1160, k = 160, ` = 2, w = 17, with K = (32, 8, 8, ..., 8) and
N = (32, 32, ..., 32, 488). We used parameters (t, p, L) = (11, 1, 9) for the modi-
fied Stern’s algorithm, which needed approximately 1000 iterations in our trials.
The predicted value from the analysis in the previous section was 2500. The
total wall time for the computation to recover a private key was on average
less than 2 hours.

For signatures, we have n = 650, k = 306, ` = 2, w = 6, with K =
(84, 48, 48, 48, 48, 30) and N = (48, 48, 48, 48, 48, 104). The modified Stern pa-
rameters we used were (t, p, L) = (40, 1, 7). With such a high value for t, a
higher number of iterations were needed, usually less than 10000 (the pre-
dicted value was around 4900). The total wall time was again less than 2 hours
on average.

6 Countermeasures

Attempts to increase the security of McEliece Escher by altering the parameters
are severely constrained by the requirement that ρk1 be small for encryption
and that (2/ρ)nw be small for signatures.

One possiblility would be to try to decrease ρ (or 2/ρ), as appropriate, to
allow k1 or nw to increase. This, however, turns out to be counterproductive.
Due to the attack in Section 4.1, we see what really matters for security is that
k1/` be large for encryption, or nw/` be large for signatures. Asymptotically,
there will be 2` vectors in the row space of Hpub of block-weight no more than
k1/`+ 1 and 2` vectors in the row space of Gpub of block-weight no more than
nw/`+ 1. The factor of 2` will make up for the increased cost per iteration of
the modified Stern’s algorithm with p = 1, but the probability of success per
iteration will remain at approximately (kn)k1/` for encryption and (n−kn)nw/` for

signatures. Encryption requires (ρ`)k1/` to be small for efficiency and k1/` to be
large for security. Thus the ideal value for ρ and ` would minimize ρ`. Likewise,
the signature scheme requires ((2ρ)`)nw/` to be small for efficiency and nw/` to

be large for security. Hence, the ideal value for ρ and ` would minimize (2ρ)`.

While it is possible to decrease ρ (or 2
ρ) by increasing `, the consequence is

that ρ` and (2ρ)` both increase at least linearly in ` for error sets of the proper
form (for security, the generalized error set cannot impose linear constraints on
the error vector, e.g. by forcing a bit of the error vector to always be 0). Thus,
fixing n

k and the security level, we find that the cost of decryption increases
when we increase `.

A better idea is to greatly increase nw for encryption and kw for signatures.
This works by making k

n very small for encryption and n−k
n very small for

signatures. In the context of an information set decoding attack, this has the

Vulnerabilities of “McEliece in the World of Escher” 11

effect of decreasing the probability that a given nonzero bit (or `-bit block) of a
target vector will be placed outside the information set by a randomly chosen
(block) permutation. This is a much better solution for signatures than for
encryption. For typical parameters, the modified Stern’s algorithm requires ∼
30 nonzero blocks to fall outside the information set when attacking a signature.
Thus, bringing the cost of the attack from ∼ 230 to ∼ 280 should only require
n−k
n to fall from about 0.5 to about 0.15. That is, the size of the 80-bit-secure

code increases from a 650 × 304 bit generator matrix to a 2000 × 1654 bit
generator matrix. For attacking typical encryption parameters, on the other
hand, the modified Stern’s algorithm only requires ∼ 6 nonzero blocks to fall
outside the information set. This means k

n needs to fall from about 0.15 to
0.0005. The result is that for an 80-bit-secure code, the size would increase
from 1160× 160 to 300, 000× 160.

7 Conclusion

We demonstrate practical attacks on the proposed parameters of McEliece
Escher. The poor choice of parameters is a demonstration of the general prin-
ciple that code-based schemes should be designed in such a way as to avoid
all practical distinguishers on the public key, since distinguishers can often be
modified, at little cost, to create private-key recovery attacks. Additionally,
our cryptanalysis demonstrates that information set decoding techniques can
be modified to take advantage of code-based schemes whose private keys are
disguised by a structured, rather than a completely random, permutation ma-
trix. The recent cryptanalysis of cyclosymmetric-MDPC McEliece by Perlner
[12] is another example of this general principle.

It appears the above pitfalls can be compensated for, by simply making
the parameters of McEliece Escher larger. However, even for signatures, where
modifying the parameters is more effective, this requires making the keys nearly
an order of magnitude larger, and consequently making the decryption process
nearly an order of magnitude slower. This is a major burden on an already
inefficient scheme. Asymptotically, these modifications can only make the com-
plexity of a key-recovery attack quasi-polynomially worse than the complexity
of decryption by the legitimate party.

References

1. McEliece, R.J.: A Public-Key Cryptosystem Based On Algebraic Coding Theory. Deep
Space Network Progress Report 44 (1978) 114–116

2. Misoczki, R., Tillich, J.P., Sendrier, N., Barreto, P.S.L.M.: Mdpc-mceliece: New mceliece
variants from moderate density parity-check codes. Cryptology ePrint Archive, Report
2012/409 (2012) http://eprint.iacr.org/.

3. Gaborit, P., Murat, G., Ruatta, O., Zemor, G.: Low Rank Parity Check codes and
their application to cryptography. In Lilya Budaghyan, Tor Helleseth, M.G.P., ed.: The
International Workshop on Coding and Cryptography (WCC 13), Bergen, Norway (2013)
13 p. ISBN 978-82-308-2269-2.

12 D. Moody & R. Perlner

4. Gaborit, P., Ruatta, O., Schrek, J., Zmor, G.: Ranksign: An efficient signature algorithm
based on the rank metric. In Mosca, M., ed.: Post-Quantum Cryptography. Volume 8772
of Lecture Notes in Computer Science. Springer International Publishing (2014) 88–107

5. Gligoroski, D., Samardjiska, S., Jacobsen, H., Bezzateev, S.: Mceliece in the world of
escher. Cryptology ePrint Archive, Report 2014/360 (2014) http://eprint.iacr.org/.

6. Gligoroski, D.: A new code based public key encryption and signature scheme based on
list decoding. (Presented at ”Workshop on Cybersecurity in a Post-Quantum World,”
NIST, Gaithersburg MD, USA)

7. Prange, E.: The use of information sets in decoding cyclic codes. Information Theory,
IRE Transactions on 8 (1962) 5–9

8. Lee, P., Brickell, E.: An observation on the security of mcelieces public-key cryptosystem.
In Barstow, D., Brauer, W., Brinch Hansen, P., Gries, D., Luckham, D., Moler, C.,
Pnueli, A., Seegmller, G., Stoer, J., Wirth, N., Gnther, C., eds.: Advances in Cryptology
EUROCRYPT 88. Volume 330 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg (1988) 275–280

9. Leon, J.: A probabilistic algorithm for computing minimum weights of large error-
correcting codes. Information Theory, IEEE Transactions on 34 (1988) 1354–1359

10. Stern, J.: A method for finding codewords of small weight. In Cohen, G., Wolfmann,
J., eds.: Coding Theory and Applications. Volume 388 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg (1989) 106–113

11. Landais, G., Tillich, J.P.: An efficient attack of a mceliece cryptosystem variant based
on convolutional codes. In: Post-Quantum Cryptography. Springer (2013) 102–117

12. Perlner, R.: Optimizing information set decoding algorithms to attack cyclosymmetric
mdpc codes. In Mosca, M., ed.: Post-Quantum Cryptography. Volume 8772 of Lecture
Notes in Computer Science. Springer International Publishing (2014) 220–228

