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Abstract. Divisible e-cash, proposed in 1991 by Okamoto and Ohta, addresses a practical concern
of electronic money, the problem of paying the exact amount. Users of such systems can indeed
withdraw coins of a large value N and then divide it into many pieces of any desired values V ≤
N . Such a primitive therefore allows to avoid the use of several denominations or change issues.
Since its introduction, many constructions have been proposed but all of them make use of the
same framework: they associate each coin with a binary tree, which implies, at least, a logarithmic
complexity for the spendings.
In this paper, we propose the first divisible e-cash system without such a tree structure, and so
without its inherent downsides. Our construction is the first one to achieve constant-time spendings
while offering a quite easy management of the coins. It compares favorably with the state-of-the-art,
while being provably secure in the standard model.

1 Introduction

Electronic payment systems have a strong impact on individual’s privacy, and this is often un-
derestimated by the users. Transaction informations, such as payee’s identity, date and location,
allow a third party (usually, the financial institution) to learn a lot of things about the users:
individuals’ whereabouts, religious beliefs, health status, etc, which can eventually be quite
sensitive.

However, secure e-payment and strong privacy are not incompatible, as shown by Chaum
in 1982 [Cha82]: he introduced the concept of electronic cash (e-cash), the digital analogue of
regular cash, and in particular with its anonymity property. Typically, e-cash systems consider
three kinds of parties, the bank, users and merchants. The bank issues coins, which can be
withdrawn by users, and then be spent to merchants. Eventually, the merchants deposit the
money on their account at the bank. It is better when the spending process does not involve
the bank, in which case the e-cash system is said offline. Ideally, users and merchants should
form a single set, which means that anyone receiving a coin should be able to spend it again
without depositing it to the bank. Unfortunately, such a solution, called transferable e-cash
implies [CP93] coins of growing size which quickly becomes cumbersome.

Although most of the features of regular cash, such as anonymity, can be reproduced by
e-cash, there is one fundamental difference between these two systems: the latter can easily by
duplicated, as any digital information. This property is a major issue for money, since dishonest
users could spend several times the same coin to different merchants. To deter this bad behavior,
e-cash systems must enable (1) detection of double-spending (i.e. the reuse of a spent coin), or
alternatively over-spending (i.e. spending more money than withdrawn) and (2) identification
of defrauders.

Unfortunately, achieving such properties becomes tricky when anonymity of transactions is
required. Indeed, the bank can no longer trace the users’ payments and check that, for each of
them, the global amount spent remains lower than the amount he withdrew. To enable detection
of double-spending/over-spending, most of the e-cash systems then make use of serial numbers:
every coin is associated with a unique number, only known to its owner until he spends the
coin. The serial number is indeed revealed during the transaction and stored by the bank in a
database. The bank can thus detect any reuse of serial numbers and so any double-spending.

1.1 Divisible E-Cash

In 1991, Okamoto and Ohta [OO92] showed that e-cash can do more than simply emulate regular
cash. They introduced the notion of divisible e-cash, where users withdraw coins of value N and
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Fig. 1. Tree-based divisible coin

have the ability of dividing it into many pieces of any desired values Vi ≤ N such that
∑

i Vi = N .
Such a property enables the user to pay the exact amount whatever the amount of the initially
withdrawn coin was, which was a problem for traditional e-cash (and regular cash) systems. The
authors proposed a framework representing each coin of value N = 2n by a binary tree where
each leaf is associated with a serial number, and so with a value 1. When a user wants to spend
a value 2` ≤ N , he reveals an information related to a node s of depth n− `, allowing the bank
to recover the 2` serial numbers associated with the leaves descending from s. The benefit of this
tree structure is to provide a partial control on the amount of serial numbers the user reveals.
The latter can indeed send them by batches of 2`, for any 0 ≤ ` ≤ n, which is much more
efficient than sending them one by one, while ensuring that no information on serial numbers
which do not descend from the spent nodes will leak.

Following this seminal work, a large number of constructions (including for example the
following papers [CG07,ASM08,CG10,CPST15a,Mär15,CPST15b]) have been proposed, all of
them making use of this framework, with a binary tree. In 2007, Canard and Gouget [CG07]
proposed the first anonymous construction in the random oracle model, and recently, Canard
et al [CPST15a] showed that both anonymity and efficiency can be achieved in the standard
model.

However, this binary tree structure has a major downside: it is tailored to spend powers of
2. Unfortunately, such an event is unlikely in real life. In practice, to pay a value V , the users
must write V =

∑
i bi · 2i, for bi ∈ {0, 1} and then repeat the Spend protocol v times, where

v =
∑

i bi. Therefore, the constant-time property claimed by several constructions is somewhat
misleading: spendings can be performed in constant-time as long as V is a power of 2 but not
in the general case, and in the worst case the complexity is logarithmic.

Moreover, this structure makes the coin management slightly more difficult. Indeed, let us
consider the case illustrated by the Figure 1, where a user has already spent a value V1 = 3 and
so revealed the first three serial numbers SN1, SN2 and SN3. Now assume that the user wants to
spend a value V2 = 2. He cannot use the node s01, since SN3 has already been revealed and so
must use s10 or s11. This means that the serial number SN4 will remain isolated, and the user
will have to spend it later as a unit. It is then necessary to maintain a list of unspent serial
numbers and try to avoid the presence of several “holes” in the tree, which thereafter restricts
a lot the value that can be spent at once.

1.2 Our Contribution

In this work, we aim at a greater simplicity and a better efficiency, and propose the first di-
visible e-cash system which truly achieves constant-time spendings. The main novelty of our
construction it that we get rid of the tree structure and so of its inherent downsides that we
have described above. Our scheme enables users to reveal, by sending a constant number of
elements, the sequence of V serial numbers SNj , . . . , SNj+V−1, for any j and V of their choice
(provided that j + V − 1 ≤ N), even if V is not a power of 2. If we reconsider the previous
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example, this means that the user can now reveal, with a constant complexity, SN4, . . . , SN4+V2−1,
for any value V2.

We start from [CPST15a], which introduced the idea of a unique coin’s structure, but make
several changes to achieve constant-time spendings. The most important one is that we generate
the public parameters in such a way that a same element can be used for spendings of any
possible amount. This stands in sharp contrast with previous constructions where each element
was associated with a node of the tree and so with a unique amount. More specifically, we use
bilinear groups (i.e. a set of three cyclic groups G1, G2 and GT of prime order p, along with a
bilinear map e : G1 ×G2 → GT ) and set the N serial numbers of a coin as SNj = e(s, g̃)x·y

j
, for

j = 1, . . . , N , where x is the coin’s secret and (y, s, g̃) ∈ Zp×G1×G2 are global parameters of the

system (not all public). These parameters additionally contain the elements sj = sy
j ∈ G1, for

j = 1, . . . , N and g̃j = g̃y
j ∈ G2, for j = 1, . . . , N − 1. The relations between all these elements

(namely the fact that they all depend on y) are at the heart of the efficiency of our construction
but have a strong impact on anonymity. Indeed, (1) they could be used by an adversary to link
transactions together and (2) they make the anonymity property much more difficult to prove.

Regarding (2), the problem comes from the fact that the reduction in the anonymity proof
must take all these relations into account while being able to reveal the non-critical serial
numbers {e(s, g̃)x·y

j}j
∗−1
j=1 ∪ {e(s, g̃)x·y

j}Nj=j∗+V ∗ and to insert the challenge serial numbers in

{e(s, g̃)x·y
j}j
∗+V ∗−1
j=j∗ , for any j∗, V ∗ ∈ [1, N ]. Nonetheless, we manage to prove the anonymity of

our construction under an assumption which, albeit new and rather complex, does not depend
on either j∗ and V ∗. We stress that the latter point was far from obvious. We also investigate
in Appendix C another way of generating the public parameters which allows to rely on a more
classical assumption but at the cost of significant increase of the complexity (which nevertheless
remains constant).

Regarding (1), we must pay attention to the way the serial numbers SNi, for i = j, . . . , j +
V − 1, are revealed during a spending of value V . For example, we show in Section 4.1 that the
solution from [CPST15a] (namely sending sxj ) would trivially be insecure in our setting. The
user will then rather send sxj encrypted in a way that prevents anyone from testing relations
between spendings while ensuring that only a specific amount of serial numbers can be recovered
from it.

Our Spend protocol is then quite efficient: it mostly consists in sending an encryption of sxj
along with a proof of well-formedness. As illustrated on Figure 3 of Section 5.2, it outperforms
the state-of-the-art [Mär15,CPST15b], whose complexity logarithmically depends on the spent
value V . Since spending is the operation subject to the strongest time constraints (for example,
it should be performed in less than 300ms in a public transport system [DLST14]) we argue that
our construction makes all the features of e-cash systems much more accessible.

1.3 Organization

In Section 2, we recall some definitions and present the computational assumptions underlying
the security of our scheme. Section 3 reviews the syntax of a divisible E-cash system along with
security properties definitions. We provide in Section 4 a high level description of our construction
and a more detailed presentation in Section 5. The latter additionally contains a comparison
with state-of-the-art. The security analysis is performed in Section 6. Eventually, we describe
an instantiation of our divisible e-cash system in Appendix A and propose in Appendix C
an alternative scheme which is less efficient, but whose anonymity relies on a more classical
assumption. The hardness of our new assumption is proven in the generic bilinear group model
in Appendix B.

2 Preliminaries

2.1 Bilinear Groups

Bilinear groups are a set of three cyclic groups G1, G2, and GT of prime order p, along with a
bilinear map e : G1 ×G2 → GT with the following properties:

3



1. for all g ∈ G1, g̃ ∈ G2 and a, b ∈ Zp, e(ga, g̃b) = e(g, g̃)a·b;
2. for g 6= 1G1 and g̃ 6= 1G2 , e(g, g̃) 6= 1GT ;
3. the map e is efficiently computable.

Galbraith, Paterson, and Smart [GPS08] defined three types of pairings: in Type-1, G1 = G2; in
Type-2, G1 6= G2 but there exists an efficient homomorphism φ : G2 → G1, while no efficient one
exists in the other direction; in Type-3, G1 6= G2 and no efficiently computable homomorphism
exists between G1 and G2, in either direction.

Although Type-1 pairings were mostly used in the early-age of pairing-based cryptography,
they have been gradually discarded in favour of Type-3 pairings. Indeed, the latter offer a better
efficiency and are compatible with several computational assumptions, such as the SXDH and
the N −MXDH′ ones we present below, which do not hold in the former.

2.2 Computational Assumptions

Our security analysis makes use of the SXDH, q−SDH [BB08] and N−BDHI [BB04] assumptions
which have been considered reasonable for Type-3 pairings.

Definition 1 (SXDH assumption). For k ∈ {1, 2}, the DDH assumption is hard in Gk if,
given (g, gx, gy, gz) ∈ G4

k, it is hard to distinguish whether z = x · y or z is random. The SXDH
assumption holds if DDH is hard in both G1 and G2

Definition 2 (q − SDH assumption). Given (g, gx, gx
2
, ..., gx

q
) ∈ G1, it is hard to output a

pair (m, g
1

x+m ) ∈ Zp ×G1.

Definition 3 (N −BDHI assumption). Given ({gyi}Ni=0, {g̃y
i}Ni=0) ∈ GN+1

1 ×GN+1
2 , it is hard

to compute G = e(g, g̃)1/y ∈ GT .

However, the anonymity of our construction relies on a new assumption, that we call N−MXDH′.
To provide more confidence in the latter, we first introduced a weaker variant, called N−MXDH,
that holds (as we prove it in Appendix B) in the generic bilinear group model for Type-3 pairings
and next prove that both variants are actually related as stated in Theorem 6.

Definition 4. ∀N ∈ N∗, we define C = N3 − N2, S = C + 1, E = N2 − N , D = S + E and
P = D + C, along with the following assumptions.

– (N − MXDH assumption). Given the tuples (gγ
k
)Pk=0 ∈ GP+1

1 , (gβ·γ
−k
, gβ·δ·γ

−k
)Ek=0 ∈

G2E+2
1 ,(gχ·γ

k
)Pk=D+1 ∈ GC

1 , and (gα·γ
−k
, gχ·γ

k/α, gχ·γ
k/β)Ck=0 ∈ G3S

1 , as well as (g̃γ
k
, g̃α·γ

−k
)Ck=0 ∈

G2S
2 and (g̃β·γ

−k
)Ek=0 ∈ GE+1

2 , and an element gz ∈ G1, it is hard to decide whether
z = δ + χγD/β or z is random.

– (N −MXDH′ assumption). Given the tuples (gγ
k
, hγ

k
)Pk=0 ∈ G2P+2

1 , ((gβ·γ
−k

)Ek=0, (g
β·δ·γ−k ,

hβ·δ·γ
−k

)Ek=0) ∈ G3E+3
1 , (gχ·γ

k
, hχ·γ

k
)Pk=D+1 ∈ G2C

1 , and ((gα·γ
−k

)Ck=0, (g
χ·γk/α, hχ·γ

k/α)Ck=0,

(gχ·γ
k/β, hχ·γ

k/β)Ck=0) ∈ G5S
1 , as well as (g̃γ

k
, g̃α·γ

−k
)Ck=0 ∈ G2S

2 and (g̃β·γ
−k

)Ek=0 ∈ GE+1
2 ,

and a pair (gz1 , hz2) ∈ G2
1, it is hard to decide whether z1 = z2 = δ + χγD/β or (z1, z2) is

random.

In Appendix C, we present another divisible e-cash protocol whose proof relies on a more classical
assumption, but at that cost of larger public parameters and more complex (but still constant-
size) protocols.

Theorem 5. The N −MXDH assumption holds in the generic bilinear group model: after qG
group and pairing oracle queries, no adversary can solve the N−MXDH problem with probability
greater than 2N3 · (9N3 + qG)2/p.

The proof, that is quite classical, can be found in Appendix B. It is worthy to note that the
integer N will represent the amount of a divisible coin and so will remain negligible compared
to p. For example, a typical value for N is 1000 which allows users to withdraw coins of value
10$, if the basic unit is the cent.
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Theorem 6. The N − MXDH′ assumption holds if both the DDH assumption in G1 and the
N −MXDH assumption hold.

Proof. Let A be an adversary against the N −MXDH′ assumption with a non-negligible advan-
tage

Adv(A) = Pr[A(S, gz, hz)|z = δ + χ · γD/β]− Pr[A(S, gz1 , hz2)|z1, z2 $← Zp],

where S refers to the set of all elements, except gz1 and hz2 , provided in an N−MXDH′ challenge.
We define hybrid distributions:

Adv1(A) = Pr[A(S, gz, hz)|z = δ + χ · γD/β]− Pr[A(S, gz, hz)|z $← Zp]

Adv2(A) = Pr[A(S, gz, hz)|z $← Zp]− Pr[A(S, gz1 , hz2)|z1, z2 $← Zp],

we then have: Adv(A) = Adv1(A) + Adv2(A).
Since Adv(A) is non-negligible, at least Adv1(A) or Adv2(A) is non-negligible.
In the former case, A can be used to break the N −MXDH assumption: from an N −MXDH

instance, one can generate an N −MXDH′ instance with a random scalar c and setting h = gc.
By running A on this instance, it gives a valid guess for it if and only if this would be a valid
guess for the N −MXDH instance. The advantage is thus the same.

In the latter case,A can be used to break the DDH assumption in G1. Indeed, let (g, gz1 , h, hz2)
be a DDH challenge. One can compute a valid set S from g and h by using random (known)
scalars α, β, γ and δ, and then run A on (S, gz1 , hz2). ut

One can note that the N −MXDH and N −MXDH′ assumptions would actually be equivalent if
the former implied the DDH assumption in G1 (which does not seem to be true). Nevertheless,
this theorem shows that the N −MXDH′ assumption is not much stronger than the N −MXDH
one, since the DDH assumption can be considered reasonable.

2.3 Digital Signature Scheme

A digital signature scheme Σ is defined by three algorithms:

– the key generation algorithm Σ.Keygen which outputs a pair of signing and verification keys
(sk, pk) – we assume that sk always contains pk;

– the signing algorithm Σ.Sign which, on input the signing key sk and a message m, outputs
a signature σ;

– and the verification algorithm Σ.Verify which, on input m, σ and pk, outputs 1 if σ is a
valid signature on m under pk, and 0 otherwise.

The standard security notion for a signature scheme is existential unforgeability under chosen-
message attacks (EUF-CMA) [GMR88] which means that it is hard, even given access to a
signing oracle, to output a valid pair (m,σ) for a message m never asked to the oracle. In
this paper we will also use variants, first with selective chosen-message attacks (SCMA) which
restricts means for the adversary by limiting the oracle queries to be asked before having seen the
key pk; or with one-time signature (OTS), which limits the adversary to ask one query only to
the signing oracle; and with strong unforgeability (SUF) which relaxes the goal of the adversary
which must now output a valid pair (m,σ) that was not returned by the signing oracle (a new
signature for an already signed message is a valid forgery).

2.4 Groth-Sahai Proof Systems

In [GS08], Groth and Sahai proposed a non-interactive proof system, in the common reference
string (CRS) model, which captures most of the relations for bilinear groups. There are two types
of setup for the CRS that yield either perfect soundness or perfect witness indistinguishability,
while being computationally indistinguishable (under the SXDH assumption, in our setting).

To prove that some variables satisfy a set of relations, the prover first commits to them (by
using the elements from the CRS) and then computes one proof element per relation. Efficient
non-interactive witness undistinguishable proofs are available for
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– pairing-product equations, for variables {Xi}ni=1 ∈ G1, {X̃i}ni=1 ∈ G2 and constant tT ∈ GT ,

{Ai}ni=1 ∈ G1, {B̃i}ni=1 ∈ G2, {ai,j}ni,j=1 ∈ Zp:

n∏
i=1

e(Ai, X̃i)
n∏
i=1

e(Xi, B̃i)
n∏
i=1

n∏
j=1

e(Xi, X̃j)
ai,j = tT ;

– or multi-exponentiation equations, for variables {Xi}ni=1 ∈ Gk, {yi}ni=1 ∈ Zp and constant
T ∈ Gk, {Ai}ni=1 ∈ Gk, {bi}ni=1 ∈ Zp, {ai,j}ni,j=1 ∈ Zp for k ∈ {1, 2}:

n∏
i=1

Ayii

n∏
j=1

X
bj
j

n∏
i=1

n∏
j=1

X
yi·ai,j
j = T.

Multi-exponentiation equations and pairing-product equations such that tT = 1GT also admit
non-interactive zero-knowledge (NIZK) proofs at no additional cost.

3 Divisible E-cash System

We recall in this section the syntax and the security model of a divisible e-cash system, as
described in [CPST15a].

3.1 Syntax

A divisible e-cash system is defined by the following algorithms, that involve three types of
entities, the bank B, a user U and a merchant M.

– Setup(1k, N): On input a security parameter k and an integer N , this probabilistic algorithm
outputs the public parameters pp for divisible coins of global value N . We assume that pp
are implicit to the other algorithms, and that they include k and N . They are also an implicit
input to the adversary, we will then omit them.

– BKeygen(): This probabilistic algorithm executed by the bank B outputs a key pair (bsk, bpk).
It also sets L as an empty list, that will store all deposited coins. We assume that bsk contains
bpk.

– Keygen(): This probabilistic algorithm executed by a user U (resp. a merchant M) outputs
a key pair (usk, upk) (resp. (msk,mpk)). We assume that usk (resp. msk) contains upk (resp.
mpk).

– Withdraw(B(bsk, upk),U(usk, bpk)): This is an interactive protocol between the bank B and
a user U . At the end of this protocol, the user gets a divisible coin C of value N or outputs
⊥ (in case of failure) while the bank stores the transcript Tr of the protocol execution or
outputs ⊥.

– Spend(U(usk, C, bpk,mpk, V ),M(msk, bpk, V )): This is an interactive protocol between a
user U and a merchant M. At the end of the protocol the merchant gets a master serial
number Z of value V (the amount of the transaction they previously agreed on) along with
a proof of validity Π or outputs ⊥. U either updates C or outputs ⊥.

– Deposit(M(msk, bpk, (V,Z,Π)),B(bsk, L,mpk)): This is an interactive protocol between a
merchantM and the bank B. B first checks the validity of the transcript (V,Z,Π) and that
it has not already been deposited. If one of these conditions is not fulfilled, then B aborts
and outputs ⊥. At the end of the protocol B stores the V serial numbers z1, . . . , zV derived
from Z in L or returns a transcript (V ′, Z ′, Π ′) such that zi is also a serial number derived
from Z ′, for some i ∈ [1, N ].

– Identify((v1, Z1, Π1), (v2, Z2, Π2), bpk): On inputs two different valid transcripts (v1, Z1, Π1)
and (v2, Z2, Π2), this deterministic algorithm outputs a user’s public key upk if there is a
collision between the serial numbers derived from Z1 and from Z2, and ⊥ otherwise.
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ExptraA (1k, N) – Traceability Security Game

1. pp ← Setup(1k, N)
2. (bsk, bpk)← BKeygen()

3. [(V1, Z1, Π1), . . . , (Vu, Zu, Πu)]
$← AOAdd,OCorrupt,OAddCorrupt,OWithdrawB,OSpend(bpk)

4. If
∑u
i=1 Vi > m ·N and ∀i 6= j, Identify((Vi, Zi, Πi), (Vj , Zj , Πj)) =⊥,

then return 1
5. Return 0

ExpexcuA (1k, N) – Exculpability Security Game

1. pp ← Setup(1k, N)
2. bpk← A()
3. [(V1, Z1, Π1), (V2, Z2, Π2)]← AOAdd,OCorrupt,OAddCorrupt,OWithdrawU ,OSpend()
4. If Identify((V1, Z1, Π1), (V2, Z2, Π2), bpk) = upk and upk not corrupted,

then return 1
5. Return 0

Expanon−bA (1k, N) – Anonymity Security Game

1. pp ← Setup(1k, N)
2. bpk← A()
3. (V, upk0, upk1,mpk)← AOAdd,OCorrupt,OAddCorrupt,OWithdrawU ,OSpend()
4. If upki is not registered for i ∈ {0, 1}, then return 0
5. If cupki > mupki ·N − V for i ∈ {0, 1}, then return 0
6. (V,Z,Π)← Spend(C(uskb, C,mpk, V ),A())
7. cupk1−b

← cupk1−b
+ V

8. b∗ ← AOAdd,OCorrupt,OAddCorrupt,OWithdrawU ,OSpend()
9. If upki has been corrupted for i ∈ {0, 1}, then return 0

10. Return (b = b∗)

Fig. 2. Security Games for Anonymous Divisible E-Cash

3.2 Security Model

Informally, to reconcile the interests of all parties, a divisible e-cash system should (1) ensure
detection of double-spending/over-spending and identification of the defrauders, (2) preserve
privacy of its users, (3) ensure that none of them can be falsely accused of fraud. Regarding
the first point, we recall that reuse of money cannot be prevented (since digital coin can always
be duplicated) but the guarantee of being identified should constitute a strong incentive not to
cheat. The third point implicitly ensures that a coin can only be spent by its owner.

These security properties were formally defined as traceability, anonymity and exculpability
by the authors of [CPST15a]. For consistency, we recall the associated security games, in Figure 2,
which make use of the following oracles:

– OAdd() is an oracle used by the adversary A to register a new honest user (resp. merchant).
The oracle runs the Keygen algorithm, stores usk (resp. msk) and returns upk (resp. mpk)
to A. In this case, upk (resp. mpk) is said honest.

– OCorrupt(upk/mpk) is an oracle used by A to corrupt an honest user (resp. merchant)
whose public key is upk (resp. mpk). The oracle then returns the corresponding secret key
usk (resp. msk) to A along with the secret values of every coin withdrawn by this user. From
now on, upk (resp. mpk) is said corrupted.

– OAddCorrupt(upk/mpk) is an oracle used by A to register a new corrupted user (resp.
merchant) whose public key is upk (resp. mpk). In this case, upk (resp. mpk) is said corrupted.
The adversary could use this oracle on a public key already registered (during a previous
OAdd query) but for simplicity, we do not consider such case as it will gain nothing more
than using the OCorrupt oracle on the same public key.

– OWithdrawU (upk) is an oracle that executes the user’s side of the Withdraw protocol. This
oracle will be used by A playing the role of the bank against the user with public key upk.

– OWithdrawB(upk) is an oracle that executes the bank’s side of the Withdraw protocol. This
oracle will be used by A playing the role of a user whose public key is upk against the bank.

– OSpend(upk, V ) is an oracle that executes the user’s side of the Spend protocol for a value
V . This oracle will be used by A playing the role of the merchant M.
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In the experiments, users are denoted by their public keys upk, cupk denotes the amount already
spent by user upk during OSpend queries and mupk the number of divisible coins that he has
withdrawn. This means that the total amount available by a user upk is mupk ·N . The number
of coins withdrawn by all users during an experiment is denoted by m.

In the anonymity security game, we differ a little bit from [CPST15a]: while cupkb is increased
by V at step 6 during the Spend protocol, cupk1−b is also increased by V at step 7 to avoid A
trivially wins by trying to make one of the two players to overspend money.

Let A be a probabilistic polynomial adversary. A divisible E-cash system is:

– traceable if Succtra(A) = Pr[ExptraA (1k, V ) = 1] is negligible for any A;
– exculpable if Succexcu(A) = Pr[ExpexcuA (1k, V ) = 1] is negligible for any A;
– anonymous if Advanon(A) = Pr[Expanon−1A (1k, V )] - Pr[Expanon−0A (1k, V )] is negligible for any
A.

4 Our construction

4.1 High Level Description

Our Approach. We start from [CPST15a,CPST15b], in order to keep the quite easy and
efficient withdrawal procedure (which mostly consists in certifying secret scalars). But we would
like to improve on the spending procedure, and namely to get everything really constant (both
in time and in size). Indeed, the user should be able to send only one information revealing the
serial numbers, corresponding to the amount to be spent. But he should also be able to choose
the sequence he discloses. For example, if he wants to pay a value V with a coin whose (j − 1)
first serial numbers have already been used, then he should be able to send an element φV,j
revealing the V serial numbers SNj , . . . , SNj+V−1.

Description. All the serial numbers have the same structure, and are just customized by a
random secret scalar x which constitutes the secret of the coin (our withdrawals are thus similar
to the ones of [CPST15a,CPST15b]). More specifically, the public parameters contain the N
values sj = sy

j
(for j = 1, . . . , N), with a public group element s ∈ G1, and some secret scalar

y
$← Zp: for any coin’s secret x, this defines the serial numbers SNj = e(s, g̃)x·y

j
.

The critical point is to find a way to construct the unique φV,j and to decide which elements
should be provided in the public parameters pp to enable the bank to compute the serial numbers
(all the expected ones, but not more).

First Attempt. One could define φV,j as sxj , in which case pp should contain the set S = {g̃k =

g̃y
k}N−1k=0 . Indeed, a user with a fresh coin (i.e. never involved in a spending) must be able to

spend a value N by revealing sx1 and so the bank needs to know S to recover SNi ← e(sx1 , g̃i−1), for
i = 1, . . . , N . One can note that S is actually enough for any spending, since, for any j ∈ [1, N ],
recovering SNj , . . . , SNj+V−1 from φV,j still requires elements from {g̃k}V−1k=0 .

However, there is an obvious problem with this solution. Once S is published, nothing pre-
vents the bank from computing more serial numbers than the amount V of the transaction. For
example, if a user with a fresh coin spends a value 1, then the bank is still able to recover all
the serial numbers from φ1,1 = sx1 .

Our Solution. It is therefore necessary to provide a way, for the user, to control the amount
of serial numbers which can be recovered from the element sxj . To this end, we define N (one
for each possible value V ∈ [1, N ]) ElGamal [ElG84] public keys hV = gaV and add the sets
SV = {g̃−aVk }V−1k=0 , for V = 1, . . . , N , to pp. To reveal V serial numbers from sxj , the user now
encrypts it under hV , which defines φV,j as (c0 = gr, c1 = sxj · hrV ), for some r ∈ Zp. By using
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the elements from SV , the bank is still able to compute the V serial numbers since:

e(c1, g̃k) · e(c0, g̃−aVk ) = e(sxj · hrV , g̃k) · e(gr, g̃
−aV
k )

= e(sxj , g̃k) · e(hrV , g̃k) · e(gr, g̃
−aV
k )

= e(sy
j ·x, g̃y

k
) · e(gaV ·r, g̃k) · e(g−aV ·r, g̃k)

= e(s, g̃)x·y
j+k

= SNj+k,

for k = 0, . . . , V −1. But now, it can no longer derive additional serial numbers because SV only
contains V elements. Moreover, the elements of the other sets SV ′ , for V ′ 6= V , are useless since
they correspond to other public keys.

One can note that ElGamal encryption was also used in [CPST15b] but to prevent an
adversary from testing relations across the different levels of the tree. We here use it to enable a
total control on the amount of revealed serial numbers. A same element sxj can thus be involved
in spendings of different values, which is the basis of the efficiency and the flexibility of our
scheme.

Security Analysis. An interesting feature of our solution is that the bank does not need to
know the index j to compute the serial numbers. This is due to the fact that SNj+1 = SN

y
j , for all

j ∈ [1, N − 1] and so that the computation of a serial number is independent from j. Therefore,
a spending does not reveal any additional information about the coin (such as the spent part)
and so achieves the strongest notion of anonymity.

However, this has implications on the security analysis, since one must take into account the
relations between the different serial numbers. Anonymity will then rely on a new assumption,
called N −MXDH′, which seems reasonable for Type-3 pairings, as we explain in Section 2.2.

Validity of a Transaction. Serial numbers are central to the detection of double-spending
and so to ensure the traceability of the scheme. It is therefore necessary, during a spending of
value V , to force the user to send a valid element φV,j , by requesting a proof that the latter is
well-formed. The user must then prove that (1) φV,j is an ElGamal encryption of some sxj under
hV (which is known since it corresponds to the spent amount), where (2) x has been certified,
and (3) sj is a valid parameter for a transaction of value V . The first two statements can easily
be handled using the Groth-Sahai [GS08] methodology, but this is not the case for the third
one. Indeed, as we explained, sj (and so the index j) cannot be revealed unless breaking the
anonymity of the scheme which would only achieve a weaker unlinkability property (as defined
in [CPST15a]).

We could use the solution from [CPST15a] which consists in certifying each sj under the
public keys pk1, . . . , pkN−j+1 and to prove that the sj to be used is certified under the public key
pkV . However, such a solution is quite efficient for tree-based schemes where each sj is associated
with a unique node and so with a single amount, but not for our scheme where sj can be involved
in any transaction of value V such that V ∈ [1, N − j+ 1]. This would dramatically increase the
bank’s public key since it would contain about N2/2 certificates.

While our public parameters will be of quadratic size, because of the sets SV , we hope the
part necessary to the user to be at most linear in N . We will then use another solution which
exploits the relation e(sj , g̃V−1) = e(sj+V−1, g̃). To prove that j ≤ N −V + 1, the user will thus
simply prove that there is some sk, for k ∈ [1, N ], such that e(sj , g̃V−1) = e(sk, g̃). This can be
done efficiently if a certificate on each sk is provided by the bank. One may note that this proof
only ensures that j ≤ N − V + 1 and not that j ≥ 1. However, we will show, in the security
analysis, that a user is unlikely to produce a proof for an element sj /∈ {s1, . . . , sN}.

Security Tags. Detection of double-spending may not be sufficient to deter users from cheating.
To prevent frauds it is also necessary to provide a way to identify dishonest users. Since we aim
at achieving the anonymity property, such an identification cannot rely on some trusted entity
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with the power of tracing any user of the system. We will then use the standard technique
of security tags which allows to recover the spender’s identity from any pair of transactions
detected as a double-spending. Similarly to the constructions of [CPST15a,CPST15b], we will
add to the public parameters the elements tj such that, ∀j ∈ [1, N ], tj = scj for some c ∈ Zp and

define, for a transaction involving φV,j , the security tag as ψV,j = (gr
′
, upkR · txj · hr

′
V ) where upk

is the user’s public key and R is some public information related to the transaction. As we prove
below, such a tag hides the identity of a spender as long as he does not double-spend its coin.

Remark 7. Divisible e-cash systems do not usually specify the way the coin should be spent. As
explained above, our construction is the first one to allow sequential spendings, contrarily to
tree-based construction where the coins may contain several holes (see Section 1.1). Therefore,
for sake of simplicity, we assume in the following that the user sequentially reveals the serial
numbers and so we associate each coin to an index j. The latter means that SN1, . . . , SNj−1 have
already been revealed and that the next spending of value V will reveal SNj , . . . , SNj+V−1.

However, we stress that the user is free to spend the coin as he wants. The only constraint is
that two spendings must not reveal the same serial numbers, otherwise the user will be accused
of double-spending.

4.2 Setup

Public Parameters. Let (p,G1,G2,GT , e) be the description of bilinear groups of prime order
p, elements g, h, u1, u2, w be generators of G1, g̃ be a generator of G2, and H be collision-resistant
hash function onto Zp. A trusted authority generates (z, y)

$← Z2
p and, for i = 1, . . . , N (where

N is the value of the coin), ai
$← Zp. It then computes the public parameters as follows:

– (s, t)← (gz, hz);
– (sj , tj)← (sy

j
, ty

j
), for j = 1, . . . , N ;

– g̃k ← g̃y
k
, for k = 0, . . . , N − 1

– hi ← gai , for i = 1, . . . , N ;
– h̃i,k ← g̃−ai·y

k
, for i = 1, . . . , N and k = 0, . . . , i− 1.

These parameters can also be cooperatively generated by a set of users and the bank, in a way
similar to the one described in [CPST15a]. The point is that none of these entities should know
the scalars (ai)i, y or z.

We divide the public parameters pp into two parts, ppU ← {g, h, u1, u2, w,H, {hi}Ni=1,

{(sj , tj)}Nj=1} and ppB ← {{g̃k}N−1k=0 , {(h̃i,k)
i−1
k=0}

N
i=1}. The former contains the elements neces-

sary to all the entities of the system whereas the latter contains the elements only useful to the
bank during the Deposit protocol. We therefore assume that the users and the merchants only
store ppU and discard ppB. Note that the former is linear in N , while the latter is quadratic.

Our protocols make use of NIZK and NIWI proofs for multi-exponentiations and pairing-
product equations which are covered by the Groth-Sahai proof system [GS08]. We then add
to ppU the description of a CRS for the perfect soundness setting and of a one-time signature
scheme Σots (e.g. the one from [BB08]).

5 Our Divisible E-Cash System

In this section, we provide an extended description of our new protocol and then discuss its
efficiency. We describe a concrete instantiation in Appendix A.

5.1 The protocol

– Keygen(): Each user (resp. merchant) selects a random usk ← Zp (resp. msk) and gets
upk← gusk (resp. mpk← gmsk). In the following, we assume that upk (resp. mpk) is public,
meaning that anyone can get an authentic copy of it.
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– BKeygen(): The bank has two important roles to play. It must (1) deliver new coins to users
during withdrawals and (2) control the transactions to detect double-spendings and identify
the defrauders.
The first point will require a signature scheme Σ1 whose message space is G2

1 to certify the
secret values associated with the withdrawn coins. We can therefore use the construction
from [AGHO11] which is optimal in type-3 bilinear groups.
The second point relies on the proof of validity of the elements φV,j sent during a transaction.
As explained above, such a proof requires that the elements sk are certified, for k = 1, . . . , N .
For the same reasons, their dual elements tk must be certified too. It is therefore necessary
to select a structure-preserving signature scheme Σ0 whose message space is G2

1. We can
then still choose the one from [AGHO11] but our security analysis shows that a scheme
achieving a weaker security notion would be enough.
Once the schemes Σ0 and Σ1 are selected, the bank generates (sk0, pk0) ← Σ0.Keygen(pp)
and (sk1, pk1) ← Σ1.Keygen(pp). It then computes τj ← Σ0.Sign(sk0, (sj , tj)) for all j ∈
1, . . . , N and sets bsk← sk1 and bpk← {pk0, pk1, τ1, . . . , τN}.

– Withdraw(B(bsk, upk),U(usk, bpk)): As explained in the previous section, each coin is associ-
ated with a random scalar x, which implicitly defines its serial numbers as SNk = e(sxj , g̃) =

e(s, g̃)x·y
k
, for k = 1, . . . , N . Delivering a new coin thus essentially consists in certifying this

scalar x. However, for security reasons, it is necessary to bind the latter with the identity of
its owner. Indeed, if this coin is double-spent, it must be possible to identify the user who
has withdrawn it. This could be done by certifying the pair (x, usk) ∈ Z2

p (without revealing
them), using for example the scheme from [CL04], but, in the standard model, the bank
will rather certify the pair (uusk1 , ux2) ∈ G2

1. This is due to the fact that scalars cannot be
efficiently extracted from Groth-Sahai proofs, contrarily to group elements in G1.
In practice, the user computes uusk1 and ux12 for some random x1

$← Zp and sends them to
the bank along with upk. He then proves knowledge of x1 and usk in a zero-knowledge way
(using, for example, the Schnorr’s interactive protocol [Sch90]). If the bank accepts the proof,

it generates a random x2
$← Zp, computes u

$← ux12 · u
x2
2 and σ ← Σ1.Sign(sk1, (u

usk
1 , u))

(unless u was used in a previous withdrawal) and returns σ and x2 to the user. The latter
then sets the coin’s secret x ← x1 + x2 and coin state C ← (x, σ, 1): the last element of C
is the index of the next serial number to be used. Hence the remaining amount on the coin
is N + 1 minus this index.
Informally, the cooperative generation of the scalar x allows us to exclude (with overwhelm-
ing probability) false positives, i.e. a collision in the list L of serial numbers maintained by
the bank which would not be due to an actual double-spending. We refer to Remark 8 for
more details.

– Spend(U(usk, C, bpk,mpk, V ),M(msk, bpk, V )): Let C = (x, σ, j) be the coin the user wishes

to spend. The latter selects two random scalars (r1, r2)
$← Z2

p and computes R ← H(info),

φV,j ← (gr1 , sxj · h
r1
V ) and ψV,j ← (gr2 , upkR · txj · h

r2
V ), where info is some information related

to the transaction (such as the date, the amount, the merchant’s public key,...).
Now, he must prove that (1) his coin C is valid and (2) that the elements φV,j and ψV,j are
well-formed. The first point consists in proving knowledge of a valid signature σ on (uusk1 , ux2),
whereas the second point requires to prove knowledge of τj+V−1 on (sj+V−1, tj+V−1). This
can be efficiently done in the standard model by using the Groth-Sahai methodology [GS08].
Unfortunately, the resulting proofs can be re-randomized which enables a dishonest merchant
to deposit several versions of the same transcript. To prevent such a randomization, the user
generates a one-time signature key pair (skots, pkots) which will be used to sign the whole
transcript. To ensure that only the spender can produce this signature, the public key pkots

will be certified into µ ← w
1

usk+H(pkots) . One may note that these problems do not arise in
the ROM since the proofs would be simply converted into a (non-randomizable) signature
of knowledge by using the Fiat-Shamir heuristic [FS87].
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More formally, once the user has computed φV,j , ψV,j and µ, he computes Groth-Sahai
commitments to usk, x, r1, r2, sj , tj , sj+V−1, tj+V−1, τj+V−1, σ, µ, U1 = uusk1 and U2 = ux2 . He
next provides:
1. a NIZK proof π that the committed values satisfy:

φV,j = (gr1 , sxj · h
r1
V ) ∧ ψV,j = (gr2 , (gR)usk · txj · h

r2
V )

∧ U2 = ux2 ∧ U1 = uusk1 ∧ µ(usk+H(pkots)) = w

∧ e(sj , g̃V−1) = e(sj+V−1, g̃) ∧ e(tj , g̃V−1) = e(tj+V−1, g̃)

2. a NIWI proof π′ that the committed values satisfy:

1 = Σ0.Verify(pk0, (sj+V−1, tj+V−1), τj+V−1)

∧ 1 = Σ1.Verify(pk1, (U1, U2), σ).

Finally, he computes η ← Σots.Sign(skots, H(R||φV,j ||ψV,j ||π||π′)) and sends it to M along
with pkots, φV,j , ψV,j , π and π′.
The merchant accepts if the proofs and the signatures are correct in which case he stores
(V,Z,Π)← (V, (φV,j , ψV,j), (π, π

′, pkots, η)) while the user updates its coin C ← (x, σ, j+V ).
– Deposit(M(msk, bpk, (V,Z,Π)),B(bsk, L,mpk)): When a transcript is deposited by a mer-

chant, the bank parses it as (V, (φV,j , ψV,j), (π, π
′, pkots, η)) and checks its validity (in the

same way as the merchant did during the Spend protocol). B also verifies that it does not
already exist in its database.
If everything is correct, B derives the serial numbers from φV,j = (φV,j [1], φV,j [2]) by com-

puting zk ← e(φV,j [2], g̃k)·e(φV,j [1], h̃V,k), for k = 0, . . . , V −1. If none of these serial numbers
is in L, the bank adds them to this list and stores the associated transcript. Else, there is at
least one z′ ∈ L (associated with a transcript (V ′, Z ′, Π ′)) and one k∗ ∈ [0, V − 1] such that
z′ = zk∗ . The bank then outputs the two transcripts (V,Z,Π) and (V ′, Z ′, Π ′) as a proof of
a double-spending.

– Identify((V1, Z1, Π1), (V2, Z2, Π2), bpk): The first step before identifying a double-spender
is to check the validity of both transcripts and that there is a collision between their serial
numbers, i.e. there are k1 ∈ [0, V1 − 1] and k2 ∈ [0, V2 − 1] such that:

zk1 = e(φV1,j1 [2], g̃k1) · e(φV1,j1 [1], h̃V1,k1)

= e(φV2,j2 [2], g̃k2) · e(φV2,j2 [1], h̃V2,k2) = zk2

Let Tb be e(ψVb,jb [2], g̃kb) · e(ψVb,jb [1], h̃Vb,kb), for b ∈ {1, 2}. The algorithm checks, for each

registered public key upki, whether T1 · T−12 = e(upki, g̃
R1
k1
· g̃−R2
k2

) until it gets a match. It
then returns the corresponding key upk∗ (or ⊥ if the previous equality does not hold for any
upki), allowing anyone to verify, without the linear cost in the number of users, that the
identification is correct.

Remark 8. A collision in the list L means that two transcripts (V1, Z1, Π1) 6= (V2, Z2, Π2) lead
to a same serial number z. Let Zb = (φVb,jb , ψVb,jb), for b ∈ {1, 2}, the soundness of the NIZK
proofs produced by the users during the spendings implies that:

e(φV1,j1 [2], g̃k1) · e(φV1,j1 [1], h̃V1,k1) = e(s1, g̃k1)x1 = z

= e(s2, g̃k2)x2 = e(φV2,j2 [2], g̃k2) · e(φV2,j2 [1], h̃V2,k2)

for some k1 ∈ [0, V1 − 1], k2 ∈ [0, V2 − 1] and certified scalars x1 and x2, where the elements s1
and s2 verify, with `1, `2 ∈ [1, N ]:

e(s1, g̃V1−1) = e(s`1 , g̃) and e(s2, g̃V2−1) = e(s`2 , g̃).

Therefore, we have, for b ∈ {1, 2}, e(sb, g̃) = e(s, g̃)y
`b−Vb+1

, and so

z = e(s, g̃)x1·y
`1−V1+1+k1

= e(s, g̃)x2·y
`2−V2+1+k2
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A collision thus implies that x1 · x−12 = y`2−`1+V1−V2+k2−k1 . Since x1 and x2 are randomly (and
cooperatively) chosen, without knowledge of y, a collision for x1 6= x2 will only occur with
negligible probability. We can then assume that these scalars are equal and so that the collision
in L is due to a double-spending.

Remark 9. The soundness of the proofs implies that the Identify algorithm will output, with
overwhelming probability, an identity upk each time a collision is found in L. Indeed, let
(V1, Z1, Π1), (V2, Z2, Π2) be the two involved transcripts, and k1, k2 such that:

zk1 = e(φV1,j1 [2], g̃k1) · e(φV1,j1 [1], h̃V1,k1)

= e(φV2,j2 [2], g̃k2) · e(φV2,j2 [1], h̃V2,k2) = zk2

For b ∈ {1, 2}, if Πb is sound, then (φVb,jb [1], φVb,jb [2]) = (grb , sxbjb · h
rb
Vb

) for some rb ∈ Zp and so:

zk1 = e(sx1j1 , g̃k1) = e(sx2j2 , g̃k2) = zk2 (1)

For the same reasons, Tb = e(ψVb,jb [2], g̃kb) · e(ψVb,jb [1], h̃Vb,kb) = e(upkRbb · t
xb
jb
, g̃kb), for b ∈ {1, 2}.

As explained in the previous remark, the equality (1) is unlikely to hold for different scalars
x1 and x2. We may then assume that x1 = x2 = x and so that upk1 = upk2 = upk since the
bank verifies, during a withdrawal, that the same scalar x (or equivalently the same public value
u = ux2) is not used by two different users.

The relation (1) also implies that e(txj1 , g̃k1) = e(txj2 , g̃k2) and so that:

T1 · T−12 = e(upkR1 , g̃k1) · e(upkR2 , g̃k2)−1 = e(upk, g̃R1
k1
· g̃−R2
k2

).

The defrauder’s identity upk will then be returned by the algorithm Identify, unless g̃R1
k1
·g̃−R2
k2

=
1G2 . However, such an equality is very unlikely for distinct k1 and k2 (for the same reasons as
the ones given in Remark 8) but also for k1 = k2 since it would imply that R1 = R2 and so a
collision on the hash function H.

The security of our divisible E-Cash system is stated by the following theorems, whose proofs
can be found in the next section.

Theorem 10. In the standard model, our divisible E-Cash system is traceable under the N −
BDHI assumption if Σ0 is an EUF-SCMA signature scheme, Σ1 is an EUF-CMA signature
scheme, and H is a collision-resistant hash function.

Theorem 11. Let q be a bound on the number of OSpend queries made by the adversary. In
the standard model, our divisible E-Cash system achieves the exculpability property under the
q−SDH assumption if Σots is a SUF-OTS signature scheme, and H is a collision-resistant hash
function.

Theorem 12. In the standard model, our divisible E-Cash system is anonymous under the
SXDH and the N −MXDH′ assumptions.

Remark 13. A downside of our construction is that its anonymity rely on a quite complex as-
sumption. This is due to the fact that most elements of the public parameters are related, which
must be taken into account by the assumption. As we explain in Appendix C, we can rely on
a more conventional assumption (while keeping the constant size property) by generating these
parameters independently. Unfortunately, this has a strong impact on the efficiency of the pro-
tocol. Such a solution must then be considered as a tradeoff between efficiency and security
assumption.
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Schemes Martens Canard et al Our work
[Mär15] [CPST15b]

Parameters

ppU ∪ bpk (N + 2) G1 +N G2

+ pk
(4N + n+ 4) G1

+ 2 pk +N |Sign|
(3N + 5) G1

+ 2 pk +N |Sign|
ppB - (4N − 1) G2 (N2 + 3N + 2)/2 G2

Withdraw Protocol

Computations MEG1(N) + Sign 2 EG1 + Sign 2 EG1 + Sign

Coin Size 2N Zp + G1 + |Sign| 2 Zp + |Sign| 2 Zp + |Sign|
Spend Protocol

Computations (1 + 2v) EG1

+ v MEG1(N − V )
+ v MEG2(V ) + Sign
+ NIZK{(2v+ 2) EG1

+ v P + Sign}

(1 + 7v) EG1 + Sign
+ NIZK{(3 + 4v) EG1

+ 2v P
+ (1 + v) Sign}

8 EG1 + Sign
+ NIZK{7 EG1 + 2 P

+ 2 Sign}

Communications 2v G1 + |Sign|
+ |NIZK|

4v G1 + |Sign|
+ |NIZK|

4 G1 + |Sign|
+ |NIZK|

Deposit Protocol

Computations 2V EG1 2V P 2V P

Communications V SN + |Spend| V SN + |Spend| V SN + |Spend|

Fig. 3. Efficiency comparison between related works and our construction for coins of value N and Spend and
Deposit of value V (V ≤ N). The computation and communication complexities2 are given from the user’s point
of view.

5.2 Efficiency

We compare in Figure 3, the efficiency of our construction with the state-of-the-art, and namely
Martens [Mär15] (which improves the construction of [CG10]) and Canard et al [CPST15b]. One
can note that our table differs from those provided in these papers. This is mostly due to the
fact that they only describe the most favorable case, where the spent value V is a power of 2.
However, in real life, such an event is quite unlikely. Most of the time, the users of such systems
will then have to write V =

∑
bi ·2i, for bi ∈ {0, 1} and repeat the Spend protocol for each bi = 1.

Our description therefore considers the Hamming weight v of V (i.e. the number of bi such that
bi = 1) but, for a proper comparison, also takes into account the possible optimisations of batch
spendings (for example proving that the user’s secret is certified can be done only once).

Another difference with [Mär15] comes from the fact that the author considered that “a
multi-base exponentiation takes a similar time as a single-base exponentiation”. Although some
works (e.g. [BGR98]) have shown that an N -base exponentiation can be done more efficiently
that N single-base exponentiations, considering that the cost of the former is equivalent to the
one of a single exponentiation is a strong assumption, in particular when N can be greater
than 1000 (if the coin’s value is greater than 10$). Our table therefore distinguishes multi-base
exponentiations from single ones.

An important feature for an electronic payment system is the efficiency of its Spend protocol.
This is indeed the one subject to the strongest time constraints. For example, public transport
services require that payments should be performed in less than 300ms [DLST14], to avoid
congestion in front of turnstiles. From this perspective, our scheme is the most effective one and,
above all, is the first one to achieve constant time (and size) spendings, no matter which value
is spent. Moreover, our divisible E-Cash system offers the same efficiency as the withdrawals
of [CPST15b], while keeping a reasonable size for the parameters ppU . Indeed, in our protocol,
ppU just requires 230 KBytes of storage space for N = 1024 (defining the coin’s value as 10.24$) if

2 n denotes the smallest integer such that N ≤ 2n and v the Hamming weight of V .
EG refers to an exponentiation in G, MEG(m) to a multi-exponentiation with m different bases in G, P to a
pairing computation, and Sign to the cost of the signing protocol whose public key is pk.
NIZK{EG} denotes the cost of a NIZK proof of a multi-exponentiation equation in G, NIZK{P} the one of a
pairing-product equation, and NIZK{Sign} the one of a valid signature.
Finally, SN refers to the size of a serial number and |Spend| to the size of the transcript of the Spend protocol.
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Barreto-Naehrig curves [BN06] are used to instantiate the bilinear groups. For the same settings,
ppU amounts to 263 KBytes for [CPST15b] and 98 KBytes for [Mär15].

From the bank’s point of view, the downside of our scheme is the additional parameters ppB
that the bank must store, and they amount to 33 MBytes, but it should not be a problem for
this entity. As for the other schemes, each deposit of a value V requires to store V serial numbers
whose size can be adjusted by using an appropriate hash function (see Remark 14 below).

Remark 14. As explained in [CPST15a], the bank does not need to store the serial numbers but
only their smaller hash values, as fingerprints. Therefore, the size of the V elements SN computed
during a deposit of value V is the same for all the schemes. The Deposit size then mostly
depends on the size of the Spend transcripts. By achieving smaller, constant-size spendings, we
thus alleviate the storage burden of the bank and so improve the scalability of our divisible
E-Cash system.

Remark 15. Public identification of defrauders has an impact on the complexity of the system.
This roughly doubles the size of the parameters and requires several additional computations
during a spending. Such a property also has consequences on the security analysis which must
rely on a stronger assumption (namely theN−MXDH′ one instead of its weaker variant) involving
more challenge elements.

However, in some situations, it can be possible to consider an authority which would be
trusted to revoke user’s anonymity only in case of fraud. The resulting e-cash system, called
fair, obviously weakens anonymity but may be a reasonable tradeoff between user’s privacy and
legal constraints.

Our scheme can be modified to add such an entity. One way would be to entrust it with the
extraction key of the Groth-Sahai proof system. It could then extract the element U1 = uusk1 from
any transaction and so identify the spender. The elements tj would then become unnecessary
and could be discarded from the public parameters. Moreover, the elements ψV,j , along with the
associated proofs, would also become useless during the Spend protocol. The complexity of the
scheme would then be significantly improved. The consequences of these changes on the security
analysis are discussed in Remark 21 of the next section.

6 Security Analysis

6.1 Proof of Theorem 10: Traceability

Let us consider a successful adversary A which manages to spend more than he has withdrawn
without being traced. This formally means that it is able to produce, after qw withdrawals, u
valid transcripts {(Vi, Zi, Πi)}ui=1 representing an amount of

∑u
i=1 Vi > N · qw, but such that

Identify((Vi, Zi, Πi), (Vj , Zj , Πj) =⊥, for all i 6= j. We can have the three following cases:

– Type-1 Forgeries: ∃i such that Πi contains commitments to a pair (s`i , t`i) which was not
signed in a τ` by the bank, during the key generation phase;

– Type-2 Forgeries: ∃i such that Πi contains commitments to a pair (uusk1 , ux2) which was never
signed by the bank, during a OWithdrawU query;

– Type-3 Forgeries: ∀1 ≤ i ≤ u, ∃τ`i in bpk which is a valid signature on the pair (s`i , t`i)
committed in Πi and the pairs (uusk1 , ux2) involved in this transcript were signed by the bank
during a OWithdrawU query, but identification fails.

Intuitively, the first two cases imply an attack against the signatures schemes Σ0 or Σ1, respec-
tively. This is formally stated by the two following lemmas:

Lemma 16. Any Type-1 forger A with success probability ε can be converted into an adversary
against the EUF-SCMA security of Σ0 with the same success probability.

Proof. The reductionR generates the public parameters (the group elements), and sends {(sj , tj)}Nj=1

to the signing oracle of the EUF-SCMA security experiment which returns the signatures {τj}Nj=1
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along with the challenge public key pk. It can run Σ1.Keygen to get the key pair (sk1, pk1) and
set bpk as (pk0 = pk, pk1, τ1, . . . , τN ). One may note that R is able to answer any query from A
since it knows bsk = sk1.

At the end of the game, R extracts (it has generated the CRS of the Groth-Sahai proofs
system and so knows the related extraction keys) from Πi, for i ∈ [1, u], a valid signature τ`i on
some pair (s`i , t`i) under the public key pk. Since A is a Type-1 forger with success probability
ε, at least one of these pairs does not belong to the set {(sj , tj)}Nj=1 and so is valid forgery which
can be used to break the EUF-SCMA security of Σ0, with probability ε. ut

Lemma 17. Any Type-2 forger A with success probability ε can be converted into an adversary
against the EUF-CMA security of Σ1 with the same success probability.

Proof. The reduction R generates the public parameters (the group elements) and its public
key as usual except that it sets pk1 as pk, the challenge public key in the EUF-CMA security
experiment. R can then directly answer all the queries except the OWithdrawB ones for which
it will forward the pairs (uusk1 , ux2) to the signing oracle and forward the resulting signature σ to
A.

The game ends when A outputs u transcripts such that one of them, (2`, Z,Π), contains
a commitment to a pair (uusk1 , ux2) which was never signed by the bank during a OWithdrawB
query. The soundness of the proof implies that it also contains a commitment to an element σ
such that Σ1.Verify((uusk1 , ux2), σ, pk) = 1. Such a forgery can then be used to break the EUF-
CMA security of Σ1. ut

Now, it remains to evaluate the success probability of a Type-3 forger. The following lemma
shows that it is negligible under N − BDHI assumption.

Lemma 18. Any Type-3 forger A with success probability ε can be converted into an adversary
against the N − BDHI assumption with the same success probability.

Proof. Let ({gyi}Ni=0, {g̃y
i}Ni=0) ∈ GN+1

1 × GN+1
2 be a N − BDHI challenge. The reduction R

generates random scalars c, z′ ← Zp and ai ← Zp, for i = 1 . . . , N , and sets the public parameters
as follows:

– (sj , tj)← ((gy
j−1

)z
′
, (gy

j−1
)c·z
′
), for j = 1, . . . , N ;

– g̃k ← g̃y
k
, for k = 0, . . . , N − 1

– hi ← gai , for i = 1, . . . , N ;
– h̃i,k ← (g̃y

k
)−ai , for i = 1, . . . , N and k = 0, . . . , i− 1.

By setting (s, t) = (gz
′·y−1

, gc·z
′·y−1

) —recall that this pair is not published in pp—, one can
easily check that the simulation is correct: sj = sy

j
and tj = ty

j
. R then generates the CRS for

the perfect soundness setting and stores the extraction keys. Finally, it computes the bank’s key
pair (bsk, bpk) as usual and so is able to answer every oracle queries.

At the end of the game, R extracts the elements s(i) committed in Πi, for i = 1, . . . , u.
Each of these proofs also contains a commitment to signature τ`i on the pair (s`i , t`i) such that:
e(s(i), g̃Vi−1) = e(s`i , g̃). Since we here consider Type-3 forgeries, `i ∈ [1, N ] (otherwise τ`i /∈ bpk)

and so s`i = sy
`i . Therefore, we have s(i) = sy

`i−Vi+1
, where `i − Vi + 1 ≤ N − Vi + 1. We then

distinguish the two following cases.

– Case 1: ∀i ∈ [1, u], `i − Vi + 1 ≥ 1;
– Case 2: ∃i ∈ [1, u] such that `i − Vi + 1 < 1.

The first case means that A only used valid elements s(i) (i.e. s(i) = sji such that ji ∈ [1, N−Vi+
1]) to construct the proofs Πi. So all the (

∑u
i=1 Vi) serial numbers derived from the u transcripts

returned by A belong to the set S = {∪qwk=1{e(s, g̃)xk·y
`}N`=1}, where {xk}qwk=1 is the list of the

scalars certified by the bank during the OWithdrawU queries. An over-spending means that∑u
i=1 Vi > N · qw = |S|, there is at least one collision in the list of the serial numbers. However,

16



a collision without identification of a defrauder is unlikely, as we explained in Remark 9. Hence,
case 1 can only occur with negligible probability.

Now, let us consider the second case: when such a case occurs, R is able to extract the
element sy

`i−Vi+1
such that `i − Vi + 1 ≤ 0, and compute g ← (sy

`i−Vi+1
)1/z

′
= gy

`i−Vi with
1 − N ≤ `i − Vi ≤ −1. Let ki be the integer such that `i − Vi + ki = −1. The previous
inequalities imply that ki ∈ [0, N−2] and so R can break the N−BDHI assumption by returning
e(g, g̃)y

−1
= e(g, g̃ki). ut

6.2 Proof of Theorem 11: Exculpability

The goal of the adversary A is to make the identify procedure to claim an honest user upk guilty
of double-spending: it publishes two valid transcripts (V1, Z1, Π1) and (V2, Z2, Π2) such that
upk = Identify((V1, Z1, Π1), (V2, Z2, Π2)), while this user did not perform the two transactions
(maybe one). We can obviously assume that one of these transcripts has been forged by A.

Let us consider a successful adversary. We distinguish the two following cases:

– Type-1 forgeries: the public key pkots of the one-time signature scheme used in this forged
transcript is one of those used by the honest user to answer OSpend queries.

– Type-2 forgeries: pkots was never used by this honest user.

Lemma 19. Let qs be a bound on the number of OSpend queries. Any Type-1 forger A with
success probability ε can be converted into an adversary against the SUF-OTS security of the
one-time signature scheme Σots with success probability greater than ε/qs.

Proof. The reduction R generates the public parameters along with the bank’s key pair and
selects an integer i∗ ∈ [1, qs]. Upon receiving the ith OSpend query, it acts normally if i 6= i∗, but
uses the public key pk∗ots and the signing oracle of the SUF-OTS security experiment if i = i∗.

Let pkots be the public key involved in the forged transcript. R aborts if pkots 6= pk∗ots, which
occurs with probability 1− 1/qs. Else, the forged transcript contains a new one-time signature
η under pk∗ots which can be used against the security of Σots. ut

Lemma 20. Let qs (resp. qa) be a bound on the number of OSpend queries (resp. OAdd queries).
Any Type-2 forger A with success probability ε can be converted into an adversary against the
qs − SDH assumption with success probability ε/qa.

Proof. Let (g, gα, . . . , gαqs ) be a qs − SDH challenge, the reduction R will make a guess on the
user upk∗ framed by A and will act as if its secret key was α. Therefore, it selects 1 ≤ i∗ ≤ qa
and generates the public parameters as in the Setup algorithm except that it sets u1 as gz for

some random z ∈ Zp. Next, it computes qs key pairs (sk
(i)
ots, pk

(i)
ots)← Σots.Keygen(1k) and sets w

as g
∏qs
i=1(α+H(pk

(i)
ots)) (which is possible using the qs − SDH challenge [BB08], since the exponent

is a polynomial in α of degree qs). The reduction will answer the oracle queries as follows.

– OAdd() queries: When the adversary makes the ith OAdd query to register a user, R runs
the Keygen algorithm if i 6= i∗ and sets upk∗ ← gα otherwise.

– OCorrupt(upk/mpk) queries: R returns the secret key if upk 6= upk∗ and aborts otherwise.
– OAddCorrupt(upk/mpk) queries: R stores the public key which is now considered as regis-

tered.
– OWithdrawU (bsk, upk) queries: R acts normally if upk 6= upk∗ and simulates the interactive

proof of knowledge of α otherwise.
– OSpend(upk, V ) queries: R acts normally if upk 6= upk∗. Else, to answer the jth query on

upk∗, it computes µ← g
∏qs
i=1,i 6=j(α+H(pk

(i)
ots)) which satisfies µ = w1/(α+H(pk

(j)
ots)), and uses sk

(j)
ots

as in the Spend protocol.

The adversary then outputs two valid transcripts (V1, Z1, Π1) and (V2, Z2, Π2) which accuse upk
of double-spending. If upk 6= upk∗ then R aborts which will occur with probability 1 − 1/qa.
Else, the soundness of the proof implies that the forged transcript was signed under pkots and
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so that the proof involves an element µ = w
1

α+H(pkots) . Since here we consider Type-2 attacks,

pkots /∈ {pk
(i)
ots}i. Therefore, H(pkots) /∈ {H(pk

(i)
ots)}i with overwhelming probability, due to the

collision-resistance of the hash function H. The element µ can then be used to break the qs−SDH
assumption in G1 (as in [BB08]). ut

6.3 Proof of Theorem 12: Anonymity

In this proof, we assume that the coins are spent in a sequential way: the index j in C = (x, σ, j)
is increased by V after each spending of an amount V , and the new j is used in the next spending.
A next coin is used when the previous coin is finished. But the proof would also apply if the
user could adaptively choose the coin (x, σ), as well as (j, V ) for every spending.

We can make the proof with a sequence of games, starting from the initial game for anonymity,
with a random bit b (see Figure 2), where the simulator emulates the challenger but correctly
generating all the secret values. The advantage is ε, and we want to show it is negligible.

In a next game, the simulator makes a guess on the amount V ∗ ∈ [1, N ] chosen by the
adversary during the step 3 of the anonymity experiment (see Figure 2) and also makes a guess
j∗ ∈ [1, N − V ∗ + 1] for the actual index of the coin of the user upkb at the challenge time (but
this challenge value could be chosen by the adversary, as said above). In addition, we denote qw
the bound on the number of OWithdrawU queries, and the simulator selects a random integer
`∗ ∈ [1, qw], for the expected index of the OWithdrawU query that generates the coin that will
be used in the challenge. If during the simulation it appears they are not correct, one stops the
simulation. This guess does not affect the success probability of the adversary, when the guess
is correct, but just reduces the advantage from ε to 2ε/(qwN

2).
Next, the simulator generates the CRS for the Groth-Sahai proofs in the perfect witness

indistinguishability setting, so that it can later simulate the proofs. This is indistinguishable
from the previous game under the SXDH assumption.

Now, the simulator will simulate the public parameters from an N −MXDH′ challenge:

– (gγ
k
, hγ

k
)Pk=0 ∈ G2P+2

1 ,

– ((gβ·γ
−k

)Ek=0, (g
β·δ·γ−k , hβ·δ·γ

−k
)Ek=0) ∈ G3E+3

1 ,

– (gχ·γ
k
, hχ·γ

k
)Pk=D+1 ∈ G2C

1 ,

– and ((gα·γ
−k

)Ck=0, (g
χ·γk/α, hχ·γ

k/α)Ck=0, (g
χ·γk/β, hχ·γ

k/β)Ck=0) ∈ G5S
1 ,

– as well as (g̃γ
k
, g̃α·γ

−k
)Ck=0 ∈ G2S

2 and (g̃β·γ
−k

)Ek=0 ∈ GE+1
2 ,

– and a pair (gz1 , hz2) ∈ G2
1 be an N −MXDH′ challenge.

We recall that C = N3 − N2, S = C + 1, E = N2 − N , D = S + E = N3 − N + 1 and
P = D + C = 2N3 − N2 − N + 1. Let d be the quotient of the division of N2 by V ∗ (i.e.
N2 = d · V ∗ + r with 0 ≤ r < V ∗), then the simulator constructs the public parameters as
follows.

– g and h are defined from gγ
k

and hγ
k

respectively, with k = 0;
– u1

$← G1 and u2 ← gw·γ
P

, for a random w ∈ Zp;
– g̃ is defined from g̃γ

k
, with k = 0;

– (sj , tj)← (gγ
D+d(1−V ∗+j−j∗)

, hγ
D+d(1−V ∗+j−j∗)

), for j = 1, . . . , N ;

– g̃k ← g̃γ
d·k

, for k = 0, . . . , N − 1;
– hi ← gwi·α·γ

d(−i+1)
, for i ∈ [1, . . . , N ] \ {V ∗}, with wi a random scalar;

– h̃i,k ← g̃−wi·α·γ
d(k−i+1)

, for i ∈ [1, . . . , N ] \ {V ∗} and k = 0, . . . , i− 1.

– hV ∗ ← gwV ∗ ·β·γ
d(−V ∗+1)

, with wV ∗ a random scalar;

– h̃V ∗,k ← g̃−wV ∗ ·β·γ
d(k−V ∗+1)

, for k = 0, . . . , V ∗ − 1.

We must check that

(1) the simulation of the parameters is correct: let us define y = γd, (s, t) = (gγ
D+d(1−V ∗−j∗)

,

hγ
D+d(1−V ∗−j∗)

), and ai = α · wi · γd(−i+1) for i ∈ [1, . . . , N ] \ {V ∗} and wV ∗ · β · γd(−V
∗+1).

We then have:
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– (sj , tj) = ((gγ
D+d(1−V ∗−j∗)

)γ
d·j
, (hγ

D+d(1−V ∗−j∗)
)γ
d·j

) = (sy
j
, ty

j
);

– g̃k = g̃y
k
, for k = 0, . . . , N − 1;

– hi = gai , for i = 1, . . . , N ;
– h̃i,k = g̃−ai·y

k
, for i = 1, . . . , N and k = 0, . . . , i− 1.

The simulation is therefore correct;
(2) all of these elements can be provided from the N − MXDH′ challenge: First, recall that

N2 = d · V ∗ + r with 0 ≤ r < V ∗ ≤ N . Then 2 ≤ V ∗ + j∗ ≤ N + 1 and N ≤ d ≤ N2.

Let us consider the pairs (sj , tj) = (gγ
D+d(1−V ∗+j−j∗)

, hγ
D+d(1−V ∗+j−j∗)

), for j = 1, . . . , N :
1 + j − (V ∗ + j∗) ≥ 2 − (N + 1) ≥ −N + 1, therefore, d(1 − V ∗ + j − j∗) ≥ −d(N − 1) ≥
−N2(N − 1) ≥ −C. Moreover, d(1 − V ∗ + j − j∗) ≤ d(N − 1) ≤ N2(N − 1) ≤ C. Hence
D − C ≤ D + d(1 − V ∗ + j − j∗) ≤ D + C = P . Since D = S + E = C + 1 + E,
D − C ≥ E + 1 = N2 −N + 1 ≥ 0. Hence, the pairs (sj , tj) can be defined from the tuple

(gγ
k
, hγ

k
)Pk=0 of the N −MXDH′ instance.

About the elements g̃k = g̃γ
d·k

, since we have 0 ≤ d·k ≤ N2(N−1) = C, for k = 0, . . . , N−1,

they all are in the tuple (g̃γ
k
)Ck=0.

We now consider the elements hi = gwi·α·γ
d(−i+1)

and h̃i,k = g̃−wi·α·γ
d(k−i+1)

, for i ∈ [1, N ] \
{V ∗} and k ∈ [0, i−1]. Since−C ≤ −d(N−1) ≤ d(−i+1) ≤ 0 and−C ≤ d(k−i+1) ≤ 0, they

all can be computed from the tuples (gα·γ
−k

)Ck=0 and (g̃α·γ
−k

)Ck=0, just using the additional
random scalar wi.

Eventually, for hV ∗ = gwV ∗ ·β·γ
d(−V ∗+1)

and h̃V ∗,k = g̃−wV ∗ ·β·γ
d(k−V ∗+1)

, for k = 0, . . . , V ∗− 1,
since d(−V ∗ + 1) = −d(V ∗ − 1) ≥ −N(N − 1) = −E and also d(k − V ∗ + 1) ≥ −E, for

any k = 0, . . . V ∗− 1, they can be computed the tuples (gβ·γ
−k

)Ek=0 and (g̃β·γ
−k

)Ek=0 and the
random wV ∗ .
The reduction R is thus able to generate the public parameters from the N − MXDH′

instance.

The simulator now has to answer all the oracle queries, with all the secret keys.

– OAdd() queries: run the Keygen algorithm and return upk (or mpk);
– OWithdrawU (bsk, upk) queries: for the `th OWithdrawU query, the simulator plays normally

if ` 6= `∗, but sending the pair (uusk1 , (gχ·γ
P

)w = uχ2 ) otherwise (using the N − MXDH′

instance). It can then simulate the proof of knowledge and receives a scalar x′ along with
a signature σ on (uusk1 , ux

∗
2 ), where x∗ = χ + x′. The coin is then implicitly defined as

C∗ = (x∗, σ, 1) and we will now denote its owner by upk∗;
– OCorrupt(upk/mpk) queries: the simulator plays normally (if the guesses are correct, upk∗

cannot be asked to be corrupted);
– OAddCorrupt(upk/mpk): the simulator stores the public key which is now considered as

registered;
– OSpend(upk, V ) queries: if upk 6= upk∗ or the coin to be used for the spending has not been

withdrawn during the `∗−OWithdrawU -query, then simulator knows all the secret keys, and
so it can plays normally. Otherwise, it proceeds as follows. One can first remark that if the
guesses are correct, j 6∈ [j∗− V + 1, j∗+ V ∗− 1]. Otherwise this spending and the challenge
spending would lead to a double-spending.
• If j ≥ j∗ + V ∗, then D + d(1 − V ∗ + j − j∗) ≥ D + d ≥ D + 1, so sx

∗
j and tx

∗
j can be

computed from the tuple (gχ·γ
k
, hχ·γ

k
)Pk=D+1. Indeed,

sx
∗
j = (gγ

D+d(1−V ∗+j−j∗)
)x
∗

= gχ·γ
D+d(1−V ∗+j−j∗) · (gγD+d(1−V ∗+j−j∗)

)x
′

tx
∗
j = (hγ

D+d(1−V ∗+j−j∗)
)x
∗

= hχ·γ
D+d(1−V ∗+j−j∗) · (hγD+d(1−V ∗+j−j∗)

)x
′
.

The simulator can then send ElGamal encryptions of sx
∗
j and tx

∗
j · gR·usk

∗
under hV

(which yields valid φV ∗,j∗ and ψV ∗,j∗) along with simulated proofs.
• If j ≤ j∗ − V , then we distinguish the two following cases.
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∗ Case 1 : V 6= V ∗. Let r ← −χ · γD+d(−V ∗+1+j−j∗)+d(V−1)/α and (r′1, r
′
2)

$← Z2
p.

Then, (gr/wV +r′1 , sx
′
j · h

r′1
V ) and (hr/wV · gr′2 , tx′j · gR·usk

∗ · hr
′
2
V ) are valid pairs φV,j and

ψV,j which can be computed from the tuple (gχ·γ
k/α, hχ·γ

k/α)Ck=0 of the N −MXDH′

instance: Since d · V ∗ = N2 − r > N2 −N ,

D + d(−V ∗ + 1 + j − j∗) + d(V − 1) = D + d(V − V ∗+j − j∗)
≤ D − d · V ∗ < D −N2 +N < D − E = S = C + 1

This is thus less or equal to C, as the indices of the tuple.

It then remains to prove that (gr/wV +r′1 , sx
′
j · h

r′1
V ) and (hr/wV · gr′2 , tx′j · gR·usk

∗ · hr
′
2
V )

are valid ElGamal encryptions of sx
∗
j and tx

∗
j · gR·usk

∗
under hV . Let c be the secret

scalar such that h = gc, r1 = r/wV + r′1 and r2 = c · r/wV + r′2, we then have:
gr1 = gr/wV +r′1 and

sx
∗
j · h

r1
V = sχj · s

x′
j · h

r/wV +r′1
V = sχj · s

x′
j · h

r/wV +r′1
V

= gχ·γ
D+d(1−V ∗+j−j∗) · (gwV ·α·γd(−V+1)

)r/wV · sx′j · h
r′1
V

= gχ·γ
D+d(1−V ∗+j−j∗) · g−χ·γD+d(1−V ∗+j−j∗) · sx′j · h

r′1
V )

= sx
′
j · h

r′1
V = sx

′
j · h

r′1
V

Similarly, gr2 = hr/wW · gr′2 and as just above

tx
∗
j · gR·usk

∗
· hr2V = tx

′
j · t

χ
j · g

R·usk∗ · hc·r/wVV · hr
′
2
V

= tx
′
j · hχ·γ

D+d(1−V ∗+j−j∗) · gR·usk
∗
· h−χ·γD+d(1−V ∗+j−j∗) · hr

′
2
V

= tx
′
j · gR·usk

∗
· hr

′
2
V

The spending is thus correctly simulated since r′1 and r′2 are random scalars.
∗ Case 2 : V = V ∗. We proceed as in the previous case, except that we now set
r = −χ · γD+d(−V ∗+1+j−j∗)+d(V ∗−1)/β. Since the inequality D + d(−V ∗ + 1 + j −
j∗)+d(V ∗−1) ≤ C still holds in this case, the pair (gr, hr) can be computed using the

tuple (gχ·γ
k/β, hχ·γ

k/β)Ck=0. Therefore, the simulator can send (gr/wV ∗+r
′
1 , sx

′
j · h

r′1
V ∗)

and (hr/wV ∗ · gr′2 , tx′j · gR·usk
∗ · hr

′
2
V ∗), which are valid φV ∗,j and ψV ∗,j (the proof is

similar to the previous one). The simulation is then again correct.
During the challenge phase (i.e. the step 3 of the anonymity experiment), A outputs two
public keys upk0 and upk1 along a value V . If the guesses were correct, V = V ∗, upk∗ = upkb
and the coin involving x∗ is spent, at index j = j∗. The simulator selects random r′1 and r′2,
computes R← H(info), and returns, along with the simulated proofs, the pairs

φV ∗,j∗ = ((gz1)−1/wV ∗ · gr′1 , sx′j · g−δ·β·γ
−d(V ∗−1) · hr

′
1
V ∗)

ψV ∗,j∗ = ((hz2)−1/wV ∗ · gr′2 , tx′j · gR·usk
∗
· h−δ·β·γ−d(V

∗−1) · hr
′
2
V ∗).

One can note that −d(V ∗ − 1) ≥ −N2 + N = −E and so that the pair (gδ·β·γ
−d(V ∗−1)

,

hδ·β·γ
−d(V ∗−1)

) belongs to the tuple (gβ·δ·γ
−k
, hβ·δ·γ

−k
)Ek=0.

Let r1 = −z1/wV ∗ + r′1 and r2 = −(c · z2)/wV ∗ + r′2. If z1 = z2 = δ + χ · γD/β, then

(gr1 , sx
∗
j∗ · h

r1
V ∗) = (gr1 , sχj∗ · s

x′
j∗ · h

−z1/wV ∗
V ∗ · hr

′
1
V ∗)

= (gr1 , sχj∗ · s
x′
j∗ · g−χ·γ

D+d(1−V ∗) · gδ·βγd(1−V
∗) · hr

′
1
V ∗)

= (g−z1/wV ∗+r
′
1 , sx

′
j∗ · gδ·βγ

d(1−V ∗) · hr
′
1
V ∗) = φV ∗,j∗
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and

(gr2 , tx
∗
j∗ · gR·usk

∗
· hr2V ∗) = (gr2 , tχj∗ · t

x′
j∗ · h

−(c·z2)/wV ∗
V ∗ · gR·usk

∗
· hr

′
2
V ∗)

= (gr2 , tχj∗ · t
x′
j∗ · h−χ·γ

D+d(1−V ∗) · hδ·βγd(1−V
∗) · gR·usk

∗
· hr

′
2
V ∗)

= (h−z2/wV ∗+r
′
2 , tx

′
j∗ · hδ·βγ

d(1−V ∗) · gR·usk
∗
· hr

′
2
V ∗) = ψV ∗,j∗

The challenge spending is thus correctly simulated too.

In the next game, we replace the N −MXDH′ instance by a random instance, with random z1
and z2. From the simulation of φV ∗,j∗ and ψV ∗,j∗ , we see that they perfectly hide upk∗. Hence,
the advantage of the adversary in this last game is exactly zero.

Remark 21. One can note that the h-based elements hz2 , {hγk}Pk=0, {hβ·δ·γ
−k}Ek=0, {hχ·γ

k}Pk=D+1,

{hχ·γk/α}Ck=0 and {hχ·γk/β}Ck=0 provided in the N −MXDH′ challenge are only useful to simulate
the security tags ψV,j and ψV ∗,j∗ . In the case of fair divisible E-Cash system, they would no
longer be necessary (see Remark 15) and so the security of the resulting scheme could simply
rely on the weaker N −MXDH assumption.

7 Conclusion

We have proposed the first divisible e-cash system which achieves constant-time spendings,
regardless of the spent value. Moreover, our solution keeps the best features of state-of-the-art,
such as the efficiency of the withdrawals from [CPST15a] and the scalability of [CPST15b]. We
argue that this is a major step towards the practical use of an e-cash system.

This also shows that the binary-tree structure, used by previous constructions, can be
avoided. It may therefore open up new possibilities and incite new work in this area. We provide
another construction in Appendix C whose security proof relies on a more classical assumption,
still avoiding the tree structure, but with larger public parameters.
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A Implementation

We describe in this section an implementation of the divisible e-cash system of Section 5. The
N−MXDH′ assumption underlying the anonymity of our construction requires the use of type-3
pairings. We will therefore instantiate both Σ0 and Σ1 with the AGHO structure preserving
signature scheme from [AGHO11] which has been proved optimal for this setting. For sake of
clarity we recall below this scheme in the case where the message space is G2

1.
For all zero-knowledge proofs, we will describe the relations to be proven and underline the

variables that are private to the prover.

Optimal Structure-Preserving Signatures for Messages in G2
1. We recall the construc-

tion from [AGHO11]:

– Keygen : Set sk = (α, β, γ1, γ2)
$← Z4

p and pk = (ṽ1, ṽ2, w̃1, w̃2)← (g̃α, g̃β, g̃γ1 , g̃γ2)

– Sign(sk, (m1,m2)) : To sign a pair of messages (m1,m2) ∈ G2
1, select a random r

$← Zp and

return σ = (z1, z2, z̃)← (gr, gβ−rα ·m−γ11 ·m−γ22 , g̃
1
r )

– Verify(pk, (m1,m2), σ) : Accept if e(z1, ṽ1) · e(z2, g̃) · e(m1, w̃1) · e(m2, w̃2) = e(g, ṽ2) and
e(z1, z̃) = e(g, g̃).

Instantiation

22



– Setup : The public parameters ppU ← {g, h, u1, u2, w, {hi}Ni=1, {(sj , tj)}Nj=1, H} and ppB ←
{{g̃k}N−1k=0 , {h̃i,0, . . . , h̃i,i−1}

N
i=1} are generated as described in Section 4.2. A common ref-

erence string CRS ∈ G4
1 × G4

2 for the Groth-Sahai proofs system [GS08] is then added to
ppU . The signature scheme Σots will be instantiated by the weakly secure signature scheme
from [BB08].

– Keygen() : Each user (resp. merchant) selects a random usk ← Zp (resp. msk) and gets
upk← gusk (resp. mpk← gmsk).

– BKeygen() : The bank runs twice the AGHO Keygen algorithm to generate (sk0, pk0) ←
((α(0), β(0), γ

(0)
1 , γ

(0)
2 ), (ṽ

(0)
1 , ṽ

(0)
2 , w̃

(0)
1 , w̃

(0)
2 )) and (sk1, pk1)← ((α(1), β(1), γ

(1)
1 , γ

(1)
2 ), (ṽ

(1)
1 , ṽ

(1)
2 ,

w̃
(1)
1 , w̃

(1)
2 )). It then computes τj = (z

(j)
1 , z

(j)
2 , z̃(j)) ← Sign(sk0, (sj , tj)), for j = 1, . . . , N ,

and sets bsk ← sk1 and bpk← {pk0, pk1, τ1, . . . , τN}.
– Withdraw(B(bsk, upk),U(usk, bpk)): The user selects a random x1

$← Zp, computes U1 ←
uusk1 and U ′2 ← ux12 , sends them to the bank, and proves, using the Schnorr’s interactive
protocol [Sch90], that

upk = gusk ∧ U1 = u
usk
1 ∧ U ′2 = u

x1
2 .

If the proof is valid, the bank selects a random x2
$← Zp and computes U2 ← U ′2 ·u

x2
2 . It then

generates σ = (z1, z2, z̃) and sends it, along with x2 to the user who sets C ← (x1 +x2, σ, 1).
– Spend(U(usk, C, bpk,mpk, V ),M(msk, bpk, V )): To spend a value V , the user selects two

random scalars (r1, r2) ← Z2
p, parses C as (x, σ, j) and computes R ← H(info), φV,j ←

(gr1 , sxj · h
r1
V ) and ψV,j ← (gr2 , upkR · txj · h

r2
V ). He then generates skots

$← Zp, sets pkots as

g̃skots and computes µ ← w
1

usk+H(pkots) . He parses τj+V−1 as (z
(j+V−1)
1 , z

(j+V−1)
2 , z̃(j+V−1))

and σ as (z1, z2, z̃) and computes Groth-Sahai commitments to usk, x, r1 and r2 (2 elements

of G2 each), to U1, U2, sj , tj , sj+V−1, tj+V−1, µ, z
(j+V−1)
1 , z

(j+V−1)
2 , z1 and z2 (2 elements of

G1 each) and to z̃(j+V−1) and z̃ (2 elements of G2 each). He next provides a NIZK proof π
that

φV,j [1] = gr1 ∧ ψV,j [1] = gr2

∧ φV,j [2] = sj
x · hr1V ∧ ψV,j [2] = (gR)usk · tjx · h

r2
V

∧ U2 = u
x
2 ∧ U1 = u

usk
1 ∧ µ(usk+H(pkots)) = w

∧ e(dj , g̃V−1) = e(sj+V−1, g̃) ∧ e(tj , g̃V−1) = e(tj+V−1, g̃)

The proof of the first two relations consists of 1 elements of G1 each. The next five equations
add 10 elements of G1 and 20 elements of G2. The proof of the last two equations requires
2 elements of G2 each.
Finally, the user computes the NIWI proof π′ that:

e(z1
(j+V−1), ṽ

(0)
1 ) · e(z2(j+V−1), g̃) · e(d(j+V−1), w̃

(0)
1 ) · e(t(j+V−1), w̃

(0)
2 ) = e(g, ṽ

(0)
2 )

∧ e(z1
(j+V−1), z̃(j+V−1)) = e(g, g̃)

e(z1, ṽ
(1)
1 ) · e(z2, g̃) · e(U1, w̃

(1)
1 ) · e(U2, w̃

(1)
2 ) = e(g, ṽ

(1)
2 )

∧ e(z1, z̃) = e(g, g̃).

The proof of the first and the third equation requires 2 elements of G2 each. The other
relations add 4 elements of G1 and 4 elements of G2 each.
Finally, the user computes η ← Σots.Sign(skots, H(R||φj ||ψj ||π||π′)) and sends it toM along
with pkots, φV,j , ψV,j , π and π′. The Spend transcript then contains 47 elements of G1 and
49 elements of G2.

We refer to Section 5 for a description of the Deposit and Identify algorithms since they do
not depend on the instantiations of the signatures schemes.
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B Proof of Theorem 5

Let us consider a N − MXDH challenge in a Type-3 setting. Since gz ∈ G1, it can only be
combined with elements of G2 during a pairing computation. In the generic bilinear group
model, the latter can only be combinations of elements from the sets (g̃γ

k
)Pk=0, (g̃α·γ

−k
)Ck=0 and

(g̃β·γ
−k

)Ek=0. So, the assumption holds if e(gz,
∏P
k=0 g̃

a∗1,k·γ
k

·
∏C
k=0 g̃

a∗2,k·α·γ
−k
·
∏E
k=0 g̃

a∗3,k·β·γ
−k

) is
itself indistinguishable from a random element of GT , for any known scalars a∗1,k, a

∗
2,k and a∗3,k.

In the following, we associate group elements with polynomials whose formal variables are
the unknown scalars involved in the N −MXDH challenge, namely α, β, γ and δ. We first prove

that an adversary is unable to symbolically produce a valid element e(gδ+χ·γ
D/β,

∏P
k=0 g̃

a∗1,k·γ
k

·∏C
k=0 g̃

a∗2,k·α·γ
−k
·
∏E
k=0 g̃

a∗3,k·β·γ
−k

) (i.e. one which can be used to distinguish z) and then show
that an accidental validity is quite unlikely.

In the generic bilinear group model, any element v ∈ G1 has been built through queries to
the oracle of internal law in G1. We therefore know a1,k, a2,k, a3,k, a4,k, a5,k, a6,k and a7,k such
that:

v =

P∏
k=0

ga1,k·γ
k

C∏
k=0

ga2,k·α·γ
−k

E∏
k=0

ga3,k·β·γ
−k

E∏
k=0

ga4,k·β·δ·γ
−k

P∏
k=D+1

ga5,k·χ·γ
k

C∏
k=0

ga6,k·χ·γ
k/α

C∏
k=0

ga7,k·χ·γ
k/β

For the same reasons, any element T in GT has been built through queries to the pairing oracle
on (v, ṽ) ∈ G1 ×G2 and so can be written

T = e(v, ṽ) = e(g, g̃)P1(α,β,γ,δ)·P2(α,β,γ,δ)

where P1(α, β, γ, δ) =
∑P

k=0 a1,k · γk +
∑C

k=0 a2,k · α · γ−k +
∑E

k=0 a3,k · β · γ−k +
∑E

k=0 a4,k · β ·
δ · γ−k +

∑P
k=D+1 a5,k · χ · γk +

∑C
k=0 a6,k · χ · γk/α +

∑C
k=0 a7,k · χ · γk/β and P2(α, β, γ, δ) =∑P

k=0 a
′
1,k · γk +

∑C
k=0 a

′
2,k · α · γ−k +

∑E
k=0 a

′
3,k · β · γ−k.

Let S be the set of polynomials P ∗ such that e(g, g̃)P
∗(α,β,γ,δ):

P ∗(α, β, γ, δ) = (δ + χ · γD/β) · (
P∑
k=0

a∗1,k · γk +

C∑
k=0

a∗2,k · α · γ−k +

E∑
k=0

a∗3,k · β · γ−k).

Let us assume that P1 · P2 = P ∗ ∈ S for some P1 and P2 described previously.
We first consider the monomials involving the variable δ: The ones contained in P1 are

a4,k · β · δ · γ−k, for k = 0, . . . , E. Since P2 does not contain any term in 1/β, the monomials
involving δ in P1 · P2 will be δ · β · P ′ for some P ′ ∈ Zp[α, β, γ]. This implies that a∗1,k = 0 for
k = 0, . . . , P and a∗2,k = 0 for k = 0, . . . , C. Indeed, if one were not zero then P ∗ would contain

a term in δ · γk or δ · α · γ−k which involves δ but not β, and so could not be equal to P1 · P2.
We may therefore consider that

P ∗ = (δ + χ · γD/β) ·
E∑
k=0

a∗3,k · β · γ−k =

E∑
k=0

a∗3,k · δ · γ−k +

E∑
k=0

a∗3,k · χ · γD−k

and so that there is at least one k∗ ∈ [0, E] such that a3,k∗ 6= 0. P ∗ then contains a term in
χ · γD−k∗ with S ≤ D − k∗ ≤ D. So, let us consider the terms in χ · γk contained in P1 · P2.
There are:

(1) a5,k1 · a′1,k2 · χ · γ
k1+k2 , for k1 ∈ [D + 1, P ] and k2 ∈ [0, P ]

(2) a6,k1 · a′2,k2 · χ · γ
k1−k2 , for k1 ∈ [0, C] and k2 ∈ [0, C]

(3) a7,k1 · a′3,k2 · χ · γ
k1−k2 , for k1 ∈ [0, C] and k2 ∈ [0, E]
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However, the degree in γ of the monomials (1) is greater than D + 1 whereas the one of the
monomials (2) and (3) is smaller than C < S. Therefore, it is impossible to construct groups
elements v ∈ G1 and ṽ ∈ G2 whose associated polynomials P1 and P2 verify P1 · P2 ∈ S, and so
to symbolically produce an element allowing to distinguish z.

Now, let us evaluate the probability for an accidental validity, i.e. when two different poly-
nomials involved in the answers returned by the oracle evaluate to the same values. One can
note that the elements of G1 provided by the N −MXDH assumption are associated with poly-
nomials of degree at most P + 2, whereas the ones in G2 are associated with polynomials of
degree at most P + 1. Therefore, the polynomials resulting from oracle queries are of degree at
most 2P + 3 = 4N3 − 2N2 − 2N + 5 due to the pairing computation.

Let qG be the maximum number of oracle queries. Since the N−MXDH assumption contains
3P + 2D+S+ 5 = 9N3−4N2−5N + 11 elements, there are at most 9N3−4N2−5N + 11 + qG
polynomials and so (9N3− 4N2− 5N + 11 + qG)2/2 pairs that could evaluate to the same value.
By the Schwartz-Zippel lemma, such an event occurs with probability at most (4N3 − 2N2 −
2N + 5) · (9N3 − 4N2 − 5N + 11 + qG)2/2p ≤ 2N3 · (9N3 + qG)2/p, which is negligible.

C Constant-Size Divisible E-Cash under Weaker Assumptions

C.1 High Level Description

The relations between the elements of the public parameters pp have a strong impact on the
computational assumption underlying the anonymity of our scheme. The assumption must in-
deed take them into account while allowing the simulation in the reduction to insert a challenge
for any amount V ∗ and any index j∗. The N −MXDH′ assumption offers such a flexibility but
at the cost of a rather high complexity.

One may wonder if it possible to rely on a simpler assumption while keeping the constant-
time property. We prove below that this is the case, but the solution implies a significant increase
of the size of the public parameters and a far more complex deposit protocol, which does not
perfectly match with our initial goal.

Informally, the core idea of this new scheme is to randomly generate most of the public
parameters. This offers much more flexibility to the reduction of the anonymity experiment
which can therefore make use of a less complex assumption. More specifically, we define the
public parameters as follows.

A trusted authority generates random yj
$← Zp and rj,k

$← Zp, for 1 ≤ j ≤ N and 1 ≤ k ≤
N + 1− j. Then, it selects random g, h, u1, u2, w ∈ G1 and g̃ ∈ G2, and computes:

– (sj,k, tj,k)← (grj,k , hrj,k), for 1 ≤ j ≤ N and 1 ≤ k ≤ N + 1− j
– g̃(j,k)7→i ← g̃yi/rj,k , for 1 ≤ j ≤ N , 1 ≤ k ≤ N + 1− j and j ≤ i ≤ j + k − 1

The user’s part ppU of the public parameters consists of the tuple {g, h, u1, u2, w, g̃, {(sj,k,
tj,k)}j=N,k=N+1−j

j=1,k=1 } while the bank’s part ppB consists of the tuple {g̃(j,k)7→i}
j=N,k=N+1−j,i=j+k−1
j=1,k=1,i=j .

One can note that, for any 1 ≤ j ≤ N , 1 ≤ k ≤ N − j + 1 and j ≤ i ≤ j + k − 1, we have:

e(sj,k, g̃(j,k) 7→i) = e(grj,k , g̃yi/rj,k) = e(g, g̃)yi

and
e(tj,k, g̃(j,k) 7→i) = e(hrj,k , g̃yi/rj,k) = e(h, g̃)yi .

We keep the same withdrawal procedure as in Section 5 and so associate each coin with a se-
cret and certified scalar x. The latter implicitly defines SN1, . . . , SNN as e(g, g̃)y1·x, . . . , e(g, g̃)yN ·x.

To spend a value V with a coin whose index is j, the user upk will send φV,j = sxj,V along with

ψV,j = txj,V ·upk
R, where R is defined as in the previous construction. Correctness follows from the

fact that V ≤ N + 1− j (otherwise, the user would overspend its coin) and so (sj,V , tj,V ) ∈ ppU .
It is worthy to note that encryption is unnecessary here since the independence of the elements
in pp makes the attack described in Section 4.1 impracticable.
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During the Deposit protocol, the bank is able to recover the serial numbers SNj , . . . , SNj+V−1
from φV,j by computing, for i = j, . . . , j + V − 1:

e(φV,j , g̃(j,V )7→i) = e(sj,V , g̃(j,V )7→i)
x = e(g, g̃)yi·x = SNi.

However, this computation involves g̃(j,V ) 7→i and so requires the knowledge of the index j
used during the spending. Unfortunately, revealing this information breaks the anonymity of the
construction which will only achieve a weaker unlinkability notion, as explained in [CPST15a].

To achieve anonymity, it is therefore necessary to hide j and to find another way for com-
puting the serial numbers. The solution proposed in [CPST15a] is to notice that the bank does
not necessarily need to know the index j. Indeed, since it knows V (i.e. the spent value), it can
repeat the previous procedure for any possible g̃(j′,V ) 7→i. More specifically, it can compute, for
any 1 ≤ j′ ≤ N + 1− V and j′ ≤ i ≤ j′ + V − 1, e(φV,j′ , g̃(j′,V )7→i). Since j ∈ [1, N + 1− V ], the
bank is ensured to recover SNj , . . . , SNj+V−1. Nevertheless, the obvious drawback of this solution
is that the bank must perform many useless computations (namely, the ones such that j′ 6= j)
and then store theirs outputs, which are invalid serial numbers.

C.2 The protocol

We here provide an extended description of the protocol sketched above. The Keygen and
Withdraw algorithms are the same as the ones presented in Section 5 and so are not recalled
here.

– BKeygen(): As in the previous construction, the bank will have to certify, during a with-
drawal, the secret values associated to the coin. It then generates a key pair (sk1, pk1) for a
structure preserving signature scheme Σ1 whose message space is G2

1.
The bank must also certify the pairs (sj,k, tj,k) so that the user can prove the validity of the
elements φV,j and ψV,j during a spending. More specifically, the user must prove that he used

a valid pair (sj,V , tj,V ) for the amount V . The bank then generates N key pairs (sk
(k)
0 , pk

(k)
0 )

(one for each possible value k ∈ [1, N ]) for a signature scheme Σ0 whose message space

is G2
1 and uses them to compute τj,k ← Σ0.Sign(sk

(k)
0 , (sj,k, tj,k)), for j = 1, . . . , N and

k = 1, . . . , N + 1 − j. Therefore, (sj,V , tj,V ) will be valid pair for a spending of value V if

and only if it has been certified under pk
(V )
0 .

The bank secret key bsk is then set as sk1, while bpk is set as {{pk(k)0 }Nk=1, pk1, {τj,k}
j=N,N+1−j
j=1,k=1 }.

– Spend(U(usk, C, bpk,mpk, V ),M(msk, bpk, V )): Let C = (x, σ, j) be the coin the user wishes
to spend. The latter computes R← H(info), φV,j ← sxj,V and ψV,j ← txj,V · upk

R, where info
is some information related to the transaction (such as the date, the amount, the merchant’s
public key,...).
Next, he generates a key pair (skots, pkots) for a one-time signature schemeΣots and computes

µ← w
1

usk+H(pkots) .
He must now prove the validity of φV,j and ψV,j and so computes Groth-Sahai commitments
to usk, x, sj,V , tj,V , τj,V , σ, µ, U1 = uusk1 and U2 = ux2 . He then provides:
1. a NIZK proof π that the committed values satisfy:

φV,j = sxj,V ∧ ψV,j = txj,V · upkR ∧ w = µ(usk+H(pkots))

∧ U1 = uusk1 ∧ U2 = ux2

2. a NIWI proof π′ that the committed values satisfy:

1 = Σ0.Verify(pk
(V )
0 , (sj,V , tj,V ), τj,V )

∧ 1 = Σ1.Verify(pk1, (U1, U2), σ).
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Finally, he computes η ← Σots.Sign(skots, H(R||φV,j ||ψV,j ||π||π′)) and sends it to M along
with pkots, φV,j , ψV,j , π and π′.
The merchant accepts if the proofs and the signatures are correct in which case he stores
(V,Z,Π)← (V, (φV,j , ψV,j), (π, π

′, pkots, η)) while the user updates its coin C ← (x, σ, j+V ).
– Deposit(M(msk, bpk, (V,Z,Π)),B(bsk, L,mpk)): When a transcript is deposited by a mer-

chant, the bank parses it as (V, (φV,j , ψV,j), (π, π
′, pkots, η)) and checks its validity (in the

same way as the merchant did during the Spend protocol). B also verifies that it does not
already exist in its database.
If everything is correct, B computes, for 1 ≤ j′ ≤ N + 1 − V and j′ ≤ i ≤ j′ + V − 1, the
elements zj′,i ← e(φV,j′ , g̃(j′,V )7→i). If none of these values is in L, the bank adds them to
this list and stores the associated transcript. Else, there is at least one z′ ∈ L (associated
with a transcript (V ′, Z ′, Π ′)) and one pair (j∗, i∗) ∈ [0, N + 1 − V ] × [j′, j′ + V − 1] such
that z′ = zj∗,i∗ . The bank then outputs the two transcripts (V,Z,Π) and (V ′, Z ′, Π ′) as a
proof of a double-spending.

– Identify((V1, Z1, Π1), (V2, Z2, Π2), bpk): The first step before identifying a double-spender
is to check the validity of both transcripts and that there is a collision between their serial
numbers, i.e. there are (j∗1 , i

∗
1) ∈ [0, N + 1− V1]× [j∗1 , j

∗
1 + V1 − 1] and (j∗2 , i

∗
2) ∈ [0, N + 1−

V2]× [j∗2 , j
∗
2 + V2 − 1] such that:

z(j∗1 ,i∗1) = e(φV1,j1 , g̃(j∗1 ,V1)7→i∗1)

= e(φV2,j2 , g̃(j∗2 ,V2)7→i∗2) = z(j∗2 ,i∗2)

Let Tb be e(ψVb,jb , g̃(j∗b ,Vb)7→i
∗
b
), for b ∈ {1, 2}. The algorithm checks, for each registered public

key upki, whether T1 · T−12 = e(upki, (g̃(j∗1 ,V1)7→i∗1)R1 · (g̃(j∗2 ,V2)7→i∗2)−R2) until it gets a match.
It then returns the corresponding key upk∗ (or ⊥ if the previous equality does not hold for
any upki), allowing anyone to verify, without the linear cost in the number of users, that
the identification is correct.

Remark 22. One can note that, among the V (N + 1− V ) elements zj,i computed (and stored)
by the bank during a deposit of value V , only V of them will be valid serial numbers. One must
then take care that the other (invalid) ones will not lead to false positives, i.e. a collision in L
which would not be due to a double-spending.

So let us consider a collision as described in the Deposit protocol. Let x1 (resp. x2) be such
that φV1,j1 = sx1j1,V1 (resp. φV2,j2 = sx2j2,V2). We then have:

e(φV1,j1 , g̃(j∗1 ,V1)7→i∗1) = e(sx1j1,V1 , g̃(j∗1 ,V1)7→i∗1)

= e(g, g̃)
x1·rj1,V1 ·yi∗1/rj∗1 ,V1

= e(g, g̃)
x2·rj2,V2 ·yi∗2/rj∗2 ,V2

= e(sx2j2,V2 , g̃(j∗2 ,V2)7→i∗2) = e(φV2,j2 , g̃(j∗2 ,V2)7→i∗2)

A collision thus implies that x1 ·rj1,V1 ·yi∗1/rj∗1 ,V1 = x2 ·rj2,V2 ·yi∗2/rj∗2 ,V2 . Since x1 and x2 have
been cooperatively generated without knowledge of the secret, random scalars yj and rj,k, such
an equality is unlikely to hold for distinct x1 and x2. Since the scalars yj and rj,k have been
generated independently, we can also conclude, with overwhelming probability, that yi∗1 = yi∗2
(and so i∗1 = i∗2). We then get the following equality: rj1,V1/rj∗1 ,V1 = rj2,V2/rj∗2 ,V2 . We distinguish
two cases:

– Case 1: j1 = j∗1 . Therefore, rj1,V1/rj∗1 ,V1 = 1 and so j2 = j∗2 . The value z(j∗1 ,i∗1) = z(j∗2 ,i∗2) is
then equal to SNi∗1 (= SNi∗2 , since i∗1 = i∗2). The user has thus used twice the same serial
numbers and so has double-spent its coin.

– Case 2: j1 6= j∗1 . We then have rj1,V1 = rj2,V2 and rj∗1 ,V1 = rj∗2 ,V2 with overwhelming proba-
bility. Therefore, the same element sj1 = sj2 has been used for two different transactions by
the same user. The latter has thus double-spent his coin.
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Efficiency. Compared to the divisible e-cash system described in Section 5, this construction
offers the same complexity for the Withdraw protocol and slightly more efficient spendings.
However, it suffers from two major drawbacks. First, the size of the public parameters is far
more important. Indeed, ppU (resp. ppB) now contains O(N2) elements in G1 (resp. O(N3)
elements in G2). Second, each deposit of value V requires to perform V (N + 1 − V ) pairings
and to store their outputs. This computational and storage cost can quickly become prohibitive,
especially for a payment system which may have to support millions of daily transactions. We
therefore argue that the construction of Section 5 should be preferred for practical purposes.

C.3 Security Results

The security of this construction is stated by the Theorems 26, 27 and 28 which make use of the
EXDH assumption introduced in the full version of [CPST15a]. We also recall its weaker version
(namely the weak-EXDH assumption) and show that both variants are actually equivalent.

Definition 23 (weak-EXDH assumption). Given (g, gx, ga, ga·y) ∈ G4
1 and (g̃, g̃a, g̃y) ∈ G3

2,
along with gz ∈ G1, it is hard to distinguish whether z = x · y · a or z is random.

Definition 24 (EXDH assumption). Given (g, h, gx, hx, ga, ha, ga·y, ha·y) ∈ G8
1 and (g̃, g̃a, g̃y) ∈

G3
2, along with (gz1 , hz2) ∈ G2

1, it is hard to distinguish whether z1 = z2 = x · y · a or (z1, z2) is
random.

One can note that the weak-EXDH assumption has been introduced under a different name
in [Duc10], namely the P-BDH assumption.

Lemma 25. The EXDH and weak-EXDH assumptions are equivalent.

Proof. First, one can note that the EXDH assumption obviously implies the weak-EXDH one.
Moreover, we note that the latter implies the DDH assumption in G1. Indeed, (g, gx, gy·a, gz) is
a valid DDH challenge in G1.

Now, let us consider an adversary A succeeding against the EXDH assumption with a non-
negligible advantage Adv(A):

Adv(A) = Pr[A(S, gz, hz)|z = x · y]− Pr[A(S, gz1 , hz2)|z1, z2 $← Zp]

where S = {g, h, gx, hx, ga, ha, gy·a, hy·a}. We define the following two advantages:

Adv1(A) = Pr[A(S, gz, hz)|z = x · y]− Pr[A(S, gz, hz)|z $← Zp],

Adv2(A) = Pr[A(S, gz, hz)|z $← Zp]− Pr[A(S, gz1 , hz2)|z1, z2 $← Zp].

Since Adv(A) ≤ Adv1(A) + Adv2(A), at least one of the latter is non-negligible.
If Adv1(A) is non-negligible, then A can be used against the weak-EXDH assumption: given a

challenge (g, gx, ga, ga·y, g̃, g̃a, g̃y, gz) one selects a random c
$← Zp and runs A on (g, gc, gx, (gx)c,

ga, (ga)c, ga·y, (ga·y)c, g̃, g̃a, g̃y, gz, (gz)c). The assumption made on Adv1(A) implies that A will
return, with non-negligible probability, a valid guess which can be used for the weak-EXDH
instance.

If Adv2(A) is non-negligible, thenA can be used to solve the DDH problem in G1: given a chal-

lenge (g, gx, gy, gz), one selects random a, b, c
$← Zp and runs A on (g, gx, gb, (gx)b, ga, (gx)a, ga·c,

(gx)a·c, g̃, g̃a, g̃c, gy, gz). By setting h = gx, one can see that the latter tuple is a valid EXDH
instance and that the guess returned by A can be used to solve the DDH problem. Therefore, A
can be used against the DDH assumption and so against the stronger weak-EXDH assumption.

The weak-EXDH assumption thus implies the EXDH one. Both assumptions are then equiv-
alent. ut

Theorem 26. In the standard model, the protocol of Section C.2 is anonymous under the
SXDH and EXDH assumptions.
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Theorem 27. In the standard model, the protocol of Section C.2 is traceable if Σ0 is an EUF-
SCMA signature scheme, Σ1 is an EUF-CMA signature scheme, and H is a collision-resistant
hash function.

Theorem 28. Let q be a bound on the number of OSpend queries made by the adversary. In
the standard model, the protocol of Section C.2 achieves the exculpability property under the
q−SDH assumption if Σots is a SUF-OTS signature scheme, and H is a collision-resistant hash
function.

Compared to the scheme of Section 5, we no longer need the N − BDHI assumption and
the anonymity property now relies on the EXDH assumption (and so on the weak-EXDH one),
instead of the MXDH′ one. Although we cannot prove that the former is weaker than the latter,
we argue that we can be more confident in the weak-EXDH assumption since it is much easier
to study and it has already been used in another context [Duc10].

The proof of exculpability is similar to the one of Section 6.2. Regarding traceability, Type-3
forgeries of Section 6.1 are now impossible due to the soundness of the proof system: the elements
φV,j and ψV,j must have been constructed using a certified pair (sj , tj) ∈ G2

1. Therefore, the
N − BDHI assumption is no longer necessary. The proof of anonymity is provided below.

C.4 Proof of Theorem 26

We prove that this new construction satisfies the anonymity requirement by using a sequence of
games, starting from the anonymity game defined in Figure 2 for a bit b. We want to show that
the advantage ε is negligible.

In a next game, the simulator makes a guess `∗ ∈ [1, qw] (where qw is a bound on the
number of OWithdrawU queries) on the coin used by upkb during the step 6 of the anonymity
game, i.e. it assumes that it is the one withdrawn during the `∗ query. It also makes a guess
on the value V ∗ ∈ [1, N ] chosen by A during the step 3 of this experiment and on the index
j∗ ∈ [1, N − V ∗ + 1] of the coin at the challenge time. These guesses do not affect the success
probability of the adversary if they are correct but reduce the advantage from ε to ε/(qw ·N2).
Next, the simulator generates the CRS for the Groth-Sahai proofs system in the perfect witness
indistinguishability setting. This game is indistinguishable from the previous one under the
SXDH assumption

Now, the simulator will generate the public parameters from a EXDH challenge (g, h, gx, hx,

ga, ha, ga·y, ha·y, g̃, g̃a, g̃y, gz1 , hz2). It first selects random yj
$← Zp and rj,k for 1 ≤ j ≤ N and

1 ≤ k ≤ N + 1− j, along with random d1 and d2. It then computes:

– (u1, u2)← (gd1 , gd2)
– for 1 ≤ j ≤ N and 1 ≤ k ≤ N + 1− j:
• if j ≥ j∗ + V ∗, then (sj,k, tj,k)← (grj,k , hrj,k)
• if j∗ ≤ j < j∗ + V ∗, then

- (sj,k, tj,k)← ((ga)rj,k , (ha)rj,k) if j + k ≥ j∗ + V ∗

- (sj,k, tj,k)← ((ga·y)rj,k , (ha·y)rj,k) otherwise
• if j < j∗, then

- (sj,k, tj,k)← ((ga)rj,k , (ha)rj,k) if j + k > j∗

- (sj,k, tj,k)← (grj,k , hrj,k) otherwise
– for 1 ≤ j ≤ N , 1 ≤ k ≤ N + 1− j and j ≤ i ≤ j + k − 1:
• if j ≥ j∗ + V ∗, then g̃(j,k)7→i ← (g̃a)yi/rj,k

• if j∗ ≤ j < j∗ + V ∗, then
- g̃(j,k)7→i ← (g̃y)yi/rj,k if j + k ≥ j∗ + V ∗ and i < j∗ + V ∗

- g̃(j,k)7→i ← g̃yi/rj,k otherwise
• if j < j∗, then

- g̃(j,k)7→i ← (g̃y)yi/rj,k if j + k > j∗ and i ≥ j∗

- g̃(j,k)7→i ← g̃yi/rj,k if j + k > j∗ and i < j∗
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- g̃(j,k)7→i ← (g̃a)yi/rj,k otherwise

The simulation is therefore correct since, for any 1 ≤ j ≤ N , 1 ≤ k ≤ N + 1 − j and
j ≤ i ≤ j + k − 1:

– e(sj,k, g̃(j,k)7→i) = e(g, g̃)a·yi if i < j∗ or i ≥ j∗ + V ∗

– e(sj,k, g̃(j,k)7→i) = e(g, g̃)a·y·yi otherwise

The simulator now proceeds as follows to answer oracle queries:

– OAdd() queries: run the Keygen algorithm and return upk (or mpk);
– OWithdrawU (bsk, upk) queries: for the `th OWithdrawU query, the simulator plays normally

if ` 6= `∗, but sending the pair (uusk1 , (gx)d2 = ux2) otherwise (using the EXDH instance). It
can then simulate the proof of knowledge and receives a scalar x′ along with a signature σ
on (uusk1 , ux

∗
2 ), where x∗ = x+ x′. The coin is then implicitly defined as C∗ = (x∗, σ, 1) and

we will now denote its owner by upk∗;
– OCorrupt(upk/mpk) queries: the simulator plays normally (if the guesses are correct, upk∗

cannot be asked to be corrupted);
– OAddCorrupt(upk/mpk): the simulator stores the public key which is now considered as

registered;
– OSpend(upk, V ) queries: if upk 6= upk∗ or the coin to be used for the spending has not been

withdrawn during the `∗−OWithdrawU -query, then the simulator knows all the secret keys,
and so it can plays normally. Otherwise, it proceeds as follows. Let j be the index of the
coin to be spend, j 6∈ [j∗−V +1, j∗+V ∗−1] if the guesses on j∗ and V ∗ are correct. Other-
wise this spending and the challenge spending would lead to a double-spending. Therefore,
(sj,V , tj,V ) = (grj,V , hrj,V ) for a known scalar rj,V . The simulator is then able to return a
valid pair (φV,j , ψV,j) = ((gx · gx′)rj,V , (hx · hx′)rj,V · upkR) along with simulated proofs: the
simulation is correct.

During the challenge phase, A outputs two public keys upk0 and upk1 and a value V . If the
guesses were correct, V = V ∗, upk∗ = upkb and the coin involving x∗ is spent at index j = j∗.
The simulator then returns (φV ∗,j∗ , ψV ∗,j∗) = ((gz1 · (ga·y)x′)rj∗,V ∗ , (hz2 · (ha·y)x′)rj∗,V ∗ · (upk∗)R)
along with simulated proofs. If z = x · y · a, then the pair (φV ∗,j∗ , ψV ∗,j∗) is valid. Indeed:

φV ∗,j∗ = (ga·y)(x+x
′)·rj,k = sx

∗
j∗,V ∗

ψV ∗,j∗ = (ha·y)(x+x
′)·rj,k · (upk∗)R = tx

∗
j∗,V ∗ · (upk∗)R

Finally, we replace in the last game the EXDH challenge by a random one with random z1 and
z2. The elements φV ∗,j∗ and ψV ∗,j∗ then perfectly hide upk∗, so the advantage of the adversary
in this game is zero.
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