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Abstract. When outsourcing the storage of sensitive data to an (un-
trusted) remote server, a data owner may choose to encrypt the data
beforehand to preserve confidentiality. However, it is then difficult to
efficiently retrieve specific portions of the data as the server is unable
to identify the relevant information. Searchable encryption has been well
studied as a solution to this problem, allowing data owners and other au-
thorised users to generate search queries which the server may execute
over the encrypted data to identify relevant data portions.

However, many current schemes lack two important properties: verifia-
bility of search results, and expressive queries. We introduce Extended
Verifiable Searchable Encryption (eVSE) that permits a user to verify
that search results are correct and complete. We also permit verifiable
computational queries over keywords and specific data values, that go be-
yond the standard keyword matching queries to allow functions such as
averaging or counting operations. We formally define the notion of eVSE
within relevant security models and give a provably secure instantiation.

1 Introduction

It is now common for data owners to outsource their data to public servers
providing storage on a pay-as-you-go basis. This can reduce the costs of data
storage compared with that of running a private data centre (e.g. hardware,
construction, air conditioning and security costs), making this a cost effective
solution. If the server is not fully trusted and the data is of a sensitive nature,
the data owner may wish to encrypt it to ensure confidentiality. This, however,
prevents the efficient retrieval of specific portions of the data as the server is
unable to identify the relevant information.

Searchable Encryption (SE) [11, 15, 18, 21, 22, 24, 26, 33] addresses this issue
by indexing the encrypted data in such a way as to allow a server to execute
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a search query (formed by the data owner or an authorised data user) over the
encrypted data and return the identifiers of any file that satisfies the search
query.

To preserve confidentiality of the data, the server must not learn anything
about the underlying data from the encrypted data and the data indexes; namely
ciphertext indistinguishability and index indistinguishability. In the presence of
a search query the only information leaked to the server is the search results.
Query indistinguishability is also a desirable property although, due to the offline
keyword guessing attack [12], this is not always easy to achieve in the public key
setting (where indexes are generated using the data owner’s public key).

The majority of existing work on SE focusses on efficiently preserving confi-
dentiality in the presence of an honest-but-curious server. This means that the
server is trusted to follow the search protocol honestly but may try to infer
information about data or search queries that it is unauthorised to know.

Verifiable Searchable Encryption (VSE) [13, 25, 31, 36, 38] assumes a stronger
semi-honest-but-curious adversarial model in which the server might execute
only a fraction of the search, or return a fraction of the search results in order
to preserve its resources. To ensure the completeness and correctness of search
results in this scenario, it is required that the server is able to prove to the
querier that the search was computed honestly.

The current approaches to VSE in the literature do not support a wide range
of expressive search queries. We address this issue by extending the types of
queries that can be executed and verified by a VSE scheme to include more
expressive search queries, as well as some computations. Most VSE schemes in
the literature also require that the verification of query results be performed by
the entity that issued the query whereas eVSE is publicly and blindly verifiable.

1.1 Our Contributions

We adapt and apply new techniques from the area of Publicly Verifiable Out-
sourced Computation to VSE in a novel way to enable a wider family of queries,
and some types of computations, to be performed over outsourced encrypted
data with verifiable query results. In summary, our contributions are:

– More expressive queries: Our scheme supports queries such as boolean formu-
lae involving conjunctions, disjunctions and negations, threshold operations,
polynomials, arbitrary CNF and DNF formulae, and fuzzy search1.

– Evaluation of computations: Our scheme supports the evaluation of some
computations over the encrypted data, such as averaging and counting oper-
ations. As well as assigning keywords to label data, we propose to also assign
keywords representing certain data values that may be computed over (either
in the form of single keywords or as a string of keywords encoding binary
data, see Section 3.3).

1 Depending on the choice of underlying ABE scheme; see Section 4.1.



– Blind public verifiability of query results: Any entity is able to verify the cor-
rectness and completeness of query results without any knowledge of either
the underlying query or the results themselves.

The remainder of this paper is organised as follows. Section 2 gives some
background information on SE and verifiable computation. Section 3 formally
defines eVSE and its security model, Section 4 gives an instantiation of eVSE and
Section 5 concludes the paper, highlighting possible avenues of future research.
The Appendix provides some background information and the security proofs.

2 Background

Searchable encryption (SE) allows data to be outsourced in encrypted form
and for keyword search queries to be performed remotely. Methods based on
oblivious RAM [19] provide a high level of security (hiding both the access and
search patterns) at the expense of slow search times and high communication
costs. Song et al. [29] achieve a scheme with fewer rounds of communication, but
which leaks the access pattern and requires each word of a document to be en-
crypted separately, so compression is not possible. Goh [18] introduced meta data
(indexes) describing the content of each document, and enabled constant time
searches using Bloom filters over the index only. Curtmola et al. [15] extended
the system model to allow multiple users to query the data, using broadcast
encryption to manage user access privileges. SE schemes that allow many users
to upload data can be built using public key encryption, however the data can
only be searched by the holder of the corresponding secret key (or a derivative
thereof) [11]. Most SE schemes assume an honest-but-curious server model.

Verifiable searchable encryption (VSE) schemes assume a semi-honest-
but-curious server model. The first VSE scheme was presented by Chai et al.
[13], where they extend the paradigm of searchable symmetric encryption (SSE)
[15] to create a verifiable SSE (VSSE) scheme that allows verification of search
results from a single keyword equality query. Another approach by [25] extends a
public key encryption with keyword search scheme [11] to support verification of
search results from a single keyword equality query, where the indexes are created
using a public key. Sun et al. [31] and Wang et al. [35] detail VSE schemes with
enhanced functionality; verifiable multi-keyword ranked search and verifiable
fuzzy keyword search, respectively.

Verifiable Computation (VC) allows a client with limited resources to ef-
ficiently outsource a computation to a more powerful server, and to verify the
correctness of results. Gennaro et al. [17] considered the use of garbled circuits,
whilst Parno et al. [27] introduced publicly verifiable computation (PVC) built
from key policy attribute based enryption (KP-ABE), where a single client com-
putes an evaluation key for the server and publishes information enabling other
clients to outsource computation to the server. Any client may verify the correct-
ness of a result. Alderman et al. [2] considered an alternative system model that
used ciphertext policy attribute based encryption (CP-ABE) to allow clients to



query computations on data held by the server (or initially outsourced by a
client) called Verifiable Delegable Computation (VDC). This can naturally be
applied to problems like querying on remote data, as well as MapReduce. Data
remains statically stored on the server and may be embedded in a server’s secret
key, whilst the computation of many different functions can be requested by
creating ciphertexts using only public information. Other notable approaches in
the realm of querying remote data can be found in [3–5, 8–10, 14].

3 Extended Verifiable Searchable Encryption

3.1 System Model

We consider a system comprising a data owner, a remote storage server, and a set
of authorised data users. The data owner sets up the system to generate a master
secret and holds a set of data D (e.g. a database) that they wish to encrypt
and outsource to the remote server. The data owner controls which additional
users are able to query their encrypted data. Queries may be formulated over
these keywords (e.g. to identify records associated with a given set of keywords)
as usual in SE, but we also allow computational queries of functions in the
class NC1, which consists of Boolean functions computable by circuits of depth
O(log n) where each gate has a fan-in of two, over encoded data values.

For example consider workgroups within an organisation. The manager or
system administrator acts as the data owner for the organisation and outsources
a shared database to a remote server. Authorisation is granted by issuing a
secret key to each user, which is required when creating a query token QTQ for
a particular query Q. The token is sent to the server who performs the query
on the encoded index to generate a result R. We allow any entity to verify the
correctness and completeness of the result2, but we restrict the ability to read
the value of the result to only authorised data users (holding a retrieval key).

Throughout this work, we assume a strict separation between queriers (the
data owner and users) and the remote server – the server may not issue queries
itself, else it will trivially be able to learn the encoding of the index and queries
(legitimate queriers must know this encoding to gain meaningful results).

3.2 Formal Definition

We now formally define a scheme for eVSE. We use the following notation.
Data to be outsourced is denoted D and is considered to be a collection of
n documents. Prior to outsourcing, the data owner specifies a pre-index for
D, denoted δ(D), which assigns a set of descriptive labels to each document
e.g. keywords contained in the document or specific data values that may be
computed upon. The encoded form of the data, including the descriptive labels,
is referred to as the index of D, denoted ID, and is stored by the server. Queries

2 We also permit the server to verify correctness to avoid the rejection problem, where
a server may learn some useful information by observing if results are accepted.



for functions in the class NC1 are denoted by Q and to make such a query, a
data user creates a query token QTQ for Q, a verification key V KQ which allows
any entity to blindly verify the result, R, of the query, and a retrieval key RKQ

which is issued to authorised data users to enable the query result to be learnt.

Definition 1. An Extended Verifiable Searchable Encryption (eVSE) scheme
comprises the following algorithms:

– (MK,PP)
$← Setup(1κ,U) : Run by the data owner and takes as input the

security parameter and a universe of attributes (keywords and data values).
It outputs the data owner’s master secret key MK that is used for further
administrative tasks and public parameters PP, both of which are provided
to the remaining algorithms where required.

– (ID, sts, sto)
$← BuildIndex(δ(D), G,MK,PP) : Run by the data owner and

takes as input the pre-index of the data δ(D) and the set G of authorised
users, and outputs a searchable index ID for the data D, as well as a server
and data owner state.

– (SKID, sts)
$← AddUser(ID, G,MK,PP) : Run by the data owner to authorise

a user ID to perform queries by issuing them a secret key SKID and outputs
an updated server state.

– (QTQ, V KQ, RKQ)
$← Query(Q, sts, sto, SKID,PP) : Run by a data user

using its secret key and both states to generate a query token QTQ for a
query Q, a verification key V KQ and an output retrieval key RKQ.

– R
$← Search(ID, QTQ, sts, SKS,PP) : Run by the server to execute a query

given in the query token QTQ on the index ID. It generates a result R which
can be returned to the querying user or published.

– r ← Verify(R, V KQ, RTQ, RKQ,PP) : Verification consists of two steps:

1. RTQ ← BVerif(R, V KQ,PP) : Run by any party to verify the correctness
and completeness of the result R. It takes the verification key V KQ and,
if the result is accepted, it outputs a retrieval token RTQ which can
be used to learn the result. Otherwise a distinguished failure symbol
RTQ =⊥ is returned.

2. r ← Retrieve(V KQ, RTQ, RKQ,PP) : Run by a data user to read the
value of the result. It takes as input the retrieval token RTQ, the retrieval
key RKQ and the user’s secret key. If the user holds a valid retrieval key
for Q and the computation was performed correctly, then it returns the
actual result r = Q(ID), otherwise it returns r =⊥.

– (sts, sto)
$← RevokeUser(ID, G,MK,PP) : Run by the data owner using its

master secret key to revoke a user’s authorisation to make queries and read
results. It does so by updating the server and data owner state.

An eVSE is correct if there is a negligible probability that verification does
not suceed when all algorithms are run honestly. A formal definition is given in
Appendix B.1.



3.3 Types of Query

We consider a broader range of verifiable queries than many prior schemes. In
particular, we consider two main types:

– Keyword matching queries: Queries of this type have formed the basis
of most prior work in SE. Suppose there exists a universe (dictionary) of
keywords. Each encrypted data item is associated with an index of one or
more keywords to describe the contents. Queries are formed over the same
universe of keywords. In this work, we permit Boolean formulae over sets
of keywords (e.g. ((a ∧ b) ∨ c) where a, b, c are keywords). We return an
identifier for each file whose associated keywords in the index satisfy this
formula. Thus we can perform very expressive search queries over keywords.

– Computational queries: Queries of this type are similar to the operations
commonly discussed in the context of outsourced computation. We allow
statistical queries over keywords (e.g. counting the number of data items
that satisfy a keyword matching query), as well as operations over selected
data values that have been encoded using additional portions of the keyword
universe. It is possible to encode the entire database in such a way as to en-
able computations over all data fields, but it would usually be more efficient
to select a (small) subset of fields that are most useful or most frequently
queried. Clearly, keyword matching queries can be seen as a special case of
computational queries where the function operator is equality testing.

– Mixed queries: Queries of this type combine both the functionalities of the
aforementioned query types (e.g. finding the average of data values contained
in all documents associated with a particular keyword).

All types of query are performed in a verifiable manner to ensure that results
are correct and complete.

3.4 Security Model

We now formalise several notions of security as a series of cryptographic games.
The adversary against each notion is modelled as a probabilistic polynomial
time (PPT) algorithm A run by a challenger, with input parameters chosen to
represent the knowledge of a real attacker as well as the security parameter κ.
The adversary algorithm may maintain state and be multi-stage; we refer to each
stage as A for ease of notation. The notation AO denotes the adversary being
provided with oracle access to the following algorithms: BuildIndex(·, ·,MK,PP),
AddUser(·, ·,MK,PP), Query(·, ·, ·, ·,PP) and Search(·, ·, ·, ·,PP). We assume that
oracle queries are performed in a logical order such that all required information
is generated from previous queries. For each game, we define the advantage and
security of A as:

Definition 2. The advantage of a PPT adversary A is defined as follows, where
X ∈ {PubVerif , IndPriv ,QueryPriv}:

AdvXA (eVSE , 1κ) = Pr[ExpX
A [eVSE , 1κ] = 1].



Game 1 ExpPubVerif
A [eVSE , 1κ]:

1: (Q, δ(D?))← A(1κ)
2: (PP,MK)← Setup(1κ,U)
3: G← ∅
4: ID

$← Users

5: (SKID, sts)← AddUser(ID, G,MK,PP)

6: (ID? , sts, sto)← BuildIndex(δ(D?), G,MK,PP)

7: (QTQ, V KQ, RKQ)← Query(Q, sts, sto, SKID,PP)

8: R? ← AO(QTQ, V KQ, RKQ, ID? ,PP)

9: RTQ ← BVerif(R?, V KQ,PP)

10: r ← Retrieve(V KQ, RTQ, RKQ,PP)

11: if (r 6=⊥) and (r 6= Q(ID? )) then return 1

12: else return 0

An eVSE scheme is secure against Game X if for all PPT adversaries A,
AdvXA(eVSE, 1κ) ≤ negl(κ) where negl is a negligible function.

Public Verifiability. In Game 1, we capture the notion of public verifiability
such that a server may not cheat by returning an incorrect result without being
detected. This is a selective notion of security where, at the beginning of the
game, the adversary chooses the challenge query and pre-index. The challenger
then initialises the system, runs AddUser for a randomly chosen ID from the
userspace, runs BuildIndex for the challenge pre-index to create the index, and
finally runs Query. The adversary is given the resulting parameters, as well as
access to the above specified oracle queries, and outputs R?, which it believes
to be an incorrect result that will, nevertheless, be accepted by the verifier.
The challenger runs the verification steps on this output. The adversary wins if
verification succeeds, yet the result is not Q(ID?).

Index Privacy and Query Privacy. In Appendix C, we provide notions of
index indistinguishability against a selective chosen keyword attack and query
privacy, which ensure that no information regarding the keywords is leaked from
the index or query tokens respectively.

4 Construction

4.1 Overview

We base our instantiation on a CP-ABE scheme. As shown by Alderman et
al. [2], CP-ABE can be used to verifiably request computations to be performed
on data held by a server, referred to as VDC. In VDC, a trusted Key Distribution
Center (KDC) initialises the system and issues a CP-ABE decryption key to the
server pertaining to the data it holds. We use a similar technique, but have the
data owner act as the KDC (so the data need not be revealed to an external
KDC, as in VDC). The index for a set of data is a CP-ABE decryption key for
a set of attributes encoding the pre-index, and is sent to the server. The method
of encoding is described in Section 4.2.



We consider the family B of Boolean functions closed under complement –
that is, if F ∈ B then F , where F (x) = F (x) ⊕ 1, is also in B. A function
F : {0, 1}n → {0, 1} is monotonic if x 6 y implies F (x) 6 F (y), where x =
(x1, . . . , xn) ≤ y = (y1, . . . , yn) if and only if xi 6 yi for all i. For a monotonic
function F , the set AF = {x : F (x) = 1} defines a monotonic access structure.

A query Q is represented as a Boolean function of keywords and compu-
tational data points. If a monotonic CP-ABE scheme is used then queries can
be comprised of AND and OR gates (and negation can inefficiently be handled
by including both a positively and negatively labelled attribute in the universe
and requiring the presence of exactly one of them). A non-monotonic CP-ABE
scheme enables queries formed from AND, OR and NOT gates, which is a universal
set of gates, and fuzzy CP-ABE enables fuzzy keyword search. We can achieve
all functions in the class NC1, which includes common arithmetic and compar-
ison operators useful in queries. An n-bit result can be formed by performing n
Boolean queries, each of which returns the ith bit of the output.

The query token for a Boolean functionQ ∈ B comprises two CP-ABE cipher-
texts for access structures representing Q and Q ∈ B respectively. To perform
the search, the server attempts to decrypt each ciphertext under the secret key
(associated with the pre-index) and outputs the result. Each decryption succeeds
if and only if the query evaluates to True on the index. Any entity may perform
the blind verification operation using the verification key to learn only whether
the operation was performed correctly or not. Only entities holding the retrieval
token can read the value of the result.

4.2 Data Encoding

Defining the Index. Suppose the data D to be outsourced comprises n doc-
uments. We now discuss how to form a pre-index δ(D), which represents the
keywords and data fields that may be queried over.

Let D be a dictionary of keywords that describe the documents. D alone
suffices for keyword matching queries but for computational queries, we also
need to be able to encode data values such that they can be input to queries
represented as access structures encoding Boolean functions.

For each data field x that may be input to a computational query, let the
maximum size of the data value be mx bits. We define mx additional attributes
Ax,1, Ax,2, . . . , Ax,mx , and define the universe C =

⋃
x∈D ∪

mx
i=1Ax,i to be the

union of these attributes over all data fields. Let y be a value stored in the data
field x and let the binary representation of y be y1, . . . , ymx

. We view y as a
characteristic tuple of an attribute set Ay ⊆ C, where Ay = {Ax,i : yi = 1} – we
include an attribute for position i in the set if and only if the ith bit of y is 1.

Finally, to enable the index for all n documents to be encoded within a single
CP-ABE key (and hence for computations to be performed simultaneously on
all documents), and to ensure that the correct index data is used for each query,
we must encode a labelling of the document that each attribute pertains to. We
define our attribute universe U for the CP-ABE scheme to be U = {D∪C}× [n].
Thats is, we take n copies of D and C. Each element of {D ∪ C} describes a



particular keyword or data value, and each copy relates to a different document
in D - if we index each copy of an attribute w ∈ {D ∪ C} as {wi}ni=1, then wi
denotes the presence of w in document i. In practice, it may be desirable to use a
‘large universe’ CP-ABE scheme, wherein arbitrary textual strings are mapped
to attributes (group elements), e.g. using a hash function H. Thus, for a keyword
or data value w in document i, the attribute could be defined as H(w||i).3

The pre-index of the data D is a set of attributes δ(D) ⊆ U . The index that
is outsourced will be a CP-ABE key generated over this attribute set.

Hiding the Index. In general, CP-ABE schemes do not hide the attributes
within the decryption key. This is usually expected behaviour since CP-ABE is
often used to cryptographically enforce access control policies and it is natural
to assume that an entity is aware of their access rights.

However, in this setting we are using CP-ABE not to protect objects from
unauthorised access, but instead to prove the outcome of a function evaluation.
The keys in our setting are formed over attributes encoding the index of out-
sourced data, as opposed to encoding access rights. Since the server should not
learn any information about the data, including the index, we must implement
a mechanism by which the decryption key hides the associated attributes.

In many CP-ABE schemes, the public parameters comprise an ordered set
of group elements [37], each associated with an attribute from the universe;

that is, ∀i ∈ U , choose ti
$← Zp, then form the encoded attribute set {gti}i∈U .

Thus, given a key (or ciphertext) that comprises gti , it is possible, based on the
ordering of this set, to determine the attribute i ∈ U it relates to. In addition,
the attributes may be listed in the clear, and attached to keys and ciphertexts
to indicate which group elements should be applied at each point. Clearly, this
is unsuitable for our requirement for a hidden index.

To this end, we first apply a random permutation to U such that the position
of the group elements within the ordered set does not reveal the attribute string
(unless the permutation is known). We then use a symmetric encryption scheme
to encrypt each attribute x ∈ U under a key k, and then instantiate the CP-ABE
scheme on this universe of encrypted attributes. Thus, without knowledge of the
key k, the server should be unable to determine the attribute x that a given
group element corresponds to. We assume that only the keywords or data items
being computed over are considered sensitive, and not the logical makeup of the
Boolean function (in terms of gates).

4.3 Formal Details

The data owner initialises the system and encodes the data as an index which is
pushed to the server. Each (authorised) user will be issued with a personalised
secret key enabling them to form queries. To make a query Q, a user chooses a

3 In this case, it may be possible to avoid the use of symmetric encryption in our
construction by letting the secret k be the key for this cryptographic hash function.



random message from the message space M to act as a verification token, and
encrypt this using the CP-ABE scheme under the access structure encoding Q.
The server attempts to decrypt the ciphertext and recovers the chosen message
if and only if Q(ID) = 1. By the indistinguishability security of the CP-ABE
scheme, the server learns nothing about the message if Q(ID) = 0 since this
corresponds to an access structure not being satisfied. Thus, if a server returns
the correct message, the user is assured that the query evaluated to 1 on the
data. If, however, Q(ID) = 0, then decryption will return ⊥. This is insufficient
for verification purposes since the server can return ⊥ to convince a user of a
false negative search result. Thus, the user must, in fact, produce two CP-ABE
ciphertexts. As above, one corresponds to the function Q, whilst the other cor-
responds to Q, the complement query of Q. Hence, the server’s key will decrypt
exactly one ciphertext and the returned message will distinguish whether Q or Q
was satisfied, and therefore the value of Q(ID). A well-formed response (d0, d1)
from a server, therefore, satisfies the following:

(d0, d1) =

{
(m0,⊥), if Q(ID) = 1

(⊥,m1), if Q(ID) = 0.
(1)

Public Verifiability is achieved by publishing a token comprising a one-way func-
tion g applied to both plaintexts. Any entity can apply g to the server’s response
and compare with this token to check correctness. To achieve blind verification,
a random bit b permutes the order of the ciphertexts. Thus, verifiers that do not
know b cannot determine whether a plaintext is associated with Q or Q.

Our adversarial model allows the adversary (and hence servers in our system)
to hold more than one key (for multiple datasets); we must ensure that a key can-
not produce a valid looking response to a query on a different index. We achieve
this by labelling each pre-index with a label l(δ(D)) and define an attribute for
each label. Then, for a pre-index δ(D), the decryption key is formed over the
attribute set (δ(D) ∪ l(δ(D))). Recall that encoded data stored on the server’s
side is a collection of n documents, which we label D1, . . . , Dn. When making a
query Q(ID), a sub-query Qi may be formed for each document (e.g. to check
if a given keyword is contained in each document). In this case, the encryption
algorithm takes the access structure encoding of the conjunction (Di ∧ l(δ(D)))
for i ∈ [n]. A valid result can only be formed by applying the sub-query to the
specified document, which is also labelled by Di ∈ D – decryption succeeds if
and only if the function is satisfied and the label l(δ(D)) is matched in the key
and ciphertext. Note that a key for a different pre-index will not include the
correct label. Inputs to the Query algorithm are assumed to be in this form.

Let CPABE = (ABE.Setup, ABE.KeyGen, ABE.Encrypt, ABE.Decrypt) de-
fine a CP-ABE encryption scheme over the universe U . Let SE= (SE.KeyGen,
SE.Encrypt, SE.Decrypt) be an authenticated symmetric encryption scheme se-
cure [6] in the sense of IND-CPA. Let BE = (BE.KeyGen, BE.Encrypt, BE.Add,
BE.Decrypt) be a broadcast encryption scheme that retains IND-CPA security
against a coalition of revoked users. Finally, let g be a one-way function and



let Π and φ be pseudo-random permutations (PRPs) (which pad their inputs if
required). Then Algorithms 1–8 define an eVSE scheme for a class of queries Q.

Alg. 1 (MK,PP)← Setup(1κ,U)

1: mk ← BE.KeyGen(1κ)

2: k ← SE.KeyGen(1κ)

3: for i ∈ U do

4: ui ← SE.Encrypt(i, k)

5: U ′ ← {ui}i∈U
6: Ũ ← Π(U ′)
7: (MSKABE,MPKABE)← ABE.Setup(1κ, Ũ)
8: PP← (MPKABE, Ũ)
9: MK← (MSKABE,mk, k,Π)

Alg. 2 (ID, sts, sto)← BuildIndex(δ(D), G,MK,PP)

1: ID ← ABE.KeyGen((δ(D) ∪ l(δ(D))),MSKABE,MPKABE)

2: j
$← {0, 1}κ

3: sts ← BE.Encrypt(G, j,mk)

4: sto ← j

Alg. 3 (SKID, sts)← AddUser(ID, G,MK,PP)

1: ukID ← BE.Add(ID,mk)

2: if ID is a user then SKID ← (ukID, k,Π)

3: else SKID ← ukID
4: sts ← BE.Encrypt(G ∪ ID, j,mk)

Alg. 4 (QTQ, V KQ, RKQ)← Query(Q = {Qi}, sts, sto, SKu,PP)

1: j̃ ← BE.Decrypt(sts, ukID)

2: if (j̃ 6= sto) then return ⊥
3: for i = 1 to |Q| do
4: (m0i ,m1i )

$←M×M
5: bi

$← {0, 1}
6: cbi ← ABE.Encrypt(mbi , Qi,MPKABE)

7: c1−bi ← ABE.Encrypt(m1−bi , Qi,MPKABE)

8: QTQi
← (cbi , c1−bi )

9: γi ← φj(cbi‖c1−bi )
10: V KQi

← (g(m0i ), g(m1i ))

11: RKQi
← bi

12: QTQ ← {γi}, V KQ ← {V KQi
}, RKQ ← {RKQi

}

Alg. 5 R← Search(ID, QTQ = {γi}, sts, SKS,PP)

1: j̃ ← BE.Decrypt(sts, ukS)

2: if (j̃ 6= sts) then return ⊥
3: for i = 1 to |Q| do
4: (cbi‖c1−bi )← φ−1

j̃
(γi)

5: dbi ← ABE.Decrypt(cbi , ID,MPKABE)

6: d1−bi ← ABE.Decrypt(c1−bi , ID,MPKABE)

7: Ri = (dbi , d1−bi )

8: R = {Ri}



Alg. 6 RTQ ← BVerif(R = {(di, d′i)}, V KQ = {(V Ki, V K
′
i)},PP)

1: for i = 1 to |Q| do
2: if V Ki = g(di) then RTQi

= di
3: else if V K′i = g(d′i) then RTQi

= d′i
4: else RTQi

=⊥
5: RTQ = {RTQi

}

Alg. 7 r ← Retrieve(V KQ = {(g(mbi), g(m1−bi))}, RTQ = {RTQi}, RKQ = {bi},PP)

1: for i = 1 to |Q| do
2: if g(RTQi

) = g(m0) then ri = 1

3: else if g(RTQi
) = g(m1) then ri = 0

4: else ri =⊥
5: r = {ri}

Alg. 8 (sts, sto)← RevokeUser(ID, G,MK,PP)

1: j′
$← {0, 1}κ

2: sts ← BE.Encrypt(G \ ID, j′,mk)

3: sto ← j′

Theorem 1. Given a selective IND-CPA secure CP-ABE scheme, an authen-
ticated symmetric encryption scheme and a broadcast encryption scheme, both
secure in the sense of IND-CPA, pseudo-random permutations Π and φ, and
a one-way function g. Let eVSE be the extended verifiable searchable encryption
scheme defined in algorithms 1–8. Then eVSE is secure in the sense of Public
Verifiability, Index Privacy and Query Privacy.

The proofs can be found in Appendix D and in Appendix E we discuss
the trade-off between efficiency and functionality of our scheme. Note that we
can add additional contextual access control following Alderman et al. [1] by
replacing φ with a key assignment scheme.

5 Conclusion

With this work we have begun to consider the application of VC techniques in the
setting of searchable encryption. On the searchable encryption side, this enables
additional functionality in the form of computational queries (e.g. computing the
average of outsourced data fields that are linked to a specific set of keywords),
whilst on the VC side, this introduces additional privacy concerns regarding the
outsourced data and computations. The choice of using VC techniques based on
ABE stems from the natural correspondence between attributes and keywords in
an index. However, future work should investigate other forms of VC to achieve
different classes of functionality and (especially) improve efficiency.

In future work, we would like to consider a model whereby multiple data own-
ers can store data on a server without each having to initialise their own scheme.
In practice, this could result in the Key Distribution Center from VDC [2] set-
ting up the system and publishing public parameters that any data owner can
use, but enabling each data owner to generate their own CP-ABE decryption
keys for the data they hold.
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A Background

A.1 Ciphertext-Policy Attribute-based Encryption

In Ciphertext-Policy Attribute-based Encryption (CP-ABE), attributes are as-
signed to users and each ciphertext is associated with an access structure.

Definition 3. Let U be a universe of attributes. A Ciphertext-Policy Attribute-
based Encryption scheme [20] for U comprises four algorithms as follows:

– (PK,MK)
$← Setup(1κ): initialises the system using the security parameter

to generate a public key PK and master secret key MK.

– CTA
$← Encrypt(m,A,PK): takes a plaintext message m, an access structure

A ⊆ 2U \ ∅ and the public key to create a ciphertext CTA.

– SKS
$← KeyGen(S,MK,PK): takes an attribute set S, the master secret key

and the public key, and outputs a secret decryption key SKS.

– PT ← Decrypt(SKS, CTA,PK): takes a secret key, a ciphertext and the public
key, and outputs the plaintext PT = m if and only if the attributes S satisfy
the access structure A – that is, S ∈ A. Otherwise, PT =⊥.

Selective security for CP-ABE is defined in Game 2.



Game 2 ExpsIND-CPA
A [CPABE , 1κ]:

1: A? ← A(1κ)
2: (PK,MK)← Setup(1κ)

3: (m0,m1)← AO
KeyGen(·,MK,PK)(PK)

4: b
$← {0, 1}

5: CT ? ← Encrypt(A?,mb,PK)

6: b′ ← AOKeyGen(·,MK,PK)(CT ?,PK)

7: return (b′ = b)

Oracle Query 1 OKeyGen(S,MK,PK):

1: if S /∈ A? then return SKS ← KeyGen(S,MK,PK)

2: else return ⊥

B Additional Details for eVSE

B.1 Correctness Definition

Definition 4. A Extended Verifiable Searchable Encryption scheme is correct
for a family of queries Q if for all queries Q ∈ Q:

Pr[(MK,PP)
$← Setup(1κ,U),

(ID, sts, sto)
$← BuildIndex(δ(D), G,MK,PP),

(SKID, sts)
$← AddUser(ID, G,MK,PP),

(QTQ, V KQ, RKQ)
$← Query(Q, sts, sto, SKID,PP),

R
$← Search(ID, QTQ, sts, SKS,PP),

RTQ ← BVerif(R, V KQ,PP),

Q(ID)← Retrieve(V KQ, RTQ, RKQ,PP)]

= 1− negl(κ).

B.2 Example: Defining the Index

Here we provide a simple example that shows how we define the index. Suppose
we have 3 documents with the following characteristics:

– Document 1: Keywords: Male, Vaccinated. Data: Age = 7 = 1112.

– Document 2: Keywords: Female. Data: Age = 4 = 1002.

– Document 3: Keywords: Male, Vaccinated. Data: -



Then,

D ={Male, Female, Vaccinated},
C ={AAge,1, AAge,2, AAge,3},
U ={MaleDoc1, MaleDoc2, MaleDoc3,

FemaleDoc1, FemaleDoc2, FemaleDoc3,

VaccinatedDoc1, VaccinatedDoc2, VaccinatedDoc3,

A(Age,1),Doc1, A(Age,1),Doc2, A(Age,1),Doc3,

A(Age,2),Doc1, A(Age,2),Doc2, A(Age,2),Doc3,

A(Age,3),Doc1, A(Age,3),Doc2, A(Age,3),Doc3},
δ(D) ={MaleDoc1, VaccinatedDoc1, A(Age,1),Doc1, A(Age,2),Doc1, A(Age,3),Doc1,

FemaleDoc2, A(Age,3),Doc2,

MaleDoc3, VaccinatedDoc3}.

C Security Models

C.1 Index Privacy

In Game 3, we formalise the notion of index indistinguishability against a se-
lective chosen keyword attack, which ensures no information regarding the key-
words is leaked from the index. Firstly the adversary outputs two sets of at-
tributes (D0, D1 ⊆ U) that they wish to be challenged on, with the restriction
that |D0| = |D1| (this is required as the CP-ABE used to produce the index
does not conceal the index length). The challenger runs Setup to produce the
public and secret parameters. The challenger selects a bit b ∈ {0, 1} uniformly
at random to select which set of attributes to encode into the index. Before the
index is created, the challenger needs to create the pre-index from the set of
attributes Db (line 4 of Game 2). This is done using an Encode mechanism that
takes the elements of Db as input and outputs the pre-index δ(Db). Encode is
not required in our instantiation as the pre-indexes can be chosen directly from
Ũ as the user knows the mapping from U to U ′ and the permutation Π; the
adversary however does not. The challenger then runs BuildIndex using δ(Db)
to produce the index IDb

, which is given to A. The adversary is then given
PP and oracle access, with the restriction that the query results are identi-
cal for each index ID0

, ID1
, i.e. if R0 ← Search(ID0

, QTQ, sts, SKS,PP) and
R1 ← Search(ID1 , QTQ, sts, SKS,PP) then we need R0 = R1. After this query
phase, A outputs a guess b′ and wins the game if the comparison operator ==
returns 1 which indicates that b′ = b. Hence A wins the game if they can identify
which attribute set (D0 or D1) was encoded into the index IDb

.

C.2 Query Privacy

The queries themselves should not leak any information about the corresponding
keywords that make up the query. Our construction of the queries leaks the



Game 3 ExpIndPriv
A [eVSE , 1κ]:

1: (D0, D1, Q)← A(1κ,U)
2: if (|D0| 6= |D1|) then return ⊥
3: b

$← {0, 1}
4: (MK,PP)← Setup(1κ,U)
5: G← ∅
6: ID

$← Users

7: (SKID, sts)← AddUser(ID, G,MK,PP)

8: δ(Db)← Encode(Db)

9: (IDb
, sts, sto)← BuildIndex(δ(Db), G,MK,PP)

10: b′ ← AO(IDb
, sts,PP)

11: return (b′ == b)

Game 4 ExpQueryPriv
A [eVSE , 1κ]:

1: (Q0, Q1)← A(1κ,U)
2: if (GQ0 6= GQ1 ) then return ⊥
3: b

$← {0, 1}
4: (MK,PP)← Setup(1κ,U)
5: G← ∅
6: ID

$← Users

7: (SKID, sts)← AddUser(ID, G,MK,PP)

8: δ(Db)
$← Ũ

9: (ID, sts, sto)← BuildIndex(δ(D), G,MK,PP)

10: Q̃b ← Encode(Qb)

11: (QTQb
, V KQb

, RKQb
)← Query(Q̃b, sts, sto, SKID,PP)

12: b′ ← AO(QTQb
, V KQb

, RKQb
, ID, sts,PP)

13: return (b′ == b)

gates, but not the keywords themselves. This notion of query indistinguishability
against a selective chosen query attack is formalised in Game 4. The game runs
similarly to that of Game 3, subject to the following restrictions: the challenge
queries (Q0, Q1) must use the same gates. We denote the gate structure of a
query Q by GQ, and hence require that GQ0 = GQ1 .

D Security Proofs

Lemma 1. eVSE as defined in algorithms 1–8 is secure against Public Verifia-
bility (Game 1) under the same assumptions as in Theorem 1.

Proof. SupposeAeV SE is an adversary with non-negligible advantage against the
selective Public Verifiability game (Game 1) when instantiated with Algorithms
1–8. We begin by defining the following three games:

– Game A. This is the selective Public Verifiability game as defined in Game 1.

– Game B. This is the same as Game A with the modification that in Query,
we no longer return an encryption of m0 and m1.
Instead, we choose another random message m′ 6= m0,m1 and, if Q(ID) = 1,
we replace c1 by ABE.Encrypt(Q,m′,MPKABE). Otherwise, we replace c0 by



ABE.Encrypt(Q,m′,MPKABE). In other words, we replace the ciphertext
associated with the unsatisfied function with the encryption of a separate
random message unrelated to the other system parameters, and in particular
to the verification keys.

– Game C. This is the same as Game B with the exception that instead
of choosing a random message m′, we implicitly set m′ to be the challenge
input w in the one-way function game.

We show that an adversary with non-negligible advantage against the selective
Public Verifiability game can be used to construct an adversary that may invert
the one-way function g.

Game A to Game B. We begin by showing that there is a negligible distin-
guishing advantage between Game A and Game B. Suppose otherwise, that
AeV SE can distinguish the two games with non-negligible advantage δ. We then
construct an adversary AABE that uses AeV SE as a sub-routine to break the
selective IND-CPA security of the CP-ABE scheme. We consider a challenger
C playing the IND-CPA game with AABE , who in turn acts as a challenger in
the Verifiability game for AeV SE :

1. AeV SE is given the security parameter by the environment, and declares (to
AABE) its choice of pre-index δ(D?) and the query Q.

2. AABE uses oracle calls to C in order to obtain the encrypted-then-permuted
universe Ũ . C runs k ← SE.KeyGen(1κ) and uses the symmetric key k to
symmetrically encrypt each element of U and therefore obtains U ′. Then C
applies the permutation Π to the universe U ′ that results to a permuted uni-
verse Ũ and returns it to AABE . Furthermore C runs mk ← BE.KeyGen(1κ)
for the broadcast encryption scheme. It sets the master key to be MK =
(MSKABE,mk, k,Π) and keeps it private.

3. C runs the ABE.Setup algorithm on the security parameter and Ũ to generate
MPKABE and MSKABE. He gives MPKABE to AABE .

4. AABE now simulates running Setup such that the outcome is consistent with
MPKABE. It sets PP = (MPKABE, Ũ).

5. The set of authorised users G is initialised and a random ID is chosen from
the userspace Users which will be used as input for AddUser.

6. AABE first creates the label l(δ(D?)) from δ(D?). Next AABE needs to
create the index. It does so by calling the challenger who runs ABE.KeyGen
on (δ(D?) ∪ l(δ(D?))), MPKABE and MSKABE and obtains SKδ(D?) that
corresponds to ID? . Furthermore, C creates the server and data owner state
respectively following BuildIndex and returns the outputs to AABE .

7. AABE must send a challenge access structure to the challenger. It first com-
putes r = Q(ID?) – that is, the outcome of the challenge query Q applied to
the challenge index. If r = 1, AABE sets A? = Q = (FD? ∧ l(δ(D?))). Else,
r = 0, A? = Q = (FD? ∧ l(δ(D?))) where FD? is the query Q represented as
a function.



8. To obtain a valid key AABE uses oracle calls to C for AddUser. The challenger
runs ukID ← BE.Add(ID,mk). If ID is a user it sets the key to be SKID ←
(ukID, k,Π), otherwise SKID ← ukID, and keeps it private. Furthermore, it
outputs an updated server state sts and implicitely updates the set G by
adding the newly added ID to G.

9. AABE sends sts to C who runs j̃ ← BE.Decrypt(sts, uku) and returns j̃ to

AABE in the Query stage. It checks whether j̃ = j. If so it proceeds with the
next step, otherwise the game aborts.

10. Each query Q can comprise multiple subqueries Qi. Therefore the following
is done for all i ∈ [|Q|] = {1, . . . , |Q|}:

– To generate the challenge input, AABE begins by choosing a random bit
bi, three random messages m0i , m1i and m′i from the message space, and
another random bit ti.

AABE sends the messages m0i and m1i to C as the challenge messages
for the CP-ABE game. C chooses a random bit ci and returns CT ? ←
Encrypt(mci ,A?,MPKABE).

• If r = 1, AABE generates cbi ← Encrypt(Qi,m
′
i,MPKABE) and sets

c1−bi = CT ? (formed over A? by C). It also sets V Kbi = g(m′i) and
V K1−bi = g(mti).

• Else r = 0, and AABE sets cbi = CT ? and computes c1−bi ←
Encrypt(Qi,m

′
i,MPKABE). It sets V Kbi = g(mti) and V K1−bi =

g(m′i).

AABE sets QTQi = (cbi , c1−bi), V KQi = (V Kbi , V K1−bi) and RKQi =
bi. Finally, AABE computes γi ← φj(cbi‖c1−bi) and sets for all i ∈ [|Q|]
QTQ = {γi}, V KQ = {V KQi

}, and RKQ = {RKQi
}.

11. AABE sends the output from Query along with the public information to
AeV SE , who is also given oracle access to which AABE responds as follows:

– BuildIndex(·,MK,PP): To generate the evaluation key for the queried
pre-index δ(D), AABE makes use of the KeyGen oracle in the CP-ABE
game. Then it sets x′ = δ(D) ∪ l(δ(D)) and makes an oracle query to
C for OKeyGen(x′,MK,PK) as in Oracle Query 1. C shall generate a CP-
ABE decryption key SKx′ for δ(D) if and only if x′ 6∈ A?. Now, since
each data label is unique, l(δ(D0)) = l(δ(D1)) if and only if D0 = D1.
By the definition of A?, x′ will satisfy A? only if the data labels l(δ(D))
and l(δ(D?)) match, hence only if δ(D) = δ(D?). Now, if x = x?i , then
additionally, δ(D) must satisfy either Q or Q as chosen in A? in Step 7.
However, this was chosen specifically such that δ(D?) (and therefore
δ(D)) does not satisfy the query expression, and therefore x′ 6∈ A? and
C may generate the key, which AABE will receive as SKδ(D).

– All other oracles are run according to their respective algorithms.

12. Eventually, AeV SE outputs R? which it believes is a valid forgery (i.e. that
it will be accepted yet does not correspond to the correct value of Q(ID?)).



13. AABE parses R? as {R?i } for all i ∈ [|Q|]. For each i ∈ [|Q|] AABE does
the following: AABE parses R?i as (dbi , d1−bi) and using the retrieval key
RKQi = bi, finds d0i and d1i . One of d0i and d1i will be ⊥ (by construction)
and we denote the other value by Yi.
Observe that, since AeV SE is assumed to be a successful adversary against
selective public verifiability, the non-⊥ value, Yi, that it will return will be
the plaintext mci since the challenge access structure was always set to be
unsatisfied on the challenge input.
Thus, if g(Yi) = g(mti), AABE outputs a guess c′i = ti and otherwise guesses
c′i = (1− ti).
If ti = ci (the challenge bit chosen by C), we observe that the above corre-
sponds to Game A (since the verification key comprises g(m′i) where m′i is
the message a legitimate server could recover, and g(mci) where mci is the
other plaintext). Alternatively, ti = 1− ci and the distribution of the above
experiment is identical to Game B (since the verification key comprises the
legitimate message and a random message m1−ci that is unrelated to the
ciphertext).
Now, we consider the advantage of this constructed adversary AABE playing
the sIND-CPA game for CP-ABE. Recall that by assumption, AeV SE has a
non-negligible advantage δ in distinguishing between Game A and Game
B – that is

|Pr(ExpAAeV SE
[eVSE , 1κ] = 1)− Pr(ExpBAeV SE

[eVSE , 1κ] = 1)| > δ

where ExpiAeV SE
[eVSE , 1κ] denotes the output of running AeV SE in Game

i. The probability of AABE guessing ci correctly is:

Pr(c′i = ci) = Pr(ti = ci) Pr(c′i = ci|ti = ci) + Pr(ti 6= ci) Pr(c′i = ci|ti 6= ci)

=
1

2
Pr(g(Yi) = g(mti)|ti = ci) +

1

2
Pr(g(Yi) 6= g(mti)|ti 6= ci)

=
1

2
Pr(ExpAAeV SE

[eVSE , 1κ] = 1) +
1

2
(1− Pr(g(Yi) = g(mti)|ti 6= ci))

=
1

2
Pr(ExpAAeV SE

[eVSE , 1κ] = 1) +
1

2

(
1− Pr(ExpBAeV SE

[eVSE , 1κ] = 1)
)

=
1

2

(
Pr(ExpAAeV SE

[eVSE , 1κ] = 1)− Pr(ExpBAeV SE
[eVSE , 1κ] = 1) + 1

)
>

1

2
(δ + 1)

Hence,

AdvAABE
>

∣∣∣∣Pr(ci = c′i)−
1

2

∣∣∣∣
>

∣∣∣∣12(δ + 1)− 1

2

∣∣∣∣
>
δ

2



14. Overall the above is done for all i ∈ [|Q|] and therefore we have n·AdvAABE
>

n · δ2 .

Hence, if AeV SE has advantage δ at distinguishing these games then AABE
can win the sIND-CPA game for CP-ABE with non-negligible probability. Thus
since we assumed the CP-ABE scheme to be secure, we conclude that AeV SE
cannot distinguish Game A from Game B with non-negligible probability.

Game B to Game C. The transition from Game B to Game C is simply
to set the value of m′i to no longer be random but instead to correspond to
the challenge w in the one-way function inversion game. The game basically
formailizes that it is infeasible for any probabilistic polynomial-time algorithm
to invert the one-way function g, i.e. to find a pre-image of a given value z.
We argue that the adversary has no distinguishing advantage between these
games since the new value is independent of anything else in the system bar the
verification key g(w) and hence looks random to an adversary with no additional
information (in particular, AeV SE does not see the challenge for the one-way
function as this is played between C and AABE).

Final Proof. We now show that using AeV SE in Game C, AABE can invert
the one-way function g – that is, given a challenge z = g(w) we can recover w.
(The following can be done analogous for all i ∈ [|Q|].) Specifically wlog, during
Query, we choose the messages as follows:

– if Q(ID) = 1, we implicitly set m1−bi to be w and set the verification key
component V K1−bi = z. We choose mbi and V Kbi randomly as usual.

– if Q(ID) = 0, we implicitly set mbi to be w and set the verification key
component V Kbi = z. We choose m1−bi and V K1−bi randomly as usual.

Now, since AeV SE is assumed to be successful, it will output a forgery comprising
the plaintext encrypted under the unsatisfied query (Q or Q). By construction,
this will be w (and the adversary’s view is consistent since the verification key
is simulated correctly using z). AABE can therefore forward this result to C in
order to invert the one-way function with the same non-negligible probability
that AeV SE has against the public verifiability game.

We conclude that if the ABE scheme is sIND-CPA secure and the one-way
function is hard-to-invert, then eVSE as defined by Algorithms 1–8 is secure in
the sense of selective Public Verifiability. ut

Lemma 2. eVSE as defined in algorithms 1–8 is secure against Index Privacy
(Game 3) under the same assumptions as in Theorem 1.

Proof. Suppose AeV SE is an adversary with non-negligible advantage against
the Index Privacy game (Game 3) when instantiated with Algorithms 1-8. We
begin by defining the following two games:

– Game A: This is the selective Index Privacy game as defined in Game 3.

– Game B: This is the same as Game A with the modification that we use
a pseudorandom permutation in Algorithm 1 to construct Ũ .



We show that an adversary with non-negligible advantage against the se-
lective Index Privacy game can be used to construct an adversary AIND-CPA

which may break the IND-CPA security of a symmetric key encryption scheme
SE= (SE.KeyGen, SE.Encrypt, SE.Decrypt).

Game A to Game B. The PRP-assumption [7] is formulated as follows. Let
D be a distinguisher algorithm that takes as input a permutation and outputs
a bit. In the following, let Π be a random function, Π ′ be a PRP and S, S′ are
sets. We define the PRP-advantage of D to be:

Pr[S̃
$← Π(S) : D(S̃) = 1]− Pr[S̃′ ← Π ′(S′) : D(S̃′) = 1]

The PRP-assumption states that any efficient algorithm’s PRP-advantage is
negligible.

Now, fix an adversary AeV SE that is able to distinguish between Game A
and Game B with non-negligible advantage δ. That is, AeV SE ’s probability
of success in one game is non-negligibly different to their probability of success
in the other game (suppose the probability of success in Game A is higher
than that of Game B, without loss of generality). We can build a distinguisher
D that is able to distinguish whether a permutation is either truly random or
pseudorandom with non-negligible probability, by using AeV SE as a subroutine
(hence has non-negligible PRP-advantage). Given a permutation π, D instanti-
ates AeV SE in Game 3 using π as input into Setup (line 3 of Game 3). If AeV SE
wins the game then D outputs 1, indicating that they believe π is truly random
and 0 otherwise, indicating that they believe π is a PRP. D will be able to distin-
guish π with exactly AeV SE ’s advantage, δ contradicting the PRP-assumption.
Thus we conclude that AeV SE cannot distinguish Game A from Game B with
non-negligible probability. Hence we continue the proof using Game B.

Reduction to IND-CPA. Now let AeV SE be an adversary with non-negligible
advantage δ against Game B. We now show that using AeV SE as a subroutine
in Game B, AIND-CPA is able to break the IND-CPA security of SE . That

is, given a challenge ciphertext c which is an encryption mb where b
$← {0, 1}

AIND-CPA can distinguish whether c is an encryption of m0 or m1.
Fix an adversary AeV SE that is able to break the index privacy of eVSE

with non-negligible advantage γ. Let C be the challenger for AIND-CPA and
AIND-CPA will act as the challenger for AeV SE .

1. AeV SE chooses their challenge sets: D0 = (d0,1, d0,2, ..., d0,q) and D1 =
(d1,1, d1,2, ..., d1,q) ⊆ U such that |D0| = |D1|. Note that a rational adversary
will always choose D0 6= D1i.e. D0 and D1 differ by at least one element.
AeV SE submits these challenge sets to AIND-CPA.

2. The challenger C chooses a bit b
$← {0, 1}.

3. Setup is run between C and AIND-CPA:



– AIND-CPA runs line 1 of Algorithm 1 to generate the secret key for the
broadcast encryption scheme BE = (BE.KeyGen,BE.Encrypt,BE.Add,BE.Decrypt):

mk ← BE.KeyGen(1κ),

which is retained by AIND-CPA and shared with C.
– C runs line 2 of Algorithm 1 to generate the secret key for the symmetric

encryption scheme SE= (SE.KeyGen, SE.Encrypt, SE.Decrypt):

k ← SE.KeyGen(1κ),

which is retained by C.
– C provides AIND-CPA with oracle access to the following functions:

SE.Encryptk(·) which takes as input a plaintext and returns its symmet-
ric encryption under k and LR(·, ·, b) which takes two plaintexts m0,m1

and a bit b and outputs the symmetric encryption of mb under k.

– For all d0,j 6= d1,j , AIND-CPA submits the pair (d0,j , d1,j) (where such
pairs exist as the challenge sets are not equal) to LR(·, ·, b) and receives
challenge ciphertexts, cj , in return.

– These challenge ciphertexts are included in U ′. To compute the rest
of U ′ (lines 3-5 of Algorithm 1), AIND-CPA submits every other pair
(d0,i, d1,i) ∈ {D0, D1} : d0,i = d1,i, to SE.Encryptk(·) and includes the
output in U ′. To ensure U ′ contains an encryption of each attribute
in U , AIND-CPA submits the remaining attributes of U : an /∈ (D0 ∪
D1) to SE.Encryptk(·) and includes the output in U ′. U ′ now contains
an encryption of every element in U . To map elements from U to U ′
(which is required to run Encode), every attribute in U needs to have a
corresponding ciphertext in U ′ which is defined as follows: for each pair of
attibutes that were submitted to LR(·, ·, b) we let the output denote the
corresponding element in U ′ for the attribute on the left hand side of the
submitted pair. For all attributes in U submitted to SE.Encryptk(·) the
output is the corresponding element in U ′ for that attribute. This defines
a bijective mapping of attributes in U to elements in U ′ as required.

– AIND-CPA defines the set Ũ ← Π(U ′), where Π is a pseudorandom
function, and runs line 7 of algorithm 1:

(MSKABE,MPKABE)← ABE.Setup(1κ, Ũ).

– AIND-CPA retains MSKABE and PP = (MPKABE, Ũ) is made public.

4. AIND-CPA initializesG as the empty set, selects a random ID from Users and
runs AddUser to produce SKID, which is shared with AeV SE . The values k
and Π are omitted from this secret key as they are not required. AIND-CPA

also runs AddUser on a server identity S to generate the secret key SKS

which is retained by AIND-CPA. AIND-CPA adds ID to G.



5. AIND-CPA creates a pre-index δ(Db) to encode into the challenge index
for AeV SE (line 4 Algorithm 1). This is done using Encode, which takes as
input the elements from the challenge set Db and maps them to elements
in U ′ as defined in step 3. Due to the way the mapping is defined using
LR(·, ·, b), this will produce a preindex containing encryptions of elements
from the challenge set Db. If b = 0 then LR(·, ·, 0) would have been used for
encryption hence the attributes in D0 would have been encrypted and be
included in the preindex, wheres if b = 1 then LR(·, ·, 1) would have been
used for encryption hence the attributes in D1 would have been encrypted
and be included in the preindex.

6. AIND-CPA runs BuildIndex using the pre-index created in step 4 to create
the challenge index IDb

for AeV SE . Note that although BuildIndex takes MK
as input, it does not require k or Π. The only part of MK that is required is
MSKABEwhich is generated and retained by AIND-CPA in step 3. BuildIndex
also generates sts and sto. sts is shared with AeV SE and sto is retained by
AIND-CPA.

7. AeV SE is given oracle access to BuildIndex, AddUser, Query and Search. To
query BuildIndex AeV SE submits a set of attributes (with the restriction that
no attributes from either challenge set are used) to AIND-CPA. AIND-CPA

responds to BuildIndex queries using Encode to produce the pre-index from
the set of attributes then runs ABE.KeyGen to produce the relevant index
(line 1 Algorithm 2). We allow AeV SE to query AddUser with arbitrary user
IDs to generate secret keys SKID, AIND-CPA responds to these queries by
calling C to run Algorithm 3 using the ID from AeV SE and mk, k which
it holds. To query Query AeV SE submits their query Q and their secret
key SKu to AIND-CPA (with the restriction that the corresponding query
cannot be used to distinguish between the two challenge sets). AIND-CPA

runs Algorithm 4 using these values along with sts (which was generated
in step 5) to produce the query (QTQ, V KQ, RKQ) which is returned to
AeV SE . To query Search submits their challenge index IDb

and QTQ to
AIND-CPA which runs Search using these values along with sts and SKS to
produce search results R which are returned to AeV SE . To allow verification
of search results AeV SE can query BVerif. AeV SE submits the result R along
with the verification token V KQ to AIND-CPA which runs Algorithm 6 and
returns RTQ to AeV SE .

8. AeV SE outputs their guess b′ for b. By our assumption that AeV SE is an
adversary with non-neglible advantage γ in the Index Privacy game (Game 3)
we have that Pr(b′ = b) > γ + 1

2 . If b′ = 0, this tells AIND-CPA that AeV SE
believes that D0 was encoded into the index IDb

and that LR(·, ·, 0) was
used for encryption (respectively if b′ = 1 this tells AIND-CPA that AeV SE
believes that D1 was encoded into the index and that LR(·, ·, 0) was used
for encryption).

9. Using this information AIND-CPA outputs their guess for b as b′ also. As
AIND-CPA’s challenge ciphertext was created using LR(·, ·, b) AeV SE ’s guess



b′ directly corresponds to the bit b chosen by C used to create AIND-CPA’s
challenge ciphertext. Hence if AIND-CPA uses the same b′ as the response
to their challenge ciphertext then they will win their challenge with non-
negligible probability γ which contradicts our assumption that SE is a secure
symmetric encryption scheme.

10. From this we conclude that there cannot exist an adversary AeV SE with
non-negligible probability against Game B, hence γ is in fact negligible.

We have shown that Game B can be distinguished from Game A (or
Game 3) with only a negligible probability. Therefore, an adversary against
Game A can be run against Game B instead with at most a negligible loss in
advantage. The advantage, γ, of an adversary against Game B has been shown
to be negligible. Therefore, we conclude that AdvIndPrivAeV SE

is also negligible. This
proves the security with respect to Index Privacy of eVSE.

ut

Lemma 3. eVSE as defined in algorithms 1–8 is secure against Query Privacy
(Game 4) under the same assumptions as in Theorem 1.

Proof. Suppose AeV SE is an adversary with non-negligible advantage against
the Query Privacy game (Game 4) when instantiated with algorithms 1-8. We
begin by defining two games:

– Game A: This is the selective Query Privacy game as defined in Game 3.

– Game B: This is the same as Game A with the modification that we use
a pseudorandom permutation in Algorithm 1 to construct Ũ .

We show that an adversary with non-negligible advantage against the selec-
tive Query Privacy game can be used to construct an adversary (AIND-CPA)
which may break the IND-CPA security of a symmetric key encryption scheme
SE= (SE.KeyGen, SE.Encrypt, SE.Decrypt).

Game A to Game B. See Game A to Game B in proof of Lemma 2 for
details.

Reduction to IND-CPA. We now show that usingAeV SE in Game B,AIND-CPA

can break the IND-CPA security of a symmetric key encryption scheme SE .

That is, given a challenge ciphertext c which is an encryption mb where b
$←

{0, 1}, AIND-CPA can distinguish whether c is an encryption of m0 or m1.
This proof follows in the spirit of the proof of Lemma 2. Let C be the chal-

lenger for AIND-CPA and AIND-CPA will act as the challenger for AeV SE .

1. AeV SE chooses their challenge queries: Q0, Q1 with the restriction that all
gates match in both queries (the gates are denoted by GQ0 for Q0 and GQ1 for
Q1). Note that a rational adversary will always choose queries where the in-
put attributes differ in at least one position. We denote the sets of attributes
contained in the queries as (q0,1, q0,2, ..., q0,t), (q1,1, q1,2, ..., q1,t) ⊆ U for Q0



and Q1 respectively (note that if all the (binary) gates in each query match
the two sets of attributes will be the same size). AeV SE submits Q0 and Q1

to AIND-CPA.

2. The challenger C chooses a bit b
$← {0, 1}.

3. eVSE.Setup is run between C and AIND-CPA:

– AIND-CPA runs line 1 of Algorithm 1 to generate the secret key for the
broadcast encryption scheme BE = (BE.KeyGen,BE.Encrypt,BE.Add,BE.Decrypt):

mk ← BE.KeyGen(1κ),

which is retained by AIND-CPA and shared with C.
– C runs line 2 of Algorithm 1 to generate the secret key for the symmetric

encryption scheme SE :

k ← SE.KeyGen(1κ),

which is retained by C.
– C provides AIND-CPA with oracle access to the following functions:

SE.Encryptk(·) which takes as input a plaintext and returns its symmet-
ric encryption under k and LR(·, ·, b) which takes two plaintexts m0,m1

and a bit b and runs SE.Encryptk(·) using mb as input and outputs the
symmetric encryption of mb under k.

– AIND-CPA now computes U ′ (lines 3-5 of Algorithm 1). For every pair
(q0,i, q1,i) : q0,i 6= q1,i, AIND-CPA submits the pairs (q0,i, q1,i) and
(q1,i, q0,i) to LR(·, ·, b). For all other pairs (q0,t, q1,t) we have that q0,t =
q1,t, hence AIND-CPA submits q0,t to SE.Encryptk(·) and includes the
output in U ′. To ensure U ′ contains an encryption of each attribute in
U , AIND-CPA submits the remaining attributes of U : an /∈ (Q0 ∪ Q1)
to SE.Encryptk(·) and includes the output in U ′. U ′ now contains an en-
cryption of every element in U . In order to map elements from U to U ′
(which is required to run Encode), every attribute in U needs to have a
corresponding ciphertext in U ′ which is defined as follows: for each pair of
attibutes that were submitted to LR(·, ·, b) we let the output denote the
corresponding element in U ′ for the attribute on the left hand side of the
submitted pair. For all attributes in U submitted to SE.Encryptk(·) the
output is the corresponding element in U ′ for that attribute. This defines
a bijective mapping of attributes in U to elements in U ′ as required.

– AIND-CPA defines the set Ũ ← Π(U ′), where Π is a pseudorandom
function, and runs line 7 of algorithm 1:

(MSKABE,MPKABE)← ABE.Setup(1κ, Ũ).

– AIND-CPA retains MSKABE and PP = (MPKABE, Ũ) is made public.

(MSKABE,MPKABE)← ABE.Setup(1κ, Ũ).



4. AIND-CPA initializes G as the empty set, selects a random ID from users and
runs AddUser to produce SKID, which is shared with AeV SE . The values k
and Π are omitted from this secret key as they are not required. AIND-CPA

also runs AddUser on a server identity S to generate the secret key SKS

which is retained by AIND-CPA. AIND-CPA adds ID to G.

5. AIND-CPA runs BuildIndex using a pre-index δ(D) chosen randomly from Ũ
to create an index ID for AeV SE . Note that although BuildIndex takes MK
as input, it does not require k or Π. The only part of MK that is required is
MSKABEwhich is generated and retained by AIND-CPA in step 3. BuildIndex
also generates sts and sto. sts is shared with AeV SE and sto is retained by
AIND-CPA.

6. AIND-CPA creates a pre-query Q̃b to encode into the challenge query for
AeV SE . This is done using Encode, which takes as input the elements from
set of attributes corresponding to the challenge query Qb and maps them
to elements in U ′ as defined in step 3. Due to the way the mapping is de-
fined using LR(·, ·, b), this will produce a pre-query containing encryptions
of attributes corresponding to the challenge query Qb. If b = 0 then then
LR(·, ·, 0) would have been used for encryption hence the attributes in Q0

would have been encrypted and be included in the pre-query, wheres if b = 1
then LR(·, ·, 1) would have been used for encryption hence the attributes
corresponding to Q1 would have been encrypted and be included in the pre-
query.

7. AIND-CPA runs Query using the pre-query created in step 4 to create the
challenge query (QTQb

, V KQb
, RKQb

) for AeV SE .

8. AeV SE is given oracle access to BuildIndex, AddUser, Query and Search. To
query BuildIndex AeV SE submits a set of attributes to AIND-CPA (with the
restriction that the search results produced when searching the correspond-
ing index cannot be used to distinguish the two challenge sets). AIND-CPA

responds to BuildIndex queries using Encode to produce the pre-query from
the set of attributes then runs ABE.KeyGen to produce the relevant index
(line 1 Algorithm 2). We allow AeV SE to query AddUser with arbitrary user
IDs to generate secret keys SKID; AIND-CPA responds to these queries by
querying C to run Algorithm 3 using the ID from AeV SE and mk, k which
it holds. To query Query AeV SE submits their query Q and their secret key
SKID to AIND-CPA (with the restriction that the corresponding query can-
not be used to distinguish between the two challenge sets). AIND-CPA runs
Algorithm 4 using these values along with sts (which was generated in step
5) to produce the query (QTQ, V KQ, RKQ) which is returned to AeV SE .

9. AeV SE outputs their guess b′ for b. By our assumption that AeV SE is an ad-
versary with non-neglible advantage γ in the Query Privacy game (Game 4)
we have that Pr(b′ = b) > γ + 1

2 . If b′ = 0, this tells AIND-CPA that AeV SE
believes that Q0 was encoded into the query (QTQb

, V KQb
, RKQb

) and that
LR(·, ·, 0) was used for encryption (respectively if b′ = 1 this tells AIND-CPA



that AeV SE believes that Q1 was encoded into the query and that LR(·, ·, 0)
was used for encryption).

10. Using this information AIND-CPA outputs their guess for b as b′ also. As
AIND-CPA’s challenge ciphertext was created using LR(·, ·, b),AeV SE ’s guess
b′ directly corresponds to the bit b chosen by C used to create AIND-CPA’s
challenge ciphertext. Hence if AIND-CPA uses the same b′ as the response
to their challenge ciphertext then they will win their challenge with non-
negligible probability γ which contradicts our assumption that SE is a secure
symmetric encryption scheme.

11. From this we conclude that there cannot exist an adversary AeV SE with
non-negligible probability against Game B, hence γ is in fact negligible.

We have shown that Game B can be distinguished from Game A (or
Game 4) with only a negligible probability. Therefore, an adversary against
Game A can be run against Game B instead with at most a negligible loss in
advantage. The advantage, γ, of an adversary against Game B has been shown
to be negligible. Therefore, we conclude that AdvQueryPrivAeV SE

is also negligible.
This proves the security with respect to Query Privacy of eVSE.

ut

E Discussion

Our scheme extends the expressiveness of queries that can be achieved in VSE.
No other VSE schemes to our knowledge are able to perform the range of search
queries or include negation of keywords in their search queries. Our combination
of search queries with computational queries is also a novel functionality in the
field of VSE.

The search time and size of the queries are both linear in n (the amount
of data items stored on the remote server). Due to this eVSE may be more
suited to smaller databases to prevent these features from being prohibitively
expensive. The VSE scheme of [13] has a search time that is linear in the number
of letters in the queried keyword (which is usually much smaller than n). This
faster search is achieved using a tree-based index, however only a single keyword
equality search can be performed. Another scheme built using ABE [38] is able
to achieve multi-level access, where users can be restricted to searching only
certain parts of the database. Keywords are grouped with respect to their access
control policies, and the search time is linear in the number of groups. This
scheme also only achieves a single keyword equality search. The scheme of [36]
achieves verifiable fuzzy keyword search with a search time that is linear in the
size of the fuzzy keyword set (which varies depending on the level of fuzziness
required i.e. searching for data items that contain keywords of edit distance two
will require a larger fuzzy keyword set than searching for keywords with an edit
distance of one from the queried keyword [24]). Again, this is likely to be less
than n. In terms of the number of rounds of communication required per search,
our scheme is optimal requiring only one round of communication. The size of



Table 1: Comparison of Schemes
Scheme Data type Query type Publicly

Verifiable
Leakage Computations

[34] Static Ranked equality No AP,SP No
[23] Dynamic Equality Yes AP No
[31] Static Conjunctive, Disjunctive No AP No
[32] Dynamic Conjunctive No AP No
[30] Dynamic Equality No AP, SP No
[38] Static Equality No AP No
[35] Static Fuzzy No AP, SP No
[16] Static Semantic No AP, SP No
[13] Static Equality No AP, SP No

Our
scheme

Conjunctive, Disjunctive,
Static Arbitrary CNF/DNF Yes None Yes

formulae, NC1

the search results in our scheme is also linear in n. Most VSE schemes in the
literature return results of a size that is linear in the number of data items that
match the query, however this method leaks the access pattern which in turn
may leak information about the query. Our scheme hides the access pattern as
all search results are of the same form, regardless of what query was submitted.

In terms of security, as illustrated in our security games, our scheme achieves
public verifiability, index privacy and query privacy (in terms of the keywords
searched for), which is comparable to other VSE schemes that have been dis-
cussed. Overall, our scheme sacrifices efficiency when compared to existing VSE
schemes, but gains much increased functionality and query expressiveness.

Table 1 gives a comparison between our scheme and those in the literature.
There is only one other scheme that achieves the public verifiability, yet this
scheme can only support equality search queries. Our scheme is the only one
that leaks neither the access or the search pattern to the server whilst executing
a search. Our scheme currently only supports static data, future work will be
needed to extend our scheme to support a dynamic data set. However the most
expressive query that can currently be supported by a scheme accommodating
a dynamic data set is a conjunctive query.


