
A note on constructions of bent functions from involutions

Sihem Mesnager∗

October 11, 2015

Abstract

Bent functions are maximally nonlinear Boolean functions. They are important
functions introduced by Rothaus and studied firstly by Dillon and next by many re-
searchers for four decades. Since the complete classification of bent functions seems
elusive, many researchers turn to design constructions of bent functions. In this note,
we show that linear involutions (which are an important class of permutations) over
finite fields give rise to bent functions in bivariate representations. In particular, we
exhibit new constructions of bent functions involving binomial linear involutions whose
dual functions are directly obtained without computation.

1 Introduction

Bent functions were introduced by Rothaus [31] in 1976 but already studied by Dillon [13]
since 1974. A bent function is a Boolean function with an even number of variables which
achieves the maximum possible nonlinearity. For their own sake as interesting combinato-
rial objects, but also for their relations to coding theory (e.g. Reed-Muller codes, Kerdock
codes), combinatorics (e.g. difference sets), design theory (any difference set can be used to
construct a symmetric design), sequence theory, and applications in cryptography (design
of stream ciphers and of S-boxes for block ciphers), bent functions have attracted a lot
of research for four decades. Despite their simple and natural definition, bent functions
turned out to admit a very complicated structure in general. Since the complete classi-
fication of bent functions seems elusive, many researchers turn to design constructions of
bent functions and an important focus of research in the twenty past years was then to find
constructions. Many methods are known and some of them allow explicit constructions and
numerous constructions have been obtained. A non-exhaustive list of references dealing
with constructions of binary bent Boolean functions is [16] [21],[13], [3], [4], [14],[18],[15],
[32], [19], [11], [2], [10], [6], [25], [22], [23], [24], [8], [1], [30], [20], [26], [27]. Open problems
on binary bent functions can be found in [7]. A jubilee survey paper on bent functions
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giving an historical perspective, and making pertinent connections to designs, codes and
cryptography is [9]. A book devoted especially to bent functions and containing a complete
survey (including variations, generalizations and applications) is [28].

Bent functions f are often better viewed in their bivariate representation in the form
f(x, y) where x and y belong to Fm2 or F2m . The aim of this note is to provide more con-
structions of bent functions in bivariate representation. To this end, we use the results of a
recent joint work with Charpin and Sarkar [12] in which we have provided a detailed math-
ematical study of involutions which are an important class of permutations. More precisely,
we have provided in [12] a systematic study of involutions that are defined over finite field
of characteristic 2, characterized the involution property of several classes of polynomials
and propose several constructions. In particular the corpus of binary involutions has been
fully described. This note shows that the former involutions lead to the construction of
bent functions. Involutions have been used for the first time in a very recent joint work
with Cohen and Madore [29] for designing bent functions in bivariate representations. We
have showed that the construction of the bent functions (involving nonlinear monomial
involutions) presented in [29] is based on an arithmetical problem and that the existence
of those bent functions can be proved using algebraic and geometric tools such as Fermat
hypersurfaces and Lang-Weil estimates.

This note is organized as follows. Formal definitions and necessary preliminaries are
introduced in Section 2. In Section 3, we recall previous methods used in [26] and [27]
on the constructions of binary bent functions based on special permutations satisfying a
condition (Am). We highlight that involutions are appropriate in this context since for this
class the condition of bentness (Am) is reduced to the problem of finding three involutions
such that their sum is again an involution. In Section 4 we focus on linear involutions
and show how one can construct bent functions from general linear involutions involving
linear structures and binomial linear involutions. We shall prove the existence of such bent
functions using algebraic arguments by solving equations over finite fields. We also show
the non-existence of some bent functions of a particular form while considering monomial
linear involutions.

2 Notation and Preliminaries

A Boolean function on the finite field F2n of order 2n is a mapping from F2n to the prime
field F2 . It can be represented as a polynomial in one variable x ∈ F2n of the form
f(x) =

∑2n−1
j=0 ajx

j where the aj ’s are elements of the field. Such a function f is Boolean

if and only if a0 and a2n−1 belong to F2 and a2j = a2j for every j 6∈ {0, 2n− 1} (where 2j is
taken modulo 2n − 1). This leads to a unique representation which we call the polynomial
form (for more details, see e.g. [6]). First, recall that for any positive integers k, and r
dividing k, the trace function from F2k to F2r , denoted by Trkr , is the mapping defined for

2



every x ∈ F2k as:

Trkr (x) :=

k
r
−1∑
i=0

x2
ir

= x+ x2
r

+ x2
2r

+ · · ·+ x2
k−r

.

In particular, we denote the absolute trace over F2 of an element x ∈ F2n by Trn1 (x) =∑n−1
i=0 x

2i . We make use of some known properties of the trace function such as Trn1 (x) =
Trn1 (x2) and for every integer r dividing k, the mapping x 7→ Trkr (x) is F2k -linear.

The bivariate representation of Boolean functions makes sense only when n is an even
integer. It plays an important role for defining bent functions and is obtained as follows:
we identify F2n (where n = 2m) with F2m × F2m and consider then the input to f as an
ordered pair (x, y) of elements of F2m . There exists a unique bivariate polynomial∑

0≤i,j≤2m−1
ai,jx

iyj

over F2m such that f is the bivariate polynomial function over F2m associated to it. Then
the algebraic degree of f equals max(i,j) | ai,j 6=0(w2(i)+w2(j)). The function f being Boolean,
its bivariate representation can be written in the (non unique) form f(x, y) = Trm1 (P (x, y))
where P (x, y) is some polynomial in two variables over F2m . There exist other represen-
tations of Boolean functions not used in this note (see e.g. [6]) in which we shall only
consider functions in their bivariate representation.

If f is a Boolean function defined on F2n , then the Walsh Hadamard transform of f
is the discrete Fourier transform of the sign function χf := (−1)f of f , whose value at
ω ∈ F2n is defined as follows:

∀ω ∈ F2n , χ̂f (ω) =
∑
x∈F2n

(−1)f(x)+Tr
n
1 (ωx).

Bent functions can be defined in terms of the Walsh transform as follows.

Definition 1. Let n be an even integer. A Boolean function f on F2n is said to be bent
if its Walsh transform satisfies χ̂f (a) = ±2

n
2 for all a ∈ F2n .

Bent functions occur in pair. In fact, given a bent function f over F2n , we define its dual
function, denoted by f̃ , when considering the signs of the values of the Walsh transform
χ̂f (x) (x ∈ F2n) of f . More precisely, f̃ is defined by the equation:

(−1)f̃(x)2
n
2 = χ̂f (x). (2.1)

Due to the involution law the Fourier transform is self-inverse. Thus the dual of a bent
function is again bent.
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3 Constructions of bent functions from special families of
permutations

It has been shown in [26] and next in [27] that it is possible to construct bent functions
from three special permutations satisfying a condition (Am) introduced by the author in
[27].

Definition 2. Let m be a positive integer. Three permutations φ1, φ2 and φ3 of F2m are
said to satisfy (Am) if the two following conditions hold

1. Their sum ψ = φ1 + φ2 + φ3 is a permutation of F2m .

2. ψ−1 = φ−11 + φ−12 + φ−13 .

From three permutations satisfying condition (Am), one can construct easily bent func-
tions in bivariate representation as follows.

Theorem 1. ([26]) Let m be a positive integer. Let φ1, φ2 and φ3 be three permutations
of F2m. Then,

g(x, y) = Trm1 (xφ1(y))Trm1 (xφ2(y))+Trm1 (xφ1(y))Trm1 (xφ3(y))+Trm1 (xφ2(y))Trm1 (xφ3(y))

is bent if and only if φ1, φ2 and φ3 satisfy (Am). Furthermore, its dual function g̃ is given
by

g̃(x, y) = Trm1 (φ−11 (x)y)Trm1 (φ−12 (x)y)+Trm1 (φ−11 (x)y)Trm1 (φ−13 (x)y)+Trm1 (φ−12 (x)y)Trm1 (φ−13 (x)y).
(3.1)

Several new bent functions have been exhibited from monomial permutations satisfying
(Am) (see [26]) and from more families of new permutations of F2m satisfying (Am) (see
[27]). In this note we are interested on permutations which are involutions. An involution
is a special permutation, but the involution property includes the bijectivity as it appears
in the classical definition.

Definition 3. Let F be any function over F2n . We say that F is an involution if F ◦F (x) =
x, for all x ∈ F2n .

In an extended version of [12], Charpin, Mesnager and Sarkar have provided a detailed
mathematical study of involutions. In [12], the authors have considered several classes of
polynomials and characterized when they are involutions. They characterized monomials
as well as linear involutions and presented several constructions of involutions. New invo-
lutions constructed from the known ones have also been derived. The following statement
is a straightforward consequence of Theorem 1 showing that one can derive bent functions
in bivariate representation from involutions.

4



Corollary 2. Let m be a positive integer. Let φ1, φ2 and φ3 be three involutions of F2m.
Then,

g(x, y) = Trm1 (xφ1(y))Trm1 (xφ2(y))+Trm1 (xφ1(y))Trm1 (xφ3(y))+Trm1 (xφ2(y))Trm1 (xφ3(y))

is bent if and only if ψ = φ1 + φ2 + φ3 is an involution.
Furthermore, its dual function g̃ is given by g̃(x, y) = g(y, x).

Notice that this gives a very handy way to compute the dual (namely, transpose the
two arguments), in stark contrast with the univariate case.

4 Constructions of bent functions from some linear involu-
tions

In [29], the authors have investigated bent functions from monomial involutions. They have
showed that the construction of such bent functions is closely related to an arithmetical
problem. The authors have therefore studied in [29] the existence of such bent functions
and partially solved the problem from algebraic and geometric point of view using Fermat
hypersurface and Lang-Weil estimations.

In this section we focus on linear involutions.

4.1 A construction of bent functions from general linear involutions

In the following we show that further bent functions involving linear structures can be
simply obtained from general linear involutions. Let us start by recalling the notion of
linear structure.

Definition 4. Let f be a Boolean function on F2n . An element α ∈ F?2n is said to be an
a-linear structure for the Boolean function f (where a ∈ F2) if f(x + α) + f(x) = a, for
any x ∈ F2n .

Note that 0-linear structures for a Boolean function f are the points for which the
derivative of f vanishes : f(x+ α) = f(x) for every x is equivalent to say that Dαf(x) :=
f(x+ α) + f(x) = 0 for every x.

Proposition 1. Let L : F2m → F2m be a F2-linear involution of F2m. Let f be a Boolean
function over F2m and α be a non zero 0-linear structure of f . Then the mapping φ defined
by φ(x) = L(x) + L(α)f(x), x ∈ F2m is a permutation of F2m and

φ−1(x) = L(x) + αf(L(x)). (4.1)
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Proof. The fact that φ is a permutation is a straightforward application of ([17], Theorem
1). Note next that

φ(L(x) + αf(L)(x)) = L(L(x) + αf(L)(x)) + L(α)f(L(x) + αf(L(x))).

Now, L is a linear involution and α is a 0-linear structure of f , therefore

φ(L(x) + αf(L)(x)) = x+ L(α)f(L(x)) + L(α)f(L(x)) = x

proving (4.1).

Let us denote Kα(f) the set {α ∈ F2m | Dαf = 0}.

Theorem 3. Let m be a positive integer. Let L be a linear involution on F2m. Let f be a
Boolean function over F2m such that the set Kα(f) is of dimension at least two over F2. Let
(α1, α2, α3) be any 3-tuple of pairwise distinct elements of Kα(f) such that α1+α2+α3 6= 0.
Then the Boolean function g defined in bivariate representation on F2m × F2m by

g(x, y) = Trm1 (xL(y)) + f(y)
(
Trm1 (L(α1)x)Trm1 (L(α2)x)

+ Trm1 (L(α1)x)Trm1 (L(α3)x) + Trm1 (L(α2)x)Trm1 (L(α3)x)
) (4.2)

is bent and its dual function g̃ is given by

g̃(x, y) = Trm1 (L(x)y)

+ f(L(x))
(
Trm1 (α1y)Trm1 (α2y) + Trm1 (α1y)Trm1 (α3y) + Trm1 (α2y)Trm1 (α3y)

)
.

(4.3)

Proof. Set, for i ∈ {1, 2, 3},

φi(y) := L(y) + L(αi)f(y), y ∈ F2m

where L stands for a F2-linear involution over F2m . Each map φi is a permutation of F2m

since αi ∈ K0(f), according to Proposition 1. Observe next that

ψ(y) =
3∑
i=1

φi(y) = L(y) + L(α1 + α2 + α3)f(y)

by the linearity of L. Therefore, ψ is also a permutation of F2m since α1 + α2 + α3 ∈
K0(f) \ {0}, according to Proposition 1. Now, again according to Proposition 1,

ψ−1(y) = L(y) + (α1 + α2 + α3)f(L(y)) =

3∑
i=1

φ−1i (y).

One can therefore apply Corollary 1 to φ1, φ2 and φ3 since φ1, φ2 and φ3 satisfy (Am).
After calculations, the result follows by combining Corollary 1 and Proposition 1.
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To apply Theorem 3, one has to find a Boolean function f such that Kα(f) is of
dimension at least 2. If m = rk with r even and k ≥ 2, candidates are functions of the
form f(x) = h(Trmk (x)) where h is a Boolean function over F2k . Indeed note that, for
every α ∈ F2k , f(x + α) = g(Trmk (x) + Trmk (α)) = h(Trmk (x) + αTrmk (1)) = h(Trmk (x))
since Trmk (1) = 0.

4.2 Bent functions from monomial linear involutions

Let φ(x) = λx2
i

be a linear monomial mapping where 0 < i < n and λ ∈ F∗2. In [12], the
authors have characterized linear monomials that are involutions. More precisely, φ(x) is
an involution if and only if m = n

2 with n even and λ2
m+1 = 1. It has been shown that

there is no linear monomial involution when n is odd.

A natural question is to wonder if linear monomials involutions give rise to bent func-
tions g of the form (3.1) or not. The next lemma gives a negative answer.

Lemma 4. Let n = 2m be an even integer and λi (1 ≤ i ≤ 3) three pairwise distinct
elements of F?2n. Set λ0 := λ1 + λ2 + λ3. Then there is no 3-tuple (λ1, λ2, λ3) satisfying
λi

2m+1 = 1, for 0 ≤ i ≤ 3.

Proof. Let U be the cyclic subgroup of F?2n of (2m + 1)-st roots of unity. By hypothesis λi
belongs to U for all i with 0 ≤ i ≤ 3. Set λ2 = aλ1 and λ3 = bλ1 with (a, b) ∈ U2. Note
that a 6= b, a 6= 1 and b 6= 1. Now we have

λ0
2m+1 = 1 ⇐⇒ λ2m+1

1 (1 + a+ b)2
m+1 = 1

⇐⇒ a2
m

+ a+ b2
m

+ b+ a2
m
b+ ab2

m
= 0

⇐⇒ a−1 + a+ b−1 + b+ a−1b+ ab−1 = 0

⇐⇒ b+ a2b+ a+ ab2 + b2 + a2 = 0

⇐⇒ (a+ b)(1 + ab+ b+ a) = 0

⇐⇒ b(1 + a) = 1 + a

leading to a contradiction with b 6= 1. Therefore there are no three distinct elements of U
such that their sum belongs to U .

Consequently, according to Corollary 2 and Lemma 4, there is no bent function of the
form (3.1) with φi’s linear monomial involutions.

4.3 Bent functions from binomial linear involutions

In this section, we focus on some binomial involutions. Recall the following result given in
[12] which characterizes linear binomials that are involutions.
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Proposition 2. (Proposition 5, [12])
Let Q(x) = ax2

i
+ bx2

j
, a ∈ F∗2 and b ∈ F∗2, where i < j < n. Then we have:

• For odd n, Q can never be an involution.

• For even n, n = 2m, Q is an involution if and only if j = i+m and either

i = 0, a2 + b2
m+1 = 1;

or m is even,

i = m/2, ab2
i

+ a2
j
b = 1 and a2

i+1 + b2
j+1 = 0.

Using Corollary 2 and the first part of Proposition 2 one deduces the following con-
struction of bent functions.

Theorem 5. Let n = 2m be an even integer. Let Φ1, Φ2 and Φ3 be three linear mappings
from F2n to F2n defined by

Φi(x) = αix+ βix
2m

for all i ∈ {0, 1, 2, 3} where (αi, βi) ∈ (F?2n)2 satisfy the following condition (C)

αi
2 + βi

2m+1 = 1

where α0 := α1 +α2 +α3 and β0 := β1 + β2 + β3. Then the Boolean function g defined
over F2n × F2n by (3.1) is bent and its dual is given by g̃(x, y) = g(y, x).

To prove the existence of bent functions given by Theorem 5, we show that there exist
(αi, βi) ∈ (F?2n)2 satisfying condition (C) of Theorem 5. To that end, we use the polar
decomposition. Let x be an element of F2n . The conjugate of x over a subfield F2m of
F2n will be denoted by x̄ = x2

m
and the relative norm with respect to the quadratic field

extension F2n/F2m by norm(x) = xx̄. Also, we denote by U the set {u ∈ F2n | norm(u) =
1}, which is the group of (2m + 1)-st roots of unity. Note that since the multiplicative
group of the field F2n is cyclic and 2m + 1 divides 2n− 1, the order of U is 2m + 1. Finally,
note that the unit 1 is the single element in F2m of norm one and every non-zero element
x of F2n has a unique decomposition as: x = λu with λ ∈ F2m and u ∈ U .

Lemma 6. If β1, β2, β3, α1, α2, α3 satisfy condition (C) of Theorem 5, then βσ(1), βσ(2),
βσ(3), ασ(1), ασ(2), ασ(3) is again a solution for any permutation σ of the set {1, 2, 3}. Up
to a permutation of the indices, the only solutions of condition (C) of Theorem 5 are :

• either β1 = a, β2 = b and β3 = ab2
m
+c

(a+b)2m
where a, b are two distinct elements of F?2n

and c is an element of F2m such that c 6= ab2
m

;

• or β1 = β2 = a and β3 = b where a, b are two elements of F?2n.
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Furthermore, αi := λi + 1, for i = 1, 2, 3, where the λi’s are defined by : βi = λiu1, with
the λi’s in F2m and the ui’s in the cyclic group U := {u ∈ F2n | u2

m+1 = 1}.

Proof. Note that the condition (C) of Theorem 5 implies the αi’s are in F?2m . Let us now
observe that condition (C) is equivalent to

β2
m+1
i = 1 + α2

i ⇐⇒ βi = (1 + αi)ui

where ui belongs to U . This proves that αi = 1 + λi where λi is the unique element of
F2m such that βi = λiui with ui ∈ U . The last point is to find when the following equality
holds :

(α1 + α2 + α3)
2 + (β1 + β2 + β3)

2m+1 = 1. (4.4)

To this end, observe that

(α1 + α2 + α3)
2 + (β1 + β2 + β3)

2m+1

= α2
1 + β2

m+1
1 + α2

2 + β2
m+1

2 + α2
3 + β2

m+1
3

+ β1β
2m

2 + β2
m

1 β2 + β1β
2m

3 + β2
m

1 β3 + β2β
2m

3 + β2
m

2 β3.

= 1 + Trnm
(
β1β

2m

2 + β3(β1 + β2)
2m
)
.

Therefore

(α1 + α2 + α3)
2 + (β1 + β2 + β3)

2m+1 = 1 ⇐⇒ Trnm
(
β1β

2m

2 + β3(β1 + β2)
2m
)

= 0

⇐⇒ β1β
2m

2 + β3(β1 + β2)
2m ∈ F2m .

If β2 = β1, (4.4) is trivially true for any β1 since β2
m+1

1 ∈ F2m for any β1, while, if β2 6= β1,

(4.4) is satisfied if and only if β3 =
β1β2m

2 +c

(β1+β2)2
m with c ∈ F2m different from ab2

m
.

Using Corollary 2 and the second part of Proposition 2 one deduces the following
construction of bent functions.

Theorem 7. Let n = 4k be an integer with k ∈ N?. Let Φ1, Φ2 and Φ3 be three linear
mappings from F2n to F2n defined by

Φi(x) = αix
2k + βix

23k

for all i ∈ {0, 1, 2, 3} where (αi, βi) ∈ (F?2n)2 satisfy the following conditions

1. αiβ
2k
i + α2

i
3k
βi = 1;

2. αi
2k+1 + βi

23k+1 = 0;

where α0 := α1 + α2 + α3 and β0 := β1 + β2 + β3. Then the Boolean function g defined
over F2n × F2n by (3.1) is bent and its dual is given by g̃(x, y) = g(y, x).
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The main question remaining in the construction of bent functions derived from The-
orem 7 is the existence of (αi, βi) ∈ (F?2n)2 satisfying the conditions 1 and 2. The next
lemma gives an answer of the existence’s problem.

Lemma 8. Consider the following system (S) of equations (4.5) and (4.6) in F?2n where
n = 4k with k ∈ N? and whose unknowns are x and y:

{
xy2

k
+ x2

3k
y = 1 (4.5)

x2
k+1 + y2

3k+1 = 0 (4.6)

Then (x, y) be a solution of the system (S) if and only if x = Auv2
3k

and y = (A+1)uv2
k

where A ∈ F2n is such that A2k = A + 1, u ∈ Uk := {u ∈ F24k | u2
k+1 = 1} and

v ∈ U2k := {u ∈ F24k | u2
2k+1 = 1}.

Proof. Note that Uk is s subgroup of F?2n since 2n − 1 = (2k + 1)(23k − 22k + 2k − 1). We
have

(4.6) ⇐⇒ y2
3k+1 = x2

k+1 ⇐⇒ y2
k+1 = (x2

k
)2

k+1 ⇐⇒
( y

x2k

)2k+1
= 1.

Hence, y = x2
k
u where u ∈ Uk.

Set z = xy2
k
. Note that (4.5) can be rewritten as z + z2

3k
= 1. That implies that,

raising the preceding equation to the power 22k: z2
2k

+ z2
k

= 1. Summing up the two pre-
ceding equations leads to z2

k
+ z2

2k
+ z+ z2

3k
= 0, that is, Tr4kk (z) = 0. Hence z = ρ+ ρ2

k

for some ρ ∈ F2n .

Now, one has

1 = z + z2
3k

= ρ2
k

+ ρ2
3k

= (ρ+ ρ2
2k

)2
k
.

Therefore, z = ρ+ ρ2
k

with ρ+ ρ2
2k

= Tr4k2k(ρ) = 1.

Conversely, suppose that z = ρ+ ρ2
k

with Tr4k2k(ρ) = 1. Then,

z + z2
3k

+ ρ+ ρ2
k

+ ρ2
3k

+ ρ = (Tr4k2k(ρ))2
k

= 1.

Basically, the system (S) is equivalent to y = x2
k
u and xy2

k
= ρ + ρ2

k
with Tr4k2k(ρ) = 1

and u ∈ Uk.

Set A = (ρ+ ρ2
k
)1/2 (where s1/2 stands for s2

n−1
= s2

4k−1
). Observe that

A2k = (ρ2
k

+ ρ2
2k

)1/2 = (1 + ρ+ ρ2
k
)1/2 = 1 +A.
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We therefore have to solve the following system of equations with unknowns x and y
in F2n :

{
y = x2

k
u (4.7)

xy2
k

= A2 (4.8)

where A2k = A + 1 and u ∈ Uk. Raising Equation (4.7) to the power 2k, we obtain

y2
k

= x2
2k
u2

k
= x2

2k
u−1. Dividing Equation (4.8) by the above equation, we obtain

x = A2u

x22k
, that is, x2

2k+1 = A2u.

Now, note that A ∈ F22k since A22k = (A2k)2
k

= (A+ 1)2
k

= A and (u2)2
2k

= (u2
2k

)2 =

((u2
k
)2

k
)2 = ((u−1)2

k
)2 = u2.

Hence x2
2k+1 = (Au1/2)2

2k+1, equivalently
(

x
Au1/2

)22k+1
= 1, that is, x = Au1/2v with

v ∈ U2k from which we deduce

y = x2
k
u

= A2k(u2
k
)1/2v2

k
u

= (A+ 1)u−1/2uv2
k

= (A+ 1)u1/2v2
k
.

Conversely, suppose x = Au1/2v and y = (A + 1)u1/2v2
k

where v ∈ U2k, u ∈ Uk and

A2k = A+ 1. Then

x2
k+1 = A2kAv2

k+1(u1/2)2
k+1 = A(A+ 1)v2

k+1,

and
y2

3k+1 = (A+ 1)2
3k

(A+ 1)(u2
3k+1)1/2v2

k(23k+1) = A(A+ 1)v2
k+1

since (23k + 1) = (2k + 1)(22k − 2k + 1) and A23k = (A22k)2
k

= A2k = A + 1. Thus (x, y)
satisfies Equation (4.6).

Moreover, we have

xy2
k

= Au1/2v(A+ 1)2
k
u2

k/2v2
2k

= A(A+ 1)2
k
u(2

k+1)/2v2
2k+1

= A(A+ 1)2
k

= A(A2k + 1) = A2.
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and

x2
3k
y = A23ku2

3k/2v2
3k

(A+ 1)u1/2v2
k

= A23k(A+ 1)u(2
3k+1)/2(v2

2k+1)2
k

= (A+ 1)(a+ 1) = A2 + 1.

Thus (x, y) satisfies Equation (4.5), which completes the proof.

We can deduce from Lemma 8 that there exist α1, α2, α3, β1, β2 and β3 satisfying
conditions 1. and 2. of Theorem 7:

αi = Aiũv
23k , βi = (Ai + 1)ũv2

k

where A2k
i = Ai + 1, ũ ∈ Uk := {u ∈ F24k | u2

k+1 = 1} and v ∈ U2k := {u ∈ F24k |
u2

2k+1 = 1}. By Lemma 8, α1, α2, α3, β1, β2 and β3 satisfy conditions 1 and 2 of Theorem

7. But above, α0 := α1 + α2 + α3 = (A1 + A2 + A3)ũv
23k and β0 := β1 + β2 + β3 =

(A1 + A2 + A3 + 1)ũv2
k
. Clearly, (A1 + A2 + A3)

2k = A1 + A2 + A3 + 1 and therefore α0

and β0 satisfy also conditions 1 and 2 of Theorem 7.
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