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Abstract

Recently, several new techniques were presented to dramatically improve key parts of secure
two-party computation (2PC) protocols that use the cut-and-choose paradigm on garbled cir-
cuits for 2PC with security against malicious adversaries. These include techniques for reducing
the number of garbled circuits (Lindell 13, Huang et al. 13, Lindell and Riva 14, Huang et al. 14)
and techniques for reducing the overheads besides garbled circuits (Mohassel and Riva 13, Shen
and Shelat 13).

We design a highly optimized protocol in the offline/online setting that makes use of all
state-of-the-art techniques, along with several new techniques that we introduce. A crucial part
of our protocol is a new technique for enforcing consistency of the inputs used by the party
who garbles the circuits. This technique has both theoretical and practical advantages over
previous methods.

We present a prototype implementation of our new protocol, which is also the first imple-
mentation of the amortized cut-and-choose technique of Lindell and Riva (Crypto 2014). Our
prototype achieves a speed of just 7 ms in the online stage and just 74 ms in the offline stage
per 2PC invoked, for securely computing AES in the presence of malicious adversaries (using 9
threads on two 2.9GHz machines located in the same Amazon region). We note that no prior
work has gone below one second overall on average for the secure computation of AES for mali-
cious adversaries (nor below 20ms in the online stage). Our implementation securely evaluates
SHA-256 (which is a much bigger circuit) with 33 ms online time and 206 ms offline time, per
2PC invoked.

1 Introduction

Secure two-party computation enables a pair of parties with private inputs to compute a joint
function of their inputs. The computation should maintain privacy (meaning that the legitimate
output but nothing else is revealed), correctness (meaning that the output is correctly computed),
and more. These properties should be maintained even if one of the parties is corrupted. The
feasibility of secure computation was demonstrated in the 1980s, where it was shown that any
probabilistic polynomial-time functionality can be securely computed [36, 14].
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The goal of constructing efficient secure two-party (2PC) computation protocols in the pres-
ence of malicious adversaries has been an active area of research in the recent years. One of the
most popular approaches for constructing such protocols is based on applying the cut-and-choose
technique to Yao’s garbled-circuit protocol. In this technique, one of the parties prepares many
garbled circuits, and the other asks to open a random subset of them in order to verify that they
are correct. If yes, then the parties evaluate the remaining, unchecked circuits. This forces the
party generating the garbled circuits to make most of them correct, or it will be caught cheating
(solving perhaps the biggest problem in applying Yao’s protocol to the malicious setting, which is
that an incorrect garbled circuit that computes the wrong function cannot be distinguished from
a correct garbled circuit). Many different works 2PC protocols have been designed based on this
approach [27, 23, 25, 33, 16, 22, 28, 34], and several implementations have been presented to study
the concrete efficiency of it in practice (e.g., [31, 33, 20, 34, 2]). In this work we focus on the
cut-and-choose approach.

The number of garbled circuits. Let s be a statistical security parameter such that the
probability that a malicious party can cheat should be bounded by 2−s (plus a function that is
negligible in n, where n is the computational security parameter). Then, the exact number of
garbled circuits needed for achieving this bound was reduced in the past years from 17s [23], to
approximately 3s [25, 33], and recently to s [22].

In [17, 26], it was shown that if multiple 2PC executions are needed, then the amortized number
of garbled circuits per 2PC can be reduced even below s. Specifically, for N 2PC executions, only
O( s

logN ) garbled circuits are needed per 2PC. In addition, [17, 26] present protocols that work in
the online/offline setting, where most of the computation and communication intensive steps are
carried out in the offline stage, resulting in a very efficient online stage. In [26], a tight analysis
was presented showing that opening significantly less than half of the circuits (depending on the
parameters) can yield very significant concrete efficiency improvements.

Checking input consistency and preventing selective OT attacks. Running cut-and-
choose itself does not suffice for obtaining a secure protocol since it only deals with the correctness
of the garbled circuits. To make the protocol secure, we must additionally include mechanisms
for ensuring that the party that prepares the garbled circuits (a) uses the same input in all the
evaluated garbled circuits, and (b) provides correct inputs to the OTs for the other party to learn
the input labels for its input. We refer to the first problem as P1’s input consistency check and the
second as preventing a selective OT attack. (We note that it is easy to ensure that the party P2 who
evaluates the garbled circuits uses the same input in all circuits, by running a single OT for each
bit of P2’s input for all circuits being evaluated. We therefore do not refer to this problem further.)

It is possible to check the consistency of P1’s input using O(s2) inexpensive (symmetric) cryp-
tographic operations per input bit [27, 23], but this results in huge communication. Alternate
solutions using O(s) exponentiations per input bit were presented in [25, 33]; this reduces the com-
munication size while significantly increasing the computation time. Recently, [34, 28] presented
solutions that require only O(s) inexpensive (symmetric) cryptographic operations per input bit,
resulting in only a minor overhead on top of the cut-and-choose protocol itself (as it already requires
O(s) gates per input bit).

Selective OT attacks can be prevented by using a special encoding of P2’s input so that the
leakage of a small number of bits of the encoded input reveals nothing about the actual input [23, 34].
We discuss this solution in more detail in Section 2.3. An alternative solution (using cut-and-choose
OT) was presented in [25], but this requires many exponentiations and so is not as efficient.
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Implementations of cut-and-choose based 2PC. The first implementation which evaluated
the cut-and-choose approach in practice was [31]. In [33, 34], implementations with additional
algorithmic improvements were presented. Both results focus on reducing the overheads of the
input-consistency checks, and work with approximately 3s garbled circuits for soundness 2−s. In
[20], the protocol of [33] is implemented using mass parallelism, resulting in a system that utilizes a
cluster of several hundreds of machines in parallel. Parallelism was taken a step further in [12, 11],
who designed and implemented protocols on GPUs.

The fastest published secure computation of AES based on cut-and-choose on garbled circuits,
that we are aware of, in the single-execution, non-massively concurrent setting is of [2]. This im-
plementation requires approximately 6.39 seconds for a single evaluation of AES. However, massive
concurrency can drastically improve performance. Using several tens of machines (each with 8 CPU
cores), AES can be computed in about 40.6 seconds for 1024 executions, with security parameter
s = 80 [34]. Using GPUs, AES can be computed in only 0.46 seconds, for s = 40 [11].

1.1 Our Contributions

We start by presenting a new technique for checking that P1 uses the same input in all (good) garbled
circuits. Our method has both theoretical and practical advantages over previous techniques. Then,
we describe an optimized protocol for 2PC in the online/offline setting, based on the protocol of
[26]; our protocol uses our new consistency check, plus the state-of-the-art techniques for the other
checks and additional small optimizations. We present a prototype implementation of our optimized
protocol, which is the first implemented 2PC protocol based on the cut-and-choose method that
requires less then s garbled circuits per 2PC computation. Last, we evaluate the prototype with
different circuits and sets of parameters. We proceed to provide more details on each contribution.

New P1’s input consistency check. Previous techniques for ensuring that P1 uses the same
input in all good garbled circuits have significant disadvantages. The best known methods to
date require O(s) symmetric cryptographic operations per input bit, and are due to [28] and [34].
However, it is unclear how to use the technique of [34] in the online/offline setting (when many 2PC
executions are needed), and the technique of [28] is (arguably) complicated and thus very difficult
to implement.

Our new solution requires O(s) symmetric cryptographic operations per garbled circuit, rather
than per input bit ; in most cases this is much smaller, and especially in the offline/online setting
where the number of circuits per execution is very small (about 5-10 for typical parameters).
In addition, our solution is very simple to describe and implement, and can be plugged-in in a
modular way into most 2PC protocols (based on the cut-and-choose method), including the ones
in the online/offline setting. Our protocol can be implemented using only standard cryptographic
assumptions (at the expense of adding 2 exponentiations per circuit which is negligible in the overall
cost) or in the random oracle model (in which case no exponentiations are needed). We remark
that our new consistency check is the best option today, even for single-execution protocols.

Optimized protocol in the ROM. We apply the new technique for checking P1’s input consis-
tency and the randomized encoding technique of [23] for protecting against selective OT attacks, to
the protocol of [26] in the online/offline setting. We further optimize several parts of the protocol
in the random-oracle model, including further elimination of exponentiations, reducing communi-
cation, and more.
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The online stage of the protocol is highly efficient. It requires only four messages between
the players and the overall communication size depends only on the input length and the security
parameters. (Note that the online stage of the fastest 2PC implementation in the online/offline
setting, shown in [29], requires a number of rounds that depends on the depth of the circuit in use,
and its communication size depends on the circuit size.) This is the first implemented protocol
with online communication that is independent of the circuit size (and is concretely very small, as
shown by our experiments).

Prototype implementation and evaluation. We implemented our optimized protocol on top
of the SCAPI library [10, 1]. Our prototype uses state-of-the-art techniques like AES-NI instruc-
tions, fixed-key garbling [5], and the optimized OT-extension protocol of [3]. We evaluated the
prototype on Amazon AWS machines. Performance of the online stage itself is three orders of
magnitude better than previous protocols (without massive parallelism). For example, evaluating
the AES circuit between two machines in the same region costs only 7 ms in the online stage.
Furthermore, the offline stage costs only 74 ms per 2PC computation (for some sets of parameters).
Even when the parties communicate via the Internet, the cost of the online stage remains small as
our protocol requires only four rounds of communication. Specifically, we evaluated AES in 160 ms
with a network roundtrip of 75 ms (so at least 150 ms is spent on communication). Observe that
the offline stage itself is very competitive when compared to previous results. In particular, the sum
of both the offline and online stages is far better than any single execution reported (81ms only).
Thus, we do not obtain a fast online phase at the expense of a slow offline one. See Section 6 for
more details and a comparison of our results with the performance of previous implementations.

2 Preliminaries

Let H(·) denote a hash function, and commit(x) (resp., commit(x, r)) denote a commitment to x
(resp., a commitment to x using randomness r). We denote by l the length of each party’s input,
by In(C, x) the set of wire indexes of a boolean circuit C that correspond to a given input x, and
by Out(C) the set of wire indices of the output wires of C.

2.1 Efficient Perfectly/Statistically-Hiding Extractable Commitment

Let ExtractCom(m) be a perfectly- or statistically-hiding extractable commitment. We assume
that in the first phase of the scheme the simulator generates a trapdoor td that enables immediate
extraction of commitments later on. In Appendix A we review the perfectly-hiding extractable
commitment of [21] that works in the standard model and is secure under the DDH assumption. In
the random-oracle model, such a commitment is trivial; we just define ExtractCom(m) = H(m; r)
where r is random. Note that this is not perfectly hiding. However it is statistically hiding (in the
random oracle model) to any algorithm who can make only a polynomial number of queries to H,
and this suffices for our needs.

2.2 Adaptively-Secure Garbling

The standard security notion of garbled circuits (e.g., [24]) deals with a static adversary, meaning
that the adversary picks its input before seeing the garbled circuit. However, in the online/offline
setting, inputs are chosen only in the online stage, and if we wish to send all garbled circuits in the
offline stage then the static security notion does not suffice. (Note that it is possible to only commit
to the garbled circuits in the offline phase. However, in order to achieve the necessary security here,
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the decommitment would be the same size as the circuit, resulting in significant communication.)
The security of garbled circuits in the presence of an adaptive adversary was defined in [6]; in this
definition, the adversary first gets the garbled circuit and only then chooses its input. As discussed
in [26], this allows proving security in the online/offline setting, even if all garbled circuits are sent
in the offline stage.

We use the method described in [26] that slightly modifies the fixed-key AES-NI garbling scheme
of [5] to be adaptively secure in the random-permutation model. Adaptive security is immediate in
the (programmable) random-permutation model if P2 (the evaluator) chooses its input in a single
query. However, this is not true in case P2 can obtain some valid input labels before all its input
bits are chosen (and therefore evaluate some of the gates before the input is fully determined). This
is a problem since the gates need to be “programmed” (in the random-oracle/random-permutation
model) after the inputs are received. This is solved by ensuring that P2 is unable to decrypt any
gate before receiving all labels. We achieve this by having P1 choose a random λ (of the same
length as the garbled labels), and whenever P2 should learn a label for some input bit, it actually
learns the label XORed with λ. After P2 receives all the garbled values (XORed with λ), party P1

reveals λ, and then P2 can obtain its labels and evaluate the circuit. (The value of λ can be viewed
as part of the last label, which will be longer than the previous ones).

We recall the security game for an adaptively secure garbling scheme: Let ` be the input length.
The challenger picks a coin b. If b = 0 the adversary receives a valid garbled circuit, and if b = 1
the simulator Sim(1, f) is run to generate a “fake” garbled circuit which is handed to the adversary.
Then, for i = 1, . . . , `, the adversary sends a bit xi and receives its input label associated with
the ith input bit. If b = 0 then the input label is correctly generated, whereas if b = 1 then it is
generated by calling Sim(2, f, i, y), where y = ⊥ if i < ` and y = f(x1, . . . , x`) otherwise. The goal
of the adversary is to correctly guess b with probability greater than 1/2.

In order to prove security of our scheme described above (using λ), we need to specify the
computation of Sim and show that the probability that the adversary guesses b correctly is 1

2 +
neg(|λ|). Sim(1, f) chooses a random string as the garbled circuit. Then, for i = 1, . . . , ` − 1,
Sim(2, f, i, y) chooses a random string for the input label. Finally, for i = `, Sim(2, f, i, y) also
chooses a random λ, and programs the random-oracle/random-permutation so that for the used set
of labels and the string that represented the garbled circuit, the garbled circuit is a fixed garbled
circuit that always returns y. Observe that the distribution of the garbled circuit and the input
labels is the same in real game and the simulated one. The only case in which the adversary
can distinguish between the two is in case it guesses correctly one of the labels of the garbled
circuit (either of the input wires, or internal ones), and then notice the programming of the oracle.
However, in order to do that, the adversary must guess correctly some valid label or λ, and both
happen with probability that is negligible in |λ|.

2.3 The Solution of [23] for Selective-OT Attacks

A solution for the selective-OT attack, which works with any oblivious transfer in a black-box way,
was presented in [23]. The solution works by encoding P2’s input in a way that any leakage of a
small portion of the bits does not reveal significant information about P2’s input. Formally, the
encoding can be carried out using a Boolean matrix E that is s-probe-resistant, as defined below.

Definition 2.1 (Based on [23, 34]) Matrix E ∈ {0, 1}l×n for some `, n ∈ N is called s-probe-
resistant for some s ∈ N if for any L ⊂ {1, 2, . . . , `}, the Hamming distance of

⊕
i∈LEi is at least

s, where Ei denotes the i-th row of E.
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In [23], it is shown that such a matrix E can be constructed with n = max(4`, 20s3 ), where ` is P2’s
input length. Then, [34] show a different construction with n ≤ lg(`)+`+s+s ·max(lg(4`), lg(4s)).
For completeness, we describe these constructions in Figure 2.2. We note that both constructions
can result in a matrix E for which there exists a vector y that for all vectors y′, Ey′ 6= y (meaning
that some input cannot be encoded). We therefore take E to be [E′|I`] ∈ {0, 1}`×(n+`), where E′

is an s-probe-resistant matrix and I` is the identity matrix of size `. E is clearly also s-probe-
resistant, and now, any vector y can be encoded using a vector y′ that has random bits in the first
n elements, and “corrections” in the rest of the bits so that Ey′ = y.

FIGURE 2.2 (Generating s-probe-resistant matrix)

The construction of [23]:

• Set n = max(4`,
⌈
20s
3

⌉
).

• For i = 1, . . . , `, let Ei ∈R {0, 1}n.

• Let E be the matrix in which its ith row is Ei.

The construction of [34]:

• Set t = dmax(lg(4`), lg(4s))e.

• Decrease t by one until 2t−1 > s+ lg(`)+`+s
t−1 .

• Set k = d(lg(`) + `+ s)/te.

• For i = 1, . . . , `, choose a random polynomial Pi(x) of degree k − 1 over F2t (e.g., by
choosing at random its k coefficients), and let Ei be the concatenation of the values
Pi(1), Pi(2), . . . , Pi(k + s− 1).

• Let E be the matrix in which its ith row is Ei. (Note that n = t(k + s− 1).)

Instead of working with the function f(x, y), the parties work with the function f ′(x, y′) =
f(x,Ey′) and P2 chooses a random y′ ∈ {0, 1}n+` such that y = Ey′ (this ensures that f ′(x, y′) =
f(x, y)). As long as E is s-probe-resistant, even if P1 learns s′ < s bits of y′, it cannot learn any
information about y. This is due to the fact that for every s′ < s bits of y′ and every y, there exists
a y′′ that is consistent with them (i.e., Ey′′ = y and y′′ = y′ on the s′ < s bits revealed). Now, in
order to learn s bits, P1 has to carry out a selective-OT attack on s wires (meaning that for s wires
it provides one valid OT input and one invalid OT input, and if no abort occurs then it knows that
the valid input was chosen). However, for every such wire it is caught with probability 1/2, which
means that if it tries to attack s wires, it gets caught with probability at least 1− 2−s. In addition
to working with f ′(x, y′), the parties can use one OT invocation for many circuits, allowing P2 to
input the same y′ for many circuits while learning the corresponding labels in all of them together.
Therefore, the number of OTs needed is n+ ` for the entire set of evaluated circuits.

As described in [34], since E is a binary matrix the subcircuit that computes Ey′ can be garbled
using only XOR gates. This is due to the fact that E is fixed (and known), and so multiplying a
row of E with y′ is the same as XORing a certain subset of y′’s bits together. This is therefore
very efficient when using the Free-XOR technique [19]. Moreover, assuming correlation-robust hash
functions, many OTs can be implemented very efficiently (i.e., with a small number of symmetric-
key operations per OT) using an efficient OT extension protocol. Specifically, the above solution
can be implemented with O(n) symmetric-key operations, and only O(s) seed-OTs [3].
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2.4 Cut-and-Choose Parameters

The offline/online method for cut-and-choose uses the following parameters: (a) the number of
circuits B evaluated per online 2PC; (b) the number of 2PC executions N ; (c) the fraction of
circuits evaluated p (and so a 1−p fraction are checked); and (d) the statistical security parameter s.
Note that the overall number of circuits used is NB

p , since after checking a (1−p)-fraction the number

of circuits that remain are NB
p − (1 − p) · NBp = NB−NB+p·NB

p = NB, which is what is required
to have B circuits per execution. A comprehensive analysis of the soundness of the amortized
cut-and-choose, with respect to the above parameters, was presented by [26].

For completeness, we repeat the description of the cut-and-choose game in terms of balls and
bins. From here on, a ball refers to a garbled circuit, and a cracked ball is an incorrect garbled
circuit that was maliciously generated; a single execution in the online phase uses a full bucket
of unchecked “balls”. Recall that in the cheating recovery method of [22] there are actually two
garbled-circuit evaluations: the main circuit for computing the function is evaluated, and a very
small auxiliary circuit is computed that is used for P2 to learn P1’s input in case P1 cheated. The
balls and bins game is such that for the main circuit the adversary can cheat if there exists a bucket
where all the balls are cracked, and for the small cheating recovery circuit the adversary can cheat
if there is a bucket where a majority of the balls are cracked.

P2 chooses three parameters p,N and B, and sets M =
⌈
NB
p

⌉
and m = NB. (Note that p < 1

and so M > m.) A potentially adversarial P1 (who we will denote by Adv) prepares M balls and
sends them to P2. Then, party P2 chooses at random a subset of the balls of size M −m; these
balls are checked by P2 and if one of them is cracked then P2 aborts. Denote the balls that are not
checked by 1, . . . ,m. Then, P2 chooses a random mapping function π : [m] → [N ] that places the
unchecked balls in buckets of size B.

In [26], bounds are proven for the probabilities that P2 does not abort and (1) there exists a
fully-cracked bucket (i.e., all balls in some bucket are cracked), or (2) there exists a majority-cracked
bucket (i.e., at least B/2 balls in some bucket are cracked).

When considering multiple executions of protocols (as in [26]), the overall cheating probability
is the natural soundness one should work with. However, we believe that is it preferable to focus on
the cheating probability in a single 2PC execution since this enables a direct comparison to single-
execution implementations. We will therefore be interested in the probabilities that P2 does not
abort and some specific bucket is fully cracked, or, that some specific bucket is majority-cracked.

In addition to the bounds shown in [26], a few concrete examples are presented there to ex-
emplify that those bounds are not tight. Since we mostly care here about concrete efficiency,
we implemented a program that finds the parameters analytically, based on the following tighter
computations that are derived from the analysis of [26] (but are not informative within themselves).

Lemma 2.3 Let N,B, p,M be parameters as described above. The probability that a bucket is
fully-cracked is at most

max

[(
M−t
NB−t

)(
M
NB

) · ( t
B

)(
NB

B

)−1]NB
t=B

.

Lemma 2.4 Let N,B, p,M parameters as described above. The probability that a bucket is majority-
cracked is at most

max

[(
M−t
NB−t

)(
M
NB

) · 2B−1( t

NB

)dB/2e]NB
t=B

.

See Tables 1 and 2 for concrete examples of parameters computed according to Lemma 2.3.
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3 Commitment with ZK Proof of Difference

The aim of this section is to construct a commitment scheme with an efficient zero-knowledge proof
of difference. Given commit(x1), commit(x2) and ∆ = x1 ⊕ x2, the aim is to efficiently prove that
the XOR of the decommitments is indeed ∆. Formally, one party inputs (x1, x2), and the other
party chooses to either learn x1 ⊕ x2 or the pair (x1, x2) itself. (Thus, the first party is essentially
committed to the pair, and must either decommit or prove their difference, depending on P2’s
choice.) We will show later how it is used to prove P1’s input consistency Our constructions are
based on ideas of [32].

We start by describing a basic functionality (presented in Figure 3.1), prove its correctness,
and then describe how to extend it to work with many commitments so we can use it for input-
consistency checks.

FIGURE 3.1 (The Simple Commit-and-Difference Proof Functionality FCom∆ZK)

FCom∆ZK runs with parties P1 and P2, as follows:

Input: FCom∆ZK receives a pair of messages (x1, x2) from P1, and a bit b from P2.

Output:

• FCom∆ZK sends ∆ = x1 ⊕ x2 to P2 if b = 0; otherwise (if b = 1), it sends (x1, x2) to P2.

• FCom∆ZK sends b to P1.

3.1 A Warm-Up – Only Two Messages

In this section, we show how to securely realize the functionality from Figure 3.1. The basic idea for
the construction is as follows. We define a split commitment of a value x to be a pair of commitments
to random values whose XOR equals x; i.e., [commit(x⊕ r), commit(r)]. Party P1 sends P2 a set of
s split commitments to x1 and s split commitments to x2. If P2 asks to decommit (i.e., b = 1) then
P1 simply decommits using the standard (canonical) decommitment and P2 checks that there exist
x1, x2 such that all the split commitments are as expected. In contrast, if b = 0, then P1 sends
P2 the XORs of the split commitment values. Specifically, let [commit(x1 ⊕ ri), commit(ri)] and
[commit(x2⊕ρi), commit(ρi)] be the ith split commitment of x1 and x2, respectively. Then, P1 sends
δ0i = x1 ⊕ ri ⊕ x2 ⊕ ρi and δ1i = ri ⊕ ρi to P2, for every i = 1, . . . s, as well as ∆ = x1 ⊕ x2. Observe
that for every i it holds that δ0i ⊕δ1i = x1⊕x2 = ∆, and so P2 checks that for every i it indeed holds
that δ0i ⊕ δ1i = ∆. Then, given these values, P2 sends a random s-bit “challenge string” W to P1,
indicating to P1 which value in each split commitment to open. Letting W = W1, . . . ,Ws, party P1

decommits to both left commitments in the ith split commitments of x1 and x2 if Wi = 0; otherwise
it decommits to both right commitments in the ith split commitments of x1 and x2. Observe that
if Wi = 0 then P2 receives x1 ⊕ ri and x2 ⊕ ρi and so can verify that δ0i was correctly constructed.
In contrast, if Wi = 1 then P2 receives ri and ρi and so can check that δ1i was correctly constructed.
Thus, if x1 ⊕ x2 6= δ, then P1 must cheat on at least one side of every split commitment, and so
will be caught with probability 1− 2−s. Observe that this check is very simple and very efficient;
when using a hash function to commit it requires 2s hash computations only per value.

Despite its simplicity, we remark that in order to simulate this protocol (in the sense of securely
computing Functionality FCom∆ZK in the ideal/real model paradigm), we need to have P2 commit
to its challenges b and W before the protocol begins. If an extractable commitment is used, then
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the simulator can learn the challenges ahead of time and therefore appropriately prepare the com-
mitment, even before ∆ is known. Fortunately, this comes at very little overhead, as can be seen
in the full protocol. See Figure 3.2 for the detailed protocol.

FIGURE 3.2 (Two Commitments with Proof of Difference)

Inputs: P1 has a pair (x1, x2) and P2 has a bit b.

Commit to Challenge: P2 chooses a random W ∈ {0, 1}s. Then, P1 and P2 run a perfectly
(or statistically) hiding extractable commitment scheme ExtractCom (see Section 2.1), in which P2

commits to b and W . (A Pedersen commitment with a zero-knowledge proof of knowledge of the
committed value suffices, or a simple hash with a random string in the random oracle model.)

Commit to x1, x2: Define the split commitment SCom(x, r) = [commit(x ⊕ r), commit(r)].
Then:

1. For i = 1, . . . , s, P1 chooses ri, ρi ← {0, 1}n and computes
[
c0i , c

1
i

]
= SCom(x1, ri) and[

d0i , d
1
i

]
= SCom(x2, ρi).

2. Denote c1 = SC(x1) = 〈[c01, c11], . . . , [c0s, c
1
s]〉 = 〈SCom(x1, r1), . . . ,SCom(x1, rs)〉, and

c2 = SC(x2) = 〈[d01, d11], . . . , [d0s, d
1
s]〉 = 〈SCom(x2, ρ1), . . . ,SCom(x2, ρs)〉

P1 sends (commit, c1, c2) to P2.

Decommit to b: P2 decommits to the value b using the Decom procedure of ExtractCom. (At
the end of the protocol, P1 outputs b.)

If b = 1, party P1 decommits to x1, x2: P1 sends x1, x2 and all of the randomness used
to generate the commitments c1, c2. P2 verifies that all commitments were correctly constructed,
and if yes it outputs (x1, x2).

If b = 0, party P1 provides a proof of difference:

1. For every i = 1, . . . , s, party P1 defines δ0i = x1 ⊕ ri ⊕ x2 ⊕ ρi and δ1i = ri ⊕ ρi (note that
δ0i ⊕ δ1i = x1 ⊕ x2).

2. P1 sends
{

(δ0i , δ
1
i )
}s
i=1

and ∆ = x1 ⊕ x2 to P2, who checks that for every i it holds that

δ0i ⊕ δ1i = ∆.

3. P2 decommits to W using the Decom procedure of ExtractCom. Denote W = W1, . . . ,Ws.

4. For i = 1, . . . , s, party P1 decommits to cWi
i , dWi

i to P2.

5. For i = 1, . . . , s, P2 verifies that Decom
(
cWi
i

)
⊕Decom

(
dWi
i

)
= δWi

i , where Decom denotes

the standard decommitment.

6. If all checks pass, then P2 outputs ∆.

Proving consistency. Before proceeding to prove security, we explain how this functionality
can be used to force P1 to use the same input in two different garbled circuits. The functionality
FCom∆ZK is used for P1 to commit to the strings of the signal bits associated with all P1’s input bits.
(Recall that the signal bit determines whether the keys on the wire are given in the “correct” order
or reversed order. In some works this value is also called the permutation bit.) In this warm-up
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case with two commitments, P1 uses FCom∆ZK to commit to the string of signal bits in the first
garbled circuit and in the second garbled circuit (note that these are independent random strings,
since each garbled circuit is independently generated). Now, P1 provides (standard) commitments
to the garbled values on these input wires (this is standard in all cut-and-choose protocols); we call
them wire-commitments. However, P1 provides the wire-commitments in the order determined by
the signal bit (i.e., if the signal bit on a wire equals 0 then the commitment to the 0-key is placed
before the commitment to the 1-key, and if the signal bit is 1 then they are reversed). Now, when
two circuits are opened to be checked, then P2 provides input b = 1 to FCom∆ZK, and so all values
are decommitted. This enables P2 to check that the split commitment was constructed correctly
and that the wire-commitments were indeed given in the order determined by the signal bits. In
contrast, when two circuits are to be evaluated, then P2 provides input b = 0 to FCom∆ZK. As a
result, P2 will receive the string which is the XOR of the signal bits of all P1’s inputs in the two
circuits. If the first bit in this XOR equals 0, then P2 knows that for the wire associated with P1’s
first input bit, P1 must either decommit to the first wire-commitment in both circuits or decommit
to the second wire-commitment in both circuits. (Since P2 knows that the signal bit is the same
in both cases – without knowing its value – this ensures that the same input bit is used by P1 in
both.) In contrast, if the XOR equals 1, then P2 knows that P1 must either decommit to the first
wire-commitment in the first circuit and the second wire-commitment in the second circuit, or vice
versa. (Once again, since P2 knows that the signal bit is different in both cases, this ensures that
the same input bit is used by P1 in both.) The same holds for all of the wires associated with
P1’s input (each bit of the XOR that is revealed is associated with a different wire associated with
P1’s input).

3.1.1 Proof of Security

Let x ∈ {0, 1}n. Denote c ∈ SC(x) if there exists randomness so that c = SC(x); otherwise denote
c /∈ SC(x). Denote SC = {c | ∃x : c = SC(x)}; i.e., the set of all valid split commitments. We
will be interested in commitments c ∈ SC versus series of 2s commitments that are not valid split
commitments. Note that since commit is perfectly binding, the question of whether a series of 2s
commitments are in SC is well defined.

We will prove that the proof in Protocol 3.2 (in the case of b = 0) is an interactive proof system
for the promise problem (P,Q), where

P =
{

(c, d,∆) | ∃x1, x2 s.t. c ∈ SC(x1) ∧ d ∈ SC(x2)
}
,

and
Q =

{
(c, d,∆) | ∃x1, x2 s.t. c ∈ SC(x1) ∧ d ∈ SC(x2) ∧ x1 ⊕ x2 = ∆

}
.

The promise problem (P,Q) considers the question of whether an input (c, d,∆) ∈ Q, under the
promise that (c, d,∆) ∈ P . In words, we are given an input (c, d,∆) and we are guaranteed that
there exist x1, x2 such that c ∈ SC(x1) and d ∈ SC(x2). The “aim” is then just to determine if
x1⊕x2 = ∆ or x1⊕x2 6= ∆. (Note that if c and d are such that they are not valid commitments at
all, then this will be detected in the checks carried out in the cut-and-choose protocol; i.e., when
b = 1.)

We follow the definition of [13] regarding interactive proofs for promise problems. Informally,
completeness must hold for every (c, d,∆) ∈ P ∩ Q, soundness guarantees that the verifier will
reject for any (c, d,∆) ∈ P \Q, and nothing is required for (c, d,∆) /∈ P .
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In addition to the above, we prove that Protocol 3.2 securely computes the functionality
FCom∆ZK, defined in Figure 3.1, in the presence of a corrupt P2. We stress that in the case that P1

is corrupted we rely on the soundness property of the proof (since Protocol 3.2 does not securely
compute FCom∆ZK in the presence of a corrupt P1).

We prove the following:

Theorem 3.3 If commit is a perfectly-binding commitment scheme and ExtractCom is a perfectly-
hiding extractable commitment scheme, then the commitment phase of Protocol 3.2 is a perfectly-
binding commitment scheme, and the proof phase is an interactive proof system for the promise
problem (P,Q) defined above. In addition, Protocol 3.2 securely computes FCom∆ZK in the presence
of a corrupt P2.

Proof: The fact that SC is a perfectly-binding commitment scheme follows immediately from
the fact that commit is perfectly binding. We proceed to prove that the proof is an interactive
proof system for the promise problem (P,Q). Completeness for the case that (c, d,∆) ∈ P ∩ Q is
immediate. We next prove soundness. Let (c, d,∆) ∈ P \ Q. Then, there exist x1, x2 such that
c ∈ SC(x1) and d ∈ SC(x2). However, x1 ⊕ x2 6= ∆. We show that P2 accepts the proof with
probability at most 2−s + µ(n), for some negligible function µ(·). Let i ∈ [s]. Since c and d are
valid commitments, it holds that there exist ri and ρi such that the ith element in c is

SCom(x1, r) = [c0i , c
1
i ] = [commit(x1 ⊕ r), commit(r)]

and the ith element in d is

SCom(x2, ρ) = [d0i , d
1
i ] = [commit(x2 ⊕ ρ), commit(ρ)].

Let (δ0i , δ
1
i ) be the pair sent by P1 in the proof. If δ0i ⊕ δ1i 6= ∆ then P2 rejects the proof. Thus,

it must be that δ0i ⊕ δ1i = ∆. Observe that if Decom(c0i ) ⊕ Decom(d0i ) = δ0i and Decom(c1i ) ⊕
Decom(d1i ) = δ1i then x1 ⊕ r ⊕ x2 ⊕ ρ = δ0i and r ⊕ ρ = δ1i and thus δ0i ⊕ δ1i = x1 ⊕ x2 6= ∆, in
contradiction to the assumption above. Thus, we conclude that either Decom(c0i )⊕Decom(d0i ) 6= δ0i
or Decom(c1i )⊕ Decom(d1i ) 6= δ1i . This holds for every i = 1, . . . , s.

Now, let W = W1, . . . ,Ws be the random string chosen and committed to in the preprocess
phase. Then, W is revealed only after {(δ0i , δ1i )}si=1 was sent by P1 to P2. Furthermore, the
commitment is perfectly hiding. Thus, the commitment to W received by P1 in the preprocessing
phase reveals no information about W , and so this is equivalent to W being chosen at random after
the {(δ0i , δ1i )}si=1 were sent. By what we have shown, for every i, it holds that either Decom(c0i )⊕
Decom(d0i ) 6= δ0i or Decom(c1i ) ⊕ Decom(d1i ) 6= δ1i . Thus, for every i = 1, . . . , s we have with
probablity at least 1/2 (depending on where Wi = 0 or Wi = 1) party P2 catches P1. Thus, the
probability that P2 aborts is at least 2−s.

Secure computation of FCom∆ZK: It remains to prove that Protocol 3.2 securely computes
FCom∆ZK in the presence of a corrupted P2. Let A be an adversary who has corrupted P2. We
begin by defining the simulator S:

1. S interacts with A in the “Commit to Challenge” phase and obtains the trapdoor td that
enables it to extract any committed value in the extractable commitment; see Section 2.1.

2. Using the trapdoor td, S extracts b and W .
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3. S sends b to FCom∆ZK (on P2’s behalf).

4. If b = 0,

• Upon receiving ∆ from FCom∆ZK, for k = 1, 2 the simulator S chooses 2s independent
random strings r0k,1, r

1
k,1, . . . , r

0
k,s, r

1
k,s, computes the commitments {(c0k,i = commit(r0k,i),

c1k,i = commit(r1k,i))}si=1 and defines ck = 〈c0k,1, c1k,1, . . . , c0k,s, c1k,s〉. S hands A the message
(commit, c1, c2).

• For every i = 1, . . . , s, S chooses δWi
k,i = rWi

k,i ⊕ r
Wi
k+1,i and sets δ1−wi

k,i = ∆⊕ δWi
k,i . S hands

{(δ0k,i, δ1k,i)}si=1 to A.

• S receives the decommitment of W from A. If the decommitment is not valid, then S
simulates P1 halting, outputs whatever A outputs, and halts. If the decommitment is to
a string W ′ 6= W , then S outputs fail. Otherwise, S proceeds to the next step. Similar
steps are executed with respect to the bit b.

• For every i = 1, . . . , s, simulator S sends Decom(cWi
k,i ),Decom(dWi

k,i ); it can do this since
it generated these commitments.

5. If b = 1, upon receiving x1, x2 from FCom∆ZK, the simulator S emulates an honest P1 with
inputs x1, x2. If A decommits to b′ 6= b, S outputs fail.

6. S outputs whatever A outputs and halts.

We now show that the view of A in the simulation with S is indistinguishable from its view in a
real execution. First, note that S outputs fail with negligible probability since the commitments to
b and W are computationally binding. In order to prove the simulation, we first consider a hybrid
simulator S1 who works in an ideal model in which it always receives x1, x2 from the trusted party.
S1 works in exactly the same way as S regarding the proof, but defines the commitment c by
choosing rW1

1 , . . . , rWs
s at random and setting r1−Wi

i = rWi
i ⊕xk, for every i = 1, . . . , s. Thus, unlike

in the simulation with S, here we have that c ∈ SC(x). In the proof, S1 works exactly like S.
We claim that the view of A when interacting with S1 is computationally indistinguishable

from its view when interacting with S. This follows from a straightforward reduction to the
hiding property of commit. Briefly, consider a commitment experiment where a bit b ∈R {0, 1} is
chosen at the onset. Then, the adversary interacts with a commitment oracle that receives pairs
of length-n values, and returns a commitment to the first value if b = 0, and a commitmentent
to the second value if b = 1. (This is an LR-oracle type formulation [4] and can be shown to
be equivalent to standard computational hiding of commitments in a straightforward way.) The
commitment adversary runs S/S1 and the trusted party (together with the commitment values).
Upon receiving x1, x2, it chooses r01, r

1
i . . . , r

0
s , r

1
s at random. Then, it computes the commitments

cWi
i = commit

(
rWi
i

)
for every i = 1, . . . , s. In addition, it queries its commitment LR-oracle with

the pair
(
r1−Wi
i , rWi

i ⊕ xk
)

and defines c1−Wi
i to be the response from the oracle. The commitment

adversary proceeds exactly like S/S1 for the remainder of the simulation. Observe that it can carry
out the proof since it needs to decrypt only the commitments cWi

i and dWi
i , and it computed these

itself. This completes the proof.
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3.1.2 Replacing the Perfectly-Binding Commitment

Note that so far we have assumed that commit(·) is a perfectly-binding commitment. In practice,
perfectly-binding commitments are less efficient than computationally binding ones. For example,
with an appropriate assumption on the cryptographic hash function, commit(x) = H(x; r) is a
computationally binding and computationally hiding commitment. If we model H as a random
oracle, then commit is still only computationally binding. However, it is extractable, and thus we
can prove the interactive proof of Protocol 3.2 to be a proof of knowledge. This achieves the same
effect as soundness. (Note that once we model H as a random oracle, we can also use commit as
the statistically-hiding extractable commitment ExtractCom.)

In order to use any computationally-binding commitments, including like that above but with-
out resorting to the random oracle model, the following change can be made to Protocol 3.2.
Let σ be a seed to a pseudorandom generator G, and define SC(x) as before (i.e., SC(x) =
〈SCom(x, r1), . . . ,SCom(x, rs)〉) where the underlying commitment uses H, but all of the random-
ness in generating SC is taken from G(σ), and a perfectly-binding extractable commitment is given
to σ alone. This has the advantage that a single perfectly-binding commitment to a short string
suffices to define all of SC as perfectly binding. The promise problem used to model the interactive
proof, and the proof of soundness then remains the same (with the additional requirement that
P1 is polynomial time and cannot efficiently open any of the individual commitments to anything
else). This adds one extractable commitment per circuit (which can be implemented via El Gamal
and so costs 2 exponentiations per circuit), plus a single zero-knowledge proof of knowledge of
the El Gamal private key generated by P1 (that is done only once for all circuits and costs just 9
exponentiations).

3.2 Extending to Many Messages

The functionality of Figure 3.1 works with only two messages from P1 (and so only for two circuits).
We would like to use it for a larger number of messages, where P2 can choose any subset of them to
be revealed and learn the XOR differences between the remaining ones (as in the cut-and-choose case
where a random subset of the circuits are evaluated and consistency must be proved for them). In
addition, for our online/offline 2PC protocol we would like P2 to be able to pick different subsets of
the unrevealed messages, and learn the XOR differences for all the messages in each subset (since in
the online/offline setting, the evaluated circuits are randomly thrown into buckets and each bucket
is used for a different execution; thus the XOR differences are needed inside each bucket).

FIGURE 3.4 (The Extended Commit-and-Difference Proof Functionality FExCom∆ZK)

FExCom∆ZK runs with parties P1 and P2, a public index M (saying how many inputs there are), a
public constant N (saying how many subsets there are), and a public constant B (saying how big
each subset is), as follows:

Input: FExCom∆ZK receives M messages (m1, . . . ,mM ) from P1, and a series of subsets
I1, . . . , IN ⊂ [M ] from P2.

Output: For j ∈ [N ], let Ij = {i1j , . . . , iBj } and let ∆j be the set
{
mikj
⊕mik+1

j

}B−1
k=1

.

• FExCom∆ZK sends ∆1, . . . ,∆N to P2. In addition, FExCom∆ZK sends P2 the value mi, for

every i /∈
(⋃N

j=1 Ij

)
.

• FExCom∆ZK sends I1, . . . , IN to P1.
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The extended functionality is defined in Figure 3.4. The subsets I1, . . . , IN are the buckets of
circuits to be evaluated in the online phase (each bucket is of size B). Thus, P2 learns the XOR
differences between every pair in each bucket; this enables it to verify consistency as described
above. Observe that the indices of values not in any of I1, . . . , IN are circuits that are checked;
thus, the values corresponding with these indices are revealed.

FIGURE 3.5 (Extended Commit with Proof of Difference – for a Single Subset I)

Commit to Indices and Challenge:

1. P1 and P2 run a perfectly-hiding (or statistically-hiding) extractable commitment scheme
ExtractCom, in which P2 commits to a key K for a PRG and to an s-bit random string W .
(Pedersen commit with a ZK proof of knowledge of the committed value suffices.)

2. P2 sends P1 an encryption c of the indices i1, . . . , iB of the single subset I by XORing them
with the output of the PRF with key K.

Commit to m1, . . . ,mM : For every mk (k = 1, . . . ,M):

1. Define the split commitment SCom(mk, r) = [commit(mk ⊕ r), commit(r)]

2. For i = 1, . . . , s, P1 chooses ri ← {0, 1}n and computes [c0i , c
1
i ] = SCom(mk, ri)

3. Denote the commitment to mk by ck = SC(mk) = 〈SCom(mk, r1), . . . ,SCom(mk, rs)〉.

P1 sends (commit, c1, . . . , cM ) to P2.

Decommit to mk:

1. P1 sends (mk, r1, . . . , rs, R
0
1, R

1
1, . . . , R

0
s, R

1
s), where Rbi is the randomness used to generate

the commitment cbi in SC(mk).

2. Upon receiving the above, P2 verifies that ck = SC(mk) is correctly constructed.

Proofs of Difference:

1. P2 decommits to K, and P1 decrypts c obtaining i1, . . . , iB .

2. For k = 1, . . . , B − 1:

(a) Let r1, . . . , rs be s.t. SC(mk) = 〈SCom(m1, r1), . . . ,SCom(m1, rs)〉, and let ρ1, . . . , ρs
be s.t. SC(mk+1) = 〈SCom(mk, ρ1), . . . ,SCom(mk, ρs)〉. Let ∆I

k = mk ⊕mk+1.

(b) For every i = 1, . . . , s, party P1 defines δ0i = mk ⊕ ri ⊕mk+1 ⊕ ρi and δ1i = ri ⊕ ρi
(note that δ0i ⊕ δ1i = mk ⊕mk+1 = ∆I

k)

(c) P1 sends {(δ0i , δ1i )}si=1 and ∆I
k to P2, who checks that for every i, δ0i ⊕ δ1i = ∆I

k.

3. P2 decommits to W .

4. For k = 1, . . . , B − 1:

(a) For i = 1, . . . , s, party P1 sends Decom(cWi
i ),Decom(dWi

i ) to P2, where [c0i , c
1
i ] is the

ith commitment pair in SC(x), and [d0i , d
1
i ] is the ith commitment pair in SC(y),

(b) For i = 1, . . . , s, party P2 verifies that Decom(cWi
i )⊕ Decom(dWi

i ) = δWi
i .

The main difference between the protocol that securely computes the extended functionality
in Figure 3.4 and the protocol in Figure 3.2 is that in the general case, P2 commits to all of the
subsets I1, . . . , IN initially (and not just a single bit b). The detailed protocol appears in Figure 3.5,
described for a single subset I input by P2. Extending the protocol in Figure 3.5 to support multiple
sets is straightforward; P2 just sends a longer list of indices (instead of only B), ordered by the
buckets they belong to. The proof of security follows directly from the proof of Theorem 3.3.
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3.3 Using FExCom∆ZK in Cut-and-Choose

As we have mentioned, for every circuit in the cut-and-choose, P1 commits to the string m which
contains the “signal” bits σ on all of its input wires (this requires 2s basic commitments commit).
In addition, the input garbled labels are committed; if σ = 0 then the commitments are in the
correct order (with the 0 label first), and if σ = 1 they are in the opposite order (with the 1
label first). When checking a circuit, these commitments are also verified, including their order
according to the signal bits as committed in FExCom∆ZK. For the evaluation circuits, let gc1, . . . , gcB
be the circuits to be evaluated, and let m1, . . . ,mB be their committed signal bit labels. Then,
for every i = 1, . . . , B, party P1 sends P2 the string x̂i = mi ⊕ x, where x is its input to the
secure computation, along with the decommitment to the labels pointed to by x̂i (the 0-label if
the bit of x̂i = 0, and the 1-label otherwise). In addition, for every i = 1, . . . , B − 1, it defines
∆i = x̂i ⊕ x̂i+1 and proves that mi ⊕ mi+1 = ∆i (using FExCom∆ZK). Party P2 uses the labels
decommitted, and this ensures that the same input is used in all circuits in the bucket. This is
because the functionality provides the XOR differences ∆1 = m1 ⊕m2, . . . ,∆B−1 = mB−1 ⊕mB,
and these differences are preserved even after XORing with the input. This means that the same
x was XORed with m1, . . . ,mB and so the same value is used throughout. The overall cost is
2s basic commitments commit per circuit plus two extractable commitments, which is very cheap
(especially since the number of circuits per bucket is very small).

Advantages Over Previous Input Consistency Proofs. Note that the number of commit-
ments in Protocol 3.2 is only 2s for every circuit. In the online/offline setting, the number of circuits
is very small (typically 5-10, depending on the parameters) and thus this costs significantly less
than a single commitment per input bit (unless the input is tiny). When commit is implemented
as described above using a computationally-binding commitment, the resulting protocol is more
efficient than those of [28, 34], and significantly more simple to understand and implement. From a
theoretical standpoint, our protocol can also be based on very standard assumptions (though with
the additional negligible overhead of the two exponentiations needed by the El Gamal encryption
used to implement a perfectly-binding commitment), whereas [28] requires correlation robustness
and [34] requires Free-XOR. Our protocol yields significant improvements over [17, 26] who both
use inefficient solutions for the input-consistency issue (i.e., using discrete-log ZK proofs).

4 Optimized 2PC in the Online/Offline Setting

We base our protocol on [26] who present a protocol for multiple 2PCs in the online/offline model.
First, we adapt it to use the technique of [23, 28, 34] for protecting against selective-OT attacks,
instead of using cut-and-choose OT which is much less efficient. Next, we plug in our new technique
for checking P1’s input consistency as discussed in Section 3.3. These two modifications essentially
replace all the exponentiations required by the protocol of [26] for the input wires with cheaper
cryptographic operations (and a small number of exponentiations that is independent of the input
size).

Since our goal is to minimize the cost of the online stage, we chose to work in the random-oracle
model, so we could construct adaptively secure garbled circuits in an efficient way. We therefore
further utilize the power of the random-oracle model and optimize other parts of the protocol. For
example, we replace all extractable commitments (that require exponentiations) with random-oracle
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based commitments (that requires only hash function calls), and reduce the number of encryptions
needed for the cheating recovery method presented in [26].

The protocol is described in Appendix B in Figures B.1 and B.4 and uses the sub-protocols of
Figure B.2. Based on the proof of security from [26], we prove the following:1

Theorem 4.1 Let commit and ExtractCom be implemented using a random oracle H (defined by
commit(m, r) = ExtractCom(m, r) = H(m; r)), let PRF be a pseudorandom function, and let the
garbling scheme be adaptively secure. Then, for any function f , Protocols B.1-B.4 securely compute
f with multiple executions (according to the definition of [26]).

Proof Sketch: We follow the proof of [26] and present a proof sketch of Theorem 4.1. For each
corruption case we provide some intuition about the simulation and then show indistinguishability
of the real and the simulated executions via a sequence of hybrid executions.

P1 is corrupted. The simulator emulates an honest P2 with the following modifications. In the of-
fline stage, it first extracts the seeds from and λ-s from ExtractCom(seed1), . . . ,ExtractCom(seedM )
and ExtractCom(λ1), . . . ,ExtractCom(λM ). Second, it sees Adv′ messages to FCom∆ZK. At the end
of the offline stage, the simulator can determine if there exists a bucket in which none (or most)
of the bundles is good (e.g., the garbled circuit is invalid). If so, the simulator aborts. (Note that
this event could happen with only a negligible probability because of the cut-and-choose protocol.)

In the online stage, the simulator emulates an honest P1 with a random input y and learns
Adv’s input to the good bundles. (Recall that the simulator saw Adv’s messages to FCom∆ZK, thus
it knows the signal bits of the good bundles.) It sends this input to the ideal functionality as P1’s
input. It emulates the protocol until its end (emulating abort if needed) and outputs whatever Adv
outputs.

Before we describe in more details the hybrids, we reduce the security of the protocol, denoted
by Π, to the security of protocol Π′ in which P2 generates the random mapping functions with
truly random coins (instead of pseudo-random ones) and commits to the functions instead of the
PRF seeds. Let Π′′ be a protocol in which P2 uses a PRF to derive the coins needed for generating
the random mapping functions, but then commits to the functions instead of the PRF seeds. Since
those commitments are done using ExtractCom, any adversary that can cheat in Π can also cheat
in Π′′. On the other hand, any adversary that can cheat in in Π′′ can also cheat in Π′ or else we
get a distinguisher for the PRF security game. Therefore, any adversary in Π can also cheat in Π′

except for a negligible probability.
We proceed to proving that Π′ is secure. We show indistinguishability of the real execution and

the simulated one using the following hybrid executions:

• The real execution.

• The simulator Sim emulates an honest P2 with the real inputs and realizes the ideal func-
tionalities for Adv. It see all Adv’s messages to the OTs, FCom∆ZK, and the random-oracle.
Indistinguishability follows the composition theorem.

1We are aware that the proof is far from satisfactory, even as a proof sketch, and that the protocol specification
needs to be significantly improved. We hope to carry out this work in the near future.
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• Sim aborts if at the end of the offline stage there exists a bucket that is fully-cracked with
respect to C or majority-cracked with respect to C ′. (This abort is in addition to the abort
that an honest P2 might do in case it detects cheating.) Following Lemmas 2.3 and 2.4, this
abort happens with a negligible probability.

• Sim emulates P2 with a random input in the online stage, learns Adv’s input to the good
bundles, and sends it to the ideal functionality. (Observe that there exists exactly one input
in all good bundles.) It sends abort if the emulated P2 aborts, and otherwise outputs whatever
Adv outputs. Note that this execution differ only in P2’s input. However, since P2’s input
is encoded using an s-resistance matrix, Adv has no information about the value y(1) that
P2 has used in the offline stage, so the masking of y with y(1) completely hides y (except for
the negligible probability for which Adv has learned s input bits of y(1) using selective-OT
attack). Additionally, for the good bundles, P2 evaluations with the real input should return
the same output as the ideal functionality, thus, the output of P2 in this execution would be
the same as in the previous one.

The last hybrid execution is essentially the simulated execution since the simulator does not
use the real input y, so in conclusion, the real and the simulated executions are indistinguishable.

P2 is corrupted. In the offline stage, the simulator emulates an honest P1 and extracts the
values of σ and seedπ of the cut-and-choose for C and for C ′ (by utilizing the extractability of
ExtractCom/random-oracle). It constructs good garbled-circuit bundles for the ones that are chosen
to be checked, but uses fake ones for the bundles that are chosen to be evaluated. In addition,

the simulator sees Adv’s inputs to the OTs, and by that, learns the values of y
(1)
1 , . . . , y

(1)
N , and

d
(1)
1 , . . . , d

(1)
N

In the online stage, for the current bucket, the simulator gets y(2) and uses that to recover y.
It sends it to the ideal functionality and receives the output z. Then, it causes the garbled circuits
to always output z (using the simulator of the adaptive garbled circuit). It continues the execution
with a random input x and outputs what Adv outputs.

We show indistinguishability of the real execution and the simulated one using the following
hybrid executions:

• The real execution.

• The simulator Sim emulates an honest P1 with the real inputs and realizes the ideal func-
tionalities for Adv. It see all Adv’s messages to the OTs, FCom∆ZK, and the random-oracle.
Indistinguishability follows the composition theorem.

• Once Adv sends y(2) in the online stage, Sim computes y, sends it to the ideal functionality and
receives the output z. Then, Sim programs the commitments of the input wire label that Adv
has not learnt so that they will be commitments to zeros, and in addition, it sets the garbled
circuits to be fake garbled circuits that always output z. Because of the adaptive security of
the garbling scheme, and since Adv might catch the modification of the random-oracle with
only a negligible probability, this execution is indistinguishable from the previous one.

• Sim aborts if Adv sends d(2) such that d(2) = D⊕ d(1)E′ (meaning it knows D). Note that at
this stage, the only information about D comes from H(D), so if Adv knows it, we can use it
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to break the one-wayness of H (i.e., we receive H(D) in the one-wayness game, and use Adv
to recover it.) Therefore, this abort happens with only a negligible probability.

• Sim modifies the garbled circuits of the cheating recovery circuits, causing them to always
output 0. Since at this stage, Adv does not input the correct value D to the circuit, it should
always learn 0, and thus this execution is indistinguishable from the previous one following
the security of the garbling scheme.

• Sim uses the a random input on P1’s behalf. Note that Adv knows only the XORs of the
signal bits, but does not know their actual values for the evaluated circuits. Therefore, x1 is
distributed exactly the same as in the previous execution. (Since we use the random-oracle for
the commitments of P1’s input wire labels, we can program them so that their decommitments
are distributed the same as well.)

The last hybrid execution is essentially the simulated execution since the simulator does not use
the real input y, so in conclusion, the real and the simulated executions are indistinguishable.

We remark that the protocol can be slightly modified to be secure given an adaptively secure
garbling scheme and without utilizing the random oracle for commit and ExtractCom. The only
modification needed is to commit ro all the commitments of the input labels using a trapdoor
(equivocal) commitment, so that in the simulation in case P1 is corrupted, the simulator can change
the commitments on the input labels after it learns P1’s input. The cost of this modification is
small, requiring only one additional trapdoor commitment per garbled circuit.

5 Prototype Implementation

Our goal is to provide an end-to-end system for multiple 2PC executions in the online/offline
setting. First, the system includes a tool for providing the user with very good sets of parameters
(in the offline/online setting, finding the parameters of how many circuits to use and how many to
open for a given security parameter, is complex). Next, the system is optimized both crypto-wise
(e.g., using the random-oracle where suitable) and engineering-wise (e.g., using parallelism where
possible). Some key parts of the system are the following:

Additional optimizations in the random-oracle model. First, recall that everywhere we
use an extractable commitment, we actually use commit(x; r) = H(x; r). Second, since the labels
of P2’s input wires are random, we can use a second random-oracle H2, and ask P1 to commit to
label W by just sending H2(W ). This reduces the length of P1’s inputs to the OTs by a factor of
two (since the decommitment includes only W and not additional randomnes), thereby reducing
bandwidth. This still preserves security as H2(W ) does not reveal any information about W if W
has enough entropy (which happens in our case, as W is at least 128 bits long random string).

Finding good parameters. We implemented a program that is given the values of s (statistical
security parameter) and N (the overall number of executions desired), and calculates the parameters
based on Lemmas 2.3 and 2.4 that minimize the overall number of circuits (to minimize the run-
time of the offline stage) or the number of evaluation circuits per bucket (to minimize the run-time
of the online stage). Similarly to what was observed by [26], the parameters we obtain by directly
computing the equations found in Lemmas 2.3 and 2.4 are much better than the (clean) upper
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bounds proven in [26]. See Tables 1 and 2 for several example sets of generated parameters. We
also implemented a program that receives a circuit C and calculates the encoding matrices E and
E′, used for protecting P2’s input from selective-OT attacks (as described in Section 2.3).

N Total number of Number of eval circuits Number of circuits
circuits overall per 2PC (online phase) per 2PC

8 136 10 16.95
165 8 20.51

32 362 7 11.29
437 6 13.63

128 998 6 7.79
1143 5 8.92

1024 5627 5 5.49
5689 4 5.55

4096 18005 4 4.39
25600 3 6.25

Table 1: Several sets of parameters for Lemma 2.3 with s = 40. Note the tradeoff between the total
number of circuits (which affects the offline stage efficiency) and the number of evaluation circuits
per bucket (which affects the online stage efficiency).

N Total number of Number of eval circuits Number of circuits
circuits overall per 2PC (online phase) per 2PC

8 277 19 34.54
296 17 36.95

32 706 15 22.05
771 13 24.07

128 1995 12 15.58
2246 10 17.54

1024 10843 9 10.58
4096 36294 7 8.86

Table 2: Several sets of parameters for Lemma 2.3 with s = 80.

In contrast to [26], we have set the statistical security parameter s to be such that the probability
that an adversary cheats in a single 2PC execution is 2−s. (In [26], they set 2−s to be the probability
that an adversary cheats in at least one of the many executions overall). Indeed, this is merely a
different way of looking at the parameters, but we believe that for most users, considering security
of a single execution is more natural.

Handling large inputs. Calculating a probe-resistant matrix according to the algorithm of [34]
is a very computationally intensive task when the input is large (e.g., 1000-bit long). Instead, when
dealing with long inputs, our system constructs the probe-resistant matrix using a composition of
smaller probe-resistant matrices that can each be generated very efficiently. While this method
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results in a slightly larger matrix used in the protocol (and, thus, more OTs), it dramatically
reduces the time needed for generating the probe-resistant matrix (from hours to seconds).

Architecture. We use the SCAPI library [10, 1] for implementing the high-level steps of the
protocols, while using more optimized C/C++ code for steps that are more computationally in-
tensive (e.g., computing the large amount of XORs of the probe-resistant matrix). We use the
OT-extension implementation of [3], a new SCAPI garbling library that uses fixed-key AES for
garbling, as suggested by [5], and the SCAPI wrapper of OpenSSL for AES and SHA-1.

The prototype is able to generate and evaluate many garbled circuits (and carry out other
operations) in parallel, using multiple threads. In addition, before the online stage begins, all
relevant files are loaded to memory so that no I/O delays occur once the interaction starts. (We
do not include disk I/O time in our measurements as in practice loading to memory should always
occur before actual inputs are received.)

The code for the prototype is freely available from the SCAPI project git [1].

6 Performance Evaluation

Setup. We ran the prototype implementation on two types of Amazon AWS instances: c4.8xlarge
(with 64GB RAM and 36 virtual 2.9GHz CPUs) and c4.2xlarge (with 15GB RAM and 8 virtual
2.9GHz CPUs). On both instances, garbling 1000 AES circuits in isolation took about 470 ms.
Unless stated otherwise, all the tests in this section were ran on the c4.8xlarge instances. We ran
tests with LAN configuration, where both parties were in the same AWS region and the roundtrip
is less than 1 ms, and with a WAN configuration, where the parties were in different regions
(specifically, EU-west and US-east) and the roundtrip is 75 ms.

Test functions. We tested the prototype with the following circuits:

1. ADD: receives two 32-bit integers and outputs their sum (the circuit has 127 AND gates)

2. AES: receives two 128-bit inputs and outputs the encryption of the first input using the
second input as the key (the circuit has 6800 AND gates)

3. SHA-1: receives two 256-bit inputs and outputs the SHA-1 hash digest of the XOR of the
two inputs (the circuit has 37300 AND gates)

4. SHA-256: receives two 256-bit inputs and outputs the SHA-256 hash digest of the XOR of
the two inputs (the circuit has 90825 AND gates)

We remark that smaller circuits exist for some of these tasks. However, our goal was not the
computation of these functions per se, but rather measurements over different sized circuits.

Results. In the following, all experiments use the sets of parameters from Tables 1 and 2, and
unless said otherwise, s = 40. See Table 3 for the results of the implementation on these circuits;
the online time given is the average over all executions. We can see that, for example, the total
amortized time it takes to evaluate a single AES (i.e.. the sum of the online and offline stages
timings) ranges from around 210ms (for N = 32) to around 80ms (for N = 1024). See Table 4 for
results with s = 80; the cost with s = 80 is 2-3 times the cost of s = 40 and so is also very fast.
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Circuit
Number of

Offline total
Offline per Online time per bucket

buckets bucket 1 thread 5 threads 9 threads

ADD
32 4266 133 10 6 8
128 9735 76 7 5 4
1024 49590 48 5 4 4

AES
32 6310 197 18 13 12
128 14539 114 13 10 10
1024 75879 74 9 7 7

SHA-1
32 10042 314 40 29 26
128 24201 189 31 24 22
1024 127555 125 20 15 15

SHA-256
32 14699 459 75 62 50
128 35243 275 62 50 40
1024 210935 206 44 33 33

Table 3: Running times of the different circuits in LAN configuration (in ms). For N = 32 we use buckets
of 7 circuits of C and 20 of C ′; for N = 128 we use buckets of 6 circuits of C and 14 of C ′; for N = 1024 we
use buckets of 4 circuits of C and 10 of C ′ (C is the main circuit and C ′ is the auxiliary cheating-recovery
circuit). Offline times are for execution with 9 threads.

Circuit
Number of

Offline total
Offline per Online time per bucket

buckets bucket 1 thread 5 threads 9 threads

AES
32 13901 434 52 29 30
128 35031 274 34 17 20
1024 164937 161 24 13 14

SHA-256
32 29041 908 176 123 129
128 74120 579 129 87 96
1024 662640 647 100 79 76

Table 4: Running times for AES circuit in LAN configuration for s = 80. For N = 32 we use buckets of 15
circuits of C and 46 of C ′; for N = 128 we use buckets of 12 circuits of C and 28 of C ′; for N = 1024 we use
buckets of 9 circuits of C and 20 of C ′.

Number of buckets
Offline total

1 thread 5 threads 9 threads

32 10129 6905 6310
128 23961 15819 14539
1024 125993 82476 75879

Table 5: Running times of the offline stage for the AES circuit in LAN configuration (in ms) for s = 40.
(For s = 80, the times are 2-2.5 larger.) The number of circuits per bucket is as in Table 3.
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In Table 5 we show an example of the effect of the number of threads on the offline stage
performance. Even though performance is far from linear in the number of threads, it is clear that
parallelism helps, and we expect that further optimizations utilizing multithreading will further
improve performance. We also ran these experiments for other settings and verified that this effect
is consistent.

As discussed earlier, there is a tradeoff between the total number of circuits and the number of
evaluation circuits per online stage. This affects the performance of the two stages. See Tables 1
and 2 for examples of those tradeoffs. In addition to the tests described in Table 3, we also tested
how this tradeoff is reflected in practice: Instead of running AES with s = 80, N = 128 and bucket
size 12, we ran it with bucket size 10 which increases the total number of circuits from 1995 to
2246. The result was that the offline running time was 310 ms per 2PC (with 9 threads) and the
online running time was 31/16/17 ms for 1/5/9 threads (respectively). This is about 13% slower in
the offline phase and around 10% faster in the online phase, which roughly matches the differences
in the numbers of circuits and so is as expected. Thus, it is possible to obtain different tradeoffs,
depending on whether it is more important to reduce the overall cost or the online latency.

We also tested the prototype in the WAN configuration, since in many real-world scenarios the
participating parties may be far apart. Note that in these scenarios, the Yao-based approach has a
significant advantage over TinyOT [29] and SPDZ [7] who have a number of rounds that depends
on the circuit depth. See Tables 6, 7 and 8 for the results of those tests.

Circuit
Number of

Offline total
Offline per Online time per bucket

buckets bucket 1 thread 5 threads 9 threads

AES
32 36039 1126 171 164 163
128 117650 919 166 163 164
1024 778235 759 162 160 160

SHA-1
32 52463 1639 194 185 176
128 152509 1191 194 182 180
1024 2936775 2867 184 173 175

Table 6: Running times of AES and SHA-1 in WAN configuration using the parameters of Table 3
(in ms) for s = 40. The roundtrip between the parties was 75 ms.

Circuit
Number of

Offline total
Offline per Online time per bucket

buckets bucket 1 thread 5 threads 9 threads

AES
32 54467 1702 204 180 180
128 165239 1291 190 172 176
1024 1102191 1076 178 167 169

SHA-1
32 89860 2808 268 227 234
128 314239 2455 236 210 211
1024 1412681 1380 213 196 196

Table 7: Running times of AES and SHA-1 in WAN configuration using the parameters of Table 4
(in ms) for s = 80. The roundtrip between the parties was 75 ms.
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Number of buckets
Offline total

1 thread 5 threads 9 threads

32 36483 35725 36039
128 113352 111586 117650
1024 815313 778010 778235

Table 8: Running times of the offline stage for the AES circuit in WAN configuration (in ms) for
s = 40. (For s = 80, the costs at most twice larger.)

We note that our online phase requires four rounds of interaction (two messages in each di-
rection), and since the roundtrip in our WAN configuration is 75 ms, the cost of our online stage
cannot go below 150 ms. Our tests show that in this case, the majority of the time spent is on
communication, and the cost of the actual steps of our protocol (i.e., excluding communication) is
very low. We remark that protocols which require a round of communication for every level of the
circuit in the online phase will perform poorly in this scenario. For example, the best AES circuit
has depth 50 and thus the online time will not be able to be less than 3750 ms in this setting, even
if each step in the protocol has almost zero cost and only a few bits are sent.

Last, we tested the prototype on a weaker AWS instance, i.e., c4.2xlarge, for computation of
AES. See Table 9. As expected, performance is mostly worse than on the stronger instance but
for some parameters they are still very close. This is mainly because of memory issues, and thus
is mostly reflected in the offline stage (our current implementation of the offline stage stores many
garbled circuits in memory). Indeed, the online times are almost the same.

Number of buckets Offline total Offline per bucket
Online time per bucket

1 thread 5 threads 9 threads

32 6915 216 17 12 12
128 18367 143 12 10 10
1024 93613 91 8 6 6

Table 9: Running times of AES (in ms) in LAN configuration using the parameters of Table 3 on
c4.2xlarge instances. (The costs for s = 80 are about 2-3 times larger.)

Communication in the offline stage consists mostly of the garbled circuits, whereas the com-
munication in the online stage is very small. For example, for AES computation with s = 40
and N = 32, about 260MB are transmitted in the offline stage and only about 312KB per online
execution; for N = 128, about 698MB are transmitted in the offline stage and only about 238 KB
per online execution; for N = 1024, about 3850MB are transmitted in the offline stage and less
than 170KB in the online stage. (Recall that the number of circuits per bucket is larger for N = 32
than for N = 128, 1024, and thus the communication in the online stage is larger.) For s = 80,
these numbers are about double, as expected since the number of circuits is about double.

Comparison with related work. We focus here on comparing our results with the ones reported
by previous works. We leave the comprehensive benchmarking of all relevant protocols using similar
hardware, network configuration, and so on to future work.

As discussed in Section 1, the fastest previously published implementation of cut-and-choose
based 2PC on standard machines (without massive parallelism) is of [2] which requires more than
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6 seconds for a single secure computation of AES. In, [34, 11], it is shown how to reduce costs dras-
tically using massive parallelism, requiring only several tens of ms per 2PC invoked. Our protocol
works in the online/offline setting, while [2, 11] work in the single-execution setting and [34] works
in the batch setting. The online/offline setting has great applicability. Our work demonstrates that
in this setting, it is possible to carry out secure two-party computation with security for malicious
adversaries with efficiency that is several orders of magnitude less than previous non-massively par-
allel implementations, and has the potential to cost much less in the massively parallel setting (since
all the expensive steps of the protocol can be done in parallel). We stress that the offline/online
setting is preferable to the batch setting since online executions can be run in isolation.

Different 2PC protocols, that are not based on the cut-and-choose technique for garbled circuits,
are presented in [29] and [7]. Both protocols have an offline stage in which the parties work
independently of their inputs, and a much shorter online stage in which the players use their inputs
and compute the function of interest. The cryptographic work required by these protocols during
the online stage is very small (if any). However, both protocols require a number of interaction
rounds that depends on the depth of the circuit being evaluated.

The overall online stage of [29] costs 4 seconds (for a single computation) for computing AES,
while the amortized offline time is at least 1 second (even for many computations). For many
computations (135), the total online time is 15 seconds. This gives an amortized time of just
111ms, but high latency. The average total running time (i.e., the sum of the offline and online
timings for a single AES computation) is at least 1.6 seconds (for all numbers tested in [29]). In [8],
optimizations and improvements were made to [29] that enables running many AES executions in
parallel. The best results obtained there provide an online time of 9962 ms for 680 AES operations
in parallel. This yields a low average cost (about 14 ms per AES), but a high latency. The
online time for a single execution is expected to be similar to [29]. Regarding [7], the cost of the
offline stage for computing AES is about 156 seconds and the cost of the online stage (with 50
rounds of communication) is about 20 ms [35]. However, both [29] and [7] have many rounds of
communication; thus in slower networks (e.g., between different Amazon regions) they will perform
poorly. (All measurements reported in these works are for networks with very low latency.)

We note that in [29] and [7], the offline stage is independent of the circuit being evaluated in
the online stage, whereas in our protocol, a single circuit is fixed for all computations. Thus, they
are better suited for settings in which the function to be computed is not known ahead of times.
In addition, [7] has two significant advantages over our protocol: (1) it can work with more than
two parties, and (2) it can work with arithmetic circuits, which for some types of computations is
much more efficient.

Overall, it is clear that when considering two parties, Boolean circuits and the offline/online
setting, our protocol and prototype implementation outperform all existing solutions. In high
latency networks, the improvement is by orders of magnitude.

7 Conclusion

The first implementation of cut-and-choose based 2PC was presented in [31] in 2009. It required
1114 seconds for a single computation of AES. Since then, many algorithmic and engineering
improvements have been presented, gradually reducing the cost of AES computation to 264 seconds
[33], to 6 seconds [2], and to even 1.4 seconds [20] and 0.46 seconds [11] when using massive
parallelism. This work continues this line of work and shows how the costs can be further reduced
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using recent and new algorithmic improvements (though in a slightly different, yet very natural
setting). When preprocessing 1024 executions, the average online time is less than 10 ms and the
amortized offline time is only 74 ms. As we use most state-of-the-art techniques (e.g., the protocol
of [26], the garbling scheme of [5], and the OT extension of [3]), these timings are the result of
incredible work carried out by the community on all aspects of the protocol, together with our
new consistency check. We find these results to be exciting as they are more than four orders of
magnitude better than the one of [31], carried out just 6 years ago.
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A Efficient Perfectly-Hiding Extractable Commitment

Perfect hiding together with extractability sounds like a contradiction in terms. This problem is
solved by ensuring perfect hiding when the preprocess phase is run between an honest P2 and a
potentially malicious P1, but is perfectly binding and even extractable in a simulation with P2.

In the standard model, we can use dual-mode commitments. We use the exact construction
of [21] that is based on [9, 15, 18, 30], and is secure under the DDH assumption. Let (G, q, g, h) be
the description of a group of order q with two distinct generators g1, g2.

• Preprocessing:

1. The receiver R chooses a random ρ1 ∈R Zq and sets ρ2 = ρ1 + 1. It then computes
h1 = gρ11 and h2 = gρ22 .

2. The receiver R and committer C engage in a zero-knowledge proof of knowledge of
ρ1, where R plays the prover and C plays the verifier. The statement proven is that
(g1, g2, h1,

h2
g2

) is a Diffie-Hellman tuple.

• Commitment: To commit to x ∈ G, choose random R,S ∈ Zq and compute u = gR1 · gS2
and v = hR1 · hS2 · x. The commitment value is is cx = (u, v).

• Decommitment: The decommitment is canonical; the committer sends R,S, x and the
receiver verifies that (u, v) is correctly constructed with these values.
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We begin by showing that the commitment is perfectly hiding, assuming that h1, h2 are correctly
constructed (by the soundness of the zero-knowledge proof, this holds in a real interaction except
with negligible probability). In order to see this, observe that u = gR1 · gS2 and v = gRρ11 · gSρ22 · x.

Letting g2 = gw1 for some w, we have that u = gR+wS
1 and v = gRρ1+wSρ21 . Considering the matrix(

R wS
Rρ1 wSρ2

)
we have that its determinant equals RwSρ2−RwSρ1 = RwS(ρ2−ρ1) = RwS 6= 0

(recall that ρ2 = ρ1 + 1). Thus the equations are linearly independent. This implies that u and
v are uniformly distributed in G, over the choice of R and S. Thus, for every x ∈ G there exist
R,S ∈ Zq such that (u, v) is a commitment to m with randomness R and S. This implies that x
is perfectly hidden.

We now show the simulation, for which the commitment is extractable (and perfectly binding).
The simulator S for a corrupted committer C works as follows:

• Simulator preprocessing:

1. The simulator S chooses a random ρ ∈R Zq and computes h1 = gρ1 and h2 = gρ2 . S hands
A the pair (h1, h2). S defines the trapdoor td = ρ.

2. S runs the zero-knowledge simulator withA as the verifier, for the statement (g1, g2, h1,
h2
g2

).
(Note that the statement is not in the language. Nevertheless, the simulator can be run.)

• Simulator extraction: Upon receiving a commitment cx = (u, v), simulator S computes
c = v/uρ.

First, note that the view of the committer is indistinguishable from a real execution, by the DDH
assumption and the zero-knowledge property of the proof. Second, note that extraction works since
h1 = (g1)

ρ and h2 = (g2)
ρ; therefore:

v

uρ
=
hR1 · hS2 · x
(gR1 · gS2 )ρ

=
hR1 · hS2 · x
hR1 · hS2

= x.

B The Full Protocol Specification

28



FIGURE B.1 (The Offline Stage)

Setup:

• s is a statistical security parameter, N is the number of online 2PC executions that P2 wishes
to run, p, p′ are probabilities, and B,B′ are chosen according to Lemmas 2.3 and 2.4.

• The parties decide on two circuits: (1) A circuit C
(
x, y(1), y(2)

)
that computes

f
(
x, (Ey(1))⊕ y(2)

)
, with y(2) being public-input wires. (2) A cheating-recovery circuit

C ′(x,D, d(1), d(2)) that outputs x if E′d(1) ⊕ d(2) = D, and outputs 0 otherwise, where d(2)

and D being public-input wires. E and E′ are probe-resistance matrices, generated by P2

as shown in Section 2.3.

We require that both circuits are constructed as described in Section 2.3 so that the values
of Ey(1) and E′d(1) remain private even if s− 1 bits of y(1) or d(1) are revealed.

Running the cut-and-choose for C and for C ′:

1. The parties run the cut-and-choose sub protocol from Figure B.2 with the circuit C and
parameters p,N and B.

2. The parties run the cut-and-choose sub protocol from Figure B.2 with the circuit C ′ and
parameters p′, N and B′. (Note that the same N is used in both cut-and-choose, so both
result in the same number of buckets.)

We chose to simplify the description by using the cut-and-choose as a sub-protocol. However, the
calls to FExCom∆ZK for the masks of C and C ′ must be made together since P2 should learn the
XORs of the masks for the circuits that are placed in the same bucket. In the proof, we assume
that the steps of the two cut-and-choose sub protocols are done in parallel, and thus the calls to
FExCom∆ZK can be made together.

From now on, we refer to the elements of the second cut-and-choose with prime. E.g. π′ is the
mapping function of the second execution from above (while π is of the first one). Also, denote
the remaining garbled circuits according to their placement by π; i.e., let gcj,i be the ith circuit
of the jth bucket (for j = 1, . . . , N and i = 1, . . . , B).

Running OTs for C and for C ′:

1. P2 chooses y
(1)
1 , . . . , y

(1)
N ∈R {0, 1}|y

(1)|, and d
(1)
1 , . . . , d

(1)
N ∈R {0, 1}|d

(1)|.

2. P1 acts as the sender in Fot and P2 as the receiver. For bucket j = 1, . . . , N , the parties

execute |y(1)| OTs, where in the ith OT P2 inputs the ith bit of y
(1)
j , and P1 inputs the set

of labels in the entire bucket that correspond to 0 in the ith bit, and the set of labels in the
entire bucket that correspond to 1, both concatenated with their decommitments related
to lc’s. (Recall that the labels are XORed with λj .)

The parties do the same for circuit C ′, where P2 inputs the bits of d
(1)
j,i .

Storing buckets for the online stage: For bucket j = 1, . . . , N :

1. P1 stores (seedj,i,mj,i, lcj,i, ldj,i, λj,i) for i = 1, . . . , B, and similarly for all bundles of C ′.

2. P2 stores y
(1)
j , lcj,i and gcj,i for i = 1, . . . , B. In addition, it stores the labels it received for

its input y
(1)
j from the OTs, the values of ∆j , and similarly for all the bundles of C ′.
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FIGURE B.2 (Creating a Garbled-Circuit Bundle)

Public Parameters:

• A circuit C(x, y(1), y(2)) with y(2) being public-input wires, or, a circuit C(x,D, y(1), y(2))
with D, y(2) being public-input wires

Constructing the jth bundle:

1. Choose a random seed seedj ∈R {0, 1}k. All the randomness needed in the next steps is
derived from PRFseed(·).

2. Choose a random mj ∈R {0, 1}|x| and λj ∈R {0, 1}k.

3. Construct a garbled circuit gcj in which the output-wire labels are the actual output bits
concatenated with random labels. (E.g., the output label for bit zero is 0|l where l ∈R
{0, 1}k−1). We use an adaptively-secure garbling scheme as described in Section 2.2, in
which all input-wire labels are XORed with λ.

4. Commit to input-wire labels associated with x, permuted according to m, by{(
i, commit(λj ⊕W

mj,i
j,i ), commit(λj ⊕W

1−mj,i
j,i )

)}
i∈In(C,x)

.

where In(C, x) denotes the set of input wires in the circuit C associated with input x.

5. Commit to input-wire labels associated with y(1) and y(2) by{
(i, commit(λj ⊕W 0

j,i), commit(λj ⊕W 1
j,i))

}
i∈In(C,y(1))∪In(C,y(2))

.

6. If D is an input to the circuit, commit to all input-wire labels of D by{
(i, commit(λj ⊕W 0

j,i), commit(λj ⊕W 1
j,i))

}
i∈In(C,D)

.

7. Commit to all output-wire labels by commit
(
{j, i,W 0

j,i,W
1
j,i}i∈Out(C)

)
.a

8. Let lcj be the union of the above sets of label commitments, and let ld be the set of all the
corresponding decommitments.

9. Output (gcj , lcj ; seedj , ldj ,mj , λj).

aThis part is unnecessary when the circuit in use is C′, but since the additional overhead is small, we
ignore this optimization here.
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FIGURE B.3 (The Cut-and-Choose Mechanism)

Public parameters:

• Let s,N,B ∈ N and p ∈ (0, 1) parameters. Let M = NB
p . (Assume no rounding of M is

needed.)

• A circuit C.

Picking the cut, the buckets, and the offline inputs:

1. The cut: P2 sets σ to be a random string of length M that has exactly NB ones.

2. The mapping: P2 picks a PRF seed seedπ and uses PRFseedπ (·) to compute a mapping
function π : [N ·B]→ [N ] that maps exactly B elements to each bucket.

Define πσ : [M ] → [N ] to be the function that maps the NB non-zero bits in σ according
to π, and maps the zero bits all to −1. Let Bi be the set {j|πσ(j) = i} for i = 1, . . . , N .

3. P2 commits to σ and seedπ using ExtractCom(·).

The cut-and-choose:

1. For j = 1, . . . ,M , P1 runs the garbled-circuit bundle construction procedure in Figure B.2
with the circuit C, and receives (gcj , lcj ; seedj , ldj ,mj , λj).

2. P1 sends gc1, . . . , gcM and lc1, . . . , lcM to P2, and commits to their seeds and λj ’s by
ExtractCom(seed1), . . . ,ExtractCom(seedM ) and ExtractCom(λ1), . . . ,ExtractCom(λM ).

3. P2 inputs to FExCom∆ZK the sets Bi, for i = 1, . . . , N , while P1 inputs the values m1, . . . ,mM .
P2 learns the sets ∆i for each bucket, whereas P1 learns B1, . . . , BN .

4. P2 decommits to σ and seedπ. P1 verifies that they are consistent with J and the Bi’s
received in the last step.

5. Let J be the set of indices that did not appear in any Bi. For j ∈ J , P2 receives mj from
FExCom∆ZK. In addition, P1 decommits to seedj and λj to P2.

6. P2 computes the set {gcj , lcj}j∈J using the seeds it received and verifies that everything is
correct.

FIGURE B.4 (The Online Stage)

We focus here on a single 2PC with a single bucket. For simplicity, we omit the bucket index j
when we refer to its garbled circuits, etc.

Private inputs: P1’s input is x. P2’s input is y.

Evaluating C:

1. P2 sends y(2) = y ⊕ y(1)j E to P1.

2. P1 sends x1 = x⊕m1 to P2.

3. For i = 1, . . . , B,

(a) P1 decommits λi.

(b) P1 sends the input-wire labels for y(2) and for xi = x1⊕m1⊕mi = x⊕mi in gci, and
the decommitments of those labels for the corresponding commitments in lci. (Recall
that P2 knows m1 ⊕mi from ∆j , thus, can compute the value of xi by itself.)

Continued in Figure B.5.
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FIGURE B.5 (The Online Stage – Continued)

Evaluating C – continued:

4. P2 checks that all of the decommitments are valid, and that it received all of the input-wire
labels indeed associated with xi. If no, it aborts.

5. P1 chooses a random D ∈R {0, 1}k.

6. For v ∈ Out(C),

(a) P1 chooses a random Rv ∈R {0, 1}k (for masking the output wires)

(b) Let W b
i,v be the bth label of output wire v of gci, where v ∈ Out(C). P1 sends(

W 0
i,v ⊕Rv, W 1

i,v ⊕Rv ⊕D
)

for i = 1, . . . , B.

7. P1 sends H(D).

8. P2 evaluates gci, for i = 1, . . . , B, and then uses the output wire labels to “decrypt” the
associated Rv and Rv ⊕D values. In case it learns both Rv and Rv ⊕D for some output
wire, it checks if the XOR of them is indeed D (by applying H(·) and comparing with the
value that P1 has sent). If so, it sets d to D. Otherwise, it sets d ∈ {0, 1}s.

9. If all evaluations (that ended) returned the same output, set z to be that output (but do
not halt).

Evaluating C ′:

1. Let d(1) the input that P2 used in the OTs for circuit C ′ in bucket j. P2 sends d(2) =
d⊕ d(1)E′.

2. P1 sends D, and for i = 1, . . . B′, and:

(a) P1 decommits to λ′i.

(b) P1 sends the labels that correspond to D and d(2) in gc′i, and decommits to the
corresponding commitments from lc′i.

(c) P1 sends the input-wire labels for x′i = x1 ⊕ m1 ⊕ m′i = x ⊕ m′i in gc′i, and the
decommitments of those labels for the corresponding commitments in lc′i. (Again,
recall that P2 knows m1 ⊕m′i from ∆j .)

3. P1 decommits to the output labels of gci, for i = 1, . . . B (i.e. revealing all output wire
labels of the garbled circuits for C).

4. P2 verifies all decommitments, all the values
(
W 0
i,v ⊕Rv, W 1

i,v ⊕Rv ⊕D
)
, for i = 1, . . . , B

and v ∈ Out(C ′), and the hash H(D), and aborts if there is a problem.

5. P2 evaluates gc′i, for i = 1, . . . B′, and takes the majority output to be x̂.

P2’s output:

1. If all evaluation circuits of C returned the same output z, then P2 outputs z.

2. Else, if P2 has learned earlier d such that H(d) = H(D), then it outputs f(x̂, y).

3. Else, let gci be a circuit for which all the output labels that P2 received from its evaluation
were also the labels that were decommitted earlier from lci. P2 outputs the output of gci.

32


	Introduction
	Our Contributions

	Preliminaries
	Efficient Perfectly/Statistically-Hiding Extractable Commitment
	Adaptively-Secure Garbling
	The Solution of LindellP07 for Selective-OT Attacks
	Cut-and-Choose Parameters

	Commitment with ZK Proof of Difference
	A Warm-Up – Only Two Messages
	Proof of Security
	Replacing the Perfectly-Binding Commitment

	Extending to Many Messages
	Using FExComZK in Cut-and-Choose

	Optimized 2PC in the Online/Offline Setting
	Prototype Implementation
	Performance Evaluation
	Conclusion
	Efficient Perfectly-Hiding Extractable Commitment
	The Full Protocol Specification

