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Abstract

Deniable encryption (Canetti et al. CRYPTO ’97) is an intriguing primitive that provides a secu-
rity guarantee against not only eavesdropping attacks as required by semantic security, but also stronger
coercion attacks performed after the fact. The concept of deniability has later demonstrated useful and
powerful in many other contexts, such as leakage resilience, adaptive security of protocols, and se-
curity against selective opening attacks. Despite its conceptual usefulness, our understanding of how
to construct deniable primitives under standard assumptions is restricted. In particular, from standard
assumptions such as Learning with Errors (LWE), we have only multi-distributional or non-negligible
advantage deniable encryption schemes, whereas with the much stronger assumption of indistinguish-
able obfuscation, we can obtain at least fully-secure sender-deniable PKE and computation. How to
achieve deniability for other more advanced encryption schemes under standard assumptions remains an
interesting open question.

In this work, we construct a bi-deniable inner product encryption (IPE) in the multi-distributional
model without relying on obfuscation as a black box. Our techniques involve new ways of manipulating
Gaussian noise, and lead to a significantly tighter analysis of noise growth in Dual Regev type encryption
schemes. We hope these ideas can give insight into achieving deniability and related properties for
further, advanced cryptographic constructions under standard assumptions.

1 Introduction

Deniable encryption, introduced by Canetti et al. [CDNO97] at CRYPTO 1997, is an intriguing primitive
that allows Alice to privately communicate with Bob in a way that resists not only eavesdropping attacks as
required by semantic security, but also stronger coercion attacks performed after the fact. An eavesdropper
Eve stages a cocercion attack by additionally approaching Alice (or Bob, or both) after a ciphertext is
transmitted and demanding to see all secret information: the plaintext, the random coins used by Alice
for encryption, and any private keys held by Bob (or Alice) related to the ciphertext. In particular, Eve
can use this information to “fully unroll” the exact transcript of some deterministic decryption procedure
purportedly computed by Bob, as well as verify that the exact coins and decrypted plaintext in fact produce
the coerced ciphertext. A secure deniable encryption scheme should maintain privacy of the sensitive data
originally communicated between Alice and Bob under the coerced ciphertext (instead substituting a benign
yet convincing plaintext in the view of Eve), even in the face of such a revealing attack and even if Alice and
Bob may not interact during the coercion phase.

Historically, deniable encryption schemes have been challenging to construct. Under standard assump-
tions, Canetti et al. [CDNO97] constructed a sender-deniable1 PKE where the distinguishing advantage
between real and fake openings is an inverse polynomial depending on the public key size. But it was not
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until 2011 that O’Neill, Peikert, and Waters [OPW11] proposed the first constructions of bi-deniable PKE
with negligible deniability distinguishing advantage: from simulatable PKE generically, as well as from
Learning with Errors (LWE [Reg05]) directly.

Concurrently, Bendlin et al. [BNNO11] showed an inherent limitation: any non-interactive public-key
encryption scheme may be receiver-deniable (resp. bi-deniable) only with non-negligible Ω(1/size(pk))
distinguishing advantage in the deniability experiment. Indeed, O’Neill et al. bypass the impossibility result
of [BNNO11] by working in the so-called multi-distributional model. In the multi-distributional model of
deniability, private keys sk are distributed by a central key authority. In the event that Bob is coerced to
reveal a key sk that decrypts chosen ciphertext c∗, the key authority distributes a faking key fk to Bob, which
Bob can use to generate a fake key sk∗ (designed to behave identically to sk except on ciphertext c∗). If
this step is allowed, then O’Neill et al. demonstrate that for their constructions, Eve has at most negligible
advantage in distinguishing whether Bob revealed an honest sk or fake sk∗.

A major breakthrough in deniable encryption arrived with the work of Sahai and Waters [SW14], who
proposed the first sender-deniable PKE with negligible distinguishing advantage from indistinguishability
obfuscation (iO) for P/poly [GGH+13]. The concept of deniability has been demonstrated useful in the
contexts of leakage resilience [DLZ15], adaptive security for protocols, and as well as deniable computation
(or algorithms) [CGP15, DKR15, GP15]. In addition to coercion resistance, a bi-deniable encryption scheme
is a non-committing encryption scheme [CFGN96], as well as a scheme secure under selective opening
(SOA) attacks [BHY09], which are of independent theoretical interest.

Despite the apparent theoretical utility in understanding the extent to which cryptographic construc-
tions are deniable, our current knowledge of constructing such a scheme is still limited. From standard
assumptions such as LWE, we have only multi-distributional or non-negligible advantage deniable encryp-
tion schemes, whereas with the much more powerful assumption of iO, we can obtain at least fully-secure
sender-deniable PKE and computation [CGP15, DKR15, GP15]. A significant gap persists between known
feasibility results from standard assumptions and the powerful possibilities from stronger assumptions.

In this work, we further narrow this gap by investigating a richer primitive, inner product encryption
(IPE) [KSW08, AFV11, BRS13], without the use of obfuscation as a black box primitive. We hope that
the techniques developed in this work can further shed light on deniability for even richer schemes such as
functional encryption [BSW11, GGH+13, BGG+14, GVW15] under standard assumptions.

1.1 Our Results

• Our main contribution is the construction of a (multi-distributional) bi-deniable IPE from the standard
Learning with Errors assumption.

Theorem 1.1 (Informal). Under the standard LWE assumption, there exists a payload-hiding public-key
inner product encryption scheme, which is also bi-deniable in the multi-distributional model.

Recall that in an inner product encryption (IPE) scheme, every secret key skv is associated with a predi-
cate vector v ∈ Z`q, and every ciphertext ctw is associated with an attribute vector w ∈ Z`q. A ciphertext ctw
can be decrypted by a given secret key skv to its payload message m only when 〈v,w〉 = 0. Informally, the
security notion for an IPE scheme is collusion resistance, which means no collection of keys can provide
information on a ciphertext’s message, if the individual keys are not authorized to decrypt the ciphertext in
the first place. Intuitively, a bi-deniable IPE must provide both collusion and coercion resistance. We also
provide the first formal security definition for bi-deniable inner product encryption.

• Our second contribution is a new form of the Extended Learning with Errors (eLWE) assumption [OPW11,
ASP12, BLP+13], which is convenient in the context of Dual Regev type functional encryption
schemes, such as the IPE of Agrawal, Freeman, and Vaikuntanathan [AFV11].
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The eLWE assumption is roughly the LWE assumption, but where the distinguisher also receives “hints”
on the LWE sample’s noise vector x in the form of (perhaps noisy) inner products, i.e. distributions of
the form

{
A, b = ATs + x, z, 〈z,x〉

}
where (intuitively) z is a decryption key. Our main result here is a

reduction from the standard LWE assumption to our new form of the extended-LWE assumption, eLWE+,
in the case of a prime polynomial-size modulus even if there is no noise on the hints. We show this by
extending the LWE to eLWE reduction of Alperin-Sheriff and Peikert [ASP12] to our particular setting.

• As a further contribution, we believe the techniques developed in the course of our cryptosystem’s
security proof may be of independent interest toward better understanding LWE-based inner product
encryption schemes. Details follow.

1.2 Our Techniques

As in the work of O’Neill et al. [OPW11], our approach to bi-deniability relies primarily on a curious prop-
erty of Dual Regev type [GPV08] secret keys: by correctness of any such scheme, each key z is guaranteed
to behave as intended for some 1−negl(n) fraction of the possible random coins used to encrypt, but system
parameters may be set so that each key is also guaranteed to be faulty (i.e. fail to decrypt) on some negl(n)
fraction of the possible encryption randomness. More concretely, each secret key z is sampled from an
m-dimensional Gaussian distribution, as is the error term x (for LWE public key A ∈ Zn×mq ). For every
fixed z, with overwhelming probability over the choice of x, the vectors z,x ∈ Zmq will point in highly
uncorrelated directions in m-space. However, if the vector z and x happen to point in similar directions, the
error magnitude will be squared during decryption.

Our scheme is based around the idea that a receiver, coerced on honest key-ciphertext pair (z, c∗), can
use the key authority’s faking key fk to learn the precise error vector x∗ used to construct c∗. Given x∗, z,
and fk, the receiver re-samples a fresh secret key z∗ that is functionally-equivalent to the honest key z,
except that z∗ is strongly correlated with the vector x∗ in c∗. When the coercer then attempts to decrypt
the challenge ciphertext c∗ using z∗, the magnitude of decryption error will artificially grow and cause the
decryption to output the value we want to deny to. Yet, when the coercer attempts to decrypt any other
independently-sampled ciphertext c, decryption will succeed with overwhelming probability under z∗ if it
would have under z. We emphasize that to properly show coercion resistance, this behavior of z∗ should
hold even when c and c∗ embed the same attribute vector w.

However to push the above argument through formally, we must overcome a number of technical chal-
lenges. The first such challenge is an implicit requirement to very tightly control the precise noise magnitude
of evaluated ciphertexts. In previous functional (and homomorphic) encryption schemes from lattices, the
emphasis is placed on upper bounding evaluated noise terms, to ensure that they do not grow too large and
cause decryption to fail. Moreover, security (typically) holds for any ciphertext noise level at or above the
starting ciphertexts’ noises. In short, noise growth during evaluation is nearly always undesirable.

As with previous schemes, we too must upper bound the noise growth of evaluated ciphertexts in order
to ensure basic correctness of our IPE. But unlike previous schemes, we must take the step of also (carefully)
lower bounding the noise growth during the inner product evaluation. This is due to the fact, highlighted
above, that producing directional alignment between a key and error term can at most square the noise
present during decryption. Since coercion resistance requires that it must always be possible to deny any
ciphertext originally intended for any honest key, it must be that, with overwhelming probability, every
honest key and every honest ciphertext produce evaluated error that is no less than the square root of the
maximum noise threshold tolerated by the scheme.

At a high level, our security proof begins at the Fake experiment, where first a ciphertext c∗ and its asso-
ciated noise terms x∗ are sampled, then a fake key z∗ is generated that artificially fails to decrypt any cipher-
text with noise vector (close to) x∗. We then proceed through a sequence of statistically-indistinguishable
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hybrids, to arrive at an intermediate experiment where first the key z∗ is sampled uniformly from the space
of valid keys, then noise x∗ is instead chosen to be correlated with z∗. Once we have an honestly-distributed
key z∗, we can rely on Extended Learning with Errors (or more specifically, on our new assumption eLWE+)
to show that the artificial correlations with key z∗ present in the error term x∗ do not leak any additional,
meaningful information to an efficient distinguisher. Finally we arrive at the Real experiment, where key z∗

is honestly distributed and ciphertext c∗ is uniform in the ciphertext space.
The most technically demanding stage of our proof arises when arguing statistical indistinguishability

between sampling orders: that is, (i) sampling x∗ then z∗ in the Fake experiment vs. (ii) sampling z∗ then
x∗ in the Real experiment. In more detail, we will follow the general outline of the LWE-based IPE scheme
of [AFV11], where a ciphertext c = {c0, {ci,j}, c′}, and decryption under skv proceeds by including a
ciphertext ci,j in the summation cv =

∑
v ci,j only if the j-th bit of the i-th Zq-coordinate of v equals 1.

Decryption is completed by checking if c′ − 〈z, [c0|cv]〉 is closer to 0 than not.
In order to simulate the challenge ciphertext during the security proof, we replace each of the ci,j by

the m-vector Ri,jc0 for matrices Ri,j sampled randomly from {−1, 1}m×m. An application of the leftover
hash lemma shows the ci,j remain uniformly distributed. At this point in the simulation, the evaluated error
term becomes xv := Rvx

∗, for Rv =
∑

v Ri,j computed as before, and for error vector x∗ originally
planted in the non-evaluated ciphertext component c0. Indeed, it is this specific error term xv with which
fake keys z∗ sampled in the Fake experiment must be correlated. The key source of difficulty is that, while
each coordinate of honest secret keys z and error terms x∗ are (effectively) independently sampled from the
spherical Gaussian error distribution χ, the coordinates of xv = Rvx

∗ are in fact skewed by the addition
of the random “rotation matrices” Ri,j . Consequently, the distribution of xv is an ellipsoidal Gaussian
distribution, not a spherical one. Thus, naively embedding xv into a new key in an identical manner to
O’Neill et al. [OPW11] will produce a key z∗ with a distribution that is statistically distinguishable from
honestly sampled keys z.

To avoid this pitfall, we need to take special care across our entire scheme and security proof to ensure
that every m-vector – every key, every error term, etc. – is sampled as a multi-dimensional Gaussian with
an individualized covariance matrix Q ∈ Zm×m, designed to produce just the right output distribution. Our
techniques here rely on elementary applications of probability theory and linear algebra, but we believe they
provide both a new technical perspective on Dual Regev type encryption and may serve as a fresh set of
tools for approaching such schemes.

2 Preliminaries

Notations. Let PPT denote probabilistic polynomial time. We use bold uppercase letters to denote ma-
trices, and bold lowercase letters to denote vectors. We let λ be the security parameter, [n] denote the set
{1, ..., n}, and |t| denote the number of bits in a string or vector t. We denote the i-th bit value of a string
s by s[i]. We use [·|·] to denote the concatenation of vectors or matrices, and || · || to denote the norm of
vectors or matrices respectively. Unless otherwise stated, we use the `2 norm throughout our work.

2.1 Multi-Distributional Bi-Deniable IPE: Syntax and Bi-Deniability

In this section, we describe the syntax and bi-deniability security definition of a (multi-distributional) bi-
deniable inner product encryption (IPE). A multi-distributional bi-deniable inner product encryption scheme
consists of a tuple of algorithms (Setup,Keygen,Enc,Dec,DenSetup,FakeRCoins,FakeSCoins):

Setup(1λ): On input the security parameter λ, the setup algorithm outputs public parameters pp and master
secret key msk.
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1. (w∗, state1)← A1(λ)
2. (pp,msk)← Setup(1λ)
3. c← Enc(pp,w∗,M ; rS)

4. (v∗, state2)← AKG(msk,w∗,·)
2 (pp, state1, c)

5. skv∗ ← Keygen(msk,v∗)

6. b← AKG(msk,w∗,·)
3 (skv∗ , c, state2, rS)

7. Output b ∈ {0, 1}
(a) ExptRealA,M,M′(1λ)

1. (w∗, state1)← A1(λ)
2. (pp,msk, fk)← DenSetup(1λ)
3. c′ ← Enc(pp,w∗,M ′; rS)

4. (v∗, state2)← AKG(msk,w∗,·)
2 (pp, state1, c

′)
5. r′S ← FakeSCoins(pp,M,M ′, rS)
6. skv∗ ← FakeRCoins(pp, fk, c′,v∗,M,M ′)

7. b← AKG(msk,w∗,·)
3 (skv∗ , c, state2, r

′
S)

8. Output b ∈ {0, 1}
(b) ExptFakeA,M,M′(1λ)

Figure 1: Security experiments for bi-deniable IPE

Keygen(msk,v): On input the master secret key msk and a predicate vector v, the key generation algorithm
outputs a secret key skv for vector v.

Enc(pp,w,M): On input the public parameter pp and an attribute/message pair (w,M), it outputs a
ciphertext cw.

Dec(skv, cw): On input the secret key skv and a ciphertext cw, it outputs the corresponding plaintext M if
〈v,w〉 = 0; otherwise, it outputs ⊥.

DenSetup(1λ): On input the security parameter λ, the deniable setup algorithm outputs pubic parameters
pp, master secret key msk and faking key fk.

FakeRCoins(pp, fk, c,v,M,M ′): On input public parameters pp, faking key fk, a ciphertext cw for mes-
sage M , a predicate attribute v, and desired message M ′, the receiver faking algorithm output a faked
secret key sk′v.

FakeSCoins(pp, rS ,M,M ′): On input public parameters pp, original random coins rS used in encryption
of message M and desired message M ′, it outputs a faked random coin r′S .

Correctness. We say the bi-deniable IPE scheme described above is correct, if for any (msk, pp)← S(1λ),
where S ∈ {Setup,DenSetup}, any message M , predicate vector v, and any attribute vector w where
〈v,w〉, we have Dec(skw, cv) = M , where skw ← Keygen(msk,w) and c← Enc(pp,v,M).

Bi-deniability definition. LetM,M ′ be two arbitrary messages, not necessarily different. We propose the
bi-deniability definition by describing real experiment ExptRealA,M,M ′(1

λ) and faking experiment ExptFakeA,M,M ′(1
λ)

regarding adversary A = (A1,A2,A3) below:
where KG(msk,w∗, ·) returns a secret key skv ← Keygen(msk,v) if 〈v,w∗〉 6= 0 and ⊥ otherwise.

Definition 2.1 (Multi-Distributional Bideniable IPE). An IPE scheme Π is multi-distributional bi-deniable
if for any two messages M,M ′, any probabilistic polynomial-time adversariesA whereA = (A1,A2,A3),
there is a negligible function negl(λ) such that

AdvΠ
A,M,M ′(1

λ) = |Pr[ExptRealA,M,M ′(1
λ) = 1]−Pr[ExptFakeA,M,M ′(1

λ) = 1]| ≤ negl(λ)
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2.2 Inner-Product-based Bitranslucent Set Scheme

In this section, we extend the bitranslucent set definition proposed by O’Neill et al. in [OPW11] to an inner-
product-based counterpart, i.e. an Inner Product Bi-Translucent Set (IP-BTS) scheme. An IP-BTS scheme
is made up of the following algorithms:

Setup(1λ): On input the security parameter, the normal setup algorithm outputs public parameters pp and
master secret key msk.

DenSetup(1λ): On input the security parameter, the deniable setup algorithm outputs public parameters
pp, master secret key msk and faking key fk.

Keygen(msk,v): On input the master secret key msk and a predicate vector v, the key generation algorithm
outputs a secret key skv.

P - and U -samplers SampleP(pp,w; rS) (or SampleU(pp; rS)) output some cw (or c).

TestP(skv, cw): On input a secret key skv and a ciphertext cw, the P -tester algorithm outputs 1 (accepts)
or 0 (rejects).

FakeSCoins(pp, rS): On input public parameters pp and randomness rS , the sender-faker algorithm outputs
randomness r∗S .

FakeRCoins(pp, fk, cw,v): On input public parameters pp, the faking key fk and a ciphertext cw, the
receiver-faker algorithm outputs a faked secret key sk′v.

Definition 2.2 (IP-BTS). We say the scheme

Π = (Setup,DenSetup,Keygen, SampleP, SampleU,TestP,FakeSCoins,FakeRCoins)

is an inner product bitranslucent set scheme if it satisfies:

1. (Correctness.) We say an IP-BTS scheme is correct if

• For any (pp,msk) ← Setup(1λ), any vector v, skv ← Keygen(msk,v),if 〈v,w〉 = 0 and
cw ← SampleP(pp,w, rS), then TestP(skv, cw) = 1. Otherwise, TestP(skv, cw) = 0.

• For any (pp,msk)← Setup(1λ), any vector v, skv ← Keygen(msk,v), if c← SampleU(pp, rS),
then TestP(skv, c) = 0.

2. (Indistinguishable public parameters.) The public parameters pp generated by the two setup algo-
rithms (pp,msk)← Setup(1λ) and (pp,msk, fk)← DenSetup(1λ) should be indistinguishable.

3. (Bi-deniability.) We propose the selective bi-deniability definition by describing real experiment
ExptRealA (1λ) and faking experiment ExptFakeA (1λ) regarding adversary A = (A1,A2,A3) below:

where KG(msk,w∗, ·) returns a secret key skv ← Keygen(msk,v) if 〈v,w∗〉 6= 0 and ⊥ otherwise.

We say the scheme is selectively bi-deniable, if for any probabilistic polynomial-time adversaries A
where A = (A1,A2,A3), there is a negligible function negl(λ) such that

AdvΠ
A(1λ) = |Pr[ExptRealA (1λ) = 1]−Pr[ExptFakeA (1λ) = 1]| ≤ negl(λ)

Finally, there is a generic transformation [CDNO97] from multi-distributional (bi)deniable encryption
(with a negl(λ) distinguishing advantage) into a “standard” (i.e. single-distribution) (bi)deniable encryption
with 1/poly(λ) distinguishing advantage, which is best-possible for receiver-deniable encryption by the
lower bound of Bendlin et al. [BNNO11].
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(a) (v∗,w∗, state1)← A1(λ)
(b) (pp,msk, fk)← DenSetup(1λ)
(c) c← SampleU(pp; rS)

(d) state2 ← AKG(msk,w∗,·)
2 (pp, state1, c)

(e) skv∗ ← Keygen(msk,v∗)

(f) b← AKG(msk,w∗,·)
3 (skv∗ , c, state2, rS)

(g) Output b ∈ {0, 1}
(a) ExptRealA (1λ)

(a) (v∗,w∗, state1)← A1(λ)
(b) (pp,msk, fk)← DenSetup(1λ)
(c) c← SampleP(pp,w∗; rS)

(d) state2 ← AKG(msk,w∗,·)
2 (pp, state1, c)

(e) r′S ← FakeSCoins(pp; rS)
(f) skv∗ ← FakeRCoins(pp, fk, c,v∗)

(g) b← AKG(msk,w∗,·)
3 (skv∗ , c, state2, r

′
S)

(h) Output b ∈ {0, 1}
(b) ExptFakeA (1λ)

Figure 2: Security experiments for IP-BTS

Remark 2.3. Correctness for the faking algorithms is implied by the bi-deniability property. In par-
ticular, with overwhelming probability over the randomness, the following holds: let (pp,msk, fk) ←
DenSetup(1λ), let x,y be any vectors, let sky ← Keygen(msk,y), and let cx ← SampleP(pp,x; rS),
then

• SampleU(pp;FakeSCoins(pp, rS)) = cx,

• TestP(FakeRCoins(pp, fk, cx,y), cx) = 0, and

• for any other x′, let c′ ← SampleP(pp,x′; r′S), then (with overwhelming probability) we have

TestP
(
FakeRCoins(pp, fk, cx,y), c′

)
= TestP(sky, c

′).

It is not hard to see that if one of these does not hold, then one can easily distinguish the real experiment
from the faking experiment by performing the test prescribed.

Remark 2.4 (Adaptive bi-deniability). We say the IP-BTS scheme is adaptively bi-deniable, if the adversary
A does not need to commit to the challenge functionality (v∗,w∗) before obtaining public parameters pp.

Lemma 2.5. The existence of a inner product bitranslucent set scheme (IP-BTS) implies existence of a
multi-distributional bi-deniable IPE scheme, secure under Definition 2.1.

Proof Sketch. Canetti et al. [CDNO97] gave a simple encoding trick to construct a multi-distributional
sender-deniable encryption scheme from a translucent set. O’Neill, Peikert, and Waters [OPW11] gave a
similar trick for constructing multi-distributional bi-deniable encryption from a bi-translucent set scheme.
We observe a similar trick works here:

Encryption is performed bit-wise on the message M . The normal encryption algorithm encrypts a bit 0
as the pair of samples (U,U) and a bit 1 as (U,P ). The IPE simulator encrypts a bit 0 as (P, P ) and a bit 1
as (U,P ). If the simulator needs to open an encryption of 0 as a 1, he uses FakeSCoins and FakeRCoins to
make a pair (P, P ) appear as (U,P ) under TestP. Similarly to open an encryption of 1 as a 0, the simulator
can use FakeSCoins and FakeRCoins to make a pair (U,P ) appear as (U,U) under TestP.

The remainder of the proof is a routine calculation.

2.3 Lattice Background

Throughout our work, without loss of generality we treat Zq as the subset of integers (−q/2, q/2] ∩ Z, and

define the set Z1
def
= {−1/2+1/q,−1/2+2/q, . . . , 1/2−1/q, 1/2} representing the range (−1/2, 1/2] ⊂ R

with bit-precision log2(q). We define the operators (mod q) and (mod 1) to map into these sets in the
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natural way. We note that for any x0,x1 ∈ Znq and y0,y1 ∈ Zn1 where x0 = qy0,x1 = qy1, it holds that
q〈x0/q,x1/q〉 = 〈y0,y1〉 ∈ Z1. That is, we have 〈x0,y1〉 = 〈x0,x1/q〉 ∈ Z1. (The reader should think
of the multiplication operation in our inner product definition as operating on each input-argument, written
as a relative ratio of the argument’s domain’s size, q; i.e. over the rationals Q or, in general, the reals R
modulo 1. In prior works, this is sometimes alternatively denoted by the torus T.)

A full-rank m-dimensional integer lattice Λ ⊂ Zm is a discrete additive subgroup whose linear span is
Rm. The basis of Λ is a linearly independent set of vectors whose linear combinations are exactly Λ. Every
integer lattice is generated as the Z-linear combination of linearly independent vectors B = {b1, ..., bm} ⊂
Zm. For a matrix A ∈ Zn×mq , we define the “q-ary” integer lattices:

Λ⊥q = {e ∈ Zm|Ae = 0 mod q}, Λu
q = {e ∈ Zm|Ae = u mod q}

It is obvious that Λu
q is a coset of Λ⊥q .

Let Λ be a discrete subset of Zm. For any vector c ∈ Rm, and any positive parameter σ ∈ R, let
ρσ,c(x) = exp(−π||x − c||2/σ2) be the Gaussian function on Rm with center c and parameter σ. Next,
we set ρσ,c(Λ) =

∑
x∈Λ ρσ,c(x) be the discrete integral of ρσ,x over Λ, which gives the Discrete Gaussian

distribution DΛ,σ,c(y) :=
ρσ,c(y)
ρσ,c(Λ) . We will sometimes use the distribution DΛ,σ, which is understood as

centered at the origin, or when the context is clear, we will sometimes use Dσ to denote sampling over R,
then rounding to an appropriate element.

More frequently, we will use the generalized multi-dimensional (or m-variate) Discrete Gaussian distri-
bution DZm1 ,Q, which denotes sampling a Z1-valued m-vector with covariance matrix Q ∈ Zm×m1 . In order
to sample from the distribution DZm1 ,Q, proceed as follows:

- Sample t′ = (t′1, ..., t
′
m) ∈ Rm independently as t′i ← D1 for i ∈ [m].

- Find the Cholesky decomposition Q = LLT .

- Output the vector t := Lt′ as the sample t← DZm1 ,Q.

Recall that the Cholesky decomposition takes as input any positive-definite matrix Q ∈ Rm×m and
outputs a lower triangular matrix L so that Q = LLT . Further, we recall the fact that the sum of two
m-variate Gaussians with means µ1, µ2 and variances Q1,Q2 is an m-variate Gaussian with mean µ1 + µ2

and variance Q1 + Q2.
Next we show a useful lemma that we need for our construction.

Lemma 2.6. Let Im×m be the m-by-m identity matrix, R ∈ Rm×m, and Q
def
= a2Im×m − b2RTR for

positive numbers a, b such that a > b||R||. Then Q is positive definite.

Proof. To show that Q is positive definite, we need to show that for any column vector x of dimension m,
we have xT ·Q · x > 0. We prove this by unfolding the matrix Q:

xT ·Q · x = xT · (a2Im×m − b2RTR) · x
= a2xT Im×mx− b2xTRTRx

= a2||x||2 − b2||Rx||2

> b2||R||2 · ||x||2 − b2||Rx||2.

Since ||R|| · ||x|| ≥ ||Rx||, we can conclude xT ·Q · x > 0.
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Randomness extraction. We will use the following lemma to argue the indistinghishability of two differ-
ent distributions, which is a generalization of the leftover hash lemma proposed by Dodis et al. [DRS04].
We use the lattice based leftover hash lemma in [ABB10].

Lemma 2.7 ([ABB10]). Suppose that m > (n + 1) log q + w(log n). Let R ∈ {−1, 1}m×k be chosen
uniformly at random for some polynomial k = k(n). Let A,B be matrix chosen randomly from Zn×mq ,Zn×kq

respectively. Then, for all vectors w ∈ Zm, the two following distributions are statistically close:

(A,AR,RTw) ≈ (A,B,RTw)

Trapdoors and sampling algorithms. We will use the following algorithms to sample short vectors from
specified lattices.

Lemma 2.8 ([GPV08]). Let q, n,m be positive integers with q ≥ 2 and sufficiently large m = Ω(n log q).
There exists a PPT algorithm TrapGen(q, n,m) that with overwhelming probability outputs a pair (A ∈
Zn×mq ,TA ∈ Zm×m) such that A is statistically close to uniform in Zn×mq and TA is a basis for Λ⊥q (A)
satisfying ||TA|| ≤ O(n log q).

Lemma 2.9 ([GPV08, CHKP10, ABB10]). Let q > 2,m > n and s > ||TA|| · w(
√

logm+m1). There
are several polynomial time algorithms as follows:

• There is an efficient algorithm SampleLeft(A,B,TAu, s): It takes in A ∈ Zn×mq , a short basis TA

for lattice Λ⊥q (A), a matrix B ∈ Zn×m1
q , a vector u ∈ Znq and a Gaussian parameter s, then outputs

a vector e ∈ Zm+m1
q such that e ∈ Λu

q (F), where F := (A|B), and is statistical close to DΛu
q (F),s.

• There is an efficient algorithm SampleRight(A,B,R,TB,u, s): It takes in A ∈ Zn×mq ,R ∈ Zm×nq ,
a matrix B ∈ Zn×nq , a short basis TB for lattice Λ⊥q (B), a vector u ∈ Znq and a Gaussian parameter
s, then outputs a vector e ∈ Zm+n

q such that e ∈ Λu
q (F), where F := (A|AR+B), and is statistical

close to DΛu
q (F),s.

• There is an efficient algorithm SamplePre that takes as input a matrix A ∈ Zn×mq together with its
trapdoor TA, and a vector u ∈ Znq and outputs a matrix e ∈ Zm from DΛ⊥(A)+u,r (up to negl(n)
statistical distance.)

• There is a deterministic polynomial-time algorithm ExtBasis(A,TA,A
′) that takes in an arbitrary

A ∈ Zn×mq , whose columns generate the entire group Znq , an arbitrary basis TA ∈ Zm×m of Λ⊥(A),
then outputs a basis T′ of Λ⊥(A|A′), such that ||T|| = ||TA||. Moreover, the same holds even for
any given permutation of columns of A′.

• There is a deterministic polynomial time algorithm Invert(A,TA, b) that, given any A ∈ Zn×mq with
its trapdoor TA ∈ Zm×mq such that ||T|| · w(

√
log n) ≤ 1/β for some β > 0, and b = ATs + x for

arbitrary s ∈ Znq and random x← Dmβ , outputs x with overwhelming probability.

3 Learning with Errors and Extended Learning with Errors

The LWE problem was introduced by Regev [Reg05], who showed that solving it on the average is as hard
as (quantumly) solving several standard lattice problems in the worst case.
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Definition 3.1 (LWE). For an integer q = q(n) ≥ 2, and an error distribution χ = χ(n) over Zq, the
learning with errors problem LWEn,m,q,χ is to distinguish between the following pairs of distributions:

{A, b = ATs + x} and {A,u}

where A
$← Zn×mq , s $← Znq , u $← Zmq , and x

$← χm.

O’Neill et al. [OPW11] introduced the extended-LWE problem, which allows a “hint” on the error vector
x to leak in form of a noisy inner product. They observe a trivial “blurring” argument shows that LWE
reduces to eLWE when the hint-noise βq is superpolynomially larger than the magnitude of samples from
χ, and also allows for unboundedly many independent hint vectors 〈z,xi〉 while retaining LWE-hardness.

Definition 3.2 (Extended LWE). For an integer q = q(n) ≥ 2, and an error distribution χ = χ(n) over
Zq, the extended learning with errors problem eLWEn,m,q,χ,β is to distinguish between the following pairs
of distributions:

{A, b = ATs + x, z, 〈z, b− x〉+ x′} and {A,u, z, 〈z,u− x〉+ x′}

where A
$← Zn×mq , s $← Znq , u $← Zmq , x, z $← χm and x′ $← Dβq.

Further, Alperin-Sheriff and Peikert [ASP12] show that LWE reduces to eLWE with a polynomial mod-
ulus and no hint-noise (i.e. β = 0), even in the case of a bounded number of independent hints.

We introduce the following new form of extended-LWE, called eLWE+, which considers leaking a pair
of correlated hints on the same noise vector.

Definition 3.3 (Extended LWE Plus). For integer q = q(n) ≥ 2,m = m(n), an error distribution χ =
χ(n) over Zq, and a matrix R ∈ Zm×mq , the extended learning with errors problem eLWE+

n,m,q,χ,β,R is to
distinguish between the following pairs of distributions:

{A, b = ATs + x, z0, z1, 〈z0, b− x〉+ x, 〈Rz1, b− x〉+ x′} and

{A,u, z0, z1, 〈z0,u− x〉+ x, 〈Rz1,u− x〉+ x′}

where A
$← Zn×mq , s $← Znq , u $← Zmq , x, z0, z1

$← χm and x, x′ $← Dβq.

Hardness of extended-LWE+. A simple observation, following prior work, is that when χ is poly(n)-
bounded and the hint noise βq (and thus, modulus q) is superpolynomial in n, then LWEn,m,q,χ trivially
reduces to eLWE+

n,m,q,χ,β,R for every R ∈ Zm×mq so that Rz1 has poly(n)-bounded norm. This is because,
for any r = ω(

√
log n), c ∈ Z, the statistical distance between DZ,r and c+DZ,r is at most O(|c|/r).

However, our cryptosystem will require a polynomial-size modulus q. So, we next consider the case of
prime modulus q of poly(n) size and no noise on the hints (i.e. β = 0). Following [ASP12]2, it will be
convenient to swap to the “knapsack” form of LWE, which is: given H← Z(m−n)×m

q and c ∈ Zm−nq , where
either c = Hx for x← χm or c uniformly random and independent of H, determine which is the case (with
non-negligible advantage). The “extended-plus” form of the knapsack problem also reveals a pair of hints
(z0, z1, 〈z0,x〉, 〈Rz1,x〉). Note the equivalence between LWE and knapsack-LWE is proven in [MM11]
for m ≥ n+ ω(log n).

2We note that a higher quality reduction from LWE to eLWE is given in [BLP+13] in the case of binary secret keys. However
for our cryptosystem, it will be more convenient to have secret key coordinates in Zq , so we extend the reduction of [ASP12] to
eLWE+ instead.

10



Theorem 3.4. For m ≥ n + ω(log n), for every prime q = poly(n), for every R ∈ Zm×mq , and for every

β ≥ 0, Adv
LWEn,m,q,χ
BA (1λ) ≥ (1/q2)Adv

eLWE+
n,m,q,χ,β,R

A (1λ).

Proof. We construct an LWE to eLWE+ reduction B as follows. B receives a knapsack-LWE instance H ∈
Z(m−n)×m
q , c ∈ Zm−nq . It samples x′, z0, z1 ← χm and uniform v0,v1 ← Zm−nq . It chooses any R ∈

Zm×mq , then sets

H′ := H− v0z
T
0 − v1 (Rz1)T ∈ Z(m−n)×m

q ,

c′ := c− v0 · 〈z0,x
′〉 − v1 · 〈Rz1,x

′〉 ∈ Zm−nq .

It sends (H′, c′, z0, z1, 〈z0,x
′〉, 〈Rz1,x

′〉) to the knapsack-eLWE+ adversary A, and outputs what A out-
puts.

Notice that when H, c are independent and uniform, so are H′, c′, in which case B’s simulation is
perfect.

Now, consider the case when H, c are drawn from the knapsack-LWE distribution, with c = Hx for
x← χm. In this case, H′ is uniformly random over the choice of H, and we have

c′ = Hx− v0 · 〈z0,x
′〉 − v1 · 〈Rz1,x

′〉

=
(
H′ + v0z

T
0 + v1 (Rz1)T

)
x− v0 · 〈z0,x

′〉 − v1 · 〈Rz1,x
′〉

= H′x + v0 · 〈z0,x− x′〉+ v1 · 〈Rz1,x− x′〉.

Define the event E = [E0 ∧ E1] as

E0
def
=
[
〈z0,x〉 = 〈z0,x

′〉
]
,

E1
def
=
[
〈Rz1,x〉 = 〈Rz1,x

′〉
]
.

If event E occurs, then the reduction B perfectly simulates a pseudorandom instance of knapsack-
eLWE+ toA, as then v0 · 〈z0,x−x′〉+v1 · 〈Rz1,x−x′〉 vanishes, leaving c′ = H′x for H′ ← Z(m−n)×m

q

and x← χm as required. Otherwise since q is prime, the reduction B (incorrectly) simulates an independent
and uniform instance of knapsack-eLWE+ toA, as then either one of v0 · 〈z0,x−x′〉 or v1 · 〈Rz1,x−x′〉
does not vanish, implying that c′ is uniform in Zm−nq over the choice of v0 (resp. v1) alone, independent of
the choices of H′ and x.

It remains to analyze the probability that event E occurs. Because x and x′ are i.i.d., we may define
the random variable Z0 that takes values 〈z0,x

∗〉 ∈ Zq and the random variable Z1 that takes values
〈Rz1,x

∗〉 ∈ Zq jointly over choice of x∗ ← χm, and analyze their collision probabilities independently.
Since the collision probability of any random variable Z is at least 1/|Supp(Z)|, we have that Pr[E] ≥
minCP [Z0] ·minCP [Z1] = 1/q2 = 1/poly(n), and the theorem follows.

4 Tighter Error Analysis

In this section, we provide some useful lemmas for a tighter analysis of the error growth in our IPE con-
struction. Our construction basically follows the IPE construction by Agrawal et al. [AFV11]. The analysis
of the scheme requires bounding evaluated noise of the form zT · xv, where z is a secret key and xv is
the noise of an evaluated ciphertext, which has the form xv = Rx, where R is a random {−1, 1}m×m
matrix (or a sum of several such matrices), and x is the error term of the original ciphertext(s). To explain
our tighter analysis, we can think of a simplified version where z, s are samples from the m dimensional
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Gaussian distributions with width s, α respectively. (There are other terms in the actual construction, but
here for exposition we just focus on the simplified form.)

As discussed in the introduction, in order to achieve deniability while maintaining correctness of de-
cryption, we need to further leverage the gap between ||zT · xv||, and ||xTv · xv||, where the former refers
to the decryption correctness bound, and the latter refers to the deniability bound. We require the for-
mer to be small, and the latter to be large. In this work, we carefully bound these terms and show that
||zT · xv|| ≈ mαs, and ||xTv · xv|| ≈ m2αs. The gap of m is crucial so that our parameters have a feasible
region. In particular, we will eventually lose an additional

√
m factor in this gap, in order to ensure positive-

definiteness of certain matrices in our construction. Therefore, we need this gap to be at least m1/2+δ for
δ > 0 to ensure feasibility in the end.

Our analysis uses a careful application of Hoeffding’s inequality on truncated random variables. Ba-
sically Hoeffding’s inequality shows that for i.i.d. random variables Y1, Y2, . . . , Ym, the probability Y =
Y1 +· · ·+Ym−E[Y ] > t is small for an appropriate setting of t. However, there is a subtlety when we apply
this inequality: if the Yis may possibly take values in a large range, then the bound given by the inequality is
not as sharp, and in fact this is exactly our case. To overcome this, we first argue that with high probability,
each Yi take values in a much smaller range w.h.p. Therefore, we can first truncate the random variables Yi
to cut out the large values, which only induces a negligible statistical distance. Then we apply Hoeffding’s
inequality on the truncated random variables (with a lower upper bound) to obtain a sharper bound overall.

We note that previously, Agrawal et al. [AFV11] showed that ||zT ·xv|| ≤ ||zT || · ||R|| · ||x|| ≈ m1.5αs.
This bound is sufficient for the normal IPE setting where only correctness is required. However as discussed
above, it is not sufficient for us because a gap of

√
m is (precisely!) too small to allow a feasible region for

our parameters.

Lemma 4.1. Let R is an m×m be a matrix chosen at random from {−1, 1}m×m, and u = (u1, ..., um) ∈
Rm be a vector chosen according to the m dimensional Gaussian with width α. Then we have

Pr
[
||Ru||2 ∈ Θ(m2α2)

]
> 1− negl(m).

Proof. We know with overwhelming probability over the choice of u, all of its entries have absolute value
less than B = αω(logm). Also, we know that with overwhelming probability, we have ||u||2 = Θ(mα2).
We call a sample typical if it satisfies these two conditions. Note that it is without loss of generality to just
consider the typical samples, from a simple union bound argument.

Then we consider a fixed typical choice of vector u = (u1, ..., um) ∈ Rm. We write the inner product
of rT · u where r = (r1, . . . , rm) is sampled uniformly from {−1, 1}m. We observe that E

[
||rT · u||2

]
=

E
[∑m

i=1 r
2
i u

2
i +

∑
i<j≤m rirjuiuj

]
=
∑m

i=1 u
2
i = ||u||2. This is because each ri, rj are independent and

have mean 0.
Now, for such a fixed u we denote random variablesX1, . . . , Xm be i.i.d. samples of rTu. It is not hard

to see that

• ||Ru||2 = X2
1 +X2

2 + · · ·+X2
m, (one can view Xi as the i-th entry of Ru),

• E
[
||Ru||2

]
= m||u||2.

Next we claim that for each i, X2
i ≤ mB2ω(logm) with overwhelming probability. By Hoeffding’s

inequality, we have

Pr

∣∣∣∣∣∣
∑
j∈[m]

rjuj

∣∣∣∣∣∣ > t

 < 2e
2t2

m·4B2 .

12



This is because each rjuj ∈ [−B,B]. (Recall that we consider a fixed u for the typical case). By setting
t =
√
mBω(logm), we have Pr[|Xi| > t] < negl(m). Thus X2

i ≤ mB2ω(logm) with overwhelming
probability. So we can consider truncated versions of X2

i ’s, where we cut out the large samples. This
will only induce a negligible statistical distance, and change the expectation by a negligible amount. For
simplicity of presentation, we still use the notation X2

i ’s in the following arguments, but the reader should
keep in mind that they were truncated.

Next again we apply Hoeffding’s inequality to the X2
i ’s to obtain

Pr
[∣∣||Ru||2 −m||u||2

∣∣ > t′
]
< 2e

− 2t′2∑m
i=1

(mB2ω(logm))2 = 2e
− 2t′2
m3B4ω(logm) .

By taking t′ = m||u||2/2, we have

Pr
[∣∣||Ru||2 −m||u||2

∣∣ > t′
]
< 2e

− ||u||4

2mB4ω(logm) .

Since u is typical, we know that ||u||2 = Θ(mα2). Also recall that B = αω(logm). So we have

Pr
[
||Ru||2 ∈ Θ(m2α2)

]
> 1− 2e

− m
ω(logm) = 1− negl(m).

This completes the proof.

Using the same argument as above, we can show the following lemma.

Lemma 4.2. Let u = (u1, ..., um) ∈ Rm be an m dimensional Gaussian sample with width α. Then

Pr
[
||R(t)u||2 ∈ Θ(tm2α2)

]
> 1− negl(m),

where R(t) is sampled as follows: first sample t matrices R1, . . . ,Rt at random from {−1, 1}m, and then
set R(t) =

∑t
i=1 Ri.

Lemma 4.3. Let z,x be m-dimensional Gaussian distributions with width s, α, respectively, and R is a
{−1, 1}m×m matrix sampled uniformly at random. Then |zTRx| ≤ msαω(logm) with overwhelming
probability.

Proof. Let ri,j be the (i, j)-th entry of R, z = (z1, . . . , zm), and x = (x1, . . . , xm). Then |zTRx| can be
written as

∑
i,j∈[m] ri,jzixj . Now we argue that for fixed vectors z,x, the probability that∣∣∣∣∣∣

∑
i,j∈[m]

ri,jzixj

∣∣∣∣∣∣ >
√ ∑
i,j∈[m]

|zixj |2 · ω(logm)

is small.
We observe that each ri,jzixj is an independent random variables taking values between (−|zixj |, |zixj |),

and has mean 0. Thus, we can apply Hoeffding’s inequality:

Pr

∣∣∣∣∣∣
∑

i,j∈[m]

ri,jzixj

∣∣∣∣∣∣ > t

 < 2exp

{
− 2t2∑

i,j∈[m](2|zixj |)2

}
.

By taking t =
√∑

i,j∈[m] |zixj |2 · ω(logm), we have

Pr

 ∑
i,j∈[m]

ri,jzixj > t

 < negl(m).
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We know that with overwhelming probability, all (absolute values of) entries of z are less than sω(logm)
and all entries in x are less than αω(logm). So we know that with overwhelming probability |zixj | ≤
sαω(logm). This is equivalent to saying that with overwhelming probability over the choices of x, z, we
have t ≤ msαω(logm). This completes the proof.

5 Multi-Distributional Bideniable IPE

Let λ be the security parameter. Let ` be the length of predicate/attribute vectors. Let n, q,m be positive
integers. Set k = blog2 qc. Let α, β, γ, s ∈ [0, 1] be positive real Gaussian parameters. We will use the
gadget matrix G ∈ Zn×mq along with a “good” basis TG, as introduced in [MP12]. For fixed q as above,

recall that the set Z1
def
= {−1/2 + 1/q,−1/2 + 2/q, . . . , 1/2 − 1/q, 1/2} is the range (−1/2, 1/2] ⊂ R

“modulo 1” represented with bit-precision log2(q).
Our construction of multi-distributional bideniable encryption for inner product predicates BiDenIPE

= (Setup, DenSetup, KeyGen, SampleP, SampleU, TestP, FakeSCoins, FakeRCoins) uses a semantically
secure public key encryption Π = (Gen′,Enc′,Dec′) with message space MΠ = Zm×mq and ciphertext
space CΠ, and is described as follows:

• Setup(1λ, 1`): On input security parameter λ and predicate/attribute vector length parameter `, do:

1. Run TrapGen(q, n,m) to obtain a matrix A ∈ Zn×mq and trapdoor basis TA ⊂ Λ⊥q (A).

2. Sample ` · (1 + k) uniform matrices Ai,j ∈ Zn×mq for i = 1, ..., `, j = 0, ..., k, and a uniform
vector u ∈ Znq .

3. Compute a public/secret key pair (pk′, sk′) for a semantically secure public key encryption
(pk′, sk′)← Gen′(1λ).

4. Output public parameters pp and master secret key msk as

pp = (pk′,A, {Ai,j},u), msk = (TA, sk
′)

• DenSetup(1λ, 1`): On input security parameter λ and predicate/attribute vector length parameter `,
the deniable setup algorithm runs the same computation as setup algorithm, and outputs

pp = (pk′,A, {Ai,j},u), msk = (TA, sk
′), fk = (TA, sk

′)

• Keygen(pp,msk,v): On input public parameters pp, master secret key msk, and a predicate vector
v = (v1, ..., v`) ∈ Z`q, do:

1. For i = 1, ..., `, decompose vi into its bit representation as: vi =
∑k

j=0 vi,j · 2j , where vi,j ∈
{0, 1}.

2. Define the matrices

Cv =
∑̀
i=1

k∑
j=0

vi,jAi,j ∈ Zn×mq , Av = [A|Cv] ∈ Zn×2m
q .

3. Sample vector z = (z0|z1), using

(z0|z1)← SampleLeft(A,Cv,TA,u, sq)

such that [A|Cv] ·
(
z0
z1

)
= u.

14



4. Output the secret key skv = z.

• SampleP(pp,w): On input public parameters pk and attribute vector w = (w1, ..., w`) ∈ Z`q, do:

1. Choose a uniformly random vector s ← Znq . Then sample noise vector x ← DZm1 ,α2Im×m and
noise term x← DZ1,α.

2. Let c0 := (AT s/q) + x.

3. For i = 1, ..., ` and j = 0, ..., k, do:

(a) Sample uniform matrix Ri,j ∈ {−1, 1}m×m.
(b) Let ci,j := ((Ai,j + 2jwiG)T s/q) + RT

i,jx.
(c) Use public key encryption to encrypt matrix Ri,j , i.e. Si,j ← Enc′(pk′,Ri,j).

4. Let c′ := (uT s/q) + x.

5. Output the P-sample c = (c0, {ci,j}, c′, {Si,j}).

• SampleU(pp): For i = 1, ..., ` and j = 0, ..., k, let Si,j ← Enc′(pk′,0m×m), and output ({Si,j}, c)
for uniform c ∈ Zm1 × (Zm1 )`×k+1 × Z1 × C`×k+1

Π .

• TestP(pp, skv, c): On input public parameters pp, secret key skv = z for predicate vector v, and a
purported P-sample c = (c0, {ci,j}, c′) ∈ Zm1 × (Zm1 )`×k+1 × Z1, do:

1. Define the binary expansion of vector v as Step 1 in key generation algorithm and compute:
cv =

∑`
i=1

∑k
j=0 vi,jci,j .

2. Compute c = c′ − 〈z, c∗〉 ∈ (−1/2, 1/2], where c∗ = (c0|cv).

3. Accept c as a valid P -sample if |c| is closer to 0 than 1/4; otherwise reject c.

• FakeSCoins(c): Simply output the P-sample c as the randomness r∗Sender that would cause SampleU
to output c.

• FakeRCoins(pp, fk, c,v): On input the public parameters pp, faking key fk, a ciphertext c and an
attribute vector v:

1. If 〈v, w〉 6= 0, then output skv = Keygen(msk,v).

2. Otherwise, first parse ciphertext as c = (c0, {ci}, c′, {Si,j}), and use algorithm x← Invert(A,TA, c0).
Then for i = 1, ..., ` and j = 0, ..., k, use public key decryption to decrypt Si,j to get Ri,j ∈
{−1, 1}m×m, i.e. Ri,j := Dec′(sk′,Si,j). Then sample a properly distributed secret key z,
using

z ← SampleLeft(A,TA,Cv,u, sq)

where matrix Cv =
∑`

i=1

∑k
j=0 vi,jAi,j ∈ Zn×mq , .

3. Sample correlation coefficient µ← Dγ and sample correlation vectors to be y0 ← DZm,β2q2Im×m

and y1 ← (µxv +DZm,Q) q, where Rv
def
=
∑`

i=1

∑k
j=0 vi,jRi,j , where xv

def
= RT

vx, and
where

Q
def
= β2Im×m − γ2α2RT

vRv. (1)

Recall in order to sample from the (ellipsoidal) distribution DZm,Q :

- Sample t′ = (t′1, ..., t
′
m) ∈ Rm independently as t′i ← D1 for i ∈ [m].

- Find the Cholesky decomposition Q = LLT for some lower triangular matrix L. (This is
possible by Lemma 2.6 and our parameter setting.)

15



- Output the vector t := Lt′ as the sample t← DZm,Q.

4. Let y = [y0|y1] ∈ Z2m. Sample and output the faked secret key sk′v = z∗ as the vector

z∗ ← y + SamplePre(A,Cv,TA, z − y, q
√
s2 − β2)

where Av = [A|Cv] ∈ Zn×2m
q .

5.1 Correctness and Security Proof

Theorem 5.1. Assuming the hardness of extended-LWEq,β′ and semantically secure public key encryption
Π = (Gen′,Enc′,Dec′), the above algorithms form a secure attribute-based bitranslucent set scheme re-
garding Definition 2.2.

Proof. Lemma 5.2 below shows the correctness property. The indistinguishability property follows directly
by Lemma 2.8. The bi-deniability property is proven in Lemma 5.3 below.

Lemma 5.2. For parameters specified in Section 5.2, the IP-BTS defined above satisfies the correctness
property in Definition 2.2.

Proof. As we mentioned in Remark 2.3, the correctness of faking algorithms is implied by the bi-deniability
property. Therefore, we only need to prove the correctness of normal decryption algorithm. For inner
product 〈v,w〉 = 0, we have

cv =
∑̀
i=1

k∑
j=0

vi,jci,j =
∑̀
i=1

k∑
j=0

vi,j((Ai,j + 2jwiG)Ts/q + RT
i,jx)

= (
∑̀
i=1

k∑
j=0

vi,jAi,j)
Ts/q + 〈v,w〉GTs/q +

∑̀
i=1

k∑
j=0

vi,j(R
T
i,jx)

= (
∑̀
i=1

k∑
j=0

vi,jAi,j)
Ts/q +

∑̀
i=1

k∑
j=0

vi,j(R
T
i,jx)

Then we set c∗ = (c0|cv), which can be parsed as follows:

c∗ = (c0|cv) = [A|
∑̀
i=1

k∑
j=0

vi,jAi,j ]
Ts/q + [x|

∑̀
i=1

k∑
j=0

vi,jR
T
i,jx]

= AT
v s/q + [x|

∑̀
i=1

k∑
j=0

vi,jR
T
i,jx]

Recall that secret key skv = z satisfying Avz = u, then for c = c′ − 〈z/q, c∗〉, it holds that

c = c′ − 〈z, c∗〉 = (uTs/q + x)− uTs/q − z/q[x|
∑̀
i=1

k∑
j=0

vi,jR
T
i,jx]

= x− 〈z, [x|
∑̀
i=1

k∑
j=0

vi,jR
T
i,jx]〉
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Now we want to calculate a bound for the final noise term. To do so, we apply Lemma 4.3 over the∑`
i=1

∑k
j=0 to obtain the correctness constraint for evaluated noise

2` log(q)msαω(log(m)) < 1/4.

So by setting the parameters appropriately, as in Section 5.2, we have that

|x− 〈z, [x|
∑̀
i=1

k∑
j=0

vi,jR
T
i,jx]〉| < 1/4,

and the lemma follows.

Lemma 5.3. Assuming the hardness of extended-LWEq,β′ and semantically secure public key encryption
Π = (Gen′,Enc′,Dec′), the IP-BTS scheme described above is bi-deniable in Definition 2.2.

Proof. First, we notice that because SampleU simply outputs its random coins as a uniformly random c ∈
Zm1 × (Zm1 )`×k+1 × Z1 × C`×k+1

Π , we can use c as the coins.
We prove the bi-deniability property by a sequence of hybrids Hi with details as follows:

Hybrid H0: Hybrid H0 is the view of adversary A in the right-hand faking experiment in the definition of
IP-BTS bi-deniability. We use the fact that algorithm Invert successfully recovers noise vector x from
c with overwhelming probability over all randomness in the experiment.

Hybrid H1: In hybrid H1, we will embed matrices Ri,j and vector w in the public parameters pp.

Recall that in hybrid H0, the matrices {Ai,j}i∈[`],j∈[k] are sampled at random for each ciphertext. In
hybrid H1,we will modify this as follows: Let w∗ = (w∗1, ..., w

∗
` ) be the challenge attribute vector that

adversary A intends to attack. We sample random matrices R∗i,j ∈ {−1, 1}m×m for i ∈ [`], j ∈ [k],
which will also be used in the generation of challenge ciphertext, and set the matrices {Ai,j}i∈[`],j∈[k]

to be
Ai,j = AR∗i,j − 2jw∗iG

where matrix G is the gadget matrix with short trapdoor TG. The rest of the hybrid is unchanged.

Hybrid H2: In hybrid H2, we switch the ciphertexts Si,j to encryptions of zero.

Recall that in hybrid H1, we encrypt the randomness matrix R∗i,j for i = 1, ..., `, j = 0, ..., k using
semantically secure PKE Π, i.e. Si,j ← Enc′(pk′,R∗i,j). In hybrid H2, we just set Si,j = Enc′(pk′,0)
to be encryption of zero matrix 0 ∈ Zm×m to replace the encryptions of matrices R∗i,j .

Hybrid H3: In hybrid H3, we change the order of how we generate A,u in the public parameters pp, and
the generation of challenge secret key z∗.

Let A be a random matrix in Zn×mq . The construction of {Ai,j}i∈[`],j∈[k] remains the same as hybrid
H1. Sample error vector x∗ ∈ DZm,α2Im×m that would be used in algorithm SampleP later and
compute evaluated error x∗v∗ =

∑`
i=1

∑k
j=0 v

∗
i,jR

∗
i,j · x∗, where v∗i =

∑k
j=0 v

∗
i,j · 2j . Set vectors

y0 ← DZm,β2q2Im×m and y1 as the same way in FakeRCoins algorithm, i.e. y1 ← µqx∗v∗ +DZm,Q,

and z∗ ← y + DZ2m−y,(s2−β2)q2Im×m . Then set matrix Av∗ = [A|
∑`

i=1

∑k
j=0 v

∗
i,jAi,j ] and set

u = Av∗ · z∗. Moverover, since A is a random matrix, which means we do not have the trapdoor
of A to answer the key queries for predicate vector v, we will use the trapdoor TG to answer key
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queries. Consider a secret key query for predicate vector v, such that 〈v,w∗〉 6= 0. To respond, we
first decompose v∗i to its bit expression v∗i =

∑k
j=0 vi,j · 2j for i = 1, ..., `, and set

Av∗ = [A|
∑̀
i=1

k∑
j=0

v∗i,jAi,j ] = [A|A(
∑̀
i=1

k∑
j=0

v∗i,jR
∗
i,j)− 〈v,w∗〉G]

Then sample skv = z, using

z = SampleRight(A, (
∑̀
i=1

k∑
j=0

v∗i,jR
∗
i,j), 〈v,w∗〉G,TG,u, sq)

To answer P -sample queries, SampleP is the same as hybrid H1 except using error vectors x∗ and
matrix G. It first computes and outputs c∗ = (c∗0, {c∗i,j}, c∗

′
), i.e. c∗0 = ATs/q + x∗, c∗i,j =

R∗Ti,j (ATs/q + x∗), c∗
′

= (〈u, s〉/q) + x∗, then for i = 1, .., `, j = 0, ..., k, encrypts matrix
Si,j ← Enc′(R∗i,j , pk

′) using semantically secure public key encryption Π. For faking receiver coins
algorithm, FakeRCoins, simply output the vector z∗ pre-sampled in the generation of vector u before.

Hybrid H4: In hybrid H4, we change the order in which we generate vector y and error vector x∗.

First, we directly sample the 2m-dimensional correlation vector y := (y0|y1) ← DZ2m,β2q2I2m×2m

at once. (From y, we compute z∗ as in previous hybrids.) Next, we generate c∗0’s error term as

x∗ := νR∗vy1/q + DZm,Q′ , where ν ← Dτ , τ
def
= γα2/β2 and DZm,Q′ is sampled as L′DZm1 ,Im×m

for
Q′ = L′L′T

def
= α2Im×m − τ2β2R∗vR

∗T
v . (2)

Additionally, we modify the challenge ciphertext to be

c∗0 = ATs/q + x∗, c∗i,j = R∗Ti,j c
∗
0/q, c∗

′
= 〈u, s〉/q +DZ,α

Observe that this induces an evaluated error term during decryption of the challenge ciphertext under
secret keys skv of the form x∗v = R∗Tv x∗ = νR∗Tv R∗vy1/q + R∗Tv DZm,Q′ .

Hybrid H5: In hybrid H5, we change the order in which we generate secret key z∗ and vector y.

First, we directly sample the 2m-dimensional secret key z∗ = (z∗0|z∗1) ← DZ2m
q ,s2q2Im×m . (This

determines skv∗ and vector u in pp.) Next, we generate the correlation vector as y = (y0|y1) :=
z∗/2+DZ2m,(β2−s2/4)q2I2m×2m

. The remainder of the hybrid remains roughly the same. In particular,
the challenge ciphertext c∗ (and its noise term x∗) is generated from y in the same manner as Hybrid
H4. We break the noise term x∗ into two terms x∗ = x(1) + x(2) + νR∗vy1/q, where x(1) ←
DZm,β′2Im×m and x(2) ← DZm,Q′−β′2Im×m . We set β′ = α/2

Hybrid H6: In hybrid H6, we change how the challenge ciphertext is generated using Extended-LWE+.

First, sample uniformly random vector b ∈ Zmq and set the challenge ciphertext as

c∗0 = b/q + x(2) + νR∗vy1/q, c∗i,j = R∗Ti,j c
∗
0, c∗

′
= z∗T [I|R∗v]T (b/q − x(1)) +DZ1,α

where matrix R∗v =
∑`

i=1

∑k
j=0 v

∗
i,jR

∗
i,j and vectors xi,j are sampled as in H4.

Hybrid H7: In hybrid H7, we change the challenge ciphertext to be uniformly random. That is, SampleP
samples uniform vectors c∗0 ∈ Zm1 , c∗i,j ∈ Zm1 , c∗

′ ∈ Z1 and outputs ciphertext c∗ = (c∗0, {c∗i,j}, c∗
′
).
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Claim 5.4. Hybrids H0 and H1 are statistically indistinguishable.

Proof. Observe the only difference between hybrids H0 and H1 is the generation of matrices {Ai,j}i∈[`],j∈[k],

i.e. Ai,j = AR∗i,j − 2jw∗iG, where matrix G is the gadget matrix with short trapdoor TG and R∗i,j
$←

{−1, 1}m×m. Then by Leftover Hash Lemma 2.7, the distribution (A, {AR∗i,j}i∈[`],j∈[k]) is statistically
close to the distribution (A, {Ai,j}i∈[`],j∈[k]), where matrices Ai,j are uniformly random over Zm×m.
Hence, hybrid H0 and H1 are statistically indistinguishable.

Claim 5.5. Assuming the semantic security of PKE Π = (Gen′,Enc′,Dec′), hybrids H1 and H2 are compu-
tationally indistinguishable.

Proof. Observe there is only one difference between hybrids H1 and H2: In the challenge ciphertext, the
encryptions (under PKE Π) of the random rotation matrices R∗i,j are replaced by encryptions of 0. If an
efficient adversary A distinguishes between the H1-encryptions of R∗i,j and the H2-encryptions of 0 with
non-negligible probability, then we can construct an efficient reduction B that uses A to break the semantic
security of Π with similar probability.

Claim 5.6. Hybrids H2 and H3 are statistically indistinguishable.

Proof. Observe there are three differences between hybrid H2 and H3: The generation of matrices A,D,
the generation of challenge secret key skv∗ and the computation method to answer secret key queries. By
the property of algorithm TrapGen in Lemma 2.8, the distribution of matrix A in hybrid H2 is statistically
close to uniform distribution from which matrix A in hybrid H3 is sampled.

For secret key queries, in hybrid H2, we sample vector z = (z0|z1), using

z = (z0|z1)← SampleLeft(A,Cv,TA,u, sq)

While in hybrid H3, we sample vector z = (z0|z1), using

z = SampleRight(A, (
∑̀
i=1

k∑
j=0

v∗i,jR
∗
i,j), 〈v,w∗〉G,TG,u, sq)

By setting the parameters appropriately as specified in Section 5.2 and the properties of algorithms SampleLeft
and SampleRight in Lemma 2.9, the secret key answers to queries are statistically close.

By Leftover Hash Lemma, the distribution ([A|Cv∗ ], [A|Cv∗ ] · z∗) and ([A|Cv∗ ],u), where matrix
Cv∗ =

∑`
i=1

∑k
j=0 v

∗
i,jAi,j ∈ Zn×mq , are statistically close, which means matrix u in both hybrids are

statistically close.

Claim 5.7. Hybrids H3 and H4 are statistically identical.

Proof. The only difference between the two experiments in the choice of x∗ and y – in particular, the
choice of the y1 component of y = (y0|y1). We will show that the joint distribution of (x∗,y1) ∈ (Zm)2

is identically distributed between the two experiments:
In Hybrid H3, y1 is sampled as y1 ← (µx∗v + DZm,Q)q where Q = β2Im×m − γ2α2R∗Tv R∗v with

x∗ ← DZm,α2Im×m and x∗v =
∑`

i=1

∑k
j=0 vi,jR

∗T
i,j x

∗ = R∗Tv x∗. Therefore in H3, we may write the joint

distribution of (x∗,y1) as T1 · DZ2m,I2m×2m
, where T1

def
=

(
αIm×m 0m×m
γαqR∗Tv L

)
for Q = LLT ∈ Zm×m

via the Cholesky decomposition due to Lemma 2.6.
In Hybrid H4, y = (y0|y1) is sampled as y ← DZ2m,β2q2Im×m . Then, x∗ is generated as x∗ =

νR∗vy1/q + DZm,Q′ where ν ← Dτ , τ
def
= γα2/β2 and Q′ = α2Im×m − τ2β2R∗vR

∗T
v . Therefore, in H4,
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we may write the joint distribution of (x∗,y1) as T2 · DZ2m,I2m×2m
, where T2

def
=

(
L′ τβR∗v

0m×m βqIm×m

)
for Q′ = L′L′T ∈ Zm×m via the Cholesky decomposition due to Lemma 2.6.

We claim equality of the following systems of equations:

T1T
T
1 =

(
α2Im×m γα2qR∗v
γα2qR∗Tv γ2α2q2R∗Tv R∗v + LLT

)
=

(
L′L′T + τ2β2R∗vR

∗T
v τβ2qR∗v

τβ2qR∗Tv β2q2Im×m

)
= T2T

T
2 .

This fact may be seen quadrant-wise by our choice of τ = γα2/β2 and the settings of Q = LLT

and Q′ = L′L′T in Equations (1) and (2). It then follows that (T−1
2 T1)(T−1

2 T1)T = I2m×2m, implying
T1 = T2Q

∗ for some orthogonal matrix Q∗. Because the spherical Gaussian DZ2m,I2m×2m
is invariant

under rigid transformations, we have T1 · DZ2m,I2m×2m
= T2Q

∗ · DZ2m,I2m×2m
= T2 · DZ2m,I2m×2m

, and
the claim follows.

Claim 5.8. Hybrids H4 and H5 are statistically indistinguishable.

Proof. Observe the main difference between hybrids H4 and H5 is the order of generation of vectors
y and z∗: In the hybrid H4, we first sample y = (y0|y1) ← DZ2m,β2q2I2m×2m

and set z∗ ← y +
DZ2m−y,q2(s2−β2)I2m×2m

,while in hybrid H5,we first sample z∗ ← DZ2m,s2q2I2m×2m
, and set y = (y0|y1) :=

z∗/2 + DZ2m,(β2−s2/4)q2I2m×2m
. By setting parameters appropriately as in Section 5.2, these two distribu-

tions are statistically close.

Claim 5.9. Assuming the hardness of extended-LWE+
n,m,q,DZm,β′ ,R

for any adversarially chosen distribution

over matrices R ∈ Zm×mq , then hybrids H5 and H6 are computationally indistinguishable.

Proof. Suppose A has non-negligible advantage in distinguishing hybrid H5 and H6, then we use A to
construct an extended-LWE+ algorithm B as follows:

Invocation. B invokes adversary A to commit to a challenge attribute vector w∗ = (w∗1, ..., w
∗
` ) and

challenge predicate vector v∗ = (v∗1, ..., v
∗
` ). Then B specifies R by sampling R∗i,j as in the hybrids,

and sets R = R∗v. Then it receives an extended-LWE+ instance for the matrix R = R∗v as follows:

{A, b = As + x, z0, z1, 〈z0, b− x〉+ x, 〈Rz1, b− x〉+ x′}

where A $← Zn×mq , s
$← Znq , u

$← Zmq , x, z0, z1
$← χn and x, x′ $← χ. Algorithm B aims to leverage

adversary A’s output to solve the extended-LWE+ assumption.

Setup. B generates matrices {Ai,j}i∈[`],j∈[k] as specified in hybrid H1. Then, B sets challenge secret key
skv∗ = z∗ = (z∗0|z∗1) = (z0|z1) from extended-LWE+ instance and computes vector u as in hybrid
H5.

Secret key queries. B answers adversary A’s secret key queries as in hybrid H2.

Challenge ciphertext. B answers adversary A’s P -sample query by setting

c∗0 = b/q + x(2) + νR∗vy1/q, c∗i,j = R∗Ti,j c
∗
0, c∗

′
= uTs/q +DZ1,α

Faking receiver coin query. B answers adversary A’s faking receiver coin query by outputting the
extended-LWE instance’s vector skv∗ = z∗.

Output. B outputs whatever A outputs.
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We can rewrite the expression of c∗
′

to be

c∗
′

= ([A∗|A∗R∗v]
( z∗0
z∗1

)
)Ts/q +DZ1,α

= ((z∗0|z∗1)
(

A∗T

R∗Tv A∗T
)
)s/q +DZ1,α = z∗0A

∗Ts/q + z∗1R
∗T
v A∗Ts/q +DZ1,α

= 〈z∗0, b/q − x(1)〉+ 〈R∗vz∗1, b/q − x(1)〉+DZ1,α.

We can see that if the eLWE+ instance’s vector b is pseudorandom, then the distribution simulated by
B is exactly the same as H5. If b is truly random and independent, then the distribution simulated by B is
exactly the same as H6. Therefore, if A can distinguish H5 from H6 with non-negligible probability, then
B can break the eLWE+

n,m,q,D(α/2)q ,α
′,R∗v

problem for some α′ ≥ 0 with non-negligible probability.

Claim 5.10. Hybrids H6 and H7 are statistically indistinguishable.

Proof. The only difference in these two hybrids is the choice of (c∗0, c
∗
i,j , c

∗′). In hybrid H6, we first observe
that c∗0 is uniformly random, so R∗Ti,j (b/q + x(2)) is also uniformly random for each i, j, by the leftover
hash lemma (Lemma 2.7) and our setting of parameters. Therefore, (c∗0, c

∗
i,j) are uniformly random (in their

marginal distributions). Thus, it remains to show that that c∗
′

is still uniformly random even conditioned on
fixed samples of (c∗0, c

∗
i,j).

As calculated above, we have the following expression:

c∗
′

= 〈z∗0, b/q − x(1)〉+ 〈R∗vz∗1, b/q − x(1)〉+DZ1,α.

We note that b/q − x(1) = c∗0 − x(1) − x(2) − νR∗vy1/q. If we can show that〈
R∗vz

∗
1, νR

∗
vy1/q

〉
is close to the uniform distribution (modulo 1), then c∗

′
will also be close to the uniform distribution (modulo

1), as c∗
′

is masked by this uniformly random number.
Recall that in the hybrids, we set y∗1 = z∗1/2+(shift), so it is sufficient for us to analyze

〈
R∗vz

∗
1, νR

∗
vz
∗
1/q
〉

=

ν
〈
R∗vz

∗
1,R

∗
vz
∗
1/q
〉

= ν||R∗vz∗1||2/q. By applying Lemma 4.2 to the most conservative case (i.e. the Ham-
ming weight of v is 1), we obtain that with overwhelming probability,

||R∗vz∗1||2/q ≥
m

4q
||z∗1||2.

We recall that z∗1 is sampled from Gaussian with width sq, so its two-norm squared (i.e. `22-norm) is
at least m(sq)2/2 with overwhelming probability (by a Chernoff bound argument). Thus, the distribution
ν||R∗vz∗1||2/q is a Gaussian distribution with width at least

d = τ(ms)2q/4 =
γ(αms)2q

4β2
.

We recall again that ν was sampled from a Gaussian with parameter τ = γα2/β2. By our setting of
parameters, we have d ≥ ω(log n). A Gaussian with such width is statistically close to uniform in the
domain Z1. This completes the proof.

This completes the proof of Lemma 5.3. Further, Theorem 5.1 follows from Lemmas 5.2 and 5.3. A (multi-
distributional) bi-deniable IPE from LWE then follows from Lemma 2.5 and Theorems 3.4 and 5.1.
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Parameters Description Setting
n,m lattice dimension n = λ,m = n2 log n

` attribute/predicate vector length ` =
√
n

q modulus (resp. bit-precision) smallest prime ≥ n3 log4+2δ(n)

α sampling error terms x, x 1
n2.5 log3+δ(n)

β sampling correlation vector y 1/2

γ sampling correlation coefficient µ 1
n log1.5(n)

s sampling secret key z 3/4

Table 1: Parameter Description and Simple Example Setting

5.2 Parameter Setting

The parameters in Table 1 are selected in order to satisfy the following constraints (where for simplicity, we
choose ` :=

√
n, β := 1/2):

• To ensure correctness in Lemma 5.2, we have 8`log(q)msαω(log(m)) < 1.

• To ensure deniability in Hybrid H7, we have d/ω(log(n)) > γ(αms)2q
4β2ω(log(n))

> 1.

• To ensure large enough LWE noise, we need α ≥ (
√
n log1+δ n)/q.

• To apply the leftover hash lemma, we need m ≥ 2n log(q).

• To ensure that that the matrix Q in FakeRCoins is positive definite, we have β ≥ αγ` log1+δ(q)
√
m;

that is, 1/γ ≥ (α/β)` log1+δ q
√
m. This constraint will also imply that in the security proof, both Q′

and Q′ − β′2Im×m are positive definite. (Note β′ = α/2.)

• To ensure hybrid H3 is well-defined, we have s > β and β > s/2. Let s := (3/2)β.

For a small constant δ > 0
(
and since q,m ∈ poly(n)

)
, we obtain the constraint:

γq >
`2 log4+2δ(n)√

m
.

For example, choosing ` :=
√
n and β := 1/2 as in Table 1 gives the following feasibility region (primarily

bounded between the deniability and positive-definitiveness constraints):

log1+δ(n)

n2
≤ γ ≤ 1

n log1.5(n)
.

We note that this region is satisfiable — i.e. it has “slack” of approximately Θ̃(
√
m). Choosing ` as nε/2,

for 1/2 < ε < 2, reduces this feasibility gap from m1/2 to mε′ > 0, for ε′ > 0
(
up to poly(log(n)) factors

)
.

Regev [Reg05] showed that for q >
√
m/β′, an efficient algorithm for LWEn,m,q,χ for χ = Dβ′q

(
and

β′q ≥
√
nω(log(n))

)
implies an efficient quantum algorithm for approximating the SIVP and GapSVP

problems, to within Õ(n/β′) approximation factors in the worst case. Our example parameter setting yields
a bi-deniable IPE based on the (quantum) hardness of solving SIVP

Õ(n9.5)
, respectively GapSVP

Õ(n9.5)
.

(We write this term to additionally absorb the (1/q2) loss from our LWE to eLWE+ reduction.) We leave
further optimizing the lattice problem approximation factor to future work, though we speculate it may
prove innately hard (or at least require new, very different ideas) to improve the approximation factor beyond
Õ(n1.5+ε′)2 = Õ(n3+ε′′), for ε′, ε′′ > 0, even assuming a completely tight LWE to eLWE+ reduction.
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