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Abstract. As the new SHA-3 standard, the side-channel security of Keccak has attracted a lot of attentions.
Some works show that both software and hardware implementation of Keccak have strong side-channel leak-
ages, and these leakages can be used easily by an attacker to recover secret key information. Secret sharing
schemes are introduced to mask the leakages, while such schemes will incur large resource overhead. In this
paper, we introduce another scheme based on the round rotation probability of Keccak to reduce the side-
channel leakages. This scheme is easy to implement while it can efficiently help to reduce the side-channel
leakages of Keccak.
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1 Introduction

Keccak will be widely used in cryptographic systems because it has been selected as the new SHA-3 standard
recently. This requires thoroughly evalution of its security properties, and methods to protect it against different
kinds of attacks. In this paper, we focus on the protection of MAC mode of Keccak, MAC-Keccak, against side-
channel power or electromagnetic attacks.

Previous papers introduces different kinds of side-channel attack methods to conquer MAC-Keccak for both
software and hardware systems [1,2,3,4]. These attacks focus on either θ step [1,2,4] or the first round output
[3], and the results show that attackers can efficiently recover key bits using the side-channel leakages of Keccak
operations.

Meanwhile, the designers of Keccak also designed some countermeasures to protect Keccak agaisnt side-
channel analysis. In [5], the designers of Keccak proposed to protect Keccak using secret sharing to mask the
leakages. This method can effectively hide the leakages, but the resource overhead is very high. For software
implementations, two-share masking will cause two times resource consumption, while three times resource con-
sumption will be introduced for hardware implementations with three-share masking.

Besides leakage cancellation, some other methods can reduce the leakages significantly while much lower
resource overhead will be introduced. For example, by randomly shuffling the operations of cryptographic system,
leakages could be distributed from one time points to multiple points [6].

For Keccak in crypto systems, there are several commonly used implementations, such as slice based and
lane based. Meanwhile, Keccak has been implemented in 64-bit, 32-bit, 16-bit and 8-bit structures (examples are
source code provided Keccak official site [7]). For compact platforms such as 8-bit smart cards, resource will be
very limited and more efficient countermeasures should be developed for them, suitable for 8-bit implementations
(examples are the work from Peter Pessl and Michael Hutter designed for compact IC design[8] and AVR-Crypto-
Lib [9]). In this paper, we will show a method to reduce the leakages of Keccak on smart card platform using the
mathematical properties of Keccak operations. Results show that this scheme can significantly reduce the leakages
of Keccak while resource overhead is very small.

The rest of this paper is organized as follows. In Section 2, the preliminaries of Keccak which are needed
in this paper will be introduced. In Section 3, the proposed scheme will be introduced, then implementation and
attack results will be given in Section 4. In the end, we will conclude this paper in Section 5.
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2 Preliminaries of Keccak

Keccak is a hash function family based on the Sponge construction, as shown in Fig. 1 [10,11]. Keccak has two
phases: 1) absorbing and 2) squeezing. In the absorbing phase, the message is broken into blocks (each block size
is r bits, where r is the bit rate), which are absorbed iteratively by the permutation function f . Each f function
works on a state at a fixed length b = r + c (c is called capacity). In the squeezing phase, outputs are squeezed
also by f functions and the length of the output is configurable (a multiple of r bits).

f f f f f f
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Fig. 1: The sponge construction

The default Keccak mode is Keccak-1600, with r = 1024 and c = 576 [10,11]. All of the 1600-bit states are or-
ganized in a 3-D array, as shown in Fig. 2. Each bit is addressed with three coordinates, written as S(x, y, z), x, y ∈
{0, 1, ..., 4}, z ∈ {0, 1, ..., 63}. 2-D entities, plane, sheet and slice, and 1-D entities, lane, column and row, are
also defined in Keccak and shown in Fig. 2.

The state S is composed of 25 lanes, denoted as:

S = {Li,j}, i, j ∈ {0, 1, 2, 3, 4}, (1)

and each lane Li,j contains 64 bits for Keccak-1600.
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Fig. 2: Terminology used in Keccak

Notations: We note here that in this paper, we use this 3-D array method to denote the Keccak state and
intermediate states. We use coordinates x, y and z to locate each bit, in which x, y ∈ {0, 1, ..., 4}, and z ∈
{0, 1, ..., 63}, we also define X = [0 : 4], Y = [0 : 4] and Z = [0 : 63] to stand for the positions in each row,
column and lane. Be aware that coordinates x,X and y, Y are modular 5 while z, Z are modular 64.
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The f permutation function of Keccak-1600 consists of 24 rounds of operations, where each round has five
sequential steps:

Ri+1 = ι ◦ χ ◦ π ◦ ρ ◦ θ(Ri), i ∈ {0, 1, · · · , 23} (2)

in which R0 is the initial input. Details of each step are described below:
− θ is a linear operation which involves 11 input bits and outputs a single bit. Each output state bit is the XOR

between the input state bit and two intermediate bits produced by its two neighbor columns. The operation is given
as follows:

A(x, y, z) = a(x, y, z)⊕ (⊕4
i=0a(x− 1, i, z))⊕ (⊕4

i=0a(x+ 1, i, z − 1)). (3)

Here, we denote the input to each Keccak operation as a while the output as A. The two intermediate bits in
this operation are the parity of two columns, ⊕4

i=0S(x− 1, i, z) and ⊕4
i=0S(x+ 1, i, z − 1), respectively.

− ρ is a permutation over the bits of the state along z-axis (in lanes).
− π is a permutation over the bits of the state within slices, only the center bit (x = 0, y = 0) of the slice does

not move. All other bits are permuted to other positions depending on their original coordinate.
− χ is a non-linear step that contains mixed binary operations. Every bit of the output state is the result of an

XOR between the corresponding input state bit and its two neighboring bits along the x-axis (in a row):

S′(x, y, z) = S(x, y, z)⊕ (S(x+ 1, y, z) · S(x+ 2, y, z)). (4)

− ι is a binary XOR with a round constant which is publicly known.
Keccak is a function family and it can be easily used for regular hashing, salted hashing, stream encryption,

pseudorandom sequence generator, thus it will be widely used in different kinds of cryptographic applications. So
protection of Keccak against soft errors and injected faults is important for reliable cryptographic design. Further
details of Keccak and Sponge construction can be found in [10,11,12].

3 Round Rotation Based Scheme

3.1 Theorem of the proposed scheme

For each run of Keccak, the cryptographic needs to generate a random number α between 0 and 63. This random
number α is used for round rotation. For the first round input S0 = {Li,j}, i, j ∈ {0, 1, 2, 3, 4}, we can rotate each
lane Li,j this α bits:

L′
i,j = ROT (Li,j , α), i, j ∈ {0, 1, 2, 3, 4}, 0 ≤ α ≤ 63 (5)

If we use these rotated lanes as the new input state S′
0, the new state can be denoted as:

S′
0 = {L′

i,j}, i, j ∈ {0, 1, 2, 3, 4}. (6)

The Keccak operation results (S25 and S′
25) based on these two input (S0 and S′

0) are as following:{
S25 = Keccak(S0, ιc)
S′
25 = Keccak(S′

0, ι
′
c)
, (7)

in which ι′c stands for the rotated ιc (the set of 25 constant numbers for ι operations in 25 rounds):

ι′c[i] = ROT (ιc[i], α). (8)

Here i is the index of round number and 0 ≤ i ≤ 24.
Then the following equation holds:

S′
25 =ROT (S25, α), (9)

which means that after applying round rotation to the lanes of S25 with α bits, the result will be the lanes of S′
25

respectively.
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3.2 Implementation of the proposed scheme

Equation 9 shows that the result of f function (Keccak) for rotated lanes can be rotated back to form the correct
result. The result can also be left rotated as input to next stage of f functions. For next stage f function, the input
from last stage f function should not be rotated again while the input message bits should be rotated.

For cryptorgaphic systems, the host machine can generate the random number α and rotate the message bits
before sending them to the smart card system, then smart card only needs to rotate the key bits to save time.

4 Side-Channel Power Analysis on the Proposed Scheme

4.1 Leakage of the original implementation

To evaluate the proposed scheme on smart card platform, we implement Keccak on SASEBO-W platform based on
AVR-Crypto-Lib. For proposed scheme, we apply round rotation to each lane of input at the beginning of Keccak,
and then rotate them back after Keccak operations. Meanwhile, for ι operation in each round, we also need to
rotate the constant number α bits. We sample the power traces using a LeCroy WaveRunner 640Zi oscilloscope,
and evaluate the side-channel power leakages using correlation power analysis method.

We first sample 500 traces for the original implementation, and target at the first byte of first lane of θ1 result.
The correlation between the power consumption and HW (θ1(0, [0 : 7])) is shown in Fig. 3.
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Fig. 3: CPA trace on R1

From Fig. 3. we can see the correlation between HW (θ1(0, [0 : 7])) and power consumption is reaching 0.7
(-0.7), which is very large for cryptographic systems. This strong leakage can be used by attacker to retrieve key
bits information. We present the attack results in Fig. 4(a).

Fig. 4(a) shows that the right key will stand out of the key guesses very soon, and attackers only need about
200 traces to recover the key bits with success rate 1 according to the result shown in Fig. 4(b). Thus, without
protection, the Keccak implemenation on smart card are vulnerable to side-channel attacks.

4.2 Leakage of the proposed implementation

For the proposed implementation, we sampled 5,000 traces and run CPA on them, we find that the correlation
are hidden by random delay caused by the rotation operations. This is because for random α, the rotation time for
each lane will be different for software system, and this difference will cause random delay in the system. Attacker
cannot get key bits information if he has no knowledge of the random number α.

In this section, we assume that the attacker has full knowledge of the random number α. Which means the
attack knows everything of the random delay caused by the random numbers. Then the correlation result is shown
in Fig. 5(a).
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Fig. 4: CPA trace on R1
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Fig. 5: CPA trace on R1

It shows that with our countermeasure, the leakage decreases significantly, almost covered by noise for 5, 000
traces correlation. Thus it’s anticipated that the protected implementation will be much more difficult to attack
than the original version. The attack results are shown in Fig. 6.
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Fig. 6: CPA trace on R1

In Fig. 6(a), it can be seen that the right key’s correlation is not much higher than the incorrect keys as in
original implementation. While the attacker will need almost 4,000 traces to recover the key bits for this im-
plementation. Comparing with the original implementation, our proposed scheme will be much more difficult to
attack. Taking the easy implementation and low resource overhead into consideration, this is a good countermea-
sure to reduce side-channel leakages for Keccak in smart card system.

5 conclusion

We present a method to reduce the leakages of Keccak on smart card platforms. This method can be effciently
applied to both hardware and software implementations while very low resource overhead will be introduced. Real
attacks results show that this scheme is easy to implement and it can significantly reduce the leakages.
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