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Abstract. A popular approach to tweakable blockcipher design is via masking, where a certain primitive
(a blockcipher or a permutation) is preceded and followed by an easy-to-compute tweak-dependent mask.
In this work, we revisit the principle of masking. We do so alongside the introduction of the tweakable
Even-Mansour construction MEM. Its masking function combines the advantages of word-oriented LFSR-
and powering-up-based methods. We show in particular how recent advancements in computing discrete
logarithms over finite fields of characteristic 2 can be exploited in a constructive way to realize highly
efficient, constant-time masking functions. If the masking satisfies a set of simple conditions, then MEM
is a secure tweakable blockcipher up to the birthday bound. The strengths of MEM are exhibited by
the design of fully parallelizable authenticated encryption schemes OPP (nonce-respecting) and MRO
(misuse-resistant). If instantiated with a reduced-round BLAKE2b permutation, OPP and MRO achieve
speeds up to 0.55 and 1.06 cycles per byte on the Intel Haswell microarchitecture, and are able to
significantly outperform their closest competitors.
Keywords. Tweakable Even-Mansour, masking, optimization, discrete logarithms, authenticated
encryption, BLAKE2.

1 Introduction

Authenticated encryption (AE) has faced significant attention in light of the ongoing CAESAR competition [16].
An AE scheme aims to provide both confidentiality and integrity of processed data. While the classical
approach is predominantly blockcipher-based, where an underlying blockcipher is used to encrypt, novel
approaches start from a permutation and either rely on Sponge-based principles or on the fact that the
Even-Mansour construction E(K,M) = P (K ⊕M)⊕K is a blockcipher.

Characteristic for the majority of blockcipher-based AE schemes is that they rely on a tweakable blockcipher
where changes in the tweak can be realized efficiently. The most prominent example of this is the OCB2 mode
which internally uses the XEX tweakable blockcipher [74]:

XEX(K, (X, i0, i1, i2),M) = E(K, δ ⊕M)⊕ δ ,

where δ = 2i03i17i2E(K,X). The idea is that every associated data or message block is transformed using a
different tweak, where increasing i0, i1, or i2 can be done efficiently. This approach is furthermore used in
second-round CAESAR candidates AEZ, COPA, ELmD, OTR, POET, and SHELL. Other approaches to
masking include Gray code ordering (used in OCB1 and OCB3 [75,58] and OMD) and the word-oriented
LFSR-based approach where δ = ϕi(E(K,X)) for some LFSR ϕ (suggested by Chakraborty and Sarkar [19]).

The same masking techniques can also be used for permutation-based tweakable blockciphers. For instance,
Minalpher uses the Tweakable Even-Mansour (TEM) construction [78] with XEX-like masking, and similar
for Prøst. This TEM construction has faced generalizations by Cogliati et al. [25,26] and Mennink [65], but
none of them considers efficiency improvements of the masking.



1.1 Masked Even-Mansour (MEM) Tweakable Cipher

As a first contribution, we revisit the state of the art in masking with the introduction of the “Masked
Even-Mansour” tweakable blockcipher in Section 3. At a high level, MEM is a Tweakable Even-Mansour
construction, where the masking combines ideas from both word-oriented LFSR- and powering-up-based
masking. As such, MEM combines “the best of both” masking approaches, leading to significant improvements
in simplicity, error-proneness, and efficiency.

In more detail, let P be a b-bit permutation. MEM’s encryption function is defined as

Ẽ(K,X, ī,M) = P (δ(K,X, ī)⊕M)⊕ δ(K,X, ī) ,

where ī = (i0, . . . , iu−1) and where the masking function is of the form

δ(K,X, ī) = ϕ
iu−1
u−1 ◦ · · · ◦ ϕi00 (P (X ‖ K)) ,

for a certain set of LFSRs (ϕ0, . . . , ϕu−1). MEM’s decryption function D̃ is specified analogously but using
P−1 instead of P .

The tweak space and the list of LFSRs are clearly required to satisfy some randomness condition. Indeed,
if a distinguisher can choose a list of tweaks ī such that ϕiu−1

u−1 ◦ · · · ◦ ϕi00 (L) for a uniformly random L offers
no or limited entropy, it can easily distinguish MEM from a random primitive. A similar case applies if the
distinguisher can make two different maskings collide with high probability. Denote by ε the minimal amount
of entropy offered by the functions ϕiu−1

u−1 ◦ · · · ◦ϕi00 and ϕiu−1
u−1 ◦ · · · ◦ϕi00 ⊕ϕ

i′u−1
u−1 ◦ · · · ◦ϕ

i′0
0 for any two maskings

ī, ī′ (see Definition 1 for the formal definition). Then, we prove that MEM is a secure tweakable blockcipher
in the ideal permutation model up to 4.5q2+3qp

2ε + p
2k , where q is the number of construction queries, p the

number of primitive queries, and k the key length. The security proof follows Patarin’s H-coefficient technique,
which has shown its use to Even-Mansour security proofs before in, among others, [23,22,3,27,25,66].

To guarantee that the maskings offer enough randomness, it is of pivotal importance to define a proper
domain of the masking. At the least, the functions ϕiu−1

u−1 ◦ · · · ◦ ϕi00 should be different for all possible choices
of ī, or more formally, such that there do not exist ī, ī′ such that

ϕ
iu−1
u−1 ◦ · · · ◦ ϕi00 = ϕ

i′u−1
u−1 ◦ · · · ◦ ϕ

i′0
0 .

Guaranteeing this requires the computation of discrete logarithms. For small cases, such as b = 64 and
b = 128, we can inherit the computations from Rogaway for XEX [74]. For instance, for b = 128, it is known
that u = 3, (ϕ0, ϕ1, ϕ2) = (2,3,7), and (i0, i1, i2) ∈ {−2108, . . . , 2108} × {−27, . . . , 27} × {−27, . . . , 27} does
the job.

We extend the XEX approach to much larger block sizes by taking advantage of the recent breakthroughs
in the computation of discrete logs in small characteristic fields, beginning with [32], followed by [48].
Computation of individual discrete logarithms for the 1024-bit block used in our MEM instantiation takes
about 8 hrs on a single core of a standard desktop computer, after an initial precomputation, applicable to all
logarithms, of 33.3hrs. Larger blocks are also attainable, rendering workarounds such as subgroups [80] or
different modes [77] largely unnecessary.

Peculiarly, there have been uses of XEX for state sizes larger than b = 128 bits, even though it has
been unclear what restrictions on the indices are due. For instance, Prøst [53] defines a COPA and OTR
instance for a 256- and 512-bit blockcipher; both use maskings of the form 2i03i17i2 for i0 ranging between
0 and the maximal message length. For COPA, it has (i1, i2) ∈ {0, . . . , 5} × {0, 1} and for OTR it has
(i1, i2) ∈ {0, 1} × {0}. The security proof of Prøst never formally computes conditions on the indices, and
simply inherits the conditions for b = 128. By computing the discrete logarithms in the respective fields—a
computationally easy task, demonstrated in Section 3.6—we can confirm that the tweaks are unique for
i0 ∈ {0, . . . , 2246 − 1} in the 256-bit block case, and i0 ∈ {0, . . . , 2505 − 1} in the 512-bit block case.
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1.2 Application to Nonce-Based AE

As first application, we present the Offset Public Permutation (OPP) mode in Section 4, a parallelizable
nonce-based AE based on MEM. It can be considered as a permutation-based generalization of OCB3 [58] to
arbitrary block sizes using permutations and using the improved masking from MEM. Particularly, assuming
security of MEM, the proof of [58] mostly carries over, and we obtain that OPP behaves like a random AE up
to attack complexity dominated by min{2b/2, 2k}, where b is the size of the permutation and k is the key
length. OPP also shows similarities with Kurosawa’s adaption of IAPM and OCB to the permutation-based
setting [59].

Using the masking techniques described later in this paper, OPP has excellent performance when compared
to contemporary permutation-based schemes, such as first-round CAESAR [16] submissions Artemia, Ascon,
CBEAM, ICEPOLE, Keyak, NORX, π-Cipher, PRIMATEs, and STRIBOB, or SpongeWrap schemes in
general [10,66]. OPP improves upon these by being inherently parallel and rate-1; the total overhead of the
mode reduces to 2 extra permutation calls and the aforementioned efficient masking.

In particular, when instantiated with a reduced-round BLAKE2b permutation [5], OPP achieves a peak
speed of 0.55 cycles per byte on an Intel Haswell processor (see Section 8). This is faster than any other
permutation-based CAESAR submission. In fact, there are only a few CAESAR ciphers, such as Tiaoxin
(0.28 cpb) or AEGIS (0.35 cpb), which are faster than the above instantiation of OPP. However, both require
AES-NI to reach their best performance and neither of them is arbitrarily parallelizable.

1.3 Application to Nonce-Misuse Resistant AE

We also consider permutation-based authenticated encryption schemes that are resistant against nonce-reuse.
We consider “full” nonce-misuse resistance, where the output is completely random for different inputs, but
we remark that similarly schemes can be designed to achieve “online” nonce-misuse resistance [28,43], for
instance starting from COPA [2]. It is a well-known result that nonce-misuse resistant schemes are inherently
offline, meaning that two passes over the data must be made in order to perform the authenticated encryption.

The first misuse-resistant AE we consider is the parallelizable Misuse-Resistant Offset (MRO) mode
(Section 5). It starts from OPP, but with the absorption performed on the entire data and with encryption
done in counter mode instead.5 As the underlying MEM is used by the absorption and encryption parts
for different maskings, we can view the absorption and encryption as two independent functions and a
classical MAC-then-Encrypt security proof shows that MRO is secure up to complexity dominated by
min{2b/2, 2k, 2τ/2}, where b and k are as before and τ denotes the tag length.

Next, we consider Misuse-Resistant Sponge (MRS) in Section 6. It is not directly based on MEM; it can
merely be seen as a cascaded evaluation of the Full-state Keyed Duplex of Mennink et al. [66], a generalization
of the Duplex of Bertoni et al. [10]: a first evaluation computes the tag on input of all data, the second
evaluation encrypts the message with the tag functioning as the nonce. MRS is mostly presented to suit the
introduction of the Misuse-Resistant Sponge-Offset hybrid (MRSO) in Section 7, which absorbs like MRS and
encrypts like MRO. (It is also possible to consider the complementary Offset-Sponge hybrid, but we see no
potential applications of this construction.) The schemes MRS and MRSO are proven secure up to complexity
of about min{2c/2, 2k/2, 2τ/2} and min{2(b−τ)/2, 2k, 2τ/2}, respectively, where c denotes the capacity of the
Sponge.

While various blockcipher-based fully misuse-resistant AE schemes exist (such as SIV [76], GCM-SIV [39],
HS1-SIV [57], AEZ [42], Deoxys= and Joltik= [46,47] (using Synthetic Counter in Tweak mode [73]), and
DAEAD [20]), the state of the art for permutation-based schemes is rather scarce. In particular, the only
misuse-resistant AE schemes known in literature are Haddoc and Mr. Monster Burrito by Bertoni et al. [12].
Haddoc lacks a proper formalization but appears to be similar to MRSO, and the security and efficiency
bounds mostly carry over. Mr. Monster Burrito is a proof of concept to design a permutation-based robust
AE comparable with AEZ [42], but it is four-pass and thus not very practical.6

5 MRO’s structure is comparable with the independently introduced Synthetic Counter in Tweak [73,46,47].
6 We remark that the state of the art on online misuse-resistant permutation-based AE is a bit more advanced.
For instance, APE [1] is online misuse-resistant, and achieves security against the release of unverified plaintext,
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When instantiated with a reduced-round BLAKE2b permutation, MRO achieves a peak speed of 1.06 cycles
per byte on the Intel Haswell platform (see Section 8). This puts MRO on the same level as AES-GCM-SIV [39]
(1.17 cpb), which, however, requires AES-NI to reach its best performance. We further remark that MRO is
also more efficient than MRSO, and thus the Haddoc mode.

2 Notation

Denote by F2n the finite field of order 2n with n ≥ 1. A b-bit string X is an element of {0, 1}b or equivalently
of the F2-vector space Fb2. The length of a bit string X in bits is denoted by |X| (= b) and in r-bit blocks
by |X|r. For example, the size of X in bytes is |X|8. The bit string of length 0 is identified with ε. The
concatenation of two bit strings X and Y is denoted by X ‖ Y . The encoding of an integer x as an n-bit
string is denoted by 〈x〉n. The symbols ¬, ∨, ∧, ⊕, �, �, ≪, and ≫, denote bit-wise NOT, OR, AND,
XOR, left-shift, right-shift, left-rotation, and right-rotation, respectively.

Given a b-bit string X = x0 ‖ · · · ‖ xb−1 we define leftl(X) = x0 ‖ · · · ‖ xl−1 to be the l left-most and
rightr(X) = xb−r ‖ · · · ‖ xb−1 to be the r right-most bits of X, respectively, where 1 ≤ l, r ≤ b. In particular,
note that X = leftl(X) ‖ rightb−l(X) = leftb−r(X) ‖ rightr(X). We define the following mapping functions
which extend a given input string X to a multiple of the block size b and cut it into chunks of b bits:

pad0
b : {0, 1}∗ → ({0, 1}b)+, X 7→ X ‖ 0(b−|X|) mod b ,

pad10
b : {0, 1}∗ → ({0, 1}b)+, X 7→ X ‖ 1 ‖ 0(b−|X|−1) mod b .

The set of all permutations of width b ≥ 0 bits is denoted by Perm(b). The parameters k, n, τ ≥ 0
conventionally define the size of the key, nonce, and tag, respectively, for which we require that n ≤ b− k− 1.
In the context of Sponge functions r ≥ 0 and c ≥ 0 denote rate and capacity such that b = r + c, and we
require k ≤ c. When writing X $←− X for some finite set X , we mean that X gets sampled uniformly at
random from X .

2.1 Distinguishers

A distinguisher D is a computationally unbounded probabilistic algorithm. By DO we denote the setting
that D is given query access to an oracle O: it can make queries to O adaptively, and after this, the
distinguisher outputs 0 or 1. If we consider two different oracles O and P with the same interface, we define
the distinguishing advantage of D by

∆D(O ; P) =
∣∣∣Pr

(
DO = 1

)
−Pr

(
DP = 1

)∣∣∣ . (1)

Here, the probabilities are taken over the randomness from O and P . The distinguisher is usually bounded by
a limited set of resources, e.g., it is allowed to make at most q queries to its oracle. We will use the definition
of ∆ for our formalization of the security (tweakable) blockciphers and authenticated encryption. Later in
the paper, ∆ is used to measure the security of PRFs, etc.

2.2 Tweakable Blockciphers

Let T be a set of “tweaks.” A tweakable blockcipher Ẽ : {0, 1}k × T × {0, 1}b → {0, 1}b is a function such
that for every key K ∈ {0, 1}k and tweak T ∈ T , Ẽ(K,T, ·) is a permutation in Perm(b). We denote its
inverse by Ẽ−1(K,T, ·). Denote by P̃erm(T , b) the set of families of tweakable permutations π̃ such that
π̃(T, ·) ∈ Perm(b) for every T ∈ T .

but satisfies the undesirable property of backwards decryption. Also Minalpher and Prøst-COPA are online
misuse-resistant.
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The conventional security definitions for tweakable blockciphers are tweakable pseudorandom permutation
(TPRP) security and strong TPRP (STPRP) security: in the former, the distinguisher can only make forward
construction queries, while in the latter it is additionally allowed to make inverse construction queries. We
will consider a mixed security notion, where the distinguisher may only make forward queries for a subset of
tweaks. It is inspired by earlier definitions from Rogaway [74] and Andreeva et al. [2].

Let P $←− Perm(b) be a b-bit permutation, and consider a tweakable blockcipher Ẽ based on permutation
P . Consider a partition T0 ∪ T1 = T of the tweak space into forward-only tweaks T0 and forward-and-inverse
tweaks T1. We define the mixed tweakable pseudorandom permutation (MTPRP) security of Ẽ against a
distinguisher D as

Advm̃prp
Ẽ,P

(D) = ∆D(Ẽ±K , P± ; π̃±, P±) , (2)

where the probabilities are taken over the random choices of K, π̃, and P . The distinguisher is not allowed to
query Ẽ−1

K for tweaks from T0. By Advm̃prp
Ẽ,P

(q, p) we denote the maximum advantage over all distinguishers
that make at most q construction queries and at most p queries to P±.

Note that the definition of MTPRP matches TPRP if (T0, T1) = (T , ∅) and STPRP if (T0, T1) = (∅, T ).
It is a straightforward observation that if a tweakable cipher Ẽ is MTPRP for two sets (T0, T1), then it is
MTPRP for (T0 ∪ {T}, T1\{T}) for any T ∈ T1. Ultimately, this observation implies that an STPRP is a
TPRP.

2.3 Authenticated Encryption

Let Π = (E ,D) be a deterministic authenticated encryption (AE) scheme which is keyed via a secret key
K ∈ {0, 1}k and operates as follows:

EK(N,H,M) = (C, T ) ,
DK(N,H,C, T ) = M/⊥ .

Here, N is the nonce, H the associated data, M the message, C the ciphertext, and T the tag. In our analysis,
we always have |M | = |C|, and we require that

DK(N,H, EK(N,H,M)) = M

for all N,H,M . By $E we define the idealized version of EK , which returns (C, T ) $←− {0, 1}|M |+τ for every
input. Finally, we denote by ⊥ a function that returns ⊥ upon every query.

Our AE schemes are based on a b-bit permutation P , and we will analyze the security of them in the setting
where P is a random permutation: P $←− Perm(b). Following, Rogaway and Shrimpton [76], Namprempre et
al. [68], and Gueron and Lindell [39], we define the AE security of Π against a distinguisher D as

Advae
Π,P (D) = ∆D(EK ,DK , P± ; $E ,⊥, P±) , (3)

where the probabilities are taken over the random choices of K, $E , and P . The distinguisher is not allowed
(i) to repeat any query and (ii) to relay the output of EK to the input of DK . Note that we do not a priori
require the distinguisher to be nonce-respecting: depending on the setting, it may repeat nonces at its own
discretion. We will always mention whether we consider nonce-respecting or nonce-reusing distinguishers. By
Advae

Π,P (qE , qD, σ, p) we denote the maximum advantage over all (nonce-respecting/reusing) distinguishers
that make at most qE queries to the encryption oracle and at most qD to the decryption oracle, of total length
at most σ padded blocks, and that make at most p queries to P±.
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3 Tweakable Even-Mansour with General Masking

We present the tweakable Even-Mansour construction MEM. Earlier appearances of tweakable Even-Mansour
constructions include Sasaki et al. [78], Cogliati et al. [25], and Mennink [65], but these constructions target
different settings, do not easily capture the improved maskings as introduced below, and are therefore not
applicable in this work.

Our specification can be seen as a generalization of both the XE(X) construction of Rogaway [74] and the
tweakable blockcipher from Chakraborty and Sarkar [19] to the permutation-based setting. While Rogaway
limited himself to 128-bit fields, we realize our approach to fields well beyond the reach of Pohlig-Hellman:
historically the large block size would have been a severe obstruction, as observed in works by Yasuda and
Sarkar [80,77], and some schemes simply ignored the issue [53]. The breakthroughs in computing discrete
logarithms in small characteristic fields [32,48,7,36] allow to easily pass the 128-bit barrier. In particular, for
blocks of 2n bits, it is eminently practical to compute discrete logarithms for n ≤ 13. Further details of our
solution of discrete logarithms over F2512 and F21024 are described in Section 3.6.

3.1 Definition

Let b ≥ 0 and P ∈ Perm(b). In the following we specify MEM, a tweakable Even-Mansour block cipher with
general masking (Ẽ, D̃) where Ẽ and D̃ denote encryption and decryption functions, respectively. Let u ≥ 1,
and let Φ = {ϕ0, . . . , ϕu−1} be a set of functions ϕj : {0, 1}b → {0, 1}b. Consider a tweak space T of the form

T ⊆ {0, 1}b−k × Nu (4)

and specify the general masking function δ : {0, 1}k × T → {0, 1}b as

δ : (K,X, i0, . . . , iu−1) 7→ ϕ
iu−1
u−1 ◦ · · · ◦ ϕi00 (P (X ‖ K)) .

By convention, we set ϕijj = id for ij = 0, for each 0 ≤ j ≤ u − 1. For brevity of notation we write
ī = (i0, . . . , iu−1), and set

Tī =
{
ī | ∃X such that (X, ī) ∈ T

}
.

The encryption function Ẽ : {0, 1}k × T × {0, 1}b → {0, 1}b is now defined as

Ẽ : (K,X, ī,M) 7→ P (δ(K,X, ī)⊕M)⊕ δ(K,X, ī) ,

where M denotes the to be encrypted message. The decryption function D̃ : {0, 1}k × T × {0, 1}b → {0, 1}b
is defined analogously as

D̃ : (K,X, ī, C) 7→ P−1(δ(K,X, ī)⊕ C)⊕ δ(K,X, ī) ,

where C denotes the to be decrypted ciphertext. Note that the usual block cipher property D̃(K,X, ī, Ẽ(K,X, ī,M)) =
M is obviously satisfied. Throughout the document, we will often use the following shorthand notation for
Ẽ īK,X(M) = Ẽ(K,X, ī,M), D̃ī

K,X(C) = D̃(K,X, ī, C), and δīK,X = δ(K,X, ī).

3.2 Security

Eq. (4) already reveals that we require some kind of restriction on T . Informally, we require the masking
functions ϕiu−1

u−1 ◦ · · · ◦ ϕi00 to generate pairwise independent values for different tweaks. More formally, we
define proper tweak spaces in Definition 1. This definition is related to earlier observations in Rogaway [74]
and Chakraborty and Sarkar [19,77].

Definition 1. Let b ≥ 0, u ≥ 1, and Φ = {ϕ0, . . . , ϕu−1} be a set of functions. The tweak space T is ε-proper
relative to the function set Φ if the following two properties are satisfied.
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1. For any y ∈ {0, 1}b, (i0, . . . , iu−1) ∈ Tī, and uniformly random L
$←− {0, 1}b:

Pr
[
ϕ
iu−1
u−1 ◦ · · · ◦ ϕi00 (L) = y

]
= 2−ε .

2. For any y ∈ {0, 1}b, distinct (i0, . . . , iu−1), (i′0, . . . , i′u−1) ∈ Tī, and uniformly random L
$←− {0, 1}b:

Pr
[
ϕ
iu−1
u−1 ◦ · · · ◦ ϕi00 (L)⊕ ϕi

′
u−1
u−1 ◦ · · · ◦ ϕ

i′0
0 (L) = y

]
= 2−ε .

The definition is reminiscent of the definition of universal hash functions (as also noted in [19]), but we will
stick to the convention. We are now ready to prove the security of MEM.

Theorem 2. Let b ≥ 0, u ≥ 1, and Φ = {ϕ0, . . . , ϕu−1} be a set of functions. Let P $←− Perm(b). Assume that
the tweak space T is ε-proper relative to Φ. Let T0 ∪ T1 = T be a partition such that (0, . . . , 0) /∈ T1 ī. Then,

Advm̃prp
Ẽ,P

(q, p) ≤ 4.5q2

2ε + 3qp
2ε + p

2k .

The proof is given in Appendix A. It is based on Patarin’s H-coefficient technique [71,23], and borrows ideas
from [74,19,77,65].

3.3 History of Masking

Originally, IAPM [52] proposed the masking to be a subset sum of c encrypted blocks derived from the nonce,
where 2c is the maximum number of blocks a message can have. In the same document Jutla also suggested
masking the jth block with (j + 1)K + IV mod p, for some prime p near the block size. XCBC [29] used a
similar masking function, but replaced arithmetic modulo p by arithmetic modulo 2b, at the cost of some
tightness in security reductions.

OCB [75,74,58] and PMAC [13] used the field F2b for their masking. There are two different masking
functions used in variants of OCB:

– The powering-up method of OCB2 [74] computes ϕi(L) = xi ·L, where · is multiplication in F2b , and x is
a generator of the field.

– The Gray code masking of OCB1 [75] and OCB3 [58] computes ϕi(L) = γi · L, where γi = i⊕ (i� 1).
This method requires one XOR to compute ϕi+1(L) given ϕi(L), provided a precomputation of log2 |M |
multiples of L is carried out in advance. Otherwise, up to log2 i field doublings are required to obtain
γi · L. This Gray code trick was also applicable to IAPM’s subset-sum masking.

Another family of masking functions, word-oriented LFSRs, was suggested by Chakraborty and Sarkar [19].
Instead of working directly with the polynomial representation F2[x]/f for some primitive polynomial f ,
word-oriented LFSRs treat the block as the field F2wn , where w is the native word size. Thus, the block can
be represented as a polynomial of degree n over F2w , which makes the arithmetic more software-friendly. A
further generalized variant of this family of generators is described (and rejected) in [58, Appendix B], who
also attribute the same technique to [81]. Instead of working with explicitly-constructed field representations,
one starts by trying to find a b × b matrix M ∈ GL(b,F2) that is very efficient to compute. Then, if this
matrix has a primitive minimal polynomial of degree b, this transformation is in fact isomorphic to F2b and
has desirable masking properties. The masking function is then ϕi(L) = M i · L.

Although the above maximal-period matrix recursions have only recently been suggested for use in efficient
masking, the approach has been long studied by designers of non-cryptographic pseudorandom generators. For
example, Niederreiter [70, Section 4] proposed a pseudorandom generator design based on a matrix recursion.
Later methods, like the Mersenne Twister family [63] and the Xorshift [62] generator, improved the efficiency
significantly by cleverly choosing the matrix shape to be CPU-friendly.
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More recently, Minematsu [67] suggested a different approach to masking based on data-dependent rotation.
In particular,

ϕi(L) =
⊕

0≤j<b

{
(L≪ j) if bi/2jc mod 2 = 1 ,
0 otherwise .

where the block size b is prime. With Gray code ordering, one only needs one rotation and XOR per
sequential mask without storing previous masks. That being said, the prime block size is inconvenient, and
data-dependent rotation is a relatively expensive operation compared to some of the previous techniques.

3.4 Proposed Masking for u = 1

We loosely follow the Xorshift [62] design approach for our masking procedure. Let b = nw be the block size,
interpreted as n words of w bits. We begin with fast linear operations available in most current CPUs and
encode them as w × w matrices. More precisely, we denote by 0 the all-zero matrix, by I the identity matrix,
by SHLc and SHRc matrices corresponding to left- and right-shift by c bits, by ROTc the matrix realizing
left-rotation by c bits, and by ANDc the matrix corresponding to bit-wise AND with a constant c. Then, we
construct block matrices using those operations in a way that minimizes computational effort. To maximize
efficiency we consider b× b matrices over F2 of the form

M =




0 I · · · 0
...

... . . . ...
0 0 · · · I
X0 X1 · · · Xn−1


 (5)

with Xi ∈ {0, I, SHLc, SHRc, ROTc, ANDc} where dim(Xi) = w for 0 ≤ i ≤ n− 1. We favor matrices where
only a minimal amount of Xi are nonzero. For a concrete selection of X0, . . . , Xn−1 we check if the matrix
order is maximal, that is, if the smallest integer t > 0 such that M t = I equals 2b − 1; if so, this matrix is
suitable for a masking function that respects the conditions listed above.

Testing candidate masks for maximal order may be efficiently performed without any explicit matrix
operations. Given a candidate linear map corresponding to a matrix M of the form Eq. (5),

(x0, . . . , xn−1) 7→ (x1, . . . , xn−1, f(x0, . . . , xn−1)) ,

one can simply select x0, . . . , xn−1 at random, define xi+n = f(xi, . . . , xi+n−1), and obtain the connection
polynomial p(x) from the sequence of least significant bits of x0, . . . , x2b using, e.g., Berlekamp-Massey. If
p(x) is a primitive polynomial of degree b, p(x) is also the minimal polynomial of the associated matrix M .

This approach yields a number of simple and efficient masking functions. In particular, the 3-operation
primitives (x0 ≪ r0)⊕ (xi � r1) and (x0 ≪ r0)⊕ (xi � r1) are found for several useful block and word
sizes, as Table 1 illustrates. Some block sizes do not yield such small generators so easily; in particular, 128-bit
blocks require at least 4 operations, which is consistent—albeit somewhat better—with the results of [58,
Appendix B]. Using an extra basic instruction, double-word shift, another noteworthy class of maskings
appears: (x0 ≪ r0)⊕ (xi � r1)⊕ (xj � (w−r1)), or in other words (x0 ≪ r0)⊕ ((xi ‖ xj)� r1). This leads
to more block sizes with 3-operation masks, e.g., (x1, x2, x3, (x0 ≪ 15)⊕ ((x1 ‖ x0)� 11)) for 128-bit blocks
(cf. Table 1). Lemma 3 shows that this approach yields proper masking functions according to Definition 1.

Lemma 3. Let M be an b× b matrix over F2 of the form shown in Eq. (5). Furthermore, let M ’s minimal
polynomial be primitive and of degree b. Then given the function ϕi0(L) = M i · L, any tweak set with
Tī ⊆ {0, . . . , 2b − 2} is a b-proper tweak space by Definition 1.

Proof. [19, Proposition 1] directly applies.

One may wonder whether there is any significant advantage of the above technique over, say, the Gray
code sequence with the standard polynomial representation. We argue that our approach improves on it in
several ways:
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Table 1: Sample masking functions for various state sizes b and respective decompositions into n words of w
bits. The notation (xi ‖ xj)� r is shorthand for b(2wxi + xj)/2rc mod 2w.

b w n ϕ

128 8 16 (x1, . . . , x15, (x0 ≪ 2)⊕ ((x4 ‖ x3)� 3)
128 32 4 (x1, . . . , x3, (x0 ≪ 15)⊕ ((x1 ‖ x0)� 11)
128 32 4 (x1, . . . , x3, (x0 ≪ 5)⊕ x1 ⊕ (x1 � 13))
128 64 2 (x1, (x0 ≪ 11)⊕ x1 ⊕ (x1 � 13))
128 64 2 (x1, (x0 ≪ 4)⊕ ((x1 ‖ x0)� 25)
256 32 8 (x1, . . . , x7, (x0 ≪ 17)⊕ x5 ⊕ (x5 � 13))
256 32 8 (x1, . . . , x7, (x0 ≪ 15)⊕ ((x1 ‖ x0)� 13)
256 64 4 (x1, . . . , x3, (x0 ≪ 3)⊕ (x3 � 5))
512 32 16 (x1, . . . , x15, (x0 ≪ 5)⊕ (x3 � 7))
512 64 8 (x1, . . . , x7, (x0 ≪ 29)⊕ (x1 � 9))
800 32 25 (x1, . . . , x15, (x0 ≪ 25)⊕ x21 ⊕ (x21 � 13))
800 32 25 (x1, . . . , x15, (x0 ≪ 11)⊕ ((x6 ‖ x5)� 5)

1024 8 128 (x1, . . . , x127, (x0 ≪ 1)⊕ x125 ⊕ (x125 � 5))
1024 8 128 (x1, . . . , x127, (x0 ≪ 5)⊕ ((x11 ‖ x10)� 1)
1024 64 16 (x1, . . . , x15, (x0 ≪ 53)⊕ (x5 � 13))
1280 64 20 (x1, . . . , x19, (x0 ≪ 25)⊕ (x7 � 49))
1600 32 50 (x1, . . . , x49, (x0 ≪ 3)⊕ (x23 � 3))
1600 64 25 (x1, . . . , x24, (x0 ≪ 55)⊕ x21 ⊕ (x21 � 21))
1600 64 25 (x1, . . . , x24, (x0 ≪ 14)⊕ ((x1 ‖ x0)� 13)

Simplicity OCB (especially OCB2) requires implementers to be aware of Galois field arithmetic. Our
approach requires no user knowledge—even implicitly—of field or polynomial arithmetic, but only
unconditional shifts and XOR operations. Even Sarkar’s word-based LFSRs [77] do not hide the finite
field structure from implementers, thus making it easier to make mistakes.

Constant-time Both OCB masking schemes require potentially variable-time operations to compute each
mask—be it conditional XOR, number of trailing zeroes, or memory accesses indexed by ntz(i+ 1). This
is easily avoidable by clever implementers, but it is also a pitfall avoidable by our design choice. Even in
specifications aimed at developers [56], double(S) is defined as a variable-time operation.

Efficiency Word-based masking has the best space-time efficiency tradeoff of all considered masking schemes.
It requires only minimal space usage—one block—while also involving a very small number of operations
beyond the XOR with the block (as low as 3, cf. Table 1). It is also SIMD-friendly, allowing the generation
of several consecutive masks with a single short SIMD instruction sequence.

In particular, for permutations that can take advantage of a CPU’s vector units via “word-slicing”—which
is the case for Salsa20, ChaCha, Threefish, and many other ARX designs—it is possible to compute a few
consecutive masks at virtually the same cost as computing a single mask transition. It is also efficient to add
the mask to the plaintext both in transposed order (word-sliced) and regular order.

For concreteness, consider the mask sequence (x1, . . . , x15, (x0 ≪ 5)⊕ (x3 � 7)) and a permutation using
512-bit blocks of 32-bit words. Suppose further that we are working with a CPU with 8-wide vectors, e.g.,
AVX2. Given 8 additional words of storage, it is possible to compute L = (x1, . . . , x15, (x0 ≪ 5)⊕ (x3 �
7), . . . , (x7 ≪ 5)⊕ (x10 � 7)) entirely in parallel. Consider now the transposed set of 8 blocks m0, . . . ,m7;
adding the mask consists of m0⊕L0–15,m1⊕L1–16, . . . . On the other hand, when the blocks are word-sliced—
with m′0 being the first 32-bit word of mi, m′1 being the second, and so on—adding the mask is still efficient,
as m′0 ⊕ L0–7,m

′
1 ⊕ L1–8, . . . . This would be impossible with the standard masking schemes used in, e.g.,

OCB.
There is also an advantage at the low-end—ϕ can easily be implemented as a circular array, which implies

that only an index increment and the logical operations must be executed for each mask update. This improves
on both the typical Gray code and powering-up approach, in that shifting by one requires moving every word
of the mask, instead of only one of them. Additionally, storage is often a precious resource in low-end systems,
and the Gray code method requires significantly more than one block to achieve its best performance.
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3.5 Proposed Masking for u = 2 and u = 3

Modes often require the tweak space to have multiple dimensions. In particular, the modes of Sections 4 and 5
require the tweak space to have 2 and 3 “coordinates.” To extend the masking function from Section 3.4 to a
tweak space divided into disjunct sets, we have several options. We can simply split the range [0, 2b − 1] into
equivalence classes, e.g., i0 = 4k+ 0, i1 = 4k+ 1, . . . for at most 4 different tweak indexes. Some constructions
instead store a few fixed tweak values that are used later as “extra” finalization tweaks.

The approach we follow takes a cue from XEX [74]. Before introducing the scheme itself, we need a
deeper understanding of the masking function ϕ introduced in Section 3.4. At its core, ϕ is a linear map
representable by a matrix M with primitive minimal polynomial p(x). In fact, ϕ can be interpreted as the
matrix representation [61, §2.52] of F2b , where M is, up to a change of basis, the companion matrix of p(x).
This property may be exploited to quickly jump ahead to an arbitrary state ϕi(L): since ϕi(L) = M i · L
and additionally p(M) = 0, then (xi mod p(x))(M) = (xi)(M) + (p(x)q(x))(M) = (xi)(M) = M i. Therefore
we can implement arbitrarily large “jumps” in the tweak space by evaluating the right polynomials over M .
This property—like fast word-oriented shift registers—has had its first uses in the pseudorandom number
generation literature [41].

Since we may control the polynomials here, we choose the very same polynomials as Rogaway for the best
performance: x+ 1, and x2 + x+ 1, denoted in [74] as 3 and 7. Putting everything together, our masking for
u = 3 becomes

δ(K,X, i0, i1, i2) = ((x)(M))i0((x+ 1)(M))i1((x2 + x+ 1)(M))i2 · P (K ‖ X)
= M i0(M + I)i1(M2 +M + I)i2 · P (K ‖ X) .

To ensure that the tweak space is b-proper we need one extra detail: we need to ensure that the logarithms
logx(x + 1) and logx(x2 + x + 1) are sufficiently apart. While for F2128 Rogaway already computed the
corresponding discrete logarithms [74] using generic methods, larger blocks make it nontrivial to show
b-properness. The following lemma shows that one particular function satisfies Definition 1. The lemma uses
the discrete logarithms whose computation is described in Section 3.6.

Lemma 4. Let ϕ(x) : {0, 1}1024 7→ {0, 1}1024 be the linear map (x0, . . . , x15) 7→ (x1, . . . , x15, (x0 ≪ 53) ⊕
(x5 � 13)). Further, let M be the 1024 × 1024 matrix associated with ϕ such that ϕ(L) = M · L. Let
Φ = {ϕi00 , ϕi11 , ϕi22 } be the set of functions used in the masking, with ϕi00 (L) = M i0 ·L, ϕi11 (L) = (M + I)i1 ·L,
and ϕi22 (L) = (M2 +M + I)i2 · L. The tweak space

T = T0 × T1 × T2 = {0, 1, . . . , 21020 − 1} × {0, 1, 2, 3} × {0, 1}

is b-proper relative to the function set Φ.

Proof. The proof closely follows [74, Proposition 5]. Let i0 ∈ T0, i1 ∈ T1, and i2 ∈ T2. We first show that
ϕi00 ◦ ϕi11 ◦ ϕi22 is unique for any distinct set of tweaks.

An easy computation shows that p(x) = x1024 + x901 + x695 + x572 + x409 + x366 + x203 + x163 + 1 is the
minimal polynomial of M . This polynomial is both irreducible and primitive, which implies that the order of
M is 21024 − 1. We begin by determining the logarithms of M + I and M2 +M + I relatively to M . This
may be accomplished by computing l1 = logx(x+ 1) and l2 = logx(x2 + x+ 1) in the field F2[x]/p(x), see
Section 3.6.

The values l1 and l2 let us representM i0M i1M i2 asM i0M l1i1M l2i2 . Given a second distinct pair (i′0, i′1, i′2),
we have thatM i0M l1i1M l2i2 = M i′0M l1i

′
1M l2i

′
2 iff i0+l1i1+l2i2 = i′0+l1i′1+l2i′2 (mod 21024−1). Equivalently,

i0− i′0 = (i1− i′1)l1 + (i2− i′2)l2 (mod 21024− 1). By a simple exhaustive search through the valid ranges of i1
and i2 we are able to see that the smallest absolute difference (i1− i′1)l1 + (i2− i′2)l2 occurs when i1− i′1 = −1
and i2 − i′2 = −1, and is ≈ 21020.58. Since i0 − i′0 is at most ±(21020 − 1), collisions cannot happen. Since
each mask is unique, the fact that T is b-proper follows from Lemma 3. ut
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Remark. Nontrivial bounds for T , such as in the case where one desires T0, T1, and T2 to be balanced, cannot
be easily found by exhaustive search. Such bounds can be found, however, with lattice reduction. Consider
the lattice spanned by the rows 



K · 1 w0 0 0
K · l1 0 w1 0
K · l2 0 0 w2
K ·m 0 0 0


 ,

for a suitable integer K, m = 2b − 1, and weights wi. A shortest vector for low-dimensional lattices such
as this can be computed exactly in polynomial time [69]. A shortest vector for this lattice has the form
(∆i0 + ∆i1l1 + ∆i2l2 + km,∆i0w0, ∆i1w1, ∆i2w2), and will be shortest when ∆i0 + ∆i1l1 + ∆i2l2 ≡ 0
(mod 2n − 1). This yields concrete bounds on i0, i1, and i2. The constant K needs to be large enough to
avoid trivial shortest vectors such as (K, 1, 0, 0). The weights wi can be used to manipulate the relative size
of each domain; for example, using the weights 1, 21019, and 21022 results in a similar bound as Lemma 4,
with T0 dominating the tweak space.

3.6 Computing Discrete Logarithms in F2512 and F21024

While the classical incarnation of the Function Field Sieve (FFS) with F2 as the base field could no doubt
solve logarithms in F2512 with relatively modest computational resources—see for example [49,79]—the larger
field would require a significant amount of work [6]. One could instead use subfields other than F2 and apply
the medium-base-field method of Joux and Lercier [50], which would be relatively quick for F2512 , but not so
easy for F21024 .

However, with the advent of the more sophisticated modern incarnation of the FFS, development of
which began in early 2013 [32,48,33,7,34,35,51,36], the target fields are now regarded as small, even tiny, at
least relative to the largest such example computation where a DLP in F29234 was solved [37]. Since these
developments have effectively rendered small characteristic DLPs useless for public key cryptography, (despite
perhaps some potential doubters [18, Appendix D]) it is edifying that there is a constructive application in
cryptography7 for what is generally regarded as a purely cryptanalytic pursuit.

Due to the many subfields present in the fields in question, there is a large parameter space to explore
with regard to the application of the modern techniques, and it becomes an interesting optimization exercise
to find the most efficient approach. Moreover, such is the size of these fields that coding time rather than
computing time is the dominant term in the overall cost. We therefore solved the relevant DLPs using
MAGMA V2.19-1 [15], which allowed us to develop rapidly. All computations were executed on a standard
desktop computer with a 2.0GHz AMD Opteron processor.

3.6.1 Fields Setup. For reasons of both efficiency and convenience we use F216 as base field for both
target fields, given by the following extensions:

F24 = F2[U ]/(U4 + U + 1) = F2(u) ,
F216 = F24 [V ]/(V 4 + V 3 + V + u) = F24(v) .

We represent F2512 as F216 [X]/(I32(X)) = F216(x), where I32 is the degree 32 irreducible factor of H32(X) =
h1(X16)X + h0(X16), where h1 = (X + u9 + u5v + u13v2 + u3v3)3 and h0 = X3 + u2 + u9v2 + u13v3. The
other irreducible factors of H32(X) have degrees 6 and 11.

We represent F21024 as F216 [X]/(I64(X)) = F216(x), where I64 is the degree 64 irreducible factor of
H64(X) = h1(X16)X+h0(X16), where h1 = (X+u+u7v+u4v2 +u7c3)5 and h0 = X5 +u9 +u4v+u6v2 +v3.
The other irreducible factors of H64(X) have degrees 7 and 10. Transforming from the original representations
of Section 3.6.3 to these is a simple matter [60].
7 Beyond cryptography, examples abound in computational mathematics: in finite geometry; representation theory;
matrix problems; group theory; and Lie algebras in the modular case; to name but a few.
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Note that ideally one would only have to use hi’s of degree 2 and 4 to obtain degree 32 and 64 irreducibles,
respectively. However, no such hi’s exist and so we are forced to use hi’s of degree 3 and 5. The penalty for
doing so incurs during the relation generation, see Section 3.6.2, and during the descent, in particular for
degree 2 elimination, see Section 3.6.3.

Remark. The degrees of the irreducible cofactors of I32 in H32 and of I64 in H64 is an essential consideration
in the set up of the two fields. In particular, if the degree df of a cofactor f has a non-trivial GCD with the
degree of the main irreducible, then it should be considered as a ‘trap’ for the computation of the logarithms
of the factor base elements, modulo all primes dividing 216·gcd(df ,32i) − 1 for i = 1, 2, for F2512 and F21024 ,
respectively [45,24]. This is because F216 [X]/(H32i(X)) will contain another copy of F216·gcd(df ,32i) which arises
from f , and hence the solution space modulo primes dividing 216·gcd(df ,32i) − 1 has rank > 1. Our choice of
h0 and h1 in each case limits the effect of this problem to prime factors of 232 − 1, namely subgroups of tiny
order within which we solve the DLPs using a linear search. The irreducible cofactors are also traps for the
descent phase [34], but are easily avoided.

3.6.2 Relation Generation and Logarithms of Linear Elements. The factor base is defined to be
F = {x+ d | d ∈ F216}. To generate relations over F , we use the technique from [32], described most simply
in [34]. In particular, for both target fields let y = x16; by the definitions of I32 and I64 it follows in both
cases that x = h0(y)/h1(y). Using these field isomorphisms, for any a, b, c ∈ F216 we have the field equality

x17 + ax16 + bx+ c = 1
h1(y) (yh0(y) + ayh1(y) + bh0(y) + ch1(y)) . (6)

One can easily generate (a, b, c) triples such that the left hand side of Eq. (6) always splits completely over F .
Indeed, one first computes the set B of 16 values B ∈ F216 such that the polynomial fB(X) = X17 +BX +B
splits completely over F216 [14]. Assuming c 6= ab and b 6= a16, the left hand side of Eq. (6) can be transformed
(up to a scalar factor) into fB , where B = (b+a16)17

(c+ab)16 . Hence if this B is in B then the left hand side also splits.
In order to generate relations, one repeatedly chooses random B ∈ B and random a, b 6= a16 ∈ F216 , computes
c = ((b+ a16)17)1/16 + ab, and tests whether the right hand side of Eq. (6) also splits over F216 . If it does
then one has a relation, since (y + d) = (x+ d1/16)16, and each h1 is a power of a factor base element.

The probability that the right hand side of Eq. (6) splits completely is heuristically 1/4! and 1/6! for F2512

and F21024 respectively. In both cases we obtain 216 + 200 relations, which took about 0.3hrs and 8.8hrs,
respectively. To compute the logarithms of the factor base elements, we used MAGMA’s ModularSolution
function, with its Lanczos option set, modulo the 9th to 13th largest prime factors of 2512 − 1 for the smaller
field and modulo the 10th to 16th largest prime factors of 21024 − 1 for the larger field. These took about
13.5 hrs and 24.5 hrs, respectively.

3.6.3 Individual Logarithms. The original representations of the target fields are:

F2512 = F2[T ]/(T 512 + T 335 + T 201 + T 67 + 1) = F2(t) ,
F21024 = F2[T ]/(T 1024 + T 901 + T 695 + T 572 + T 409 + T 366 + T 203 + T 163 + 1)

= F2(t) .

In order to solve the two relevant DLPs in each original field, we need to compute three logarithms in each of
our preferred field representations, namely the logarithms of the images of t, t+ 1 and t2 + t+ 1—which we
denote by t0, t1 and t2—relative to some generator. We use the generator x in both cases.

For F2512 , we multiply the targets ti by random powers of x and apply a continued fraction initial split so
that xkti ≡ n/d (mod I32), with n of degree 16 and d of degree 15, until both n and d are 4-smooth. One
then just needs to eliminate irreducible elements of degree 2, 3, 4 into elements of smaller degree. For degree
4 elements, we apply the building block for the quasi-polynomial algorithm due to Granger, Kleinjung, and
Zumbrägel [35,36], which is just degree 2 elimination but over a degree 2 extended base field. This results in
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each degree 4 element being expressed as a product of powers of at most 19 degree 2 elements, and possibly
some linear elements. For degree 3 elimination we use Joux’s bilinear quadratic system approach [48], which
expresses each degree 3 element as a product of powers of again at most 19 degree 2 elements and at least one
linear element. For degree 2 elimination, we use the on-the-fly technique from [32], but with the quadratic
system approach from [33], which works for an expected proportion 1− (1− 1/2!)16 = 255/256 of degree 2’s,
since the cofactor in each case has degree 2. On average each descent takes about 10 s, and if it fails due to a
degree 2 being ineliminable, we simply rerun it with a different random seed. Computing logarithms modulo
the remaining primes only takes a few seconds with a linear search, which completes the following results:

logt(t+ 1) = 5016323028665706705636609709550289619036901979668873
4872643788516514405882411611155920582686309266723854
51223577928705426532802261055149398490181820929802 ,

logt(t2 + t+ 1) = 7789795054597035122960933502653082209865724780784381
2166626513019333878034142500477941950081303675633401
11859664658120077665654853201902548299365773789462 .

The total computation time for these logarithms is less than 14 hrs. A MAGMA verification script for these
discrete logarithms is given in Appendix F.

For F21024 , we use the same continued fraction initial split, but now with n and d of degree 32 and 31,
until each is 4-smooth, but also allowing a number of degree 8 elements. Finding such an expression takes
on average 7hrs, which, while not optimal, means that the classical special-Q elimination method could be
obviated, i.e., not coded. For degree 8 elimination, we again use the building block for the quasi-polynomial
algorithm of Granger et al., which expresses such a degree 8 element as a product of powers of at most 21
degree 4 elements, and possibly some degree 2 and 1 elements. Degree 4 and 3 elimination proceed as before,
but with a larger cofactor of the element to be eliminated on the r.h.s. due to the larger degrees of h0 and h1.
Degree 2 elimination is significantly harder in this case, since the larger degrees of the hi’s mean that the
elimination probability for a random degree 2 element was only 1− (1− 1/4!)16 ≈ 0.494. However, using the
recursive method from the DLP computation in F24404 [34] allows this to be performed with near certainty. If
any of the eliminations fails, then as before we simply rerun the eliminations with a different random seed. In
total, after the initial rewrite of the target elements into a product of degree 1, 2, 3, 4, and 8 elements, each
descent takes just under an hour. Again, computing logarithms modulo the remaining primes takes less than
a minute with a linear search resulting in:

logt(t+ 1) = 3560313810702380168941895068061768846768652879916524
2796753456565509842707655755413753100620979021885720
1966785351480307697311709456831372018598499174441196
1470332602216161583378362583657570756631024935927984
2498272238699528576230685242805763938951155448126495
512475014867387149681903876406067502645471152193 ,

logt(t2 + t+ 1) = 1610056439189028793452144461315558447020117376432642
5524859486238161374654279717800300706136749607630601
4967362673777547140089938700144112424081388711871290
7973319251629628361398267351880948069161459793052257
1907117948291164323355528169854354396482029507781947
2534171313076937775797909159788879361876099888834 .

The total computation time for these logarithms is about 57hrs. A MAGMA verification script for these
discrete logarithms is given in Appendix F.
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Note that it is possible to avoid the computations in F2512 altogether by embedding the relevant DLPs
into F21024 . However, the descent time would take longer than the total time, at least with the non-optimal
descent that we used. We considered the possibility of using “jokers” [34], which permit one to halve the
degree of even degree irreducibles when they are elements of a subfield of index 2. However, it seems to only
be possible when one uses compositums, which is not possible in the context of the fields F22n . In any case,
such optimizations are academic when the total computation time is as modest as those recorded here, and
our approach has the bonus of demonstrating the easiness of computing logarithms in F2512 , as well as in
F21024 .

With regard to larger n, it would certainly be possible to extend the approach of Kleinjung [55] to solve
logarithms in the fields F22n for n = 11, 12 and 13, should this be needed for applications, without too much
additional effort.

4 Offset Public Permutation Mode (OPP)

We present the Offset Public Permutation Mode (OPP), a nonce-respecting authenticated encryption mode
with support for associated data which uses the techniques presented in Section 3. It can be seen as
a generalization of OCB3 [58] to arbitrary block sizes using permutations and using improved masking
techniques from Section 3.

4.1 Specification of OPP

Let b, k, n, τ as outlined in Section 2. OPP uses MEM of Section 3.1 for u = 3 and Φ = {α, β, γ} with
α(x) = ϕ(x), β(x) = ϕ(x) ⊕ x and γ(x) = ϕ(x)2 ⊕ ϕ(x) ⊕ x, employing ϕ as introduced in Section 3.4.
Furthermore, the general masking function is specified as

δ : (K,X, i0, i1, i2) 7→ γi2 ◦ βi1 ◦ αi0(P (X ‖ K)) .

We require that the tweak space of MEM used in OPP is b-proper with respect to Φ as introduced in Definition 1
and proven in Lemma 4.

The formal specification of OPP is given in Fig. 1 and overview of the scheme is depicted in Fig. 2. We
refer to the authentication part of OPP as OPPAbs and to the encryption part as OPPEnc. The OPPAbs
mode requires only the encryption function Ẽ, while the OPPEnc mode uses both Ẽ and D̃ of MEM.

Let Hi and Mj denote b-bit header and message blocks with 0 ≤ i ≤ h − 1 and 0 ≤ j ≤ m − 1 where
h = |H|b and m = |M |b. Note that the size of the last blocks Hh−1 and Mm−1 is potentially smaller than b
bits. To realize proper domain separation between full and partial data blocks, and different data types, OPP
uses the following setup:

OPPAbs OPPEnc
data block condition (i0, i1, i2) data block condition (i0, i1, i2)

Hi 0 ≤ i < h− 1 (i , 0, 0) Mj 0 ≤ j < m− 1 (j , 0, 1)
Hh−1 |H| mod b = 0 (h− 1, 0, 0) Mm−1 |M | mod b = 0 (m− 1, 0, 1)
Hh−1 |H| mod b 6= 0 (h− 1, 1, 0) Mm−1 |M | mod b 6= 0 (m− 1, 1, 1)⊕m−1

j=0
Mj |M | mod b = 0 (m− 1, 2, 1)⊕m−1

j=0
Mj |M | mod b 6= 0 (m− 1, 3, 1)

4.2 Security of OPP

Theorem 5. Let b, k, n, τ as outlined in Section 2. Let P $←− Perm(b). Then, in the nonce-respecting setting,

Advae
OPP,P (qE , qD, σ, p) ≤

4.5σ2

2b + 3σp
2b + p

2k + 2n−τ
2n − 1 .
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Algorithm: OPPEnc(K,X,M)
1. M0 ‖ · · · ‖Mm−1 ←M, s.t. |Mi| = b, 0 ≤ |Mm−1| < b
2. C ← ε

3. S ← 0b
4. for i ∈ {0, . . . ,m− 2} do
5. Ci ← Ẽi,0,1K,X (Mi)
6. C ← C ‖ Ci
7. S ← S ⊕Mi

8. end
9. if |Mm−1| > 0 then

10. Z ← Ẽm−1,1,1
K,X (0)

11. Cm−1 ← left|Mm−1|(pad0
b(Mm−1)⊕ Z)

12. C ← C ‖ Cm−1
13. S ← S ⊕ pad10

b (Mm−1)
14. end
15. j ← d(|M | mod b)/be+ 2
16. return C, Ẽm−1,j,0

K,X (S)

Algorithm: OPPAbs(K,X,H, S)
1. H0 ‖ · · · ‖ Hh−1 ← H, s.t. |Hi| = b, 0 ≤ |Hh−1| < b

2. S′ ← 0b
3. for i ∈ {0, . . . , h− 2} do
4. S′ ← S′ ⊕ Ẽi,0,0K,X (Hi)
5. end
6. if |Hh−1| > 0 then
7. S′ ← S′ ⊕ Ẽh−1,1,0

K,X (pad10
b (Hh−1))

8. end
9. return leftτ (S′ ⊕ S)

Algorithm: OPPDec(K,X,C)
1. C0 ‖ · · · ‖ Cm−1 ← C, s.t. |Ci| = b, 0 ≤ |Cm−1| < b
2. M ← ε

3. S ← 0b
4. for i ∈ {0, . . . ,m− 2} do
5. Mi ← D̃i,0,1

K,X(Ci)
6. M ←M ‖Mi

7. S ← S ⊕Mi

8. end
9. if |Cm−1| > 0 then

10. Z ← Ẽm−1,1,1
K,X (0)

11. Mm−1 ← left|Cm−1|(pad0
b(Cm−1)⊕ Z)

12. M ←M ‖Mm−1
13. S ← S ⊕ pad10

b (Mm−1)
14. end
15. j ← d(|M | mod b)/be+ 2
16. return M, Ẽm−1,j,0

K,X (S)

Algorithm: OPPE(K,N,H,M)
1. X ← pad0

b−n−k(N)
2. C, S ← OPPEnc(K,X,M)
3. T ← OPPAbs(K,X,H, S)
4. return C, T

Algorithm: OPPD(K,N,H,C, T )
1. X ← pad0

b−n−k(N)
2. M,S ← OPPDec(K,X,C)
3. T ′ ← OPPAbs(K,X,H, S)
4. if T = T ′ then return M else return ⊥ end

Fig. 1: Offset Public Permutation Mode (OPP)

The proof is given in Appendix B. Note that OPP shares its structure with OCB3 of Krovetz and Rogaway [58].
In more detail, we will show that once MEM gets replaced by a random tweakable permutation π̃, OPP
becomes exactly the ΘCB3 construction [58]. The proof follows by combining the security of MEM and the
security of ΘCB3. The first three terms of Theorem 5 come from the security of MEM and the b-properness
of the masking.

5 Misuse-Resistant Offset Mode (MRO)

We present the Misuse-Resistant Offset Mode (MRO), a MAC-then-Encrypt AE mode with support for
associated data which fully tolerates nonce re-usage. In some sense, MRO is the misuse-resistant variant of
OPP and also uses the techniques presented in Section 3. It can be seen as a permutation-based variation of
PMAC [13] followed by a permutation-based variation of CTR mode, and shares ideas with the Synthetic
Counter in Tweak (SCT) mode [73] used in Deoxys v1.3 and Joltik v1.3 [46,47], though MRO is permutation-
based and employs the improved masking schedule of Section 3.

5.1 Specification of MRO
Let b, k, n, τ as outlined in Section 2. The formal specification of MRO is given in Fig. 3 and an overview of
the scheme is depicted in Fig. 4. Similar to OPP, we refer to the authentication part of MRO as MROAbs
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OPPEnc, message encryption, full last block OPPEnc, message encryption, partial last block

Fig. 2: Offset Public Permutation Mode (OPP)

and to the encryption part as MROEnc. In contrast to OPP, MRO only requires the encryption function Ẽ of
MEM. Using notation as in the OPP mode, MRO uses the following setup for masking:

MROAbs MROEnc
data block condition (i0, i1, i2) data block condition (i0, i1, i2)

Hi 0 ≤ i ≤ h− 1 (i, 0, 0) Mj 0 ≤ j ≤ m− 1 (0, 0, 1)
Mj 0 ≤ j ≤ m− 1 (j, 1, 0)

|H| ‖ |M | n.a. (0, 2, 0)

5.2 Security of MRO

Theorem 6. Let b, k, n, τ as outlined in Section 2. Let P $←− Perm(b). Then, in the nonce-reuse setting,

Advae
MRO,P (qE , qD, σ, p) ≤

6.5σ2

2b + 3σp
2b + p

2k + q2
E/2 + qD

2τ .
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Algorithm: Absorb(K,X, S,A, j)
1. if |A| > 0 then
2. A0 ‖ · · · ‖ Aa−1 ← pad0

b(A)
3. for i ∈ {0, . . . , a− 1} do
4. S ← S ⊕ Ẽi,j,0K,X(Ai)
5. end
6. end
7. return S

Algorithm: MROEnc(K,X, T,M)
1. C ← ε
2. if |M | > 0 then
3. M0 ‖ · · · ‖Mm−1 ← pad0

b(M)
4. for i ∈ {0, . . . ,m− 1} do
5. Ci ←Mi ⊕ Ẽ0,0,1

K,X (T ‖ i)
6. C ← C ‖ Ci
7. end
8. end
9. return left|M|(C)

Algorithm: MROE(K,N,H,M)
1. X ← pad0

b−n−k(N)
2. T ← MROAbs(K,X,H,M)
3. C ← MROEnc(K,X, T,M)
4. return C, T

Algorithm: MROAbs(K,X,H,M)
1. S ← 0b
2. S ← Absorb(K,X, S,H, 0)
3. S ← Absorb(K,X, S,M, 1)
4. S ← Ẽ0,2,0

K,X (S ⊕ |H| ‖ |M |)
5. return leftτ (S)

Algorithm: MRODec(K,X, T,C)
1. M ← ε
2. if |C| > 0 then
3. C0 ‖ · · · ‖ Cm−1 ← pad0

b(C)
4. for i ∈ {0, . . . ,m− 1} do
5. Mi ← Ci ⊕ Ẽ0,0,1

K,X (T ‖ i)
6. M ←M ‖Mi

7. end
8. end
9. return left|C|(M)

Algorithm: MROD(K,N,H,C, T )
1. X ← pad0

b−n−k(N)
2. M ← MRODec(K,X, T,C)
3. T ′ ← MROAbs(K,X,H,M)
4. if T = T ′ then return M else return ⊥ end

Fig. 3: Misuse-Resistant Offset Mode (MRO)

The proof is given in Appendix C. The proof is in fact a standard-model proof where the scheme is considered
to be based on MEM. It is a modular proof that, at a high level, consists of the following steps:

(i) The first step in the analysis is to replace MEM with a random secret tweakable permutation. It costs
the MTPRP security of MEM, 4.5σ2

2b + 3σp
2b + p

2k , using that the masking is b-proper.
(ii) The absorption function and encryption function call the tweakable cipher for distinct tweaks. Hence,

using an adaption of the MAC-then-Encrypt paradigm to misuse resistance [68,39] allows us to analyze
the MAC parts and the encryption parts separately.

6 Misuse-Resistant Sponge (MRS)

We introduce the Misuse-Resistant Sponge Mode (MRS), a MAC-then-Encrypt Sponge-based AE mode with
support for associated data which fully tolerates nonce re-usage. The absorption function is a full-state keyed
Sponge MAC [11,3,66]. The encryption function follows the SpongeWrap approach [10,66].

6.1 Specification of MRS

Let b, k, n, τ, r, c as outlined in Section 2. The formal specification of MRS is given in Fig. 5 and an overview
of the scheme is depicted in Fig. 6. It consists of an absorption function MRSAbs and an encryption function
MRSEnc, in a MAC-then-Encrypt mode, but using the same primitive and same key in both functions. We
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Fig. 4: Misuse-Resistant Offset Mode (MRO)

remark that MRS as given in Fig. 5 only does one round of squeezing in order to obtain the tag. This can be
easily generalized to multiple rounds, without affecting the security proofs.

We briefly discuss the differences of MRS with Haddoc, the misuse-resistant AE scheme presented by
Bertoni et al. [12] at the 2014 SHA-3 workshop. Haddoc follows the MAC-then-Encrypt paradigm as well,
where the MAC function is identical to MRSAbs. For encryption, however, Haddoc uses the Sponge in CTR
mode. At a high level, and in our terminology, this boils down to Ci = Mi ⊕ leftr(P (T ‖ 〈i〉 ‖ 1 ‖ K)), for
0 ≤ i ≤ m− 1. In other words, MRS and Haddoc structurally differ in the way encryption is performed, and
in fact, Haddoc more closely matches the ideas of the MRSO hybrid of Section 7.

6.2 Security of MRS

Theorem 7. Let b, k, n, τ, r, c as outlined in Section 2. Let P $←− Perm(b). Then, in the nonce-reuse setting,

Advae
MRS,P (qE , qD, σ, p) ≤

4σ2

2b + 4σ2

2c + 2σp
2k + q2

E/2 + qDqE + qD
2τ .

The proof is given in Appendix D. It is different from the proofs for OPP and MRO, although it is also
effectively a standard-model proof. It relies on the observation that both the absorption and the encryption
phase are in fact evaluations of the Full-state Keyed Duplex [10,66]. This construction has been proven to
behave like a random functionality, with the property that it always outputs uniformly random data, up to
common prefix in the input. Assuming that the distinguisher never makes duplicate queries, MRSAbs never
has common prefixes; assuming tags never collide, MRSEnc never has common prefixes; and finally, the initial
inputs to MRSAbs versus MRSEnc are always different due to the 0/1 domain separation. The proof then
easily follows.

7 Misuse-Resistant Sponge-Offset (MRSO)

The constructions of Sections 5 and 6 can be combined in a straightforward way to obtain two hybrids:
the Misuse-Resistant Sponge-then-Offset Mode (MRSO) and the Misuse-Resistant Offset-then-Sponge Mode
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Algorithm: Absorb(S,A)
1. if |A| > 0 then
2. A0 ‖ · · · ‖ Aa−1 ← pad0

b(A)
3. for i ∈ {0, . . . , a− 1} do
4. S ← P (S)
5. S ← S ⊕Ai
6. end
7. end
8. return S

Algorithm: MRSEnc(K,T,M)
1. C ← ε
2. if |M | > 0 then
3. S ← T ‖ 0∗ ‖ 1 ‖ K
4. M0 ‖ · · · ‖Mm−1 ← pad0

r(M)
5. for i ∈ {0, . . . ,m− 1} do
6. S ← P (S)
7. S ← S ⊕ (Mi ‖ 0c)
8. C ← C ‖ leftr(S)
9. end

10. end
11. return left|M|(C)

Algorithm: MRSE(K,N,H,M)
1. T ← MRSAbs(K,N,H,M)
2. C ← MRSEnc(K,T,M)
3. return C, T

Algorithm: MRSAbs(K,N,H,M)
1. S ← N ‖ 0∗ ‖ 0 ‖ K
2. S ← Absorb(S,H)
3. S ← Absorb(S,M)
4. S ← P (S)
5. S ← S ⊕ |H| ‖ |M |
6. S ← P (S)
7. T ← leftτ (S)
8. return T

Algorithm: MRSDec(K,T,C)
1. M ← ε
2. if |C| > 0 then
3. S ← T ‖ 0∗ ‖ 1 ‖ K
4. C0 ‖ · · · ‖ Cm−1 ← pad0

r(C)
5. for i ∈ {0, . . . ,m− 1} do
6. S ← P (S)
7. M ←M ‖ leftr(S ⊕ (Ci ‖ 0c))
8. S ← Ci ‖ rightc(S)
9. end

10. end
11. return left|C|(M)

Algorithm: MRSD(K,N,H,C, T )
1. M ← MRSDec(K,T,C)
2. T ′ ← MRSAbs(K,N,H,M)
3. if T = T ′ then return M else return ⊥ end

Fig. 5: Misuse-Resistant Sponge (MRS)

(MROS). While we cannot think of any practical use-case for MROS, we do think MRSO is useful. As suggested
in Section 6, MRSO is comparable with—and in fact improves over—Haddoc.

7.1 Specification of MRSO

Let b, k, n, τ as outlined in Section 2. The formal specification of the MRSO AE scheme is formalized in Fig. 7.
It MACs the data using MRSAbs and encrypts using MROEnc. MRSO uses MEM as specified for OPP but
requires only a very limited selection of tweaks and has i1 = i2 = 0 fixed. Thus, the general masking function
can be simplified to

δ : (K,X, i0) 7→ αi0(P (X ‖ K)) .
For the encryption part MROEnc this is clear (cf. Section 5). For the absorption part MRSAbs, this is less
clear: informally, it is based on the idea of setting L = P (N ‖ 0∗ ‖ K), and of XORing this value everywhere
in-between two consecutive evaluations of P . Because at the end of MRSAbs, a part of the rate is extracted,
this “trick” only works if performed with the rightmost b− τ bits of L. Therefore, MRSO is based on a slight
adjustment of MEM with b− τ -bit maskings only. The details follow in the security proof (Appendix E). Let
h = |H|b and m = |M |b denote the number of b-bit header and message blocks, respectively. We use the
following setup for masking:
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Algorithm: MRSOE(K,N,H,M)
1. X ← pad0

b−n−k(N)
2. T ← MRSAbs(K,N,H,M)
3. C ← MROEnc(K,X, T,M)
4. return C, T

Algorithm: MRSOD(K,N,H,C, T )
1. X ← pad0

b−n−k(N)
2. M ← MRODec(K,X, T,C)
3. T ′ ← MRSAbs(K,N,H,M)
4. if T = T ′ then return M else return ⊥ end

Fig. 7: Sponge-Offset mode MRSO. Refer to Figs. 3 and 5 for the sub-algorithms

MRSAbs MROEnc
data block condition i0 data block condition i0

Hi 0 ≤ i ≤ h− 1 0 Mj 0 ≤ j ≤ m− 1 1
Mj 0 ≤ j ≤ m− 1 0

|H| ‖ |M | n.a. 0

7.2 Security of MRSO

Theorem 8. Let b, k, n, τ as outlined in Section 2. Let P $←− Perm(b). Then, in the nonce-reuse setting,

Advae
MRSO,P (qE , qD, σ, p) ≤

2σ2

2b + 5.5σ2

2b−τ + 3σp
2b−τ + p

2k + q2
E/2 + qD

2τ .

The proof is similar to the proof of MRO, with the difference that now we use (b − τ)-properness of the
masking. It is given in Appendix E.

8 Implementation

In this section we discuss our results on the implementations of concrete instantiations of OPP, MRO, and
MRS. For all three schemes we use state, key, tag, and nonce sizes of b = 1024, k = τ = 256, and n = 128
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Table 2: Performance of OPP, MRO, and MRS instantiated with the BLAKE2b permutation
l = 4 l = 6

Platform Impl. OPP MRO MRS OPP MRO MRS

Cortex-A8 NEON 4.26 8.07 8.50 5.91 11.32 12.21
Sandy Bridge AVX 1.24 2.41 2.55 1.91 3.58 3.87
Haswell AVX2 0.55 1.06 2.40 0.75 1.39 3.58

bits. For P we employ the BLAKE2b [5] permutation with l ∈ {4, 6} rounds. For OPP and MRO we use
ϕ(x0, . . . , x15) = (x1, ..., x15, (x0 ≪ 53)⊕ (x5 � 13)) and for MRSEnc we set rate and capacity to r = 768
and c = 256 bits. To remain self-contained, we now recall the BLAKE2b permutation. It operates on a state
S = (s0, . . . , s15) with 64-bit words si. A single round F (S) consists of the sequence of operations

G(s0, s4, s8, s12); G(s1, s5, s9, s13); G(s2, s6, s10, s14); G(s3, s7, s11, s15);
G(s0, s5, s10, s15); G(s1, s6, s11, s12); G(s2, s7, s8, s13); G(s3, s4, s9, s14);

where

G(a, b, c, d) =
{
a = a+ b; d = (d⊕ a) ≫ 32; c = c+ d; b = (b⊕ c) ≫ 24;
a = a+ b; d = (d⊕ a) ≫ 16; c = c+ d; b = (b⊕ c) ≫ 63;

BLAKE2 and its predecessors have been heavily analyzed, e.g., [54,40]. These results are mostly of theoretical
interest though since the complexity of the attacks vastly outweigh our targeted security level. Nevertheless, the
BLAKE2 permutation family has some evident and well-known non-random characteristics [4]: for any l > 0,
it holds that F l(0) = 0 and F l(a, a, a, a, b, b, b, b, c, c, c, c, d, d, d, d) = (w,w,w,w, x, x, x, x, y, y, y, y, z, z, z, z)
for arbitrary values a, b, c, and d. These symmetric states can be easily avoided with a careful design, so
that they cannot be exploited as a distinguisher. Thus, we use slightly modified variants of the schemes from
Sections 4 to 7. Instead of initializing the masks with P (N ‖ 0640 ‖ K) in OPP and MRO, we encode the
round number l and tag size τ as 64-bit strings and use P (N ‖ 0512 ‖ 〈l〉64 ‖ 〈τ〉64 ‖ K). Analogously, MRSAbs
and MRSEnc are initialized with N ‖ 0448 ‖ 〈l〉64 ‖ 〈τ〉64 ‖ 〈0〉64 ‖ K and T ‖ 0320 ‖ 〈l〉64 ‖ 〈τ〉64 ‖ 〈1〉64 ‖ K,
respectively.

We wrote reference implementations of all schemes in plain C and optimized variants using the AVX,
AVX2, and NEON instruction sets8. Performance was measured on the Intel Sandy Bridge and Haswell
microarchitectures and on the ARM Cortex-A8 and furthermore compared to some reference AEAD schemes,
see Tables 2 and 3. All values are given for “long messages” (≥ 4KiB) with cycles per byte (cpb) as unit.

In the nonce-respecting scenario our fastest proposal is OPP with 4 BLAKE2b rounds. Our 4-fold word-
sliced AVX2-implementation achieves 0.55 cpb on Haswell, amounting to a throughput of 6.36GiBps and
assuming a CPU frequency of 3.5GHz. Compared to its competitors AES-GCM, OCB3, ChaCha20-Poly1305
and Deoxys6= (v1.3)9, this instantiation of OPP is faster by factors of about 1.87, 1.25, 3.80, and 1.74,
respectively. The 6-round variant of OPP achieves speeds of about 0.75 cpb (4.67GiBps) reducing the distance
to the above competitors to factors of 1.37, 0.92, 2.78, and 1.28. On ARM platforms, without AES-NI, OPP’s
advantage is even more significant. The NEON-variant outperforms the AES-based ciphers OCB3 and AES-
GCM by factors of about 6.78 and 9.06. In contrast, the highly optimized Salsa20-Poly1305 implementation
of [9] is only slower by a factor of around 1.92.

In the misuse-resistant scenario our fastest proposal is MRO with 4 BLAKE2b rounds. Our 4-fold word-
sliced AVX2-implementation achieves 1.06 cpb on Haswell which is equivalent to a throughput of 3.30GiBps
at a frequency of 3.5GHz. In comparison to schemes such as AES-GCM-SIV and Deoxys= (v.1.3), the above
instantiation of MRO is faster by factors of about 1.10 and 1.81. For the 6-round version with 1.39 cpb these
factors are reduced to 0.79 and 1.38, respectively. Unfortunately, there is not enough published data on
performance of misuse-resistant AE schemes on ARM. Analogously to OPP in the nonce-respecting scenario,
one can expect similar performance gaps between the misuse-resistant AES-based schemes and MRO.
8 The source code of our schemes is freely available at [64] under a CC0 license.
9 We point out that Deoxys6=, unlike the other considered modes, aims for security beyond the birthday bound up to
the full block size.
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Table 3: Performance of some reference AEAD modes
nonce-respecting misuse-resistant

ChaCha20- Salsa20- Deoxys 6= Deoxys=

Platform AES-GCM OCB3 Poly1305 Poly1305 -128-128 GCM-SIV -128-128

Cortex-A8 38.6 28.9 - 5.60+2.60 - - -
Sandy Bridge 2.55 0.98 - - 1.29 - ≈ 2.58
Haswell 1.03 0.69 1.43+0.66 - 0.96 1.17 ≈ 1.92

References [17,38] [58,38] [30,31] [9] [46,72] [39] [46,72]

Due to the inherently sequential Sponge-construction used in MRS, advanced implementation techniques
like 4-fold word-slicing are not possible. In general, MRS performs therefore worse than MRO. On Haswell MRS
achieves 2.40 cpb (l = 4) and 3.58 cpb (l = 6) which translate to throughputs of 1.45GiBps and 0.97GiBps,
respectively. Thus, MRS is still competitive to other misuse-resistant AE schemes on Intel platforms. On ARM
it shows good performance as well, almost on the level of MRO. We have not written any implementations for
MRSO but it is to be expected that its performance lies between MRO and MRS.
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A Proof of Theorem 2 (Security of MEM)

Let K $←− {0, 1}k, P $←− Perm(b), and π̃ $←− P̃erm(T , b). Consider a deterministic MTPRP distinguisher D for
the tweakable blockcipher Ẽ of Section 3.1. By the security definition of Section 2.2, in the real world it has
access to O = (Ẽ±, P±), and in the ideal world to P = (π̃±, P±). It makes q construction queries, and p
primitive queries to P±.

By hypothesis, the tweak space T is ε-proper relative to the set of functions Φ. The distinguisher is
expected to obey the masking partition T = T0 ∪ T1 in such a way that tweaks from T0 are only used in
forward direction. We have (0, . . . , 0) 6∈ T1 ī by assumption, meaning that this masking can be used in forward
direction only.

Views. The information that is gathered by D is summarized in a view ν. This view will consist of a
summary of all information D learns during the interaction with its oracles, as well as some additional
information that will be revealed after the proof.

The construction queries are summarized in a directionless view

ν1 = {(X1, ī1,M1, C1), . . . , (Xq, īq,Mq, Cq)} ,

meaning that the jth construction query was made on input of tweak (Xj , īj) and message Mj , and responded
with cipher Cj , or vice versa. Note that we do not make a distinction between queries with tweak from T0
and T1; the analysis is identical, with the only exception being īj = (0, . . . , 0), in which case we have to keep
in mind that the query is made in forward direction. Let s denote the number of distinct values Xj , and let
{Y1, . . . , Ys} be the minimal set such that it includes X1, . . . , Xq.

The primitive queries are summarized in a view

ν2 = {(x1, y1), . . . , (xp, yp)} ,

which means that the jth primitive query was either a forward query on input of xj (with response yj) or
vice versa.

As the distinguisher is deterministic, there is a one-to-one mapping between these directionless views
(ν1, ν2) and the interaction of D with its oracles. Therefore, (ν1, ν2) properly summarizes the conversation.

To simplify our security analysis, we will reveal the keying information to D at the end of the interaction.
This “trick” was employed in earlier H-coefficient technique based security proofs of Even-Mansour construc-
tions (see, e.g., [25,22,23]), but because for Ẽ the key is first transformed to obtain the masks, the situation
is slightly more technical, and we follow ideas from [65]. In more detail, we reveal

νK = {(KY1 ,K
?
Y1), . . . , (KYs ,K

?
Ys)} .

In the real world, we have KYj = Yj ‖ K and K?
Yj

= P (Yj ‖ K), where K $←− {0, 1}k is the key used for the
entire game. In the ideal world, we set K $←− {0, 1}k, KYj = Yj ‖ K, and K?

Yj

$←− {0, 1}b for j = 1, . . . , s.
Note that the disclosure of νK is without loss of generality: it will only increase the success probability of

D. The total view is denoted

ν = (ν1, ν2, νK) .

We assume that D never makes duplicate queries, and hence ν1 contains no duplicate elements, and the same
for ν2.

Attainable Views and View-Compliant Oracles. Denote by XO the probability distribution of views
when interacting with O, and similarly XP the probability distribution of views when interacting with P. A
view ν is called “attainable” if it may appear during an interaction with P, or formally if Pr (XP = ν) > 0.
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Throughout, we will only focus on attainable views. Concretely, for ν1 this implies that for any j 6= j′ such
that (Xj , īj) = (Xj′ , īj′), we have Mj 6= Mj′ and Cj 6= Cj′ . For ν2, attainability implies that for all j 6= j′,
we have xj 6= xj′ and yj 6= yj′ .

We say that a tweakable permutation π̃ ∈ P̃erm(T , b) is compliant with construction view ν!, denoted
π̃ ` ν1, if π̃(X, ī,M) = C for each (X, ī,M,C) ∈ ν1. Similarly, if νP = {(x1, y1), . . . , (xp, yp)} is a primitive
view (for instance, νP = ν2 or νP = νK), we say that a permutation P ∈ Perm(b) is compliant with νP ,
denoted P ` νP , if P (x) = y for each (x, y) ∈ νP .

Patarin’s H-Coefficient Technique. Our proof is based on Patarin’s H-coefficient technique [71]. We will
follow the formalism of Chen and Steinberger [23].
Lemma 9 (Patarin’s Technique). Let D be a deterministic distinguisher. Denote by V the set of attainable
views, and consider a partition V = Vgood ∪ Vbad of V into good and bad views. Let 0 ≤ ε be such that for all
ν ∈ Vgood,

Pr (XO = ν)
Pr (XP = ν) ≥ 1− ε . (7)

Then, the distinguishing advantage satisfies ∆D(O;P) ≤ ε+ Pr (XP ∈ Vbad).
A proof of this lemma can be found, among others, in [23,22]. At a high level, the idea of the technique is to
identify views for which the fraction of (7) is large, and to isolate them as being “bad” views. Then, for all
“good” views the distributions XO and XP are relatively close to each other and ε will be small. Note that if
the definition of bad views is too loose, Pr (XP ∈ Vbad) will be large, while if it is too tight, ε will be larger.

Definition of Bad Views. Note that in the real world, all tuples in ν define an input/output-tuple for P :
for ν2 and νK this is clear, for ν1 this follows from the definition of Ẽ. Provided no collision within these
tuples occurs, ν defines exactly q + p+ s tuples for P . Inspired by this, we will call a transcript bad if any
collision occurs. Formally, ν is called bad if one of the following conditions holds:

bad1,1 : for distinct some (X, ī,M,C), (X ′, ī′,M ′, C ′) ∈ ν1:

ϕ
iu−1
u−1 ◦ · · · ◦ ϕi00 (K?

X)⊕ ϕi
′
u−1
u−1 ◦ · · · ◦ ϕ

i′0
0 (K?

X′) ∈ {M ⊕M ′, C ⊕ C ′} ,
bad1,2 : for some (X, ī,M,C) ∈ ν1 and (x, y) ∈ ν2:

ϕ
iu−1
u−1 ◦ · · · ◦ ϕi00 (K?

X) ∈ {M ⊕ x,C ⊕ y} ,
bad1,K : for some (X, ī,M,C) ∈ ν1 and (KY ,K

?
Y ) ∈ νK :

ϕ
iu−1
u−1 ◦ · · · ◦ ϕi00 (K?

X) ∈ {M ⊕KY , C ⊕K?
Y } ,

bad2,K : for some (x, y) ∈ ν2 and (KY ,K
?
Y ) ∈ νK :

x = KY or y = K?
Y ,

badK,K : for distinct some (KY ,K
?
Y ), (KY ′ ,K

?
Y ′) ∈ νK :

K?
Y = K?

Y ′ .

We write bad = bad1,1∨bad1,2∨bad1,K ∨bad2,K ∨badK,K . Above bad events are structured as follows: bad1,1
covers both possible collisions (input- and output-) of tuples within ν1; bad1,2 and bad1,K cover collisions
between ν1 on the one hand and ν2 resp. νK on the other hand. Similarly for bad2,K and badK,K . Note that,
by attainability of views, there are no collisions within ν2, hence there is no such bad event as bad2,2. Also,
note that for badK,K the input values in badK,K never collide, as they are of the form Y ‖ K and Y ′ ‖ K for
Y 6= Y ′.

In the remainder of the proof, we will derive an upper bound on the probability that a bad view appears
in the ideal world, Pr (XP ∈ Vbad), and we will show that for any good transcript we have Pr (XO = ν) ≥
Pr (XP = ν). This will immediately complete the proof via Lemma 9.
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Probability of Bad View in Ideal World. Our goal is to bound Pr (XP ∈ Vbad). Let ν be any view in
the ideal world P = (π̃±, P±), and denote by Pr (bad) the probability that this view satisfies bad. By basic
probability theory,

Pr (bad) = Pr (bad1,1 ∨ bad1,2 ∨ bad1,K ∨ bad2,K ∨ badK,K)
≤ Pr (bad1,1) + Pr (bad1,2) + Pr (bad1,K) + Pr (bad2,K) + Pr (badK,K) .

(8)

Recall that by definition of the ideal world, we have K $←− {0, 1}k, KYj = Yj ‖ K, and K?
Yj

$←− {0, 1}b for
j = 1, . . . , s. For queries with īj = (0, . . . , 0), we will additionally use that this query is necessarily made in
forward direction, which implies that the value Cj is randomly drawn from a set of size at least 2b − q.

Regarding bad1,1, let (X, ī,M,C), (X ′, ī′,M ′, C ′) ∈ ν1 be any two distinct queries. We make a distinction
depending on the values (X, ī) and (X ′, ī′):

– If (X, ī) = (X ′, ī′), we necessarily have M 6= M ′ and C 6= C ′ by attainability of transcripts and bad1,1 is
set by these two queries with probability 0;

– If X 6= X ′, then K?
X and K?

X′ are two independently generated random values and we argue based on
the former. The condition of bad1,1 reads:

ϕ
iu−1
u−1 ◦ · · · ◦ ϕi00 (K?

X) ∈ {M ⊕M ′ ⊕ ϕi
′
u−1
u−1 ◦ · · · ◦ ϕ

i′0
0 (K?

X′),

C ⊕ C ′ ⊕ ϕi
′
u−1
u−1 ◦ · · · ◦ ϕ

i′0
0 (K?

X′)} .

As K?
X

$←− {0, 1}b, by Definition 1 part 1 this happens with probability at most 2/2ε;
– If X = X ′ but ī 6= ī′, then K?

X = K?
X′

$←− {0, 1}b and Definition 1 part 2 directly shows that the condition
is satisfied with probability at most 2/2ε.

Summing over all possible queries, we obtain Pr (bad1,1) ≤ 2(q2)
2ε ≤

q2

2ε .

Regarding bad1,2, let (X, ī,M,C) ∈ ν1 and (x, y) ∈ ν2 by any two queries. Let (KX ,K
?
X) ∈ νK be the unique

tuple in νK corresponding to the tweak X in the tuple from ν1. As K?
X

$←− {0, 1}b, by Definition 1 part 1 the
two queries satisfy the condition of bad1,2 with probability at most 2/2ε. Summing over all possible queries,
we obtain Pr (bad1,2) ≤ 2qp

2ε .

Regarding bad1,K , we divide it into two subcases:

bad1,K : for some (X, ī,M,C) ∈ ν1 and (KY ,K
?
Y ) ∈ νK :

(a) ϕ
iu−1
u−1 ◦ · · · ◦ ϕi00 (K?

X) = M ⊕KY , or
(b) ϕ

iu−1
u−1 ◦ · · · ◦ ϕi00 (K?

X) = C ⊕K?
Y .

Let (X, ī,M,C) ∈ ν1 and (KY ,K
?
Y ) ∈ νK be any two queries. Let (KX ,K

?
X) ∈ νK be the unique tuple in νK

corresponding to the tweak X in the tuple from ν1.
For bad1,K(a), because K?

X
$←− {0, 1}b is generated independently from KY = Y ‖ K, by Definition 1 part 1

the condition is satisfied with probability 1/2ε. Summing over all possible queries, we obtain Pr (bad1,K(a)) ≤
qs
2ε .

For bad1,K(b), a technicality is involved if X = Y , and above reasoning does not directly carry over.
Instead, we make a case distinction:

– If X 6= Y , then K?
X and K?

Y are two independently generated random values and we argue based on the
former. As K?

X
$←− {0, 1}b, by Definition 1 part 1 the event happens with probability 1/2ε;
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– If X = Y but ī 6= (0, . . . , 0), then K?
X = K?

Y
$←− {0, 1}b and by Definition 1 part 2 the event happens with

probability 1/2ε;
– If X = Y and ī = (0, . . . , 0), then the condition reads C = 0. Because masking ī = (0, . . . , 0) can only

appear in forward queries, the C-values is uniformly randomly drawn from a set of size at least 2b − q.
The condition is satisfied with probability at most 1/(2b − q).

Summing over all possible queries, we obtain Pr (bad1,K(b)) ≤ qs
min{2ε,2b−q} . Concluding the case of bad1,K ,

we obtain Pr (bad1,K) ≤ qs
2ε + qs

min{2ε,2b−q} .

Regarding bad2,K , we divide it into two subcases:

bad2,K : for some (x, y) ∈ ν2 and (KY ,K
?
Y ) ∈ νK :

(a) x = KY , or
(b) y = K?

Y .

For bad2,K(a), recall that the input values in νK are of the form KY = Y ‖ K. Therefore, the condition is
satisfied only if there is a tuple (x, y) ∈ ν2 such that rightk(x) = K. Because K $←− {0, 1}k this happens with
probability at most Pr (bad2,K(a)) ≤ p

2k .
For bad2,K(b), let (x, y) ∈ ν2 and (KY ,K

?
Y ) ∈ νK be any two queries. Because K?

Y
$←− {0, 1}b, the two

queries satisfy bad2,K(b) with probability 1/2b. Summing over all possible queries, we obtain Pr (bad2,K(b)) ≤
ps
2b .

Concluding the case of bad2,K , we obtain Pr (bad2,K) ≤ p
2k + ps

2b .

Regarding badK,K , let (KY ,K
?
Y ), (KY ′ ,K

?
Y ′) ∈ νK by any two distinct queries. K?

Y and K?
Y ′ are two

independently generated random values and the condition is satisfied with probability 1/2b. Summing over
all possible queries, we obtain Pr (badK,K) ≤ (s2)

2b .

To conclude, from (8) we obtain

Pr (XP ∈ Vbad) ≤ q2

2ε + 2qp
2ε + qs

2ε + qs

min{2ε, 2b − q} + p

2k + ps

2b +
(
s
2
)

2b ,

≤ 4.5q2

2ε + 3qp
2ε + p

2k ,

where the simplification is done using s ≤ q and 2b − q ≥ 2b−1 ≥ 2ε−1.

Probability Ratio for Good Views. We will prove that for any good view ν, we have Pr (XO = ν) ≥
Pr (XP = ν). It suffices to compute the fraction of oracles that could result in view ν for both worlds O
and P. Recall that D never makes redundant queries, and that the views are assumed to be attainable and
good. The proof follows [65] almost verbatim, but a few technicalities occur and we include the proof for
completeness.

Regarding the real world, goodness of the view guarantees that (a) every tuple in ν1 defines exactly one
input/output-tuple of P , (b) every tuple in ν2 and νK corresponds to exactly one input/output-tuple of P ,
and (c) that none of these tuples collide in the input or the output. Recall that the input values in νK are of
the form Y ‖ K. Therefore we derive:

Pr (XO = ν) = Pr
(
K ′

$←− {0, 1}k : K ′ = K
)
·

Pr
(
P

$←− Perm(b) : Ẽ ` ν1 ∧ P ` ν2 ∧ P ` νK
)

= 1
2k ·

(2b − (q + p+ s))!
2b! .
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Regarding the ideal world, we group the elements of ν1 according to the tweak values. For T ∈ T , define

qT = |{(T,M,C) ∈ ν1 |M,C ∈ {0, 1}b}| ,

where
∑
T qT = q. Now,

Pr (XP = ν) = Pr
(
K ′

$←− {0, 1}k : K ′ = K
)
·

s∏

j=1
Pr
(
K?
Yj
′ $←− {0, 1}b : K?

Yj
′ = K?

Yj

)
·

Pr
(
π̃

$←− P̃erm(T , b) : π̃ ` ν1

)
·

Pr
(
P

$←− Perm(b) : P ` ν2

)

= 1
2k ·

1
(2b)s ·

∏

T

(2b − qT )!
2b! · (2b − p)!

2b! .

Note that 1
(2b)s ≤

(2b−s)!
2b! . Note furthermore that for any α, β ≤ 2b we have (2b−α)!

2b! · (2b−β)!
2b! ≤ (2b−(α+β))!

2b! . We
thus get

Pr (XP = ν) ≤ 1
2k ·

(2b − (q + p+ s))!
2b! = Pr (XO = ν) .

This completes the proof.

B Proof of Theorem 5 (Security of OPP)

Let K $←− {0, 1}k and P $←− Perm(b). Let D be a nonce-respecting AE distinguisher against OPP, which means
that it never makes an encryption query for a nonce that was used before. For brevity and rigority, write
EPK := OPPEK and DPK := OPPDK , including an explicit mentioning of the underlying primitive P .

As explained in Section 4, we can identify the tweakable blockcipher Ẽ of Section 3 in OPP. It is used for
tweak space T = T0 ∪ T1, where

T0 = {0, 1}b−k × {0, 1, . . . , 21020 − 1} × {0, 1, 2, 3} × {0} ,
T1 = {0, 1}b−k × {0, 1, . . . , 21020 − 1} × {0, 1, 2, 3} × {1} .

We replace Ẽ with a random secret tweakable permutation π̃ $←− P̃erm(T , b), and find by a hybrid argument:

Advae
OPP,P (D) = ∆D(EPK ,DPK , P± ; $E ,⊥, P±)

= ∆D(E Ẽ
P
K

0k ,DẼ
P
K

0k , P
± ; $E ,⊥, P±)

≤ ∆D(E π̃0k ,Dπ̃0k , P± ; $E ,⊥, P±) +∆D1((ẼPK)±, P± ; π̃±, P±)

= ∆D(E π̃0k ,Dπ̃0k , P± ; $E ,⊥, P±) + Advm̃prp
Ẽ,P

(D1) ,

where D1 is some MTPRP distinguisher making at most σ construction queries and at most p queries to P±
(in the qE + qD evaluations of E and D, the underlying Ẽ is evaluated at most σ times). By Lemma 4, the
masking space T is b-proper, and by Theorem 2 we obtain

Advm̃prp
Ẽ,P

(D1) ≤ Advm̃prp
Ẽ,P

(σ, p) ≤ 4.5σ2

2b + 3σp
2b + p

2k .
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We proceed with the remaining ∆-distance. First note that all construction oracles are independent of P±
and hence we can drop it without loss of generality. Now, this ∆-distance is in fact the AE security of ΘCB3
of Krovetz and Rogaway [58]. Even though they analyze the privacy and authenticity of ΘCB3 separately,
their bounds directly apply and we obtain

∆D(E π̃0k ,Dπ̃0k , P± ; $E ,⊥, P±) = ∆D(E π̃,Dπ̃ ; $E ,⊥) ≤ 2n−τ
2n−1 .

Concluding, we find that

Advae
OPP,P (D) ≤ 4.5σ2

2b + 3σp
2b + p

2k + 2n−τ
2n − 1 .

C Proof of Theorem 6 (Security of MRO)

The section is divided as follows. In Appendix C.1, we consider pseudorandom functions based on secret
tweakable permutations, and derive a bound on the security of MROAbs. Similarly, we consider the IV-CPA
security of MROEnc in Appendix C.2. The proof of Theorem 6 is then given in Appendix C.3.

C.1 Secret-Primitive Pseudorandom Functions

Let π̃ $←− P̃erm(T , b) be a tweakable permutation with T of Section 5. Let F π̃ : {0, 1}∗ → {0, 1}τ be a keyless
MAC function based on π̃ that processes a message M of arbitrary length to derive a tag T ∈ {0, 1}τ .
(Theoretically, π̃ functions as the key to F , but for the sake of presentation it is better to view F as a keyless
function.) Define by $F an idealized version of F , which returns T $←− {0, 1}τ for every input. We define the
pseudorandom function (PRF) security of F based on secret π̃ as

Advprf
F (D) = ∆D(F π̃ ; $F ) , (9)

where the probabilities are taken over the random choices of π̃ and $F . By Advprf
F (q, σ) we denote the

maximum advantage over all distinguishers that make at most q queries to the construction encryption oracle,
of total length at most σ padded blocks.

Secret-Primitive MROAbs. We will analyze the PRF security of a keyless variant MROAbs : {0, 1}n ×
{0, 1}∗ × {0, 1}∗ → {0, 1}τ based on ideal tweakable permutation π̃ $←− P̃erm(T , b), cf. Fig. 8.

π̃0,0,0
N0∗

H0

π̃h−1,0,0
N0∗

Hh−1

π̃0,1,0
N0∗

M0

π̃m−1,1,0
N0∗

Mm−1. . . . . .

0b

π̃
0,

2,
0

N
0∗

|H| ‖ |M |

T
τ
\

Fig. 8: Keyless MROAbsπ̃ based on secret tweakable permutation π̃
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Lemma 10. Let π̃ $←− P̃erm(T , b) and consider MROAbsπ̃ of Fig. 8. Then, Advprf
MROAbs(q, σ) ≤ σ2

2b .

Proof. Note that every different nonce sets an independent instance of MROAbsπ̃, as π̃ is a random tweakable
permutation. For N ∈ {0, 1}n, denote by σN the total complexity made for nonce N .

Consider MROAbsπ̃(N, ·, ·) for any fixed nonce N . Theorem 15 of the full version of [74] shows that it is
indistinguishable from $F (N, ·, ·) up to σ2

N

2b . Summation over all nonces gives
∑
N∈{0,1}n

σ2
N

2b ≤ σ2

2b . ut

C.2 Secret-Primitive Encryption Schemes

Let π̃ $←− P̃erm(T , b) be a tweakable permutation with T of Section 5. Let E π̃ : {0, 1}n × {0, 1}∗ → {0, 1}τ ×
{0, 1}∗ be a keyless initial value based encryption scheme based on π̃ that processes a message M of arbitrary
length as follows: it selects a random initial value IV $←− {0, 1}τ and uses it to derive a ciphertext C ∈ {0, 1}|M |.
It is required to be invertible for fixed IV and nonce N , and its inverse is denoted by (E π̃)−1(IV , N, ·). Define
by $E an idealized version of E , which returns IV ‖ C $←− {0, 1}τ+|M | for every input. Following, Namprempre
et al. [68], we define the IV-based chosen plaintext attack (IV-CPA) security of E based on P as

Adviv-cpa
E (D) = ∆D(E π̃ ; $E) , (10)

where the probabilities are taken over the random choices of E , π̃ and $E . By Adviv-cpa
E (q, σ) we denote the

maximum advantage over all distinguishers that make at most q queries to the construction encryption oracle,
of total length at most σ padded blocks.

Secret-Primitive MROEnc. We will analyze the IV-CPA security of a keyless variant MROEnc : {0, 1}n ×
{0, 1}∗ × {0, 1}τ → {0, 1}∗ based on ideal tweakable permutation π̃ $←− P̃erm(T , b), cf. Fig. 9. It is required to
be given a random T

$←− {0, 1}τ (included as explicit parameter to MROEnc for simplicity), which operates as
the IV , and produces a ciphertext on input of a nonce and a message. Note that MROEnc only uses π̃ for
tweaks of the form (N, 0, 0, 1), but generality is maintained to suit the analysis.

π̃0,0,1
N0∗

T ‖ 0

C0

M0

π̃0,0,1
N0∗

T ‖ m− 1

Cm−1

Mm−1

. . .

Fig. 9: Keyless MROEncπ̃ based on secret tweakable permutation π̃

Lemma 11. Let π̃ $←− P̃erm(T , b) and consider MROEncπ̃ of Fig. 9. Then, Adviv-cpa
MROEnc(q, σ) ≤ σ2

2b + q2

2τ+1 .

Proof. Note that every different nonce sets an independent instance of MROEncπ̃, as π̃ is a random tweakable
permutation. For N ∈ {0, 1}n, denote by qN the total number of queries and by σN the total complexity
made for nonce N .
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Consider MROEncπ̃(N, ·, ·) for any fixed nonce N . It reminds of XOR$ from Bellare et al. [8] with two
differences: (i) XOR$ uses a random function while MROEnc uses a permutation π̃0,0,1

N0∗ , and (ii) XOR$ inputs
T + ctr to the primitive while MROEnc inputs T ‖ ctr. The proof nevertheless mostly carries over. As a first
step, we replace π̃0,0,1

N0∗ by a random function $F : {0, 1}b → {0, 1}b. This step costs us at most σ2
N

2b by the
RP/RF-switch. Note that every new initial value sets an independent instance of MROEnc$F , as $F is a
random function. Denote the q initial values by T1, . . . , Tq. Clearly, MROEnc$F behaves like a random $E as
long as Ti 6= Tj . A collision in the T ’s happens with probability at most q2

2τ+1 , due to our condition that the
T ’s are uniformly randomly generated from {0, 1}τ . Concluding, MROEncπ̃(N, ·, ·) is indistinguishable from
$E(N, ·, ·) up to σ2

N

2b + q2
N

2τ+1 . Summation over all nonces gives
∑
N∈{0,1}n

σ2
N

2b + q2
N

2τ+1 ≤ σ2

2b + q2

2τ+1 . ut

C.3 Proof of Theorem 6

Let K $←− {0, 1}k and P $←− Perm(b). Let D be a nonce-misusing AE distinguisher against MRO. For rigority,
write E [AbsPK ,EncPK ] := MROEK and D[AbsPK ,DecPK ] := MRODK , including an explicit mentioning of the
underlying primitive P .

As explained in Section 5, we can identify the tweakable blockcipher Ẽ of Section 3 in MRO. It is used for
tweak space

T = T0 = {0, 1}b−k × {0, 1, . . . , 21020 − 1} × {0, 1, 2} × {0, 1} .

We replace Ẽ with a random secret tweakable permutation π̃ $←− P̃erm(T , b), and find by a hybrid argument:

Advae
MRO,P (D) = ∆D(E [AbsPK ,EncPK ],D[AbsPK ,DecPK ], P± ; $E ,⊥, P±)

≤ ∆D(E [Absπ̃,Encπ̃],D[Absπ̃,Decπ̃], P± ; $E ,⊥, P±) +
∆D1(ẼPK , P± ; π̃, P±)

= ∆D(E [Absπ̃,Encπ̃],D[Absπ̃,Decπ̃], P± ; $E ,⊥, P±) +

Advm̃prp
Ẽ,P

(D1) ,

where Absπ̃ is the keyless PRF of Fig. 8 and Encπ̃ the encryption scheme of Fig. 9 (with Decπ̃ its corresponding
decryption function), and where D1 is some MTPRP distinguisher making at most σ construction queries
and at most p queries to P± (in the qE + qD evaluations of E and D, the underlying Ẽ is evaluated at most σ
times). By Lemma 4, the masking space T is b-proper, and Theorem 2 applies.

We proceed with the remaining ∆-distance. As before, the construction oracles are independent of P±
and we can drop it without loss of generality. Let π̃′ $←− P̃erm(T , b). Then,

∆D(E [Absπ̃,Encπ̃],D[Absπ̃,Decπ̃], P± ; $E ,⊥, P±)

= ∆D(E [Absπ̃,Encπ̃],D[Absπ̃,Decπ̃] ; $E ,⊥)

= ∆D(E [Absπ̃,Encπ̃
′
],D[Absπ̃,Decπ̃

′
] ; $E ,⊥) ,

as Abs and Enc/Dec evaluate π̃ on different tweaks.
Above reduction allows to view the absorption and encryption to be independently keyed (via π̃ and π̃′).

This paves the path for the use of a separation of AE security into PRF security of Abs and IV-CPA security
of Enc, as inspired by the MAC-then-Encrypt approach of Namprempre et al. [68] and its adaption to misuse
resistance as presented by Gueron and Lindell [39]. For completeness, we re-derive it for our current setting.
We have

∆D(E [Absπ̃,Encπ̃
′
],D[Absπ̃,Decπ̃

′
] ; $E ,⊥)
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≤ ∆D(E [Absπ̃,Encπ̃
′
],D[Absπ̃,Decπ̃

′
] ; E [$F ,Encπ̃

′
],D[$F ,Decπ̃

′
]) +

∆D(E [$F ,Encπ̃
′
],D[$F ,Decπ̃

′
] ; $E ,⊥)

≤ Advprf
Abs(D2) +∆D(E [$F ,Encπ̃

′
],D[$F ,Decπ̃

′
] ; $E ,⊥) ,

where D2 is some PRF distinguisher making at most qE + qD queries to the construction encryption oracle,
of total length at most σ blocks. Regarding the remaining distance:

∆D(E [$F ,Encπ̃
′
],D[$F ,Decπ̃

′
] ; $E ,⊥)

≤ ∆D(E [$F ,Encπ̃
′
],D[$F ,Decπ̃

′
] ; E [$F ,Encπ̃

′
],⊥) +∆D(E [$F ,Encπ̃

′
],⊥ ; $E ,⊥)

≤ ∆D(E [$F ,Encπ̃
′
],D[$F ,Decπ̃

′
] ; E [$F ,Encπ̃

′
],⊥) + Adviv-cpa

Enc (D3) ,

where D3 is some IV-CPA distinguisher making at most qE queries to the construction encryption oracle, of
total length at most σ blocks. The remaining distance boils down to forging a tag for a random $F , in which
D succeeds with probability at most qD

2τ . Concluding, we find that

Advae
MRO,P (D) ≤ Advm̃prp

Ẽ,P
(D1) + Advprf

Abs(D2) + Adviv-cpa
Enc (D3) + qD

2τ ,

≤ Advm̃prp
Ẽ,P

(σ, p) + Advprf
Abs(qE + qD, σ) + Adviv-cpa

Enc (qE , σ) + qD
2τ .

A bound on the first term follows from Theorem 2 and the b-properness of the masking. The second two
advantages are bounded using Lemmas 10 and 11.

D Proof of Theorem 7 (Security of MRS)

The proof is structurally different from the one of OPP and MRO, and particular does not rely on MEM. The
remainder of this section is as follows. In Appendix D.1, we present a (normal) blockcipher underlying MRS.
Then, in Appendix D.2 we discuss the Duplex construction. The proof is given in Appendix D.3.

D.1 Blockcipher Construction

Let P $←− Perm(b) and write b = c+ r. Define the following blockcipher ẼMRS : {0, 1}k × {0, 1}b → {0, 1}b:

ẼMRS(K,M) = P ((0b−k ‖ K)⊕M)⊕ (0b−k ‖ K) .

Note that this is a tweakable blockcipher with empty tweak space, T = ∅, and the model of Section 2 carries
over. We will explain how this blockcipher appears in MRS. Note that in MRSAbs, the state is initialized with
0b−k ‖ K. The trick will be to XOR this value everywhere in-between two consecutive evaluations of P , in a
similar fashion as done in [21,3,66]. As k ≤ c, this adjustment is artificial and it does not change the scheme.
In this case, MRSAbs is effectively just compressing its blocks one by one, interleaved with an evaluation of
ẼMRS(K, ·). The situation for MRSEnc is identical.

Lemma 12. Let P $←− Perm(b). Then, Advp̃rp
ẼMRS,P

(q, p) ≤ 2qp
2k .

Proof. The proof is a straightforward adaption of Theorem 2 of [3] to k-bit keys. See also [66]. ut

34



D.2 Secret-Primitive Full-State Duplex

Bertoni et al. [10] introduced the Duplex construction, and Mennink et al. [66] generalized it to the full-state
Duplex. At a high level, the full-state Duplex consists of two interfaces. Duplex.init gets as input a key
K ∈ {0, 1}k, initializes the state as 0b−k ‖ K, and outputs nothing. Duplex.dup gets as input a message block
M ∈ {0, 1}b and a natural number z ≤ r, transforms the state using M , and outputs a string Z ∈ {0, 1}z.10
We will consider a keyless variant of Duplex based on secret permutation π $←− {0, 1}b of Fig. 10. Theoretically,
π functions as the key to Duplex.

0 π π π

initialise duplexing duplexing duplexing

. . .

z
0\ z
1\

z
m

−
1

\

M0 M1 Mm−1Z0 Z1 Zm−1∀i : zi ≤ r

Fig. 10: Keyless Duplexπ based on secret permutation π

Mennink et al. proved that this secret-primitive Duplex behaves like a random functionality up to common
prefix. Define by $∞ : {0, 1}∗ → {0, 1}∞ a random function that takes inputs of arbitrary length and returns
random infinite strings, where each bit is randomly drawn. Define by $dup a stateful random function with
two interfaces: $dup.init gets no input and initializes its state St to the empty string; $dup.dup gets as input
a message M ∈ {0, 1}b and a natural number z ≤ r, updates the state as S‖M , and outputs leftz($∞(S)).
Note that if $dup is never queried in such a way that it calls $∞ twice on the same S, it always responds with
random strings. For brevity and applicability later on, define the Duplex (DUP) security of Duplex based on
secret π as

Advdup
Duplex(D) = ∆D(Duplexπ ; $dup) , (11)

where the probabilities are taken over the random choices of π and $dup. By Advdup
Duplex(q, σ) we denote the

maximum advantage over all distinguishers that make at most q queries to the construction encryption oracle,
of total length at most σ padded blocks. Translated to counting over total complexity σ (instead of over λ
blocks per query), Mennink et al. [66] proved that Duplex behaves like $dup.

Lemma 13 (Mennink et al. [66]). Let π $←− Perm(b) and consider Duplexπ of Fig. 10. Then, Advdup
Duplex(q, σ) ≤

σ2

2b + σ2

2c .

We remark that the main result of [66] is the security of Duplex in the public permutation setting, which
effectively combines Lemmas 12 and 13. We have separated the results to suit later analysis.

10 In fact, the classical Duplex is slightly different as it takes message blocks M ∈ {0, 1}<b and performs 10∗-padding
on these blocks. We will use the Duplex as primitive in another mode, and the padding requirements are handled by
the mode that is placed on top of Duplex. The results of [66] carry over.
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D.3 Proof of Theorem 7
Let K $←− {0, 1}k and P $←− Perm(b). Let D be an AE distinguisher against MRS. For brevity and rigority,
write EPK := MRSEK and DPK := MRSDK , including an explicit mentioning of the underlying primitive P .
By a hybrid argument, we can identify the blockcipher ẼMRS in MRS and replace it with a random secret
permutation π $←− Perm(b):

Advae
MRS,P (D) = ∆D(EPK ,DPK , P± ; $E ,⊥, P±)

= ∆D(E Ẽ
P
MRS,K

0k ,DẼ
P
MRS,K

0k , P± ; $E ,⊥, P±)
≤ ∆D(Eπ0k ,Dπ0k , P± ; $E ,⊥, P±) +∆D1(ẼPMRS,K , P

± ; π, P±)

= ∆D(Eπ0k ,Dπ0k , P± ; $E ,⊥, P±) + Advp̃rp
ẼMRS,P

(D1) ,

where D1 is some TPRP distinguisher making at most σ construction queries and at most p queries to P±
(in the qE + qD evaluations of E and D, the underlying Ẽ is evaluated at most σ times).

We proceed with the remaining ∆-distance. First, for simplicity, we drop the explicit keying of 0k for
convenience. Second, note that all construction oracles are independent of P± and hence we can drop it
without loss of generality. Third, note that Eπ and Dπ are in fact equivalent to E ′[Duplexπ] and D′[Duplexπ]
defined as follows:

Algorithm: Absorb(A)
1. if |A| > 0 then
2. A0 ‖ · · · ‖ Aa−1 ← pad0

b(A)
3. for i ∈ {0, . . . , a− 1} do
4. Duplexπ.dup(Ai, 0)
5. end
6. end
7. return S

Algorithm: Enc[Duplexπ](T,M)
1. C ← ε
2. if |M | > 0 then
3. Duplexπ.init()
4. M−1 ← T ‖ 0∗ ‖ 1 ‖ 0k
5. M0 ‖ · · · ‖Mm−1 ← pad0

r(M)
6. for i ∈ {0, . . . ,m− 1} do
7. S ← Duplexπ.dup(Mi−1, r)
8. Ci ← S ⊕Mi

9. C ← C ‖ Ci
10. end
11. end
12. return left|M |(C)

Algorithm: E ′[Duplexπ](N,H,M)
1. T ← Abs[Duplexπ](N,H,M)
2. C ← Enc[Duplexπ](T,M)
3. return C, T

Algorithm: Abs[Duplexπ](N,H,M)
1. Duplexπ.init()
2. Duplexπ.dup(N ‖ 0∗ ‖ 0 ‖ 0k, 0)
3. Absorb(H)
4. Absorb(M)
5. S ← Duplexπ.dup(|H| ‖ |M |, τ)
6. return S

Algorithm: Dec[Duplexπ](T,C)
1. M ← ε
2. if |C| > 0 then
3. Duplexπ.init()
4. M−1 ← T ‖ 0∗ ‖ 1 ‖ 0k
5. C0 ‖ · · · ‖ Cm−1 ← pad0

r(C)
6. for i ∈ {0, . . . ,m− 1} do
7. S ← Duplexπ.dup(Mi−1, r)
8. Mi ← S ⊕ Ci
9. M ←M ‖Mi

10. end
11. end
12. return left|C|(M)

Algorithm: D′[Duplexπ](N,H,C, T )
1. M ← Dec[Duplexπ](T,C)
2. T ′ ← Abs[Duplexπ](N,H,M)
3. if T = T ′ then return M else return ⊥ end

We find,
∆D(Eπ0k ,Dπ0k , P± ; $E ,⊥, P±)
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= ∆D(Eπ,Dπ ; $E ,⊥)
= ∆D(E ′[Duplexπ],D′[Duplexπ] ; $E ,⊥)
≤ ∆D(E ′[$dup],D′[$dup] ; $E ,⊥) +∆D2(Duplexπ ; $dup)
= ∆D(E ′[$dup],D′[$dup] ; $E ,⊥) + Advdup

Duplex(D2) ,

where D2 is some DUP distinguisher making at most 2(qE + qD) queries of total length at most 2σ blocks.
The remaining ∆-distance is bounded by looking at the calls to E ′[$dup] and D′[$dup] separately, and relies

on the fact that $dup never calls $∞ on the same state (cf. Appendix D.2). An important observation here is
that all calls to $∞ via Abs[$dup] start with first block N ‖ 0∗ ‖ 0 ‖ 0k while all calls to $∞ via Enc[$dup] and
Dec[$dup] start with first block T ‖ 0∗ ‖ 1 ‖ 0k. Hence, the absorption and encryption/decryption can be seen
independently.

– Consider an encryption query E ′[$dup](N,H,M). The call Abs[$dup] triggers a call to the underlying $∞
on input

(
N ‖ 0∗ ‖ 0 ‖ 0k

)
‖ padb(H) ‖ padb(M) ‖

(
|H| ‖ |M |

)
.

As D never repeats queries, this means that $∞ has never been queried on this input and the response is
T

$←− {0, 1}τ . The call Enc[$dup] triggers calls to the underlying $∞ on inputs
(
T ‖ 0∗ ‖ 1 ‖ 0k

)
,

(
T ‖ 0∗ ‖ 1 ‖ 0k

)
‖M0 ,

...
(
T ‖ 0∗ ‖ 1 ‖ 0k

)
‖M0 ‖ · · · ‖Mm−1 ,

where M0 ‖ · · · ‖Mm−1 ← padr(M). Unless if T is an old tag, these calls to $∞ are new and responded
randomly, and we have C $←− {0, 1}|M |. If T is an old tag (either from an old encryption or an old
decryption query), we cannot guarantee randomness of C, and this will be viewed as a bad event;

– Consider a decryption query D′[$dup](N,H,C, T ). Denote M = Dec[$dup](T,C). If there is an older query
of the form (N,H,M, T ∗), then necessarily T 6= T ∗ (because D never repeats queries) and the forgery
cannot be successful. On the other hand, if there is no older query of the form (N,H,M, T ∗) for any T ∗,
this means that the call to $∞ made via Abs[$dup] is new (the argument is as for the case of E ′[$dup]) and
responded with a random tag T ∗. It equals T with probability 1/2τ .

If we sum over all queries, we obtain that (E ′[$dup],D′[$dup]) is perfectly indistinguishable from ($E ,⊥),
except with probability q2

E/2+qDqE
2τ + qD

2τ . Concluding, we find that

Advae
MRS,P (D) ≤ Advp̃rp

ẼMRS,P
(D1) + Advdup

Duplex(D2) + q2
E/2 + qDqE + qD

2τ ,

≤ Advp̃rp
ẼMRS,P

(σ, p) + Advdup
Duplex(2(qE + qD), 2σ) + q2

E/2 + qDqE + qD
2τ .

The proof is completed using Lemmas 12 and 13.

E Proof of Theorem 8 (Security of MRSO)

The proof is fairly similar to the one of MRO (Appendix C), the only major difference is in the use of a
different tweakable blockcipher. In Appendix E.1 we identify the tweakable blockcipher used in MRSO. Then,
in Section we consider the PRF security of MRSAbs. The proof of Theorem 8 is then given in Appendix E.3
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E.1 Tweakable Blockcipher Constructions

It is already mentioned in Section 7 that a slightly different masking is employed. More detailed, the tweak
space is

T = T0 = {0, 1}b−k × {0, 1} ,

and the masking is

δ : (K,X, i) 7→ 0τ ‖ rightb−τ
(
ϕi(P (X ‖ K))

)
.

We briefly elaborate on the appearance of ẼMRSO in MRSO. At a high level, the trick for MRSAbs is to start
considering appearances of ẼMRSO from the second permutation (unlike the first as done in Appendix D).
This would work well if the value P (N ‖ 0∗ ‖ 0 ‖ K) is XORed twice everywhere in-between two permutation
calls, but because at the end of MRSAbs the leftmost τ bits of the state are extracted, this is impossible.
However, it is clear that by XORing only the rightmost b− τ bits into the state everywhere, this will only
decrease the security of MRSAbs, and the artificial XORings do not alter the scheme. For MROEnc on the
other hand, the change to only XORing the rightmost b− τ bits is for simplicity of analysis.

It is trivial to see that the masking is (b − τ)-proper in accordance with Definition 1, and Theorem 2
applies.

E.2 Secret-Primitive Pseudorandom Functions MRSAbs

We will analyze the PRF security (cf. Appendix C.1) of a keyless variant MRSAbs : {0, 1}n×{0, 1}∗×{0, 1}∗ →
{0, 1}τ based on ideal tweakable permutation π̃

$←− P̃erm(T , b). In more detail, we consider MRSAbsπ̃ of
Fig. 11. Note that MRSAbs in MRSO only uses π̃ for tweaks of the form (N0∗, 0), but we maintain generality
to suit the remainder of the proof.

0 \
b

π̃
0 N

0∗

π̃
0 N

0∗

π̃
0 N

0∗

π̃
0 N

0∗

π̃
0 N

0∗

H0 Hh−1 M0 Mm−1 |H| ‖ |M |

T\
τ

Fig. 11: Keyless MRSAbsπ̃ based on secret tweakable permutation π̃

Lemma 14. Let π̃ $←− P̃erm(T , b) and consider MRSAbsπ̃ of Fig. 11. Then, Advprf
MRSAbs(q, σ) ≤ σ2

2b + σ2

2b−τ .

Proof. Note that every different nonce sets an independent instance of MRSAbsπ̃, as π̃ is a random tweakable
permutation. For N ∈ {0, 1}n, denote by σN the total complexity made for nonce N .

Consider MRSAbsπ̃(N, ·, ·) for any fixed nonce N . This function is in fact equivalent to Duplexπ of Fig. 10
in the way as discussed in Appendix D.3, with c = b− τ . As a first step, we replace Duplexπ with $dup. By
Lemma 13, this step costs at most σ2

N

2b + σ2
N

2b−τ . Because the distinguisher never makes repeat queries every
call to $∞ triggered by $dup is made with a different state S, and the output is indistinguishable from $F .
Summation over all nonces gives

∑
N∈{0,1}n

σ2
N

2b + σ2
N

2b−τ ≤ σ2

2b + σ2

2b−τ . ut
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E.3 Proof of Theorem 8

The proof is equivalent to the one of Theorem 6 of Appendix C.3, with the difference that now we use
Lemma 14 instead of Lemma 10, and we use the tweakable cipher of Appendix E.1, whose masking is only
(b− τ)-proper.

F MAGMA Verification Script for the Discrete Logarithms in F2512 and F21024

F<x> := ExtensionField<GF(2), X | X^512+X^335+X^201+X^67+1>;

log1 := 5016323028665706705636609709550289619036901979668\
8734872643788516514405882411611155920582686309266\
7238545122357792870542653280226105514939849018182\
0929802;

log2 := 7789795054597035122960933502653082209865724780784\
3812166626513019333878034142500477941950081303675\
6334011185966465812007766565485320190254829936577\
3789462;

x^log1 eq (x + 1);

x^log2 eq (x^2 + x + 1);

F<x> := ExtensionField<GF(2), X |
X^1024+X^901+X^695+X^572+X^409+X^366+X^203+X^163+1>;

log1 := 3560313810702380168941895068061768846768652879916\
5242796753456565509842707655755413753100620979021\
8857201966785351480307697311709456831372018598499\
1744411961470332602216161583378362583657570756631\
0249359279842498272238699528576230685242805763938\
9511554481264955124750148673871496819038764060675\
02645471152193;

log2 := 1610056439189028793452144461315558447020117376432\
6425524859486238161374654279717800300706136749607\
6306014967362673777547140089938700144112424081388\
7118712907973319251629628361398267351880948069161\
4597930522571907117948291164323355528169854354396\
4820295077819472534171313076937775797909159788879\
361876099888834;

x^log1 eq (x + 1);

x^log2 eq (x^2 + x + 1);
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