On Splitting a Point in Two with Summation Polynomials in Binary Elliptic Curves

Nicolas T. Courtois
University College London, Computer Science, Room 6.18. Gower Street, WC1E
6BT, London, UK
n.courtois@cs.ucl.ac.uk

Abstract

Recent research for efficient algorithms for solving the discrete logarithm (DL) problem on elliptic curves depends on the difficult question of the feasibility of index calculus which would consist of splitting EC points into sums of points lying in a certain subspace. A natural algebraic approach towards this goal is through solving systems of non linear multivariate equations derived from the so called summation polynomials which method have been proposed by Semaev in 2004 [11]. In this paper we consider a simple variant of this problem with splitting in two in binary curves. We propose an algorithm with running time of the order of $2^{n / 3}$ for this problem. This property clearly violates the generic group assumption for these curves.

Key Words: cryptanalysis, summation polynomials, algebraic attacks, block ciphers, Gröbner bases, DL problem, finite fields, elliptic curves, ECDSA, generic group model.

1 Motivation: Solving Semaev Systems of Equations

Efficient algorithms for solving so called Semaev equations, which can be defined informally as systems of equations built on the basis of the summation polynomials over elliptic curves $[11,12]$ is a basic tool for cryptanalysis and a high profile open problem in modern cryptanalysis. Even partial results are valuable and could be exploited inside or extended into a full attack on the DL problem on elliptic curves.

1.1 Point Splitting

Let $R=\left(R_{X}, R_{Y}\right)$ be the target point on an elliptic curve which we want to split in a form

$$
R=P_{1}+\ldots P_{i}+\ldots+P_{t}
$$

with some t points $P_{i}, i=1$..t, all lying on the same elliptic curve with (preferably) all the P_{i} lying in some well-chose subspace.

This problem has attracted considerable attention in the last $10+$ years, and researchers have tried to encode this problem as a problem of solving a certain system of equations known as summation polynomials, sometimes also called Semaev polynomials, cf. $[11,10,5,8]$.

More recently in 2015 a particular way to re-write this problem using only the simplest non-trivial summation polynomial S_{3} and with many additional variables have been proposed by Semaev in 2015, cf. [12]. We recall this particular way to encode the problem of splitting the point on elliptic curve. We call x_{i} the x coordinate of point P_{i} in $G F\left(2^{n}\right)$ and let u_{i} be $t-2$ auxiliary variables in $G F\left(2^{n}\right)$.

$$
\left\{\begin{array}{l}
S_{3}\left(u_{1}, x_{1}, x_{2}\right) \\
S_{3}\left(u_{1}, u_{2}, x_{3}\right) \\
\vdots \\
S_{3}\left(u_{i}, u_{i+1}, x_{i+2}\right) \\
\vdots \\
S_{3}\left(u_{t-3}, u_{t-2}, x_{t-1}\right) \\
S_{3}\left(u_{t-2}, x_{t}, R_{X}\right)
\end{array}\right.
$$

We have $t-1$ equations in $G F\left(2^{n}\right)$ where t is the number of points in our decomposition of R as a sum t elliptic curve points. We call it Semaev-serial system of equations as it effectively is a serial connection ${ }^{1}$ of several systems of equations of type S_{3} in a certain encoding (with a topology of straight line with connections only between consecutive components).

[^0]
1.2 Basic Point Splitting Problem

If a complex problem is efficiently solvable ${ }^{2}$, the easier one should also be solvable. The most basic problem which we would like to be able to solve using the Semaev polynomials is the problem of splitting a point in two:

$$
S_{3}\left(x_{1}, x_{2}, R_{x}\right)
$$

where P_{1}, P_{2} would lie in a well-chosen subspace and R is the target point.
In this paper we focus on binary elliptic curves. We impose no other restriction. We will also assume than n is odd which is however a conservative choice (no no-trivial sub-field) and which is also is believed to be the hard case, much more likely to be recommended in any sort of application (prime n would typically be preferred).

As in other works on this topic $[11,12]$ our preferred choice for the subspace is $G_{n}^{1 / 2}$ which we define as follows.

Definition $1\left(G_{n}^{1 / 2}\right)$.
Let G_{n} be a vector space which contains all polynomials in $G F(2)[T]$ with degree $<n$ and coefficients in $G F(2)$.
Let $G_{n}^{1 / 2}$ be a sub-space of all univariate binary polynomials with degree $<n / 2$. Furthermore, let $P(T)$ is the irreducible polynomial used to define $G F\left(2^{n}\right)$. We identify $G_{n}^{1 / 2}$ with a sub-space of $G F\left(2^{n}\right)$ and we say that we have $x \in G_{n}^{1 / 2} \subset$ $G F\left(2^{n}\right)$ if its polynomial representation modulo $P(T)$ has degree $<n / 2$

The main goal of this paper is to solve this single point splitting problem with 2 points in $G_{n}^{1 / 2}$ faster than in $2^{n / 2}$ time.

1.3 Point Multiple Basic Splitting Problem

In fact this paper we solve a very closely related variant of our problem.
Definition 2 (Generalized Point Splitting Problem). Let R be a target point on the elliptic curve. Find a [preferably quite small] integer $K \in \mathbb{Z}$ and $X, Y \in B_{n}^{1 / 2} \subset G F\left(2^{n}\right)$ such that

$$
S_{3}(X, Y, S)
$$

with S be suitable scalar multiple of the target point R with $S=R . K$.

[^1]
2 Point Splitting in Half in Binary Curves

2.1 Summation Polynomials in Characteristic 2

Following [11, 12] In the case of binary elliptic curves $E\left(G F\left(2^{n}\right)\right)$ the S_{3} equation is the following equation with 3 variables over $G F\left(2^{n}\right)$:

$$
S_{3}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}\right)^{2}+x_{1} x_{2} x_{3}+B
$$

where B is the coefficient of the elliptic curve in question in a typical notation, cf. $[7,11,12]$.

2.2 Point Multiple Splitting in Two in Binary Curves

We recall that addition and squaring commute in $G F\left(2^{n}\right)$ and that additions are modulo 2 . Therefore we have the following equation to solve with 2 variables in $G_{n}^{1 / 2} \subset G F\left(2^{n}\right)$.

$$
\left\{\begin{array}{l}
X^{2} Y^{2}+S_{X} \cdot X Y=S_{X}^{2}(X+Y)^{2}+B \\
S=K . R
\end{array}\right.
$$

2.3 Trace Function(s)

We view $G F\left(2^{n}\right)$ as a Galois extension of $G F(2)$, again let n be odd. We define, for any constant F in $G F\left(2^{n}\right)$ or any polynomial F in $G F\left(2^{n}\right)$ [some vars] the standard trace operator which we will split in two halves. Let $n=2 k+1$.

$$
\begin{cases}\operatorname{Tr}(F)=\sum_{\sigma \in G} \sigma F & G=\text { Galois group of } G F\left(2^{n}\right) \\ \operatorname{Tr}(F)=\sum_{i=0}^{n-1} F^{2^{i}} & n \text { terms } \\ \operatorname{Tr} r_{0}(F)=\sum_{i=0}^{k-1} F^{2^{2 i}}+F^{2^{2 k}} & k+1 \text { even terms } \\ \operatorname{Tr}(F)=\sum_{i=0}^{k-1} F^{2^{2 i+1}} & k \text { odd terms } \\ \operatorname{Tr}(F)=\operatorname{Tr}_{0}(F)+\operatorname{Tr}_{1}(F) & \\ \operatorname{Tr}_{1}\left(F^{2}\right)=F+\operatorname{Tr}_{0}(F) & \\ \operatorname{Tr}_{i}\left(F^{2}\right)=\left(\operatorname{Tr}_{i}(F)\right)^{2} & \text { commutes, both } i=0 \text { and } 1 \\ \operatorname{Tr}_{1}\left(F+F^{2}\right)=F+\operatorname{Tr}(F) & \end{cases}
$$

2.4 Re-writing Our S3 Problem

Our equation is:

$$
X^{2} Y^{2}+S_{X} \cdot X Y=S_{X}^{2}(X+Y)^{2}+B
$$

We assume that $S_{X} \neq 0$ which is almost always true, and we rewrite our equation to be solved:

$$
X^{2} Y^{2} / S_{X}^{2}+X Y / S_{X}=(X+Y)^{2}+B / S_{X}^{2}
$$

with 2 variables in $G_{n}^{1 / 2} \subset G F\left(2^{n}\right)$ and a modified target S_{x}. We apply $T r_{1}$ to both sides and use the fact that $\operatorname{Tr}_{1}\left(F+F^{2}\right)=F+\operatorname{Tr}(F)$ with $F=X Y / S_{X}$.

Furthermore $\operatorname{Tr}(F) \in\{0,1\}$ which part is very easy to guess for the attacker and which we denote by $[+1]$, an optional addition of 1 , to be applied [or not].

$$
X Y / S_{X}[+1]=\operatorname{Tr}_{1}\left((X+Y)^{2}+B / S_{X}^{2}\right)
$$

We multiply by S_{X} :

$$
X Y\left[+S_{X}\right]=S_{X} \cdot \operatorname{Tr}_{1}\left((X+Y)^{2}+B / S_{X}^{2}\right)
$$

Overall we want to solve:

$$
\left\{\begin{array}{l}
X Y\left[+S_{X}\right]=S_{X} \cdot \operatorname{Tr}_{1}^{2}\left(X+Y+\sqrt{B} / S_{X}\right) \\
S=K . R
\end{array}\right.
$$

with K being a certain integer and $X, Y \in G_{n}^{1 / 2} \subset G F\left(2^{n}\right)$.
It is easy to see that for any K this problem contains n bits of information about the solution and there is $n / 2+n / 2$ variables. We expect that on average it has 1 solution ${ }^{3} X, Y$.

2.5 Our Main Attack

Our attack is as follows.

1. We try many different multiples $S=K . R$ for $K=1 \ldots 2^{n / 6}$.
2. Each S has on average 1 solution X, Y for the strict point splitting problem. However we are going only to look at solutions with additional properties.
3. We represent X, Y as univariate polynomials of degree up to $n / 2$ in $G F(2)[T]$. We consider the polynomial $G C D(X, Y)$ and we are interested in the probability that polynomials X and Y in $G F(2)[T]$ have a common divisor M of degree exactly ${ }^{4} n / 6-1$ in $G F(2)[T]$.
It is easy to see that this probability is roughly ${ }^{5}$ about $2^{-n / 6}$.
4. Our goal is to solve the equation $S_{3}\left(X, Y, S_{X}\right)$ in this special case with a shared divisor, which will show to be easier than the general point splitting. We expect that on average there will be about one multiple $S=K . R$ for which this works and such M exists.
5. To summarize, the attacker tries many different $K=0 \ldots 2^{n / 6}$ and expects that $M \mid X$ and $M \mid Y$ for some K.
6. For each guess for K, we also need to guess the value of M which is also correct with probability $2^{-n / 6}$.
7. Overall both guesses are correct with probability $2^{-2 n / 6}$ and all our assumptions hold.
8. For each guess of K, M we proceed as follows.

[^2](a) We compute the polynomial M^{2} which has approximately $2 n / 6-1$ bits.
(b) If our guess is correct $M^{2} \mid X Y$. Let $X=M X^{\prime}$ and $Y=M Y^{\prime}$. Here $X^{\prime}, Y^{\prime} \in G_{n}^{2 / 6}$ and $M \in G_{n}^{1 / 6}$.
(c) We have $X Y\left[+S_{X}\right]=S_{X} \cdot \operatorname{Tr}_{1}^{2}\left(X+Y+\sqrt{B} / S_{X}\right)$ Therefore
$$
M^{2} X^{\prime} Y^{\prime}\left[+S_{X}\right]=S_{X} \cdot \operatorname{Tr}_{1}^{2}\left(M\left(X^{\prime}+Y^{\prime}\right)+\sqrt{B} / S_{X}\right)
$$
(d) Let $L \in G F\left(2^{n}\right)$ be the left hand side of the equation above. We recall that if our assumptions are correct, no modular reduction modulo $P(T)$ occurs inside the product $M^{2} X^{\prime} Y^{\prime}$. Here $X^{\prime} Y^{\prime} \in G_{n}^{4 / 6}$ and $M^{2} \in G_{n}^{2 / 6}$.
(e) Therefore, given that M^{2} is known, we can write $2 n / 6$ equations on the L_{i} variables which will be linear or affine, depending whether or not we decided to add the constants of $\left[+S_{X}\right]$. This is a choice made by the attacker which will be valid with probability $1 / 2$.
(f) Let $R \in G F\left(2^{n}\right)$ be the right hand side of the equation above. If our assumptions are correct, we have
$$
R=S_{X} \cdot \operatorname{Tr}_{1}^{2}\left(R^{\prime}+\sqrt{B} / S_{X}\right.
$$
with $R^{\prime}=M\left(X^{\prime}+Y^{\prime}\right)$. Again, no modular reduction occurs inside $R^{\prime}=$ $M\left(X^{\prime}+Y^{\prime}\right)$. Therefore given the known M value (from our assumption) we can write $n / 6$ linear equations on the R_{i}^{\prime} variables.
(g) In addition we have $n / 2-1$ linear equations on the R_{i}^{\prime} which come from the fact that the degree of $M\left(X^{\prime}+Y^{\prime}\right)$ is at most $n / 2+1$.
(h) We observe that the expression $R=S_{X} \cdot \operatorname{Tr}_{1}^{2}\left(R^{\prime}+\sqrt{B} / S_{X}\right.$ is a linear bijection for which the attacker knows all the coefficients. Therefore our $n / 2+n / 6$ linear equations on the R_{i}^{\prime} translate into $n / 2+n / 6$ linear equations on the $R_{i}=L_{i}$.
Previously we have already constructed $2 n / 6$ linear/affine equations on the L_{i}. These two sets of equations for each side are expected to be distinct and overall we obtain about $n / 2+n / 6+2 n / 6=n$ linearly independent equations on the L_{i}.
(i) With n equations and n variables, we recover L and $R=L$.
(j) Now we need to verify of the solution is consistent: We compute $U=$ L / M^{2} and we compute R^{\prime} and we put $V=R^{\prime} / M$. Now the questions is whether it is possible that $X^{\prime} Y^{\prime}=U$ and $X^{\prime}+Y^{\prime}=V$. In order to see that we solve the quadratic equation $X^{\prime}\left(V-X^{\prime}\right)=U$ in $G F\left(2^{n}\right)$.
(k) We check if degrees of X^{\prime} and $V-X^{\prime}$ are at most $2 n / 6$.
9. If the degree are within bounds, we have found a solution X, Y.
10. Otherwise we re-start and try the same steps again for another case K, M.

Overall our algorithm is expected to check $2^{2 n / 6}$ cases K, M and one such assumption is correct with probability $2^{-2 n / 6}$. One is expected to be correct on average. Each case is checked in polynomial time with very small memory.

3 Conclusion

In this paper we have introduced a new algorithm which takes as input an arbitrary point R on a binary elliptic curve and finds a relatively small multiple of this point $K \leq 2^{n / 6}$ such that

$$
\left\{\begin{array}{l}
K . R=P+Q \text { in the elliptic curve } E\left(G F\left(2^{n}\right)\right) \\
\operatorname{deg}\left(P_{X}\right)<n / 2 \\
\operatorname{deg}\left(Q_{X}\right)<n / 2 \\
P_{X} \text { and } Q_{X} \text { share a factor of degree } n / 6
\end{array}\right.
$$

This problem was motivated by a more general problem of point splitting suggested by Semaev in 2004 [11] with an idea of constructing potentially and in the best scenario ${ }^{6}$] an index calculus algorithm for elliptic curves. In this paper we only consider splitting in two and show a first non-trivial attack on this problem. Our algorithm runs in time $\mathbf{2}^{\mathcal{O}(\mathbf{n} / \mathbf{3})}$ and requires negligible memory. Until now the best known algorithm for this problem was the Pollard's Rho algorithm with running time of $2^{\mathcal{O}(n / 2)}$.

Our attack can be seen as an elliptic curve equivalent of the rational reconstruction method in modular arithmetic. A result with only 2 points may seem weak however we already obtain a violation of the ideal group model for binary curves. This implies that cryptographic protocols using binary elliptic curves with 256 bits field size can no longer be claimed to be provably secure based on the generic group model, or could only claim a security level of about 2^{85}.

Related Works: The existence of yet faster truly sub-exponential algorithms for binary curves have also been conjectured $[11,12,10,5]$ however such a result has not yet been achieved, cf. [4, $6,8,9,13]$. Recent research in this space can be summarized as follows. It seems that it is totally incorrect to believe that systems of equations such as in Section 1.1 after a Weil descent conversion to a pure $\mathrm{GF}(2)$ system of multivariate equations, would have a regularity degree which is constant and does not depend on n. However this does not exclude that such systems of equations could be solved efficiently by other methods, and moreover if the degree of regularity grows with n we could still have subexponential complexity. All this remains however speculative fiction with very few actual solid results in this direction. In this paper our ambition was more modest. Our current result remains exponential and suggests that if an index calculus algorithm for binary curves can at all be constructed following [11] it could rather have exponential complexity [but lower than with current attacks].

Future Research: It is easy to see that the algorithm we present here can be used again to re-split points obtained from splitting, and we expect that there exists interesting extensions and generalizations of our method for splitting in more than 2 points. We conjecture that there exists an algorithm for solving the full DL problem on binary elliptic curves with running time $2^{\mathcal{O}(n / 3)}$.

[^3]
References

1. Nicolas Courtois, Gregory V. Bard: Algebraic Cryptanalysis of the Data Encryption Standard, In Cryptography and Coding, 11-th IMA Conference, pp. 152-169, LNCS 4887, Springer, 2007.
2. Nicolas T. Courtois: How Fast can be Algebraic Attacks on Block Ciphers? In online proceedings of Dagstuhl Seminar 07021, Symmetric Cryptography 07-12 January 2007, E. Biham, H. Handschuh, S. Lucks, V. Rijmen (Eds.), http://drops.dagstuhl.de/portals/index.php?semnr=07021, ISSN 1862-4405, 2007. Also available from http://eprint.iacr.org/2006/168/.
3. Nicolas Courtois: Algebraic Complexity Reduction and Cryptanalysis of GOST, preprint, 2010-2014, available at http://eprint.iacr.org/2011/626.
4. Claus Diem: On the discrete logarithm problem in elliptic curves, In Compos. Math., 147(2011), pp. 75-104.
5. Jean-Charles Faugèere, Ludovic Perret, Christophe Petit, and Gwenaël Renault: Improving the complexity of index calculus algorithms in elliptic curves over binary fields, In Eurocrypt 2012, LNCS 7237, pp. 27-44, Springer 2012.
6. Steven D. Galbraith, Pierrick Gaudry: Recent progress on the elliptic curve discrete logarithm problem, preprint, 22 Oct 2015, https://eprint.iacr.org/2015/1022.pdf
7. Darrel Hankerson, Alfred Menezes, Scott Vanstone: Guide to Elliptic Curve Cryptography, book, hardcover, 331 pages, Springer 2004.
8. T. Hodges, C. Petit, and J. Schlather: First fall degree and Weil descent, In Finite Fields Appl., 30(2014), pp. 155-177.
9. Michiel Kosters, Sze Ling Yeo: Notes on summation polynomials, revised 8 Jun 2015 http://arxiv.org/abs/1503.08001
10. Christophe Petit and Jean-Jacques Quisquater: On polynomial systems arising from a Weil descent, In Asiacrypt 2012, LNCS 7658, pp. 451-466, Springer 2012.
11. Igor Semaev: Summation polynomials and the discrete logarithm problem on elliptic curves, Preprint, available at eprint.iacr.org/2004/031/.
12. Igor Semaev: New algorithm for the discrete logarithm problem on elliptic curves, Preprint, available at eprint.iacr.org/2015/310/.
13. M. Shantz and E. Teske: Solving the elliptic curve discrete logarithm problem using Semaev polynomials, Weil descent and Gröobner basis methods - an experimental study, In LNCS 8260, pp. 94-107, Springer 2013.

[^0]: ${ }^{1}$ This sort of topology for systems of equations is very common in block cipher cryptanalysis $[1-3]$ and the hardness of solving these systems can be seen as a hardness to derive ANY sort of algebraic or statistical knowledge about the middle variables not easily accessible to the attacker.

[^1]: ${ }^{2}$ A recent survey paper [6] from October 2015 says that "there is no consensus" whether this is the case.

[^2]: ${ }^{3}$ To simplify our analysis, we ignore the fact that solutions typically come in pairs as the problem is symmetric, so sometimes it has 0 solutions, sometimes 2 , and less frequently it has 1 or a different small number of solutions.
 ${ }^{4}$ We leave for future research to see that this assumption can be relaxed.
 ${ }^{5}$ In fact it is smaller by a small constant factor. In this paper we only do a simplified asymptotic complexity analysis, this point requires a more detailed analysis.

[^3]: ${ }^{6}$ This is if splitting with sufficiently small spaces can be achieved.

