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Abstract. The Coppersmith methods is a family of lattice-based techniques to find small integer
roots of polynomial equations. They have found numerous applications in cryptanalysis and, in recent
developments, we have seen applications where the number of unknowns and the number of equations
are non-constant. In these cases, the combinatorial analysis required to settle the complexity and the
success condition of the method becomes very intricate.
We provide a toolbox based on analytic combinatorics for these studies. It uses the structure of the
considered polynomials to derive their generating functions and applies complex analysis techniques to
get asymptotics. The toolbox is versatile and can be used for many different applications, including
multivariate polynomial systems with arbitrarily many unknowns (of possibly different sizes) and
simultaneous modular equations over different moduli. To demonstrate the power of this approach, we
apply it to recent cryptanalytic results on number-theoretic pseudorandom generators for which we
easily derive precise and formal analysis. We also present new theoretical applications to two problems
on RSA key generation and randomness generation used in padding functions for encryption.
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1 Introduction

Many important problems in (public-key) cryptanalysis amount to solving polynomial equations
with partial information about the solutions. In 1996, Coppersmith introduced two celebrated
lattice-based techniques [Cop97,Cop96b,Cop96a] for finding small roots of polynomial equations.
They have notably found many important applications in the cryptanalysis of the RSA cryptosystem
(see [May10] and references therein). The first technique works for a univariate modular polynomial
whereas the second one deals with a bivariate polynomial over the integers. In these methods, a
family of polynomials is first derived from the polynomial whose roots are wanted; this family
naturally gives a lattice basis and short vectors of this lattice possibly provide the wanted roots.
Since 1996 many generalizations of the methods have been proposed to deal with more variables
(e.g., [HG97,BM05,JM06]) or multiple moduli (e.g., [MR08,MR09,Rit10]).

Most of the applications of the Coppersmith methods in cryptanalysis involve a constant
number of multivariate polynomial equations in a constant number of variables. However, in recent
developments, we have seen applications of the methods where the number of unknowns is non-
constant (e.g., [HM09,MR09,BVZ12]). These applications typically involve a number-theoretic
pseudorandom number generator that works by iterating an algebraic map on a secret random
initial seed value and outputting the state value at each iteration. It has been shown that in many
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cases Coppersmith’s methods can be applied to recover some secret value. The difficulty comes from
the fact that the polynomial system to solve involves all iterates of the pseudorandom generator. It
is very tedious to analyze the attack complexity (i.e., the dimension of the lattice derived from the
polynomial system whose roots are wanted) and its success condition (i.e., the total degrees of the
polynomials and monomials families used in the lattice construction). For instance in [HM09,BVZ12],
this analysis is a bit loose; it uses a nice simplifying trick in order to analyze the condition of success
but does not permit to estimate the attack complexity. The main intent of this paper is to promote
the use of analytic combinatorics in order to perform these computations. In order to demonstrate
the power of this approach, we apply it to known cryptanalytic results [BVZ12] for which we easily
derive precise and formal analysis. We also present new theoretical applications to two problems
that were left open in [FTZ13] on RSA key generation and randomness generation used in padding
functions for encryption.

Prior Work. As illustrations of our toolbox, we apply it to the following problems from the
literature:

– Number-theoretic pseudorandom generators. A pseudorandom generator is a deterministic algo-
rithm that maps a random seed to a longer string that cannot be distinguished from uniformly
random bits by a computationally bounded algorithm. As mentioned above, a number-theoretic
pseudorandom generator iterates an algebraic map F over a residue ring ZN on a secret random
seed v0 ∈ ZN and computes the intermediate states vi+1 = F (vi) mod N for i ∈ N. It outputs
(some consecutive bits of) the state value vi at each iteration. The well-known linear congruential
generator corresponds to the case where F is an affine function. It is efficient and has good statistical
properties but Boyar [Boy89b] proved that one can recover the seed in time polynomial in the
bit-size of M and this is also the case even if one outputs only the most significant bit of each
vi (see [Ste87,JS98,Boy89a]). In [BVZ12], Bauer, Vergnaud, and Zapalowicz studied the security
of number-theoretic generators for rational map F and proposed attacks based on Coppersmith’s
techniques showing that for low degree F the generators are polynomial time predictable if suffi-
ciently many consecutive bits of the vi’s are revealed (see also [BGGS05,BGGS06]). Their lattice
constructions are intricate and the analysis of their attacks is complex.
– Key generation and Paddings from weak pseudorandom generator. The former attacks assume
that the adversary has direct access to sufficiently many consecutive bits of a certain number of
outputs. However, it may be possible that using such a generator in a cryptographic protocol does
not make the resulting protocol insecure. For instance, in [Kos02], Koshiba proved that the linear
congruential generator can be used to generate randomness in the ElGamal encryption scheme
(based on some plausible assumption). This security results holds because the adversary against
ElGamal encryption scheme does not have access to the actual outputs of the generator. A contrario,
in 1997, Bellare, Goldwasser, and Micciancio [BGM97] broke the Digital Signature Algorithm (DSA)
when the random nonces used in signature generation are computed using a linear congruential
generator. Recently, Fouque, Tibouchi, and Zapalowicz [FTZ13] analyzed the security of public-key
schemes when the secret keys are constructed by concatenating the outputs of a linear congruential
generator. They obtained a time/memory tradeoff on the search for the seed when such generators
are used to generate the prime factors of an RSA modulus (using multipoint polynomial evaluation).
They left open the problem to extend it to different scenarios, such as the generation of randomness
used in padding functions for encryption and signatures.
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Technical Tools. In Coppersmith methods, one usually considers an irreducible multivariate
polynomial f defined over Z, having a small root x modulo a known integer N and one generates
a collection of polynomials having x as a modular root (usually, multiples and powers of f are
chosen). The problem of finding x can be reformulated by constructing a matrix using the collection
of polynomials (see Section 2). The methods succeed (heuristically) if some conditions on the
matrix hold and these conditions can be checked by enumerating the polynomials involved in the
collection and the total degree of the monomials appearing in the collection. The success condition
is usually stated as a bound x < N δ where δ is an asymptotic explicit constant derived from the
combinatorial analysis. However, in order to actually reach this bound in practice, the constructed
matrix is of huge dimension and the computation which is theoretically polynomial-time becomes
in practice prohibitive1. These attacks based on this method are obviously strong evidence of a
weakness in the underlying cryptographic scheme and there exist method that makes it possible to
use matrices of reasonable dimension (e.g., by performing an exhaustive to retrieve a small part of
x and Coppersmith technique with a smaller matrix to retrieve the other (bigger) part).

The combinatorial analysis in Coppersmith methods is usually easy to perform but as mentioned
above it can be very intricate if one considers multivariate polynomial equations in a non-constant
number of variables. Analytic combinatorics is a celebrated technique — which was mostly developed
by Flajolet and Sedgewick [FS09] — of counting combinatorial objects. It uses the structure of the
objects considered to derive their generating functions and applies complex analysis techniques to
get asymptotics.

Contributions. The main contribution of the paper is to provide a toolbox based on analytic
combinatorics for the study of the complexity and the success condition of Coppersmith methods.
The toolbox is versatile and can be used for many different applications, including multivariate
polynomial systems with arbitrarily many unknowns (of possibly different sizes) and simultaneous
modular equations over different moduli.

In order to illustrate the usefulness of this toolbox, we then revisit the analysis of previous
cryptanalytic results from the literature on number-theoretic pseudorandom generators [BVZ12].
In particular, we precise the complexity analysis of the attacks described in [BVZ12] by giving
generating functions and asymptotics for the dimension of the matrix involved in the attack. We
provide a complete analysis of the success condition of the attacks described in [MR09,BVZ12]. The
technique uses simple formal manipulation on the generating functions and are readily done using
any computer algebra system. In particular, this shows that the toolbox is very generic and can be
applied in many settings (and does not require any clever tricks).

Eventually, we provide new applications of the toolbox to RSA key generation and encryption
paddings from weak pseudorandom generator. We improve Fouque et al. time/memory tradeoff
attack and we propose a (heuristic) polynomial-time factorization attack when the RSA prime
factors are constructed by concatenating the outputs of a linear congruential generator. Our attack
applies when the primes factors are concatenation of three (or more) consecutive outputs of the
generator, i.e., when the seed is at most N1/6 (for which the time/memory tradeoff attack has
the prohibitive complexity O(N1/12)). The attack is theoretical since it makes use of a matrix
of large dimension. Following their suggestion, we also apply our toolbox to the setting of the
randomness generation used in padding functions for encryption. To illustrate our technique, we
1 Following Lipton’s terminology we can often qualify as galactic the resulting polynomial-time algorithm for the
asymptotic value of δ [LR13].
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consider RSA Encryption with padding as described in pkcs#1 v1.5; it has been known to be
insecure since Bleichenbacher’s chosen ciphertext attack [Ble98] but, unfortunately, this padding
is still in used about everywhere (e.g., TLS, XML encryption standard, hardware token, . . . ). We
consider several scenario, namely linear congruential generator (LCG), truncated LCG, and LCG
used in n consecutive ciphertext. We apply our toolbox to all of them and for an RSA modulus N
with a public exponent e and a LCG with modulus M , our attacks are polynomial-time in log(N)
for the following (asymptotic) M ’s:

Key generation pkcs#1 v1.5
with LCG LCG Truncated LCG LCG & Multiple ciphertexts
M 6 N1/6 M < N1/e M < N1/e M < Nn/e

2 Coppersmith Methods

In this section, we give a short description of Coppersmith method for solving a multivariate modular
polynomial system of equations over multiple moduli. We refer the reader to [JM06,Rit10] for details
and proofs.

Problem definition. Let f1(y1, . . . , yn), . . . , fs(y1, . . . , yn) be irreducible multivariate polynomials
defined over Z, having a root (x1, . . . , xn) modulo respective known integers N1, . . . , Nn, that is
fi(x1, . . . , xn) ≡ 0 mod Ni. This root is small in the sense that each of its components is bounded
by a known value, namely |x1| < X1, . . . , |xn| < Xn. We need to bound the sizes of Xi (for
i ∈ {1, . . . , n}) allowing to recover the desired root in polynomial time.

Polynomials collection. In a first step, for each modulus Ni, one generates a collection of
polynomials {f̃i,1, . . . , f̃i,r(i)} having (x1, . . . , xn) as a root modulo Ni. Usually, multiples and powers
of the original polynomial fi are chosen, namely f̃i,j = y

ki,j,1
1 · · · yki,j,n

n f
ki,j,`

i for some integers
ki,j,1, . . . , ki,j,n, ki,j,`. By construction, such polynomials satisfy the relation f̃i,j(x1, . . . , xn) ≡ 0
mod N

ki,j,`

i , i.e., there exists an integer ci,j,k such that f̃i,j,k(x1, . . . , xn) = ci,j,kN
ki,j,`

i . If some
moduli Ni are equals, one can also consider multiples and powers of products of the corresponding
original polynomials fi.

From now, we denote for each i ∈ {1, . . . , s}, the polynomials {f̃i,1, . . . , f̃i,r(i)} constructed as
above. Considering the union of such sets if some moduli Ni are equals, we can assume without loss
of generality that the moduli Ni are pairwise distinct and even pairwise coprime. Let us denote as
P the set of all the polynomials and M the set of monomials appearing in the collection P. In the
paper, we use the following essential condition for the method to work: for each i ∈ {1, . . . , s}, the
polynomials {f̃i,1, . . . , f̃i,r(i)} are linearly independent.

Matrix construction. The problem of finding small modular roots of these polynomials can now
be reformulated in a vectorial way. Indeed, each polynomial from our chosen collection can be
expressed as a vector over Zt by extracting its coefficients and putting them into a vector with
respect to a chosen order on M . We hence construct a matrix M as follows and we define as L the
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lattice generated by its rows:

M =

f̃1,1 · · · f̃s,r(s)
↓ · · · ↓



1

?
1

X−1
1 y1

. . . ...
X−a1

1 . . . X−an
n ya1

1 . . . yan
n

0 N
k1,1,`

1
. . .

N
ks,r(s),`
s

On that figure, every row of the upper part is related to one monomial of M (we assume in
the figure that M contains 1, y1, and ya1

1 . . . yan
n among other monomials). The left-hand side

contains the bounds on these monomials (e.g., the coefficient X−1
1 X−2

2 is put in the row related
to the monomial y1y

2
2). The right-hand side is formed by all vectors coming from the union of the

collections {f̃i,1, . . . , f̃i,r(i)}.

A short vector in a sublattice. Let us now consider the row vector

r0 = (1, x1, . . . , x
a1
1 . . . xan

n ,−c1, . . . ,−cr) .

By multiplying this vector by the matrix M, one obtains:

s0 =
(

1,
(
x1
X1

)
, . . . ,

(
x1
X1

)a1

· · ·
(
xn
Xn

)an

, 0, . . . , 0
)

.

By construction, this vector which, in some sense, contains the root we are searching for, belongs
to L and its norm is very small. Thus, the recovery of a small vector in L, will likely lead to
the recovery of the desired root (x1, . . . , xn). To this end, we first restrict ourselves in a more
appropriated subspace. Indeed, noticing that the last coefficients of s0 are all null, we know that
this vector belongs to a sublattice L′ whose last coordinates are composed by zero coefficients. By
doing elementary operations on the rows of M, one can easily construct that sublattice and prove
that its determinant is the same as the one of L.

Method conclusion. From that point, one computes an LLL-reduction on the lattice L′ and
computes the Gram-Schmidt’s orthogonalized basis (b?1, . . . , b?t ) of the LLL output basis (b1, . . . , bt).
Since s0 belongs to L′, this vector can be expressed as a linear combination of the b?i ’s. Consequently,
if its norm is smaller than those of b?t , then s0 is orthogonal to b?t . Extracting the coefficients
appearing in b?t , one can construct a polynomial p1 defined over Z such that p1(x1, . . . , xn) = 0.
Repeating the same process with the vectors b?t−1, . . . , b

?
t−n+1 leads to the system {p1(x1, . . . , xn) =

0, . . . , pn(x1, . . . , xn) = 0}. Under the (heuristic) assumption that all created polynomials define
an algebraic variety of dimension 0, the previous system can be solved (e.g., using elimination
techniques such as Groebner basis) and the desired root recovered in polynomial time.
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The conditions on the bounds Xi that make this method work are given by the following
(simplified) inequation (see [Rit10] for details):∏

y
k1
1 ...ykn

n ∈M

Xk1
1 · · ·X

kn
n <

∏
i

N

∑n

i=1

∑r(i)
j=1 ki,j,`

i . (1)

For such techniques, the most complicated part is the choice of the collection of polynomials, what
could be a really intricate task when working with multiple polynomials.

3 Analytic Combinatorics

We now recall the analytic combinatorics results that we need in the remaining of this paper. We
deliberately omit some of the formalism in order to simplify the techniques used. See [FS09] for
more details. In the following, we denote by |A| the cardinal of a set A.

3.1 Introduction
As explained in the former section, Coppersmith’s method requires polynomials which are usually
constructed as fk = yk1

1 . . . ykn
n fk` (with f being a polynomial of degree e in the variables y1, . . . , yn).

In the following, we thus consider a set of polynomials looking like2

P = {fk = yk1
1 . . . ykn

n fk` mod Nk` | 1 6 k` < t

and deg(fk) = k1 + · · ·+ kn + k`e < te} ,

where the notation modNk` is only here to recall that the considered solution verifies fk ≡ 0 mod
Nk` (to make things clearer). We suppose that f is not just a monomial (i.e., is the sum of at least
two distinct monomials) and therefore each k corresponds to a distinct polynomial fk.

The set of monomials appearing in the collection P will usually look like

M = {yk = yk1
1 . . . ykn

n | 0 6 deg(yk) = k1 + · · ·+ kn < te} .

By construction, since (x1, . . . , xn) is a modular root of the polynomials fk, there exists an
integer ck such that fk(x1, . . . , xn) = ckN

k` (see Section 2). Furthermore, this root is small in the
sense that each of its components is bounded by a known value, namely |x1| < X1, . . . , |xn| < Xn.
These considerations imply that for the final condition in Coppersmith’s method (see Equation (1)),
one needs to compute the values

ψ =
∑
fk∈P

k` and ∀i ∈ {1, . . . , n}, αi =
∑
yk∈M

ki .

These values correspond to the exponent of N and Xi (for i ∈ {1, . . . , n}) in Equation (1) respectively.
For the sake of readability for the reader unfamiliar with analytic combinatorics, we first show

how to compute the number of polynomials in P or M of a certain degree and then how to
compute these sums ψ and αi but only for polynomials in P or M of a certain degree. These
computations are of no direct use for Coppersmith’s method but are a warm-up for the really
interesting computation, namely these sums ψ and ai for polynomials in P or M up to a certain
degree.
2 We only use one polynomial f and one modulus N for the sake of simplicity. Furthermore, this exact set P could
actually not appear in the Coppersmith methods, as the polynomials are not linearly independent. However, it is
easier to explain analytic combinatorics tools on this set P. We show later, in Section 4 and throughout this paper,
how to adapt these tools to useful variants of this set.
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3.2 Combinatorial Classes, Sizes, and Parameters

A combinatorial class is a finite or countable set on which a size function is defined, satisfying the
following conditions: (i) the size of an element is a non-negative integer and (ii) the number of
elements of any given size is finite. Polynomials of a “certain” form and up to a “certain” degree
can be considered as a combinatorial class, using a size function usually related to the degree of the
polynomial.

In the following, we can consider the set P as a combinatorial class, with the size function SP

defined as SP(fk) = deg(fk) = k1 + · · · + kn + k`e. In order to compute the sum of the k` as
explained in Section 3.1, we define another function χP , called a parameter function, such that
χP (fk) = k`. This function will enable us, instead of counting “1” for each polynomial, to count “k`”
for each polynomial, which is exactly what we need (see Section 3.4 for the details).

As for the monomials, we will also consider the set M as a combinatorial class, with the size
function SM defined as SM (yk) = k1 + · · ·+ kn. In the case the bounds on the variables are equal
(X1 = · · · = Xn = X), the parameter function corresponding to the exponent α1 of X1 in the final
condition in Coppersmith’s method will be set as χM (yk) = k1 + · · ·+ kn. Otherwise, one will be
able to define other parameter functions in case the bounds are not equal (see again Section 3.4).

3.3 Counting the Elements: Generating Functions

The counting sequence of a combinatorial class A with size function S is the sequence of integers
(Ap)p>0 where Ap = |{a ∈ Ap | S(a) = p}| is the number of objects in class A that have size p. For
instance, if we consider the set M defined in 3.1, we have the equality M1 = n since there are n
monomials in n variables of degree 1.

Definition 1. The ordinary generating function (OGF) of a combinatorial class A is the generating
function of the numbers Ap, for p > 0, i.e., the formal3 power series A(z) =

∑+∞
p=0Apz

p.

For instance, if we consider the set M (1) = {yk1
1 | 1 6 k1 < t} of the monomials with one

variable, then one gets M (1)
p = 1 for all p ∈ N, implying that M (1)(z) =

∑+∞
p=0 z

p = 1
1−z .

In the former example, we constructed the OGF A(z) from the sequence of numbers Ap of
objects that have size p. Of course, what we are really interested in is to do it the other way around.
We now describe an easy way to construct the OGF, and we will deduce from this function and
classical analytic tools the value of Ap for every integer p. We assume the existence of an “atomic”
class, comprising a single element of size 1, here a variable, usually denoted as Z. We also need a
“neutral” class, comprising a single element of size 0, here 1, usually denoted as ε. Their OGF are
Z(z) = z and E(z) = 1. We show in Table 1 the possible admissible constructions that we will need
here, as well as the corresponding generating functions.

One then recovers the formula M (1)(z) = 1
1−z from Z(z) = z and the construction Seq(Z)

to describe M (1). Similarly, if we now consider the set M (2) = {yk = yk1
1 yk2

2 | 0 6 k1 + k2 < t}
of the monomials with two variables, with the size function S(yk) = k1 + k2, then one gets
M (2)(z) = M (1)(z) ·M (1)(z) = 1

(1−z)2 from M (2) = M (1)×M (1). Finally, since 1
(1−z)2 =

∑+∞
p=1 pz

p−1,
one gets, for all p > 1, (M2)p = p+ 1, which is exactly the number of monomials with two variables
of size p.
3 We stress that it is a “formal” series, i.e., with no need to worry about the convergence.
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Table 1: Combinatorics constructions and their OGF
Construction OGF

Atomic class Z Z(z) = z
Neutral class ε E(z) = 1

Disjoint union A = B + C (when B ∩ C = ∅) A(z) = B(z) + C(z)
Complement A = B \ C (when C ⊆ B) A(z) = B(z)− C(z)
Cartesian product A = B × C A(z) = B(z) · C(z)
Cartesian exponentiation A = Bk = B × · · · × B A(z) = B(z)k

Sequence A = Seq(B) = ε+ B + B2 + . . . A(z) = 1
1−B(z)

When the class contains elements of different sizes (such as variables of degree 1 and polynomials
of degree e), the variables are represented by the atomic element Z and the polynomials by the
element Ze, in order to take into account the degree of the polynomial f . If we consider for instance
the set P(1,2) = {fk = yk1

1 fk` | 1 6 k` < t and deg(fk) = k1 + 2k` < 2t}, with f a polynomial of
degree 2, this set is isomorphic to Seq(Z)×Z2Seq(Z2), since deg(f) = 2. This leads to an OGF
equals to

1
1− z

z2

1− z2 =
+∞∑
q=0

qzq
+∞∑
r=1

rz2r =
+∞∑
p=0

bp/2c∑
r=1

(p− 2r)rzp ,

which gives P (1,2)
p =

∑bp/2c
r=1 (p − 2r)r, which is exactly the number of polynomials of degree p

contained in the class.

3.4 Counting the Parameters of the Elements: Bivariate Generating Functions

As seen in the former section, when one considers a combinatorial class A of polynomials and
computes the corresponding OGF A(z), classical analytic tools enable to recover Ap as the coefficient
of zp in the OGF. As explained in the introduction of this section, however, Coppersmith’s method
requires a computation a bit more tricky, which involves an additional parameter. For the sake of
simplicity, we describe this technique on an example.

For instance, consider our monomial set example M (2), but now assume that X1 6= X2. Our
goal is to compute

∑
k1, where the sum is taken over all the monomials in M (2) of size p. We set a

parameter function4 χ(yk) = k1 and we do not compute M (2)
p (for p > 1) anymore, but rather

χp(M (2)) =
∑

yk∈M (2)|S(yk)=p

χ(yk) =
∑

yk∈M (2)|S(yk)=p

k1

where, informally speaking, instead of counting for 1, every monomial counts for the value of its
parameter (here the degree k1 in y1).

The value χp(M (2)) cannot be obtained by the construction of M (2) as Seq(Z)× Seq(Z) that
we used in the former section, since the two atomic elements Z do not play the same role (the
first one is linked with the parameter, whereas the second one is not). The classical solution is
simply to “mark” the atomic element useful for the parameter, with a new variable u: With this new
4 Note that it is possible to count the exponents of both X1 and X2 at once using two parameters, but it is usually
easier to count them separately, which often boils down to the same computation. See concrete examples in Section 4.
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parameter function, M (2) is seen as Seq(uZ)× Seq(Z), defining the bivariate ordinary generating
function (BGF)5 M2(z, u) = 1

1−uz
1

1−z . We remark that when we set u = 1, we get the original
non-parameterized OGF. Informally speaking, the BGF of a combinatorial class A with respect to a
size function S and a parameter function χ is obtained from the corresponding OGF by replacing
each z by ukz where k is the value of the parameter taken on the atomic element Z. We then obtain
χp(A) via the following result:

Theorem 2. Assume A is a combinatorial class with size function S and parameter function χ, and
assume A(z, u) is the bivariate ordinary generating funtion for A corresponding to this parameter
(constructed as explained above). Then, if we define

χp(A) =
∑

a∈A|S(a)=p
χ(a)

the ordinary generating function of the sequence (χp(A))p>0 is equal to the value (∂A(z, u)/∂u)u=1,
meaning that we have the equality

∂A(z, u)
∂u

∣∣∣∣
u=1

=
+∞∑
p=0

χp(A)zp def= χ(A)(z) .

Coming back to our example, one then gets

χ(M (2))(z) =
+∞∑
p=0

χp(M (2))zp = ∂M (2)(z, u)
∂u

∣∣∣∣∣
u=1

= z

(1− z)3 =
+∞∑
p=1

p(p− 1)
2 zp−1.

meaning that χp(M (2)) = p(p+ 1)/2 (remind that it is an equality on formal series). Finally, the
sum of the degrees k1 of the elements of size p is p(p+ 1)/2, which can be checked by enumerating
them: yp2 , y1y

p−1
2 , y2

1y
p−2
2 , . . . , yp−1

1 y2, y
p
1 . It is easy to see that the result is exactly the same for X2,

without any additional computation, by symmetry.

3.5 Counting the Parameters of the Elements up to a Certain Size

We described in the former section a technique to compute the sum of the (partial) degrees of
elements of size p, but how about computing the same sum for elements of size up to p? Using the
notations of the former section, we want to compute

χ6p
(A) =

∑
a∈A|S(a)6p

χp(a) .

The naive way is to sum up the values χi(A) for all i between 0 and p:

χ6p
(A) =

p∑
i=0

∑
a∈A|S(a)=i

χi(a) ,

but an easier way to do so is to artificially force all elements a of size less than or equal to p to be
of size exactly p by adding enough times a dummy element y0 such that χ(y0) = 0.
5 In complex cases, the marker u can be put to some exponent k, for instance if the parameter considered has a value
equal to k for the atomic element.
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In our context of polynomials, the aim of the dummy variable y0 is to homogenize the polynomial.
If we consider again the set M (2) of monomials of two variables y1 and y2, with size function
equal to S(yk) = k1 + k2 and parameter function equal to χ(yk) = k1, and if we are interested in
the sum of the degrees k1 of the elements in this set of size up to p, we now describe this set as
Seq(uZ)× Seq(Z)× Seq(Z), the last part being the class of monomials in the unique variable y0.
This variable is not marked, since its degree is not counted. One obtains the new bivariate generating
function M (2)(z, u) = 1

1−uz
1

(1−z)2 and

χ6(M (2))(z) =
+∞∑
p=0

χ6p
(M (2))zp = ∂M (2)(z, u)

∂u

∣∣∣∣∣
u=1

= z

(1− z)4

=
+∞∑
p=2

p(p− 1)(p− 2)
6 zp−2 ,

meaning that χ6p
(M (2)) = p(p+ 1)(p+ 2)/6 (remind that it is an equality on formal series). Finally,

the sum of the degrees k1 of the elements of size up to p (i.e., the exponent of X1 in Coppersmith’s
method) is p(p+ 1)(p+ 2)/2, which can be checked by the computation

p∑
i=0

i(i+ 1)
2 = p(p+ 1)(p+ 2)

6 .

Again, it is easy to see that the result is exactly the same for X2, without any additional computation.

3.6 Asymptotic Values: Transfer Theorem

Finding the OGF or BGF of the combinatorial classes is usually an easy task, but finding the exact
value of the coefficients can be quite painful. Coppersmith’s method is usually used in an asymptotic
way. Singularity analysis enables us to find the asymptotic value of the coefficients in an simple way,
using the technique described in [FS09, Corollary VI.1 (sim-transfer), page 392]. Adapted to our
context, their transfer theorem can be stated as follows:

Theorem 3 (Transfer Theorem). Assume A is a combinatorial class with an ordinary generating
function F regular enough such that there exists a value c verifying

F (z) ∼
z→1

c

(1− z)α

for a non-negative integer α. Then the asymptotic value of the coefficient Fn is

Fn ∼
n→∞

cnα−1

(α− 1)! .

4 A Toolbox for the Cryptanalyst

We now describe how to use the generic tools recalled in the former section to count the exponents of
the bounds X1, . . . , Xn and of the modulo N (as in the previous section, we consider the simplified
case with only one modulus N) on the monomials and polynomials appearing in Coppersmith’s
method (see Section 2). For the sake of simplicity, we describe the technique on several examples,
supposedly complex enough to be easily combined and adapted to most of the useful cases encountered
in practice.
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4.1 Counting the Bounds for the Monomials (Useful Examples)

First Example. In this example, we consider

M = {y1
i1 · · · ymm · ym+1

m+1 · · · ynin | 1 6 i1 + · · ·+ in < t}

with the bounds |yi| < X for 1 6 i 6 m et |yi| < Y for m < i 6 n. In order to obtain the exponent
for the bound X, we consider the size function S(y1

i1 . . . yn
in) = i1 + · · ·+ in and the parameter

function χX (y1
i1 . . . yn

in) = i1 + · · ·+ im.
We describe M as

∏m
i=1 Seq(uZ)×

∏n
i=m+1 Seq(Z)× Seq(Z) \ ε (the last Seq(Z) being for

the dummy value y0), which leads to the OGF

F (z, u) =
( 1

1− uz

)m ( 1
1− z

)n−m+1
− 1 .

The next step is to compute the partial derivative in u at u = 1:

∂F (z, u)
∂u

∣∣∣∣
u=1

= mz

(1− uz)m+1

( 1
1− z

)n−m+1
∣∣∣∣∣
u=1

= mz

(1− z)n+2

and take the equivalent value when z → 1:

∂F (z, u)
∂u

∣∣∣∣
u=1

∼
z→1

m

(1− z)n+2 ,

which finally leads, using Theorem 3, to χX,<t(M ) ∼ m(t−1)n+1

(n+1)! ∼ mtn+1

(n+1)! .
Finally, it is easy to see that if one denotes χY (y1

i1 . . . yn
in) = im+1 + · · · + in, one gets

χY,<t(M ) ∼ (n−m)tn+1

(n+1)! . This set of monomials used in Coppersmith’s method thus leads to the

bound X
mtn+1
(n+1)! Y

(n−m)tn+1
(n+1)! . In the particularly useful case where X = Y , the bound becomes X

ntn+1
(n+1)!

for all the monomials in n variables of degree up to t.

Second Example. In this example, we consider

M = {y1
i1 . . . yn

in | (i1 = 0 or i2 = 0)
and 1 6 i3 6 e and 1 6 i1 + · · ·+ in < t}

with the bounds |yi| < X for 1 6 i 6 n. We use the size function S(y1
i1 . . . yn

in) = i1 + · · · + in
and the parameter function χ(y1

i1 . . . yn
in) = i1 + · · ·+ in (since the bound X is the same for all

variables).
The first step is to split M into disjoint subsets. In our case, the three disjoint subsets correspond

to i1 = i2 = 0, (i1 = 0 and i2 6= 0) and (i1 6= 0 and i2 = 0). Taking into account the dummy value y0,
we describe them as

(Z + · · ·+ Ze)×
n−3∏
i=1

Seq(uZ)× Seq(Z)

for the first one and

(uZ)× Seq(uZ)× (Z + · · ·+ Ze)×
n−3∏
i=1

Seq(uZ)× Seq(Z)
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for the two others (since the presence of y1 or y2 is mandatory). This leads to the OGF

F (z, u) =
(

1 + uz

1− uz + uz

1− uz

)
(z + · · ·+ ze)

( 1
1− uz

)n−3 1
1− z

= 1 + uz

(1− uz)n−2
z + · · ·+ ze

1− z ,

which gives, after computations,

∂F (z, u)
∂u

∣∣∣∣
u=1

= z((n− 3)uz + n− 1)
(1− uz)n−1

z + · · ·+ ze

1− z

∣∣∣∣
u=1

∼
z→1

(2n− 4)e
(1− z)n ,

which finally leads to χ<t(M ) ∼ (2n−4)e(t−1)n−1

(n−1)! ∼ (2n−4)etn−1

(n−1)! , using Theorem 3.

4.2 Counting the Bounds for the Polynomials (Example)

We now consider the set

P = {fk = yk1
1 . . . ykn

n fk` mod Nk` | 1 6 k` < t

and deg(fk) = k1 + · · ·+ kn + k`e < te}

with the bounds X1 = · · · = Xn = X for the variables. In order to obtain the exponent for the
modulus N , we consider the size function S(y1

k1 . . . yn
knfk`) = k1 + · · ·+ kn + k` and the parameter

function χN (y1
k1 . . . yn

knfk`) = k`.
For the sake of simplicity, we can consider 0 6 k` < t since the parameter function is equal to 0

on the elements fk such that k` = 0. We describe P as
∏n
i=1 Seq(Z)× Seq(uZe)× Seq(Z) (the

last one being for the dummy value y0), since only f needs a marker and its degree is e. This leads
to the OGF

F (z, u) =
( 1

1− z

)n+1 1
1− uze .

The next step is to compute the partial derivative in u at u = 1:

∂F (z, u)
∂u

∣∣∣∣
u=1

= ze

(1− uze)2

( 1
1− z

)n+1
∣∣∣∣∣
u=1

= ze

(1− ze)2

( 1
1− z

)n+1

and take the equivalent value when z → 1, using the formula 1− ze ∼ e(1− z):

∂F (z, u)
∂u

∣∣∣∣
u=1

∼
z→1

1
e2(1− z)n+3 ,

which finally leads, using Theorem 3, to χN,<te(P) ∼ (te)n+2

e2(n+2)! .

5 Number-Theoretic Pseudorandom Generators (following [BVZ12])

As mentioned in the introduction, number-theoretic pseudorandom generators work by iterating an
algebraic map F over a residue ring ZN on a secret random initial seed value v0 ∈ ZN to compute
the intermediate state values vi+1 = F (vi) mod N for i ∈ N and outputting (some consecutive bits
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of) the state value vi at each iteration. In [BVZ12], Bauer et al. showed that such a pseudorandom
generator defined by a known iteration polynomial function F can be broken under the condition
that sufficiently many bits are output by the generator at each iteration (with respect to the degree
of F ).

Let F (X) be a polynomial of degree d in ZN [X] and let v0 be a secret seed. As in [BVZ12],
we assume that the generator outputs the k most significant bits of vi at each iteration (with
k ∈ {1, . . . , n} where n is the bit-length of N). More precisely, if vi = 2n−kwi + xi, with 0 6
xi < 2n−k = M = N δ which is unknown to the adversary and wi is output by the generator. The
adversary wants to recover xi for some i ∈ N from consecutive values of the pseudorandom sequence
(with M as large as possible). We have vi+1 = F (vi) mod N (for i ∈ N) for a known polynomial
F and 2m−kwi+1 + xi+1 = F (2m−kwi + xi) mod N . We can therefore define explicitly a family
of bivariate polynomials of degree d, fi(yi, yi+1) ∈ ZN [yi, yi+1], such that fi(xi, xi+1) = 0 mod N ,
for i ∈ {0, . . . , n} whose coefficients publicly depend on the approximations wi, wi+1 and F ’s
coefficients. The goal is to compute the (small) modular root (x0, x1, . . . , xn) of the polynomial
system {f0(y0, y1) = 0, . . . , fn(yn, yn+1) = 0} in polynomial time.

Description of the attack. In order to solve this system, Bauer et al. [BVZ12] applied Coppersmith
method for multivariate modular polynomial system to the following collection of polynomials:

P = {y0
jf0

i0 . . . fn
in | d(i0 + di1 + · · ·+ dnin) + j 6 dm ∧ (i0 + · · ·+ in > 0)}

where m ≥ 1 is a fixed integer. They showed that the set of monomials occurring in the collection is:

{y0
jy1

i0 . . . yn+1
in | d(i0 + di1 + · · ·+ dnin) + j 6 dm} .

To analyze their algorithm, Bauer et al. used a trick from [HM09] and only computes the quotient of
the two quantities involved in Coppersmith success condition (1) (thanks to a fortunate simplification).
In the following, we will use our toolbox to recompute (more) easily the bounds on these two quantities.
We also obtain more precise estimates since our toolbox also permits to obtain the dimensions of
the matrix used in Coppersmith method (and therefore the actual complexity of the attack).

Bound for the Polynomials. We consider the set P defined as

{y0
jf0

i0 . . . fn
in mod N in | d(i0 + di1 + · · ·+ dnin) + j 6 dm ∧ i0 + · · ·+ in > 0)}

as a combinatorial class, with the size function S
f
(y0

jf0
i0 . . . fn

in) = d(i0 + di1 + · · · + dnin) + j

and the parameter function χ
f
(y0

jf0
i0 . . . fn

in) = i0 + · · ·+ in. For the sake of simplicity, we can
consider i0 + · · · + in > 0 since the parameter function is equal to 0 on the elements such that
i0 + · · ·+ in = 0. We split the parameter functions into (n+ 1) parts χ

f,j
(y0

jf0
i0 . . . fn

in) = ij (for
j ∈ {0, . . . , n}), do the computation for each of them and sum the obtained asymptotic equivalents
(and this can be done legitimately by computing the corresponding limits).

Let j ∈ {0, . . . , n}. Since the degree of each fk is dk+1, we consider P as

Seq(Z)︸ ︷︷ ︸
y0

×
n∏
k=0
k 6=j

Seq(Zdk+1)︸ ︷︷ ︸
fk

×Seq(uZdj+1)︸ ︷︷ ︸
fj

× Seq(Z)︸ ︷︷ ︸
dummy var.

\ Seq(Z)︸ ︷︷ ︸
y0

× Seq(Z)︸ ︷︷ ︸
dummy var.
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which leads to the following generating function

Fj(u, z) = 1
1− z

(
n∏
k=0
k 6=j

1
1− zdk+1

)
1

1− uzdj+1
1

1− z −
1

1− z
1

1− z .

We take the partial derivative in u and then let u = 1:

∂Fj
∂u

(u, z)
∣∣∣∣
u=1

=
( 1

1− z

)2
×
(

n∏
k=0
k 6=j

1
1− zdk+1

)
× zd

j+1

(1− zdj+1)2 .

We take the equivalent when z → 1, using the formula 1− zn ∼ n(1− z):

∂Fj
∂u

(u, z)
∣∣∣∣
u=1

∼
z→1

( 1
1− z

)2
×
(

n∏
k=0
k 6=j

1
dk+1(1− z)

)
× 1

(dj+1)2(1− z)2

∼
z→1

1
(1− z)n+4

1
d(n+1)(n+2)/2dj+1

.

Applying Theorem 3, one finally gets

χ
f,j,6dm

(P) ∼ 1
(n+ 3)!(dm)n+3 1

d(n+1)(n+2)/2dj+1 ,

which leads to

χ
f,6dm

(P) ∼

 n∑
j=0

1
dj+1

 1
(n+ 3)!(dm)n+3 1

d(n+1)(n+2)/2 .

Bound for the Monomials. We consider the set M defined as

{y0
jy1

i0 . . . yn+1
in mod M i0+···+in | d(i0 + di1 + · · ·+ dnin) + j 6 dm}

as a combinatorial class, with the size function Sy (y0
jy1

i0 . . . yn+1
in) = d(i0 + di1 + · · ·+ dnin) + j

and the parameter function χy (y0
jf0

i0 . . . fn
in) = i0 + · · ·+ in. As before, we split the parameter

functions into (n+ 1) parts χy,j (y0
jy1

i0 . . . yn+1
in) = ij (for j ∈ {0, . . . , n}) and do the computation

for each of them. As each yk “counts for” dk in the condition of the set, we consider M as

Seq(Z)︸ ︷︷ ︸
y0

×
n+1∏
k=1
k 6=j

Seq(Zdk)︸ ︷︷ ︸
yk

×Seq(uZdj )︸ ︷︷ ︸
yj

× Seq(Z)︸ ︷︷ ︸
dummy var.

,

which leads to the following generating function

Gj(u, z) = 1
1− z

(
n+1∏
k=1
k 6=j

1
1− zdk

)
1

1− uzdj

1
1− z .
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We take the partial derivative in u and then let u = 1:

∂Gj
∂u

(u, z)
∣∣∣∣
u=1

=
(
n+1∏
k=0
k 6=j

1
1− zdk

)
×
( 1

1− z

)
× zd

j

(1− zdj )2 .

We take the equivalent when z → 1, using the formula 1− zn ∼ n(1− z):

∂Gj
∂u

(u, z)
∣∣∣∣
u=1

∼
z→1

(
n+1∏
k=0
k 6=j

1
dk(1− z)

)
×
( 1

1− z

)
× 1

(dj)2(1− z)2

∼
z→1

1
(1− z)n+4

1
d(n+1)(n+2)/2dj

.

Applying Theorem 3, one finally gets

χ
y,j,6dm

(M ) ∼ 1
(n+ 3)!(dm)n+3 1

d(n+1)(n+2)/2dj
,

which leads to

χ
y,6dm

(M ) ∼

n+1∑
j=0

1
dj

 1
(n+ 3)!(dm)n+3 1

d(n+1)(n+2)/2 .

Condition. If we denote by µ = χ
f,6dm

(P) and ξ = χ
y,6dm

(M ), the condition for Coppersmith’s
method is Nµ > M ξ, i.e., Nµ/ξ > M , where

µ

ξ
=
χ

f,6dm
(P)

χ
y,6dm

(M ) ∼
∑n
j=0

1
dj+1∑n+1

j=0
1
dj

=
1
d

1−1/dn+1

1−1/d
1−1/dn+2

1−1/d

∼ 1
d
,

which leads to the expected bound M < N1/d that was given in [BVZ12], for which the algorithm
(heuristically) outputs the the (small) modular root (x0, x1, . . . , xn) of the polynomial system
{f0(y0, y1) = 0, . . . , fn(yn, yn+1) = 0} in polynomial time.

Complexity. In order to compute the dimensions of the matrix used in Coppersmith methods, we
have to compute the cardinality of the sets P and M (i.e., with the constant parameter functions
χf = 1 and χy,j = 1). We obtain the generating functions

1
1− z

(
n∏
k=0

1
1− zdk+1

)
1

1− z −
1

1− z
1

1− z ∼z→1

1
(1− z)n+3

1
d(n+1)(n+2)/2

and
1

1− z

(
n+1∏
k=1

1
1− zdk

)
1

1− z ∼z→1

1
(1− z)n+3

1
d(n+1)(n+2)/2

for P and M (respectively). We thus obtain as above for the cardinality of both sets P and M
(and therefore essentially for the dimensions of the matrix), the asymptotics

(dm)n+2

(n+ 2)!
1

d(n+1)(n+2)/2 .
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Remark 4. A computer algebra program can compute the first coefficients of the formal series for
µ and ξ and for the cardinality of the sets P and M , for any given d and n. Therefore, given d,
n, and logM/ logN , it enables to compute the minimum value m such that the attack works (i.e.,
such that µ/ξ > logM/ logN , using the simplified condition, assuming the heuristic assumption
holds) and then to compute the corresponding number of polynomials in P and of monomials in M ,
which then yield the size of the matrix. For an example of such an analysis see end of Section 6.1.

6 New Applications

6.1 Key Generation from Weak Pseudorandomness

In [FTZ13], Fouque, Tibouchi and Zapalowicz analyzed the security of key generation algorithms
when the prime factors of an RSA modulus are constructed by concatenating the outputs of a linear
congruential generator. They proposed an (exponential-time) attack based on multipoint polynomial
evaluation to recover the seed when such generators are used to generate one prime factor of an
RSA modulus. In this section, we propose a new heuristic (polynomial-time) algorithm based on
Coppersmith methods that allows to factor an RSA modulus when both its primes factors are
constructed by concatenating the outputs of a linear congruential generator (with possible different
seeds).

Let M = 2k be a power of 2 (for k ∈ N \ {0}). For the ease of exposition, we consider a
straightforward method to generate a prime number in which the key generation algorithm starts
from a random seed modulo M , iterates the linear congruential generator and performs a primality
test on the concatenation of the outputs (and in case of an invalid answer, repeat the process
with another random seed until a prime is found). Let v0 and w0 be two random seeds for a
linear congruential generator with public parameters a and b in ZM that defines the pseudorandom
sequences:

vi+1 = avi + b mod M and wi+1 = awi + b

for i ∈ N. We assume that the adversary is given as input a (balanced) RSA modulus N = p ·q where
p and q are (kn)-bit primes where p = v0 +Mv1 + · · ·+Mnvn and q = w0 +Mw1 + · · ·+Mnwn.

Description of the attack. The adversary is given as inputs the RSA modulus N and the generator
parameters a and b and its goal is to factor N (or equivalently to recover one of the secret seed v0
or w0 used in the key generation algorithm). This can be done by solving the following multivariate
system of polynomial equations over the moduli N and M with unknowns v0,. . . ,vn,w0,. . . ,wn:

f = (v0 +Mv1 + · · ·+Mnvn)(w0 +Mw1 + · · ·+Mnwn) ≡ 0 mod N
g0 = v1 − (av0 + b) ≡ 0 mod M
...

gn−1 = vn − (avn−1 + b) ≡ 0 mod M
h0 = w1 − (aw0 + b) ≡ 0 mod M

...
hn−1 = wn − (awn−1 + b) ≡ 0 mod M .
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In order to apply Coppersmith technique, the most complicated part is the choice of the collection
of polynomials constructed from the polynomials that occur in this system. After several attempts,
we choose to use the following polynomial family (parameterized by some integer t ∈ N):

f̃i0,...,in,j0,...,jn,k = vi00 . . . vinn · w
j0
0 . . . wjnn · fk mod Nk

with 1 ≤ k < t, (i0 = 0 or j0 = 0)
and deg(f̃...) = i0 + · · ·+ in + j0 + · · ·+ jn + 2k < 2t

g̃i0,...,in,j0,...,jn = gi00 . . . g
in−1
n−1 · v

in
n · h

j0
0 . . . hjn−1

n · wjnn mod M `

with 1 ≤ ` = i0 + · · ·+ in−1 + j0 + · · ·+ jn−1

and deg(g̃...) = i0 + · · ·+ in + j0 + · · ·+ jn < 2t .

The moduli N and M are coprime (since N is an RSA modulus and M is a power of 2) and it
is easy to see that the polynomials f̃i0,...,in,j0,...,jn,k on one hand and the polynomials g̃i0,...,in,j0,...,jn
on the other hand are linearly independent.

We have a system of modular polynomial equations in 2n+ 2 unknowns and the Coppersmith
method does not necessarily imply that we can solve the system of equations. As often in this
setting, we have to assume that if the method succeeds, we will be able to recover the prime factors
p and q from the set of polynomials we will obtain:

Heuristic 1 Let F denote the polynomial set

P =
{
f̃i0,...,in,j0,...,jn,k |

1 ≤ k < t, (i0 = 0 or j0 = 0)
i0 + · · ·+ in + j0 + · · ·+ jn + 2k < 2t

}
⋃{

g̃i0,...,in,j0,...,jn |
1 ≤ ` = i0 + · · ·+ in−1 + j0 + · · ·+ jn−1

deg(g̃...) = i0 + · · ·+ in + j0 + · · ·+ jn < 2t

}
.

We assume that the set of polynomials we get by applying Coppersmith’s method with the polynomial
set P define an algebraic variety of dimension 0.

Theorem 5. Under Heuristic 1, given as inputs an RSA modulus N = p · q and the linear
congruential generator parameters a and b such that p = v0 +Mv1 + · · ·+Mnvn and q = w0 +Mw1 +
· · ·+Mnwn. (where v0 and w0 are two random seeds and vi+1 = avi + b mod M and wi+1 = awi + b
for i ∈ N), we can recover the prime factors p and q in polynomial time in log(N) for any n > 2.

Bounds for the Polynomials modulo N . We consider the set

P
f

= {f̃i0,...,in,j0,...,jn,k = vi00 . . . vinn · w
j0
0 . . . wjnn · fk mod Nk

| 1 ≤ k < t, (i0 = 0 or j0 = 0)
and deg(f̃i0,...,in,j0,...,jn,k) = i0 + · · ·+ in + j0 + · · ·+ jn + 2k < 2t}

as a combinatorial class, with the size function Sf (f̃i0,...,in,j0,...,jn,k) = i0+· · ·+in+j0+· · ·+jn+2k and
the parameter function χf (f̃i0,...,in,j0,...,jn,k) = k. The degree of each variable v0, . . . , vn, w0, . . . , wn
is 1, whereas the degree of f is 1. For the sake of simplicity, we can consider 0 6 k < t since the
parameter function is equal to 0 on the elements fk such that k = 0. We use the technique described
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in the second example of Section 4.2 to write P
f
as a disjoint union of three sets (depending on the

values i0 and j0) and consider it as

(ε+ ZSeq(Z) + ZSeq(Z)︸ ︷︷ ︸
v0,w0

)×
n∏
k=1

Seq(Z)︸ ︷︷ ︸
vk

×
n∏
k=1

Seq(Z)︸ ︷︷ ︸
wk

×Seq(uZ2)︸ ︷︷ ︸
f

× Seq(Z)︸ ︷︷ ︸
dummy var,

which leads to the following generating function:

F (u, z) =
(

1 + z

1− z + z

1− z

) 1
(1− z)2n

1
1− uz2

1
1− z = 1 + z

(1− z)2n+2
1

1− uz2 .

We take the partial derivative in u, then let u = 1, and finally take the equivalent when z → 1:

∂F

∂u
(u, z)

∣∣∣∣
u=1

= z2

(1− z)2n+4(1 + z) ∼z→1

1
2(1− z)2n+4 .

Applying Theorem 3, since 2t ∼ 2t− 1, one finally gets

χ
f,<2t

(P
f
) ∼ 1

2(2n+ 3)!(2t)
2n+3 .

Bounds for the Polynomials modulo M . We consider the set

Pg = {g̃i0,...,in,j0,...,jn = gi00 . . . g
in−1
n−1 · v

in
n · h

j0
0 . . . hjn−1

n · wjnn mod M `

| 1 ≤ ` = i0 + · · ·+ in−1 + j0 + · · ·+ jn−1

and deg(g̃i0,...,in,j0,...,jn) = i0 + · · ·+ in + j0 + · · ·+ jn < 2t}

as a combinatorial class, with the size function Sg (g̃i0,...,in,j0,...,jn) = i0 + · · ·+ in + j0 + · · ·+ jn and
the parameter function χg (g̃i1,...,in,j0,...,jn) = i0 + · · · + in−1 + j0 + · · · + jn−1. The degree of each
polynomial gk is 1, as well as the degrees of vn and wn. For the sake of simplicity, we can consider
0 6 ` since the parameter function is equal to 0 on the elements such that ` = 0. We thus consider
Pg as

n−1∏
k=0

Seq(uZ)︸ ︷︷ ︸
gk

×Seq(Z)︸ ︷︷ ︸
vn

×
n−1∏
k=0

Seq(uZ)︸ ︷︷ ︸
hk

×Seq(Z)︸ ︷︷ ︸
wn

× Seq(Z)︸ ︷︷ ︸
dummy var.

which leads to the following generating function:

G(u, z) = 1
(1− uz)2n

1
(1− z)2

1
1− z .

We take the partial derivative in u, then let u = 1, and finally take the equivalent when z → 1:

∂G

∂u
(u, z)

∣∣∣∣
u=1

= 2nz
(1− z)2n+4 ∼z→1

2n
(1− z)2n+4 .

Applying Theorem 3, since 2t ∼ 2t− 1, one finally gets

χg,<2t(Pg ) ∼ 2n
(2n+ 3)!(2t)

2n+3 .
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Bounds for the Monomials modulo M . We consider the set

M = {v0
i0 . . . vn

in · w0
j0 . . . wn

jn mod M ` | 0 6 ` = i0 + · · ·+ in + j0 + · · ·+ jn < 2t}

as a combinatorial class, with the size function Sx(v0
i0 . . . vn

in ·w0
j0 . . . wn

jn) = i0+· · ·+in+j0+· · ·+jn
and the parameter one χx(v0

i0 . . . vn
in · w0

j0 . . . wn
jn) = i0 + · · ·+ in + j0 + · · ·+ jn. The degree of

each variable xk is 1. We thus consider M as
n∏
k=0

Seq(uZ)︸ ︷︷ ︸
vk

×
n∏
k=0

Seq(uZ)︸ ︷︷ ︸
wk

× Seq(Z)︸ ︷︷ ︸
dummy var,

which leads to the following generating function:

H(u, z) = 1
(1− uz)2n+2

1
1− z .

We take the partial derivative in u, then let u = 1, and finally take the equivalent when z → 1:
∂H

∂u
(u, z)

∣∣∣∣
u=1

= (2n+ 2)z
(1− z)2n+4 ∼z→1

2n+ 2
(1− z)2n+4 .

Applying Theorem 3, since 2t ∼ 2t− 1, one finally gets

χx,<2t(M ) ∼ 2n+ 2
(2n+ 3)!(2t)

2n+3 .

Condition. If we denote by ν = χ
f,<te

(P
f
), µ = χg,<te(Pg ) and ξ = χx,<te(M ), the condition for

Coppersmith’s method is Nν ·Mµ > M ξ, where

ν

ξ − µ
=

χ
f,<te

(P
f
)

χx,<te(M )− χg,<te(Pg ) ∼z→1

1
2(2n+3)!(2t)

2n+3

2n+2
(2n+3)!(2t)2n+3 − 2n

(2n+3)!(2t)2n+3 ∼z→1

1
4

which leads to the bound M < N1/4 (and since N is an even power of M we obtain M 6 N1/6 and
thus n > 2).

Remark 6. In the previous attack, we actually considered a very naive prime number generation
algorithm. However, a prime number generation algorithm based on this (bad) design principle
would probably use instead an incremental algorithm and output prime numbers p = (v0 +Mv1 +
· · · + Mnvn) + α and q = (w0 + Mw1 + · · · + Mnwn) + β for some α and β in N. Thanks to the
prime number theorem, these values are likely to be small and the previous algorithm can be run6

after an exhaustive search of α and β.

Concrete bounds. The previous analysis leads to the bound M < N1/4 when t goes to ∞. Actually
to reach the (simplified) success condition (1) in Coppersmith method for n > 2, we need only small
values of t as shown in Table 2

Unfortunately, even if t is small, the constructed matrix is of huge dimension (since the number
of monomials is quite large) and the computation which is theoretically polynomial-time becomes
in practice prohibitive (for instance, for n = 3 and t = 6, the matrix is of dimension 6473). These
attacks are nethertheless good evidence of a weakness in this key generation scheme. For n = 1 (i.e.,
M = N1/4), the polynomial time attack does not apply, but one may combine it with an exhaustive
search to retrieve a small part of v0, v1, w0 and w1 to retrieve the other (bigger) part of the seeds.
6 Alternatively, one can also adapt the algorithm by adding unknowns for α and β to the multivariate modular
polynomial system.
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n t 1 2 3 4 5 6 7 8

2 Polynomial Bound 4 38 186 654 1866 4602 10182 20706
Monomial Bound 6 48 216 720 1980 4752 10296 20592

3 Polynomial Bound 6 68 402 1688 5682 16340
Monomial Bound 8 80 440 1760 5720 16016

4 Polynomial Bound 10 152 1206 6704 29416
Monomial Bound 12 168 1260 6720 28560

5 Polynomial Bound 12 206 1842 11486
Monomial Bound 14 224 1904 11424

Table 2: Bounds in Coppersmith (simplified) success condition (1)

6.2 PKCS#1 v1.5 Padding Encryption with Weak Pseudorandomness

pkcs#1 v1.5 describes a particular encoding padding for rsa encryption. Let N be RSA an modulus
of byte-length k (i.e., 28(k−1) < N < 28k, e be a public exponent coprime to the Euler totient ϕ(N)
and m be a message of `-byte with ` < k − 11. The pkcs#1 v1.5 padding of m is defined as follows:
1. A randomizer r consisting in k − 3− ` > 8 nonzero bytes is generated uniformly at random;
2. µ(m, r) is the integer converted from the octet-string:

µ(m, r) = 000216||r||0016||m . (2)

The encryption of m is then defined as c = µ(m, r)e mod N . To decrypt c ∈ Z∗N , compute cd mod N
(where ed ≡ 1 mod ϕ(N)), convert the result to a k-byte octet-string and parse it according to
equation (2). If the string cannot be parsed unambiguously or if r is shorter than eight octets, the
decryption algorithm D outputs ⊥; otherwise, D outputs the plaintext m.

The pkcs#1 v1.5 padding has been known to be insecure for encryption since Bleichenbacher’s
famous chosen ciphertext attack [Ble98]. Several additionnal attacks were published since 1998
(e.g., [CJNP00,BCN+10,JSS12]).

Fouque et al. [FTZ13] suggested to consider the setting of the randomness generation used in
padding functions for encryption. In pkcs#1 v1.5 padding, the randomizer shall be pseudorandomly
generated (according to the RFC which defines it [Kal98]) and since it is still widely used in practice
(e.g., TLS, XML Encryption standard, Hardware token. . . )n it seems interesting to investigate its
security when the randomizer is constructed by concatenating the outputs of a linear congruential
generator. We consider several scenarios (linear congruential generator, truncated linear congruential
generators, multiple ciphertexts . . . ) and we apply our toolbox to all of them.

Scenario 1: Linear Congruential Generator. The first attack scenario can be seen as a chosen
distribution attack. These attacks were introduced by Bellare, Brakerski, Naor, Ristenpart, Segev,
Shacham and Yilek [BBN+09] to model attacks where an adversary can control the distribution
of both messages and random coins used in an encryption scheme. We assume that the adversary
can control the message (as in the classical notion of semantic security for public-key encryption
schemes [GM84]) and that the randomizer used in the pkcs#1 v1.5 padding is constructed by
concatenating the outputs of a linear congruential generator (with a seed picked uniformly at
random). The adversary will choose two messages m0 and m1 of the same byte-length ` < k − 11
(where k is the byte length of the RSA modulus N) and the challenger will pick at random a seed
x1 of byte-length ρ. It will compute

xi+1 = axi + b mod M

20



for i ∈ {2, . . . , n − 1} where n = (k − 3 − `)/ρ and M = 28ρ. The challenge ciphertext will be
c = µ(mb, r)e mod N where b is a bit picked uniformly at random by the challenger and the
randomizer r is the concatenation of x1, . . . , xn. We have

µ(mb, r) = 000216||r||0016||mb

= 000216||x1||x2|| . . . ||xn||0016||mb

= (α̃1x1 + α̃2x2 + · · ·+ α̃nxn + β̃)

where this last expression is the integer converted from the octet-string with the α̃i’s are known
public constant and β̃ is the integer converted from the string mb. If we divide c by α̃1

e, we obtain

c = (x1 + α2x2 + · · ·+ αnxn + β)e mod N

where αi = α̃i/α̃1 for i ∈ {2, . . . , n} and β = β̃/α̃1.

Description of the attack. The adversary is therefore looking for the solutions of the following
modular multivariate polynomial system: of monic polynomial equations:

f = (x1 + α2x2 + · · ·+ αnxn + β)e mod N
g1 = x1 − ax2 + b mod M

...
gn−1 = xn−1 − axn + b mod M

where β can be derived easily from the value mb. The attack consists in applying Coppersmith
Method for multivariate polynomials with two moduli (see Section 2) to the two systems derived
from the two possible values for mb.

As above, the most complicated part is the choice of the collection of polynomials constructed
from the polynomials that occur in this system. Our analysis brought out the following polynomial
family (parameterized by some integer t ∈ N):

f̃i1,...,in,j = xi11 . . . x
in
n · f j mod N j

with 1 ≤ j < t, 0 ≤ i1 < e and deg(f̃...) = i1 + · · ·+ in + je < te

g̃i1,...,in = gi11 . . . g
in−1
n−1 · x

in
n mod Mk

with 1 ≤ k = i1 + · · ·+ in−1 and deg(g̃...) = i1 + · · ·+ in < te .

As in the previous section, the moduli N and M are coprime (since N is an RSA modulus and
M is a power of 2). Moreover, it is easy to see that the polynomials f̃i1,...,in,j on one hand and the
polynomials g̃i0,...,in on the other hand are linearly independent. Indeed, these polynomials have
distinct leading monomials and are monic.

We have a system of modular polynomial equations in n unknowns and the Coppersmith method
does not necessarily imply that we can solve the system of equations. Thus, we also have to assume
that if the method succeeds, we will be able to recover the seed x1 from the set of polynomials we
will obtain:
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Heuristic 2 Let P denote the polynomial set

P =
{
f̃i1,...,in,j |

1 ≤ j < t, 0 ≤ i1 < e
i1 + · · ·+ in + je < te

}
⋃{

g̃i1,...,in |
1 ≤ k = i1 + · · ·+ in−1
i1 + · · ·+ in < te

}
.

We assume that the set of polynomials we get by applying Coppersmith’s method with the polynomial
set P define an algebraic variety of dimension 0.

Theorem 7. Under Heuristic 2, given as inputs an RSA modulus N , the linear congruential
generator parameters a and b, two messages m0 and m1 and a pkcs#1 v1.5 ciphertext c = µ(mb, r)
for some bit b ∈ {0, 1} such that the randomizer r is the concatenation of x1, . . . , xn (where x1 is a
random seed of size M and xi+1 = axi + b mod M for i ∈ N), we can recover the seed x1 (and thus
the bit b) in polynomial time in log(N) as soon as M < N1/e.

Bounds for the Polynomials modulo N . We consider the set

P
f

= {f̃i1,...,in,j = xi11 · · ·x
in
n · f j mod N j | 1 ≤ j < t, 0 ≤ i1 < e

and deg(f̃i1,...,in,j) = i1 + · · ·+ in + je < te}

as a combinatorial class, with the size function S
f
(f̃i1,...,in,j) = i1 + · · ·+ in + je and the parameter

function χ
f
(f̃i1,...,in,j) = j. The degree of each variable xk is 1, whereas the degree of f is e. For

the sake of simplicity, we can consider 0 6 j < t since the parameter function is equal to 0 on the
elements such that j = 0. We thus consider P

f
as

(ε+ Z + · · ·+ Ze−1)︸ ︷︷ ︸
x1

×
n∏
k=2

Seq(Z)︸ ︷︷ ︸
xk

×Seq(uZe)︸ ︷︷ ︸
f

× Seq(Z)︸ ︷︷ ︸
dummy var.

which leads to the following generating function:

F (u, z) = (1 + z + · · ·+ ze−1) 1
(1− z)n−1

1
1− uze

1
1− z .

We take the partial derivative in u and then let u = 1:

∂F

∂u
(u, z)

∣∣∣∣
u=1

= (1 + z + · · ·+ ze−1) 1
(1− z)n

ze

(1− ze)2 .

We take the equivalent when z → 1, using the formula 1− ze ∼ e(1− z):

∂F

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

1
e(1− z)n+2 .

Applying Theorem 3, since te ∼ te− 1, one finally gets

χ
f,<te

(P
f
) ∼ 1

e(n+ 1)!(te)
n+1 .
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Bounds for the Polynomials modulo M . We consider the set

Pg = {g̃i1,...,in = gi11 · · · g
in−1
n−1 · x

in
n mod M i1+···+in−1 | 1 ≤ k = i1 + · · ·+ in−1

and deg(g̃i1,...,in) = i1 + · · ·+ in < te}

as a combinatorial class, with the size function Sg (g̃i1,...,in) = i1 + · · ·+ in and the parameter function
χg (g̃i1,...,in) = i1 + · · · + in−1. The degree of each polynomial gk is 1, as well as the degree of xn.
For the sake of simplicity, we can consider 0 6 k since the parameter function is equal to 0 on the
elements such that k = 0. We thus consider Pg as

n−1∏
k=1

Seq(uZ)︸ ︷︷ ︸
gk

×Seq(Z)︸ ︷︷ ︸
xn

× Seq(Z)︸ ︷︷ ︸
dummy var,

which leads to the following generating function:

G(u, z) = 1
(1− uz)n−1

1
1− z

1
1− z .

We take the partial derivative in u, then let u = 1, and finally take the equivalent when z → 1:

∂G

∂u
(u, z)

∣∣∣∣
u=1

= (n− 1)z
(1− z)n+2 ∼z→1

n− 1
(1− z)n+2 .

Applying Theorem 3, since te ∼ te− 1, one finally gets

χg,<te(Pg ) ∼ n− 1
(n+ 1)!(te)

n+1 .

Bounds for the Monomials modulo M . We consider the set

M = {x1
i1 . . . xn

in mod M i1+···+in | 0 6 i1 + · · ·+ in < te} .

as a combinatorial class, with the size function Sx(x1
i1 . . . xn

in) = i1 + · · ·+ in and the parameter
function χx(x1

i1 . . . xn
in) = i1 + · · ·+ in. The degree of each variable xk is 1. We thus consider M as

n∏
k=1

Seq(uZ)︸ ︷︷ ︸
xk

× Seq(Z)︸ ︷︷ ︸
dummy var,

which leads to the following generating function:

H(u, z) = 1
(1− uz)n

1
1− z .

We first take the partial derivative in u, then let u = 1, and finally take the equivalent when z → 1:

∂H

∂u
(u, z)

∣∣∣∣
u=1

= nz

(1− z)n+2 ∼z→1

n

(1− z)n+2 .

Applying Theorem 3, since te ∼ te− 1, one finally gets

χx,<te(M ) ∼ n

(n+ 1)!(te)
n+1 .
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Condition. If we denote by ν = χ
f,<te

(P
f
), µ = χg,<te(Pg ) and ξ = χx,<te(M ), the condition for

Coppersmith’s method is Nν ·Mµ > M ξ, where

ν

ξ − µ
=

χ
f,<te

(P
f
)

χx,<te(M )− χg,<te(Pg ) ∼z→1

1
e(n+1)!(te)

n+1

n
(n+1)!(te)n+1 − n−1

(n+1)!(te)n+1 ∼z→1

1
e

which leads to the expected bound M < N1/e.

Scenario 2: Truncated Linear Congruential Generator. In 1997, Bellare, Goldwasser and
Micciancio [BGM97] broke the Digital Signature Algorithm (DSA) when the random nonces used in
signature generation are computed using a linear congruential generator. They also broke the DSA
signature scheme if the nonces are computed by a truncated linear congruential generator. In order
to pursue the parallel with their work, in the second attack scenario, we the previous analysis to the
case where the randomize in pkcs#1 v1.5 padding is constructed by concatenating any consecutive
bits of the outputs of a linear congruential generator (with a seed picked uniformly at random).

More precisely, the seed of the linear congruential generator is now denoted v1 = y1 + x1 ·
2γy logM + z1 · 2γx logM+γy logM , where y1 has γy logM bits, x1 has γx logM bits, z1 has γz logM
bits and γx + γy + γz = 1. We define the (weak)pseudorandom sequence by vi+1 = avi + b mod M
for i ∈ N (with public a, b and M). We denote vi = yi + xi · 2γy logM + zi · 2γx logM+γy logM , where
yi has γy logM bits, xi has γx logM bits and zi has γz logM bits.

As above, the challenge ciphertext will be c = µ(mb, r)e mod N where b is a bit picked uniformly
at random by the challenger and the randomizer r is the concatenation of x1, . . . , xn for n =
(k − 3− `)/(8γx logM). We have

µ(mb, r) = 000216||r||0016||mb

= (α̃1x1 + α̃2x2 + · · ·+ α̃nxn + β̃) .

Description of the attack. The adversary is looking for the solutions of the following multivariate
modular polynomial system: of monic polynomial equations:

f = (x1 + α2x2 + · · ·+ αnxn + β)e mod N
g1 = x1 + a′y1 + a′′z1 + bx2 + b′y2 + b′′z2 + c mod M

...
gn−1 = xn−1 + a′yn−1 + a′′yn−1 + bxn + b′yn + b′′zn + c mod M

where β can be derived easily from the value mb and the constants α2, . . . , αN , a′, a′′, b, b′ and b′′
are public. As in the previous scenario, the attack consists in applying Coppersmith Method for
multivariate polynomials with two moduli (see Section 2) to the two systems derived from the two
possible values for mb.

For the choice of the polynomials collection, we choose in this scenario the following polynomial
family (parameterized by some integer t ∈ N):

f̃i,i′,i′′,j = xi11 . . . x
in
n · y

i′1
1 . . . yi

′
n
n · z

i′′1
1 . . . zi

′′
n
n · f j mod N j

with 1 ≤ j < t, 0 ≤ i1 < e and deg(f̃...) < te

g̃i,i′,i′′ = gi11 . . . g
in−1
n−1 · x

in
n · y

i′1
1 . . . yi

′
n
n · z

i′′1
1 . . . zi

′′
n
n mod Mk

with 1 ≤ k = i1 + · · ·+ in−1 and deg(g̃...) < te .
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As above, the moduli N and M are coprime and the polynomials f̃i1,...,in,j on one hand and the
polynomials g̃i0,...,in on the other hand are linearly independent.

Again the Coppersmith method does not necessarily imply that we can solve the system of
equations and we have to make the following heuristic:

Heuristic 3 Let P denote the polynomial set

P =
{
f̃i,i′,i′′,j |

1 ≤ j < t, 0 ≤ i1 < e
i1 + · · ·+ in + +i′1 + · · ·+ i′n−1 + i′′1 + · · ·+ i′′n−1 + je < te

}
⋃{

g̃i,i′,i′′ | 1 ≤ k = i1 + · · ·+ in−1
i1 + · · ·+ in + +i′1 + · · ·+ i′n−1 + i′′1 + · · ·+ i′n−1 < te

}
.

We assume that the set of polynomials we get by applying Coppersmith’s method with the polynomial
set P define an algebraic variety of dimension 0.

Theorem 8. Under Heuristic 3, given as inputs an RSA modulus N , the truncated linear con-
gruential generator parameters a and b, two messages m0 and m1 and a pkcs#1 v1.5 ciphertext
c = µ(mb, r) for some bit b ∈ {0, 1} such that the randomizer r is the concatenation of truncations
of v1, . . . , vn (where v1 is a random seed of size M and vi+1 = avi + b mod M for i ∈ N), we can
recover the seed v1 (and thus the bit b) in polynomial time in log(N) as soon as M < N1/e.

Due to lack of space, the details of the computation are provided in Appendix A.1.

Scenario 3: Truncated Linear Congruential Generator and Multiple Ciphertexts. We
can also extend the first chosen distribution attack by letting the adversary controlm pair of messages
(as in the semantic security for multiple ciphertexts, see e.g. [HJ12]) and that the randomizer used
in all the pkcs#1 v1.5 paddings are constructed by concatenating the successive outputs of a linear
congruential generator (with a unique seed picked uniformly at random). We also apply our toolbox
to this scenario and for an RSA modulus N with a public exponent e and a linear congruential
generator with modulus M , our heuristic attacks are polynomial-time in log(N) for the M < Nm/e

(see details in Appendix A.2).
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A Details of the Computation for PKCS

A.1 Scenario 2: Truncated Linear Congruential Generator

Bounds for the Polynomials modulo N . We consider the set

P
f

= {f̃i1,...,in,i′1,...,i′n,i′′1 ,...,i′′n,j = xi11 · · ·x
in
n · y

i′1
1 · · · y

i′n
n · z

i′′1
1 · · · z

i′′n
n · f j mod N j

| 1 ≤ j < t, 0 ≤ i1 < e and deg(f̃i1,...,in,i′1,...,i′n,i′′1 ,...,i′′n,j) < te}

as a combinatorial class, with the size function S
f
(f̃i1,...,in,i′1,...,i′n,i′′1 ,...,i′′n,j) = i1 + · · ·+ in + i′1 + · · ·+

i′n + i′′1 + · · ·+ i′′n + je and the parameter function χ
f
(f̃i1,...,in,i′1,...,i′n,i′′1 ,...,i′′n,j) = j. The degree of each

variable xk, yk and zk is 1, whereas the degree of f is e. For the sake of simplicity, we can consider
0 6 j < t since the parameter function is equal to 0 on the elements such that j = 0. We thus
consider P

f
as

(ε+ Z + · · ·+ Ze−1)︸ ︷︷ ︸
x1

×
n∏
k=2

Seq(Z)︸ ︷︷ ︸
xk

×
(

n∏
k=1

Seq(Z)︸ ︷︷ ︸
yk,zk

)2

× Seq(uZe)︸ ︷︷ ︸
f

× Seq(Z)︸ ︷︷ ︸
dummy var,

which leads to the following generating function:

F (u, z) = (1 + z + · · ·+ ze−1) 1
(1− z)3n−1

1
1− uze

1
1− z .

We first take the partial derivative in u of this expression:

∂F

∂u
(u, z) = (1 + z + · · ·+ ze−1) 1

(1− z)3n
ze

(1− uze)2 ,

and then let u = 1 in this expression:

∂F

∂u
(u, z)

∣∣∣∣
u=1

= (1 + z + · · ·+ ze−1) 1
(1− z)3n

ze

(1− ze)2 ,

and take the equivalent when z → 1, using the formula 1− ze ∼ e(1− z):

∂F

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

1
e(1− z)3n+2 .

Applying Theorem 3, since te ∼ te− 1, one finally gets

χ
f,<te

(P
f
) ∼ 1

e(3n+ 1)!(te)
3n+1
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Bounds for the Polynomials modulo M . We consider the set

Pg = {g̃i1,...,in,i′1,...,i′n,i′′1 ,...,i′′n = gi11 · · · g
in−1
n−1 xn

iny
i′1
1 · · · y

i′n
n z

i′′1
1 · · · z

i′′n
n mod Mk

| 1 ≤ k = i1 + · · ·+ in−1 and deg(g̃i1,...,in,i′1,...,i′n,i′′1 ,...,i′′n) < te

as a combinatorial class, with the size function Sg (g̃i1,...,in,i′1,...,i′n,i′′1 ,...,i′′n) = i1 + · · ·+ in + i′1 + · · ·+
i′n + i′′1 + · · ·+ i′′n and the parameter χg (f̃i1,...,in,i′1,...,i′n,i′′1 ,...,i′′n) = i1 + · · ·+ in−1. The degree of each
variable xk, yk and zk is 1, as well as the degree of gk. For the sake of simplicity, we can consider
0 6 k since the parameter function is equal to 0 on the elements such that k = 0. We thus consider
Pg as

n−1∏
k=1

Seq(uZ)︸ ︷︷ ︸
gk

×Seq(Z)︸ ︷︷ ︸
xn

×
(

n∏
k=1

Seq(Z)︸ ︷︷ ︸
yk,zk

)2

× Seq(Z)︸ ︷︷ ︸
dummy var,

which leads to the following generating function:

G(u, z) = 1
(1− uz)n−1

( 1
1− z

)2n+1 1
1− z .

We first take the partial derivative in u of this expression:

∂G

∂u
(u, z) = (n− 1)z

(1− uz)n
1

(1− z)2n+2 ,

and then let u = 1 in this expression:

∂G

∂u
(u, z)

∣∣∣∣
u=1

= (n− 1)z
(1− z)3n+2 ,

and take the equivalent when z → 1:

∂G

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

n− 1
(1− z)3n+2 .

Applying Theorem 3, since te ∼ te− 1, one finally gets

χg,<te(Pg ) ∼ n− 1
(3n+ 1)!(te)

3n+1 .

Bounds for the Monomials modulo M . We consider the set

M = {x1
i1 . . . xn

iny1
i′1 . . . yn

i′nz1
i′′1 . . . zn

i′′n mod M `xγx+`yγy+`zγz

| `x = i1 + · · ·+ in, `y = i′1 + · · ·+ i′n, `z = i′′1 + · · ·+ i′′n

and 0 6 `x + `y + `z < te}

as a combinatorial class, with the size function

Sx(x1
i1 . . . xn

iny1
i′1 . . . yn

i′nz1
i′′1 . . . zn

i′′n) = `x + `y + `z
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and the parameter function

χx(x1
i1 . . . xn

iny1
i′1 . . . yn

i′nz1
i′′1 . . . zn

i′′n) = `xγx + `yγy + `zγz .

The degree of each variable xk, yk and zk is 1 but they have different lengths. We thus consider M
as

n∏
k=1

Seq(uγxZ)︸ ︷︷ ︸
xk

×
n∏
k=1

Seq(uγyZ)︸ ︷︷ ︸
yk

×
n∏
k=1

Seq(uγzZ)︸ ︷︷ ︸
zk

× Seq(Z)︸ ︷︷ ︸
dummy var,

which leads to the following generating function:

H(u, z) = 1
(1− uγxz)n

1
(1− uγyz)n

1
(1− uγzz)n

1
1− z .

We first take the partial derivative in u of this expression:

∂H

∂u
(u, z) =

(
γxn

u(1− uγxz) + γyn

u(1− uγyz) + γzn

u(1− uγzz) −
(γx + γy + γz)n

u

)
× 1

(1− uγxz)n(1− uγyz)n(1− uγzz)n
1

1− z ,

and then let u = 1 in this expression:

∂H

∂u
(u, z)

∣∣∣∣
u=1

=
((γx + γy + γz)n

1− z − (γx + γy + γz)n
) 1

(1− z)3n+1 ,

and take the equivalent when z → 1:

∂H

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

(γx + γy + γz)n
(1− z)3n+2 = n

(1− z)3n+2 .

Applying Theorem 3, since te ∼ te− 1, one finally gets

χx,<te(M ) ∼ n

(3n+ 1)!(te)
3n+1 .

Condition. If we denote by ν = χ
f,<te

(P
f
), µ = χg,<te(Pg ) and ξ = χx,<te(M ), the condition for

Coppersmith’s method is Nν ·Mµ > M ξ, where

ν

ξ − µ
=

χ
f,<te

(P
f
)

χx,<te(M )− χg,<te(Pg ) ∼z→1

1
e(3n+1)!(te)

3n+1

n
(3n+1)!(te)3n+1 − n−1

(3n+1)!(te)3n+1 ∼z→1

1
e
,

which leads to the expected bound M < N1/e.

A.2 Scenario 3: Multiple Ciphertexts

We assume that the adversary can control m pair of messages (as in the semantic security for
multiple ciphertexts, see e.g. [HJ12]) and that the randomizers used in all pkcs#1 v1.5 padding
are constructed by concatenating the outputs of a linear congruential generator (with a uniqueseed
picked uniformly at random). The adversary will choose two messages m0 and m1 of the same
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byte-length ` < k − 11 (where k is the byte length of the RSA modulus N) and will quey its
challenger m times on the pair (m0,m1). The challenger will pick at random a seed x1 of byte-length
ρ. It will compute

xi+1 = axi + b mod M

for i ∈ {2, . . . , n − 1} where n = (k − 3 − `)/ρ and M = 28ρ. The m challenge ciphertexts will
be ci = µ(mb, ri)e mod N where b is a bit picked uniformly at random by the challenger and the
randomizer ri is the concatenation of xin+1, . . . , x(i+1)n (for i ∈ {0, . . . , n− 1}). We have

µ(mb, ri) = 000216||r||0016||mb

= 000216||xin+1||xin+2|| . . . ||x(i+1)n||0016||mb

= (α̃1xin+1 + α̃2xin+2 + · · ·+ α̃nx(i+1)n + β̃)

where this last expression is the integer converted from the octet-string with the α̃i’s are known
public constant and β̃ is the integer converted from the string mb. As in the first attack scenario, if
we divide c by α̃1

e, we obtain

ci = (xin+1 + α2xin+2 + · · ·+ αnx(i+1)n + β)e mod N

for i ∈ {0, . . . , n− 1}, where αj = α̃j/α̃1 for j ∈ {2, . . . , n} and β = β̃/α̃1.

Description of the attack. The adversary is therefore looking for the solutions of the following
modular multivariate polynomial system: of monic polynomial equations:

f1 = (x1 + α2x2 + · · ·+ αnxn + β)e mod N
...

fm = (x(m−1)n+1 + α2x(m−1)n+2 + · · ·+ αnx(m−1)n+n + β)e mod N
g1 = x1 − ax2 + b mod M

...
gmn−1 = xmn−1 − axmn + b mod M

where β can be derived easily from the value mb. The attack consists in applying Coppersmith
Method for multivariate polynomials with two moduli (see Section 2) to the two systems derived
from the two possible values for mb.

Once again, the most complicated part is the choice of the collection of polynomials constructed
from the polynomials that occur in this system. Our analysis brought out the following polynomial
family (parameterized by some integer t ∈ N):

f̃i1,...,imn,j1,...,jm = xi11 . . . x
imn
mn · f

j1
1 . . . f jmm mod N j

with 1 ≤ jl < t, 0 ≤ iln+1 < e for 0 ≤ l < m and deg(f̃...) < te

g̃i1,...,in = gi11 . . . g
in−1
n−1 · x

in mod Mk

with 1 ≤ k = i1 + · · ·+ in−1 and deg(g̃...) < te .

As in the previous scenarios, the moduli N and M are coprime and the polynomials f̃i1,...,in,j
on one hand and the polynomials g̃i0,...,in on the other hand are linearly independent. We have
to assume that if the method succeeds, we will be able to recover the seed x1 from the set of
polynomials we will obtain:
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Heuristic 4 Let P denote the polynomial set

P =
{
f̃i1,...,imn,j1,...,jm |

1 ≤ j < t, 0 ≤ iln+1 < e for 0 ≤ l < m

deg(f̃...) < te

}
⋃{

g̃i1,...,in |
1 ≤ k = i1 + · · ·+ in−1

deg(g̃...) < te

}
Let G be a Groebner basis of the set of polynomials we get by applying Coppersmith’s method with
the polynomial set P. We assume that the seed x1 can be efficiently determined from G.

Theorem 9. Under Heuristic 4, given as inputs an RSA modulus N , the linear congruential
generator parameters a and b, two messages m0 and m1 and m pkcs#1 v1.5 ciphertext c = µ(mb, ri)
for some bit b ∈ {0, 1} such that the randomizers ri is the concatenation of x1, . . . , xmn (where x1 is
a random seed of size M and xi+1 = axi + b mod M for i ∈ N), we can recover the seed x1 (and
thus the bit b) in polynomial time in log(N) as soon as M < Nm/e.

Bounds for the Polynomials modulo N . We consider the set

P
f

= {f̃i1,...,imn,j1,...,jm = xi11 · · ·x
imn
mn · f

j1
1 . . . f jmm mod N j1+···+jm

| for 0 ≤ k < m, 1 ≤ jk < t, 0 ≤ ikn+1 < e

and deg(f̃i1,...,imn,j1,...,jm) = i1 + · · ·+ imn + (j1 + · · ·+ jm)e < te}

as a combinatorial class, with the size function S
f
(f̃i1,...,imn,j1,...,jm) = i1 + · · ·+ imn+ (j1 + · · ·+ jm)e

and the parameter function χ
f
(f̃i1,...,imn,j1,...,jm) = j1 + · · ·+ jm. The degree of each variable xk is 1,

whereas the degree of each polynomial fk is e.
We thus consider P

f
as(

(ε+ Z + · · ·+ Ze−1)︸ ︷︷ ︸
xkn+1

×
( n∏
`=2

Seq(Z)︸ ︷︷ ︸
xkn+`

)
× (uZe)Seq(uZe)︸ ︷︷ ︸

fk

)m
× Seq(Z)︸ ︷︷ ︸

dummy var,

which leads to the following generating function:

F (u, z) = (1 + z + · · ·+ ze−1)m 1
(1− z)m(n−1)

(uze)m

(1− uze)m
1

1− z
We first take the partial derivative in u of this expression:

∂F

∂u
(u, z) = (1 + z + · · ·+ ze−1)m 1

(1− z)m(n−1)+1
m(uze)m

u(1− uze)m+1 ,

and then let u = 1 in this expression:
∂F

∂u
(u, z)

∣∣∣∣
u=1

= (1 + z + · · ·+ ze−1)m 1
(1− z)m(n−1)+1

mzem

(1− ze)m+1 ,

and take the equivalent when z → 1, using the formula 1− ze ∼ e(1− z):
∂F

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

m

e(1− z)mn+2 .

Applying Theorem 3, since te ∼ te− 1, one finally gets

χ
f,<te

(P
f
) ∼ m

e(mn+ 1)!(te)
mn+1 .
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Bounds for the Polynomials modulo M . The computation is exactly the same as in Section 6.2
by simply replacing n by mn. We give it here for completeness. We consider the set

Pg = {g̃i1,...,imn = gi11 · · · g
imn−1
mn−1 · x

imn
mn mod Mk | 1 ≤ k = i1 + · · ·+ imn−1

and deg(g̃i1,...,imn) = i1 + · · ·+ imn < te}

as a combinatorial class, with the size function Sg (g̃i1,...,imn) = i1 + · · · + imn and the parameter
function χg (g̃i1,...,imn) = i1 + · · ·+ imn−1. The degree of each polynomial gk is 1, as well as the degree
of xmn. For the sake of simplicity, we can consider 0 6 k since the parameter function is equal to 0
on the elements such that k = 0. We thus consider Pg as

mn−1∏
k=1

Seq(uZ)︸ ︷︷ ︸
gk

×Seq(Z)︸ ︷︷ ︸
xmn

× Seq(Z)︸ ︷︷ ︸
dummy var,

which leads to the following generating function:

G(u, z) = 1
(1− uz)mn−1

1
1− z

1
1− z .

We first take the partial derivative in u of this expression:

∂G

∂u
(u, z) = (mn− 1)z

(1− uz)mn
1

(1− z)2 ,

and then let u = 1 in this expression:

∂G

∂u
(u, z)

∣∣∣∣
u=1

= (mn− 1)z
(1− z)mn+2 ,

and take the equivalent when z → 1:

∂G

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

mn− 1
(1− z)mn+2 .

Applying Theorem 3, since te ∼ te− 1, one finally gets

χg,<te(Pg ) ∼ mn− 1
(mn+ 1)!(te)

mn+1 .

Bounds for the Monomials modulo M . The computation is exactly the same as in Section 6.2
by simply replacing n by mn. We give it here for completeness. We consider the set

M = {x1
i1 . . . xmn

imn mod M i1+···+imn | 0 6 i1 + · · ·+ imn < te}

as a combinatorial class, with the size function Sx(x1
i1 . . . xmn

imn) = i1 + · · ·+imn and the parameter
function χx(x1

i1 . . . xmn
imn) = i1 + · · ·+ imn. The degree of each variable xk is 1. We thus consider

M as
mn∏
k=1

Seq(uZ)︸ ︷︷ ︸
xk

× Seq(Z)︸ ︷︷ ︸
dummy var,
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which leads to the following generating function:

H(u, z) = 1
(1− uz)mn

1
1− z .

We first take the partial derivative in u of this expression:

∂H

∂u
(u, z) = mnz

(1− uz)mn+1
1

1− z ,

and then let u = 1 in this expression:

∂H

∂u
(u, z)

∣∣∣∣
u=1

= mnz

(1− z)mn+2 ,

and take the equivalent when z → 1:

∂H

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

mn

(1− z)mn+2 .

Applying Theorem 3, since te ∼ te− 1, one finally gets

χx,<te(M ) ∼ mn

(mn+ 1)!(te)
mn+1 .

Condition. If we denote by ν = χ
f,<te

(P
f
), µ = χg,<te(Pg ) and ξ = χx,<te(M ), the condition for

Coppersmith’s method is Nν ·Mµ > M ξ, where

ν

ξ − µ
=

χ
f,<te

(P
f
)

χx,<te(M )− χg,<te(Pg )

∼
z→1

m
e(mn+1)!(te)

mn+1

mn
(mn+1)!(te)mn+1 − mn−1

(mn+1)!(te)mn+1 ∼z→1

m

e

,

which leads to the expected bound M < Nm/e.
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