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Abstract. At Crypto 2015, Blondeau, Peyrin and Wang proposed a

truncated-differential-based known-key attack on full PRESENT, a nib-

ble oriented lightweight blockcipher with a SPN structure. The truncated

difference they used is derived from the existing multidimensional linear

characteristics. An innovative technique of their work is the design of

a MITM layer added before the characteristic that covers extra rounds

with a complexity lower than that of a generic construction.

We notice that there are good linear hulls for bit-oriented block cipher Si-

mon corresponding to highly qualified truncated differential characteris-

tics. Based on these characteristics, we propose known-key distinguishers

on round-reduced Simon block cipher family, which is bit oriented and

has a Feistel structure. Similar to the MITM layer, we design a specific

start-from-the-middle method for pre-adding extra rounds with complex-

ities lower than generic bounds. With these techniques, we launch basic

known-key attacks on round-reduced Simon. We also involve some key

guessing technique and further extend the basic attacks to more rounds.

Our known-key attacks can reach as many as 29/32/38/48/63-rounds

of Simon32/48/64/96/128, which comes quite close to the full number

of rounds. To the best of our knowledge, these are the first known-key

results on the block cipher Simon.
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1 Introduction

Lightweight cryptographic primitives are designated for the implementation and

protection in resource-constrained environments such as RFID tags. The wide

use of smart cards and wireless sensor networks has largely stimulated the re-

search on lightweight block ciphers. During the past decade or so, a large number

of well designed lightweight block ciphers, such as PRESENT [1] mCrypton [2],



LED [3], Prince [4], Piccolo [5], KLEIN [6], TWINE [7], KATAN & KATANTAN

[8], HIGHT [9] etc., have been proposed providing reasonable trade-off between

the performance and security.

In 2013, NSA proposed a new family of lightweight block ciphers named Si-

mon [10,11]. As a Feistel structure based, bit oriented primitive, Simon eliminat-

ed the commonly used S-box substitutions and its round function only consists of

bitwise AND, XOR and rotation, leading to an optimized performance in hard-

ware. Ever since its proposal, Simon has drawn the attention of many researchers

and the security evaluation of Simon has become a hot topic in the community

of cryptology. Various cryptanalysis methods have been used to analyze Simon

[12,13,14,15,16,17,18,19,20,21,20,22,23,24,25]. These results focus on the security

of Simon under the classical secret single-key model. It is noticeable that block

ciphers are often adapted to build cryptographic hash functions with methods

such as the PGV schemes [26,27]. From this perspective, Simon is a natural can-

didate to build lightweight compression functions and hash functions. Therefore,

the resistance of Simon against known-key attacks is in close relationship with

the security of potential Simon-based hash functions as is proved in [28].

Known-key attacks (also referred as known-key distinguishers) on block ci-

phers were introduced by Knudsen and Rijmen at Asiacrypt 2007 [29]. Unlike

the setting of the conventional single-key model, the adversary in the known-key

model knows the randomly drawn key that the cipher operates with. With the

knowledge of the key, the adversary is supposed to find a non-random property

that an ideal cipher (a randomly drawn permutation) should not have.

In the original [29], the authors used the integral property and successfully

distinguished 7-round AES from a random permutation. This property works

quite well on AES-like block ciphers so that many refinements and extensions

emerged afterwards [30,31,32]. Recently at Asiacrypt 2014, Gilbert [33] eventu-

ally gives an integral-based known-key attack on full 10-round AES-128. Besides

the integral, other non-random properties can be applied as well for constructing

known-key attacks. There are known-key attacks using differential characteristics

[34,35], linear hulls [36], collisions [37,38,39] and so on.

Very recently at Crypto 2015, Blondeau, Peyrin and Wang [40] proposed a

truncated differential based known-key attack on full PRESENT, a SPN-based,

nibble oriented block cipher. The truncated differential characteristic they used

was first given in [41] and is derived from some multidimensional linear approx-

imations. Their innovative technique is the application of a meet-in-the-middle

(MITM) layer. The MITM layer can not only pre-add extra rounds, but also

collect conforming plaintexts deterministically. With some gradual matching al-

gorithm, the complexity of this deterministic data collection in the MITM layer

is much lower than that of the generic probabilistic method.
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Our Contributions. In this paper, we give an evaluation to the security of

Simon under the known-key model. More specifically, we show that the procedure

as developed for the known-key distinguisher on full PRESENT in [40] can be

applied to Simon, despite its quite different design. To achieve this goal, we

develop several specific methods to reach almost the full number of rounds of

Simon.

We derive truncated differential characteristics from some available linear

hulls used previously in secret single-key attacks using the methods of [41]. Sec-

ondly, although the gradual matching technique cannot work for the bit oriented

cipher Simon, we still manage to find a way to pre-add a MITM layer and deter-

ministically collect data with a lower complexity than the probabilistic generic

method.

With the characteristics and the MITM layer, we manage to launch our

basic known-key attacks on round-reduced Simon of all versions. These basic

attacks can reach at least as many rounds as the secret single-key recoveries and

can distinguish the cipher from a random permutation with significant success

probabilities.

The combination of truncated differentials and MITM has already enabled

Blondeau et al. to attack full PRESENT, but this is not the case for Simon. In

order to extend the basic attacks to more rounds, we lend the idea of Gilbert in

[33]. By involving some subkey guesses in the checking phase, we extend our basic

attacks by 5-7 rounds. As is thoroughly discussed in [33], these extended attacks

are non-generic and meaningful since they are “efficiently checkable”. Further-

more, thanks to the property of Simon, the extended attacks share exactly the

same success probabilities with their basic counterparts.

We summarize our main results in Table 1. There are 12 attacks numbered

as Attack 1-12 using different characteristics and targeting at different Simon

versions. To the best of our knowledge, these are the first known-key results on

Simon. We also implemented Attacks 1-3 that are targeting at Simon32 and their

complexities are practical. The results are in accordance with our deductions,

indicating the effectiveness of our attacks.

Organization of the Paper. In Section 2, we introduce the theoretical basis

and the general procedure of our attacks. It also involves a brief introduction

to the Simon blockcipher. Then, we detail our basic truncated-differential based

known-key attacks on Simon in Section 3. We discuss the method of extending

the basic attacks to more rounds in Section 4. The correctness of our attacks are

practically verified in Section 5. Finally, we conclude the whole paper in Section

6.
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Table 1. The Truncated Differential Based Known-Key Attacks on Round-Reduced

Simon

Simon Attack Rounds Complexity
Success Prob.

Chara.

Version No. Basic Extended Total Data Time Source

1 23 28 230 230 66.94% [25]*

32 2 23 28 32 230 230 89.25% [23]*

3 24 29 230 230 59.48% [25]*

4 24 30 246 246 99.99% [16]*

48 5 24 30 36 246 246 99.99% [23]*

6 25 31 246 246 99.86% [15]*

7 26 32 246 246 54.10% [25]

8 31 37 262 262 83.63% [16]*

64 9 32 38 42/44 262 262 99.97% [23]*

10 32 38 262 262 65.46% [23]*

96 11 41 48 52/54 294 294 89.09% [16]*

128 12 56 63 68/69/72 2126 2126 89.09% [16]*

*: These characteristics are also used by Chen et al. for key recoveries in [21].

2 Preliminary

In the first part of this section, we give an introduction to our theoretical basis,

a combination of [40] and [33]. Then, we describe the general procedure of the

truncated-differential-based known-key attacks. In the 3rd part of this section,

we briefly introduce Simon.

2.1 Combining Two Different Known-Key Attacks

The basic idea of our known-key attacks on Simon originates from the method

on full PRESENT in [40]. Our extended attacks are following the criteria giv-

en in [33] where the author extended the basic attack on 8-round AES to the

full 10-round version. Like all the attacks under the the known-key model, the

adversaries in [40] and [33] are given a white box access to an instance of the

encryption function associated with a known random key and its inverse. But

their purposes are slightly different.

The adversary in [33] aims at controlling simultaneously the inputs and the

outputs of the block cipher to achieve a non-random property that cannot be

acquired by replacing the blockcipher with a random permutation within the

same time complexity. As a formalization of the known-key model, [33] gives the

concept of “T -Intractable Relation” which we cite as Definition 1.

Definition 1. (T -Intractable Relation [33]) Let E : (K,X) ∈ {0, 1}k ×
{0, 1}n → EK(X) ∈ {0, 1}n denote a block cipher of block size n bits. Let N ≥ 1
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and R denote an integer and any relation over the set S of N -tuples of n-bit

blocks. R is said to be T -intractable relatively to E if, given any algorithm A′
that is given an oracle access to a perfect random permutation π of {0, 1}n and

its inverse, it is impossible for A to construct in time T ′ ≤ T two N -tuples

X ′ = (X ′i) and Y ′ = (Y ′i ) such that Yi = π(X ′i), i = 1 . . . N and X ′RY ′ with a

success probability p′ ≥ 1/2 over π and the random choices of A′. The computing

time T ′ of A′ is measured as an equivalent number of computations of E, with

the convention that the time needed for one oracle query to π or π−1 is equal to

1. Thus if q′ denotes the number of queries of A′ to π or π−1, q′ ≤ T ′.

Based on the T -Intractable Relation, [33] also gives a formal criterion for a non-

generic and meaningful known-key attack and we cite it as Definition 2.

Definition 2. (Known-Key Distinguisher) Let E : (K,X) ∈ {0, 1}k ×
{0, 1}n → EK(X) ∈ {0, 1}n denote a block cipher of block size n bits. A known-

key distinguisher (R,A) of order N ≥ 1 consists of (1) a relation R over the

N -tuples of n-bit blocks; (2) An algorithm A that on input a k-bit key K pro-

duces in time TA, i.e. in time equivalent with TA computations of E, an N -tuple

X = (Xi)i=1,...,N of plaintext blocks and an N -tuple Y = (Y i)i=1,...,N of cipher-

text blocks related by Yi = EK(Xi), for which the following conditions must be

met:

(i) The relation R must be TA-intractable relatively to E.

(ii) The validity of R must be efficiently checkable: this requirement is formalized

by incorporating the time for checking whether two N -tuples are related by

R in the computing time TA of algorithm A.

It is specifically claimed in [33] that the criterion (ii) is avoiding specifying an

explicit upper bound on the time complexity for checking whether two N -tuples

are related by R. It is restricted that, in order to make the known-key attack

non-generic, the time complexity for checking R should be no more than the N

computations of E. The known-key attack on AES in [33] follows strictly the

criteria in Definition 2. The integral-based property is suitable for the start-from-

the-middle strategy, so that the adversary can construct the N -tuple input &

output blocks with exactly N computations of E. Therefore, the relation chosen

in [33] is definitely N -intractable.

The scenario for the known-key attack on full PRESENT in [40] is quite

straightforward. In [40], there is an oracle O that can be either a full PRESENT

primitive EK (the master key K is known) or a random permutation π. The

adversary needs to distinguish whether O = EK or O = π with N queries of O at

a success probability PS > 50%. Although this known-key attack seems different

from that of [33], we believe that they are not contradicting. The distinguisher of

[40] is based on some truncated differential property. Following the interpretation

of [33], the relation R of this attack can be described as:
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Relation R in [40]: (Xi)i=1,...,NR(Yi)i=1,...,N iff

– X1, . . . , XN share the same value at bits [52, 55]

– There are more than τ out of the
(
N
2

)
ciphertext pairs (Yi, Yj)1≤i<j≤N col-

liding at bits [52, 55]

The τ parameter is based on the truncated differential characteristcs of PRESENT

and is affected by the selection of N . This relation R of PRESENT is not suit-

able for the start-from-the-middle strategy and there is no characteristic that can

cover all 31 rounds of PRESENT. As a result, [40] has to add a 7-round MIT-

M layer before a 24-round truncated differential characteristic to collect the N

input blocks needed. The procedure of the known-key attack on full PRESENT

can be summarized into three phases as follows:

Preparation: Collect the conforming N -tuple plaintexts X = (X1, . . . XN )

Construction: Construct the N -tuple ciphertexts Y = (Y1, . . . , YN ) by query-

ing O as Yi = O(Xi) for i = 1, . . . , N .

Checking: Check whether there is XRY. If there is XRY, make the judgment

O = EK ; otherwise, O = π.

The probability of XRY when O = EK is denoted by p0 and that when O = π

is denoted by p1. So the success probability of this known-key attack is PS =

2−1[p0 + (1 − p1)]. For full PRESENT, according to [40], there is PS = 50.5%,

higher than that of the random guess (50%) so the attack is meaningful.

It might be doubtful that the preparation phase of this attack also involves

the master key K and it requires some computations as well. But we insist that

theR-relation of [40] can still be regarded asN -intractable since the construction

phase is still dominating the overall complexity and the N plaintext&ciphertext

pairs are generated at the lowest possible complexity, which is exactly N queries

to O.

In our basic attacks on Simon, we strictly follows the procedure in [40]. As

to the extended attacks, the preparation and construction phases are typically

unchanged while the checking phase will involve some key guesses making the

complexity increase. But we can prove that this increment does not violate the

criterion (ii) of Definition 2 so our extended attacks are still meaningful.

2.2 The Truncated Differential Based Known-Key Attack

We give a generalized description of the method derived in [40]. Some notations

used throughout this paper are as follows:

EK : The block cipher controlled by the master key K.

n: The block size of EK .

π: A random permutation. π : Fn2 → Fn2 .
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X: A n-bit state is denoted by a capital letter (and similarly, the n-bit inter-

mediate state after r processed encryption rounds of EK).

X[i]: The i-th bit of the state X, where i = 0, 1, . . . , n− 1, from the LSB (the

leftmost bit of X) to MSB (the rightmost bit of X).

I: A sequence of indices I = (is, . . . , i1) where 0 ≤ i0 < . . . < is ≤ n − 1.

Specifically, we denote the bit sequence X[I] = (X[is], . . . , X[i0]).

⊕ ∧ ∨ ≪: Denote bitwise XOR by⊕, AND by
∧

, OR by
∨

, cyclic left rotation

by ≪.

We consider that EK starts from Sr0 (plaintext) and ends at Sr2 (ciphertext).

As set out in (1), the intermediate state Sr1 divides EK into two parts: the TD

part and the MITM part.

EK : Sr0
MITM−−−−−→
E

(0)
K

Sr1
TD−−−→
E

(1)
K

Sr2 (1)

TD. A truncated differential characteristic is placed in the TD part. For two

predefined sequences I1, I2,

I1 = (is, . . . , i1), s ≥ 1 (2)

I2 = (jq, . . . , j1), q ≥ 1, (3)

the corresponding truncated differential characteristic can be described as Prop-

erty 1.

Property 1. For two n-bit intermediate states (Sr1 , S
′
r1) satisfying

Sr1 [I1] = S′r1 [I1], (4)

the corresponding (Sr2 , S
′
r2) after r2−r1 rounds of encryptions conforms Sr2 [I2] =

S′r2 [I2] with probability

PTD = Pr
{
Sr2 [I2] = S′r2 [I2]

}
= 2−q · (1 + C), C > 0 (5)

If (Sr2 , S
′
r2) are generated by a random permutation π, the probability Sr2 [I2] =

S′r2 [I2] is apparently 2−q < PTD. Therefore, if we can find sufficiently many pairs

(Sr1 , S
′
r1) conforming (4), we can utilize Property 1 to distinguish EK from a

random permutation.

MITM. For a predefined I0 s.t. |I0| = |I1| = s, the MITM part aims at finding

N plaintexts S
(1)
r0 , . . . , S

(N)
r0 satisfying{

S(i)
r0 [I0] = Cst0

S(i)
r1 [I1] = Cst1

i ∈ [1, N ], (6)

where Cst0 and Cst1 are constant values of Fs2. In this way,
(
N
2

)
≈ N2/2 pairs

conforming (4) are acquired. The trivial way to construct the structure 6 requires
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2sN trials of Sr0 → Sr1 . This method is probabilistic rather than deterministic.

Furthermore, the generic 2sN computations of Sr0 → Sr1 are likely to exceed

the N queries to O, making our attacks unavailable. Therefore, the authors of

[40] used the match in the middle strategy as shown in (7).

Cst0 = Sr0 [I0]
Encrypt−−−−−→ Srm

Sub−Nibble←−−−−−−−→
Matching

Xrm
Decrypt←−−−−− Sr1 [I1] = Cst1 (7)

They start from the Sr0 [I0] and Sr1 [I1], and match at the Sub-Nibble layer in the

middle. For the SPN structure based, nibble-oriented PRESENT, the Sub-Nibble

layer is only 16 parallelised 4-bit Sboxes. The intermediate state Srm (r0 < rm <

r1) can be deduced nibble by nibble using the gradual matching technique [40].

After S
(1)
rm , . . . , S

(N)
rm are acquired, the corresponding plaintexts S

(1)
r0 , . . . , S

(N)
r0

can be deduced through partial decryptions. This method is deterministic. The

complexity of the partial decryption is only about 0.5N , and the computations

of Sr0 → Sr1 and the complexity of the gradual matching are even lower. So the

overall complexity of this deterministic method is lower than the generic 2sN .

With the predefined I0, I1, I2, the relation of the known key attack can be

defined as

Relation R: (S
(i)
r0 )i=1,...,NR(S

(i)
r2 )i=1,...,N iff

– S
(1)
r0 , . . . , S

(N)
r0 share the same value Cst0 at bits I0

– There are more than τ out of the
(
N
2

)
ciphertext pairs (S

(i)
r2 , S

(j)
r2 )1≤i<j≤N

colliding at bits I2

Following the description in Section 2.1, the 3 phases of the truncated-differential-

based known-key attacks can be summarized as follows:

Preparation: Collect the N specific plaintexts:

1. Deduce the plaintexts S
(1)
r0 , . . . , S

(N)
r0 conforming (6).

Construction: Acquire the ciphertexts from the oracle:

2. Query the oracle for the ciphertexts S
(i)
r2 = O(S

(i)
r0 ) for i = 1, . . . , N .

Checking: Check whether the plaintext&ciphertext pairs conform R:

3. Count for ψ, the number of ciphertext pairs colliding on Sr2 [I2]:

ψ := #
{

(S(i)
r2 , S

(j)
r2 ) : S(i)

r2 [I2] = S(j)
r2 [I2], 1 ≤ i < j ≤ N

}
4. If ψ > τ , we conclude O = EK ; otherwise, O = π.

Let NS =
(
N
2

)
≈ N2/2 be the total number of ciphertext pairs. Apparently we

have ψ ≤ NS . We define the two probabilities Pr0 and Pr1 as

Pr0 := Pr{ψ > τ |O = EK} (8)

Pr1 := Pr{ψ ≤ τ |O = π}. (9)
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Since O can be either EK or π with equal chances, the success probability of

this known-key attack can be determined as

PS =
Pr0 + Pr1

2
. (10)

The known-key attack can only be regarded as “effective” when PS > 0.5. This

requires a proper assignment of the τ value.
(10) is a precise evaluation to the success probability PS . But the parame-

ters Pr0 and Pr1 defined in (8) and (9) are hard to acquire other than running
the experiments for many times, which is impractical. Therefore, based on some
rational assumptions, [41,40] give a method to determine both τ and PS simul-
taneously with N , C, q. They assume that: for O = EK , the variable ψ follows
the normal distribution Norm(µR, σ

2
R); for O = π, ψ ∼ Norm(µW , σ

2
W ) where{

µR = NS · 2−q · (1 + C)

µW = NS · 2−q

{
σ2
R = NS · 2−q · (1 + C) ·

[
1− 2−q(1 + C)

]
σ2
W = NS · 2−q ·

(
1− 2−q) (11)

According to [40], the success probability of this attack (PS) is

PS = Φ(
µR − µW
σR + σW

) ≈ Φ(

√
2−q ·NS · C

2
). (12)

and the τ parameter in Step 4 can be decided accordingly as:

τ = µR − σR · Φ−1(PS) = µW + σW · Φ−1(PS). (13)

The computations in the checking phase are negligible, so the overall complexity

is dominated by the N queries to the oracle in the construction phase.

Although the computation of PS in (12) is only an approximation compared

with 10, (12) is more suitable for theoretical deductions. Therefore, we use (12)

to deduce the theoretical success probabilities in Table 1, as well as the τ value

in (13). And, in Section 5, we use (10) to get the exact success probability with

the experimentally acquired Pr0 and Pr1.

2.3 Brief Introduction to Simon

Simon is a family of lightweight block ciphers with a Feistel structure. Ac-
cording to the block size n, we denote the 5 Simon versions as Simonn where
n = 32, 48, 64, 96, 128. The intermediate state Sr consists of two n

2 -bit words

xr+1, xr ∈ F
n
2
2 as Sr = (xr+1, xr). Therefore we have xr = Sr[

n
2 − 1, . . . , 0] and

xr+1 = Sr[n− 1, . . . , n2 ]. The r-th (r = 0, 1, . . .) round function of Simonn is

Sr = (xr+1, xr)
r-th Round−−−−−−−→ Sr+1 = (xr+2, xr+1) = (F (xr+1)⊕ xr ⊕ kr, xr+1) (14)

where F : F
n
2
2 → F

n
2
2 ,

F (x) = ((x≪ 8) ∧ (x≪ 1))⊕ (x≪ 2). (15)
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The kr in (14) is the round key generated with the key schedule. The key schedule

as well as other details of Simon is not used in this paper and we refer interested

readers to [10].

3 Basic Known-Key Attacks on Simon

The basic known-key attacks on Simon follow the procedure summarized in

Section 2.2. We first deduce the truncated differential for the TD part based on

the existing linear approximations. Then, we introduce our deterministic method

for constructing conforming plaintexts within the MITM part. In the third part,

we describe the detailed procedure of our known-key attacks on different Simon

versions.

3.1 The Truncated Differential Characteristics in the TD Part

A large number of highly qualified linear characteristics for Simon have been

found in recent works. Based on these linear approximations, many (secret)

single-key attacks are proposed.

We define the operation � : Fn2 × Fn2 → F2 as

X � Y :=

n−1⊕
i=0

(X[i] ∧ Y [i])

A n-bit word X can also be determined with the set B(X) containing all the

indices of the active bits of X:

B(X) := {i ∈ [0, n− 1] : X[i] = 1} .

and we have

X � Y =
⊕

i∈B(X)

Y [i]

For a linear hull (Γ1, Γ2) of F : Fn2 → Fn2 , its correlation, denoted by cor(Γ1, Γ2),

is defined as

cor(Γ1, Γ2) := Pr [(Γ1 �X)⊕ (Γ2 � F (X)) = 0]

− Pr [(Γ1 �X)⊕ (Γ2 � F (X)) = 1]

If we have s linearly independent Γ1’s, denoted by Γ 1
1 , . . . , Γ

s
1 , and q linearly

independent Γ2’s, denoted by Γ 1
2 , . . . , Γ

q
2 , any of the 2s+q linear combinations

(Γ
(a1,...,as)
1 , Γ

(b1,...,bq)
2 ) defined as

Γ
(a1,...,as)
1 = a1Γ

1
1 ⊕ . . .⊕ asΓ s1 ,

Γ
(b1,...,bq)
2 = b1Γ

1
2 ⊕ . . .⊕ bqΓ

q
2
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where ai, bj ∈ {0, 1}, i ∈ [1, s], j ∈ [1, q], can still be regarded as a linear approx-

imation. Combining the 2s+q linear approximations makes a multidimensional

linear approximation which can be transformed to a truncated differential char-

acteristic according to Theorem 1.

Theorem 1. ([41]) Let Fn2 = Fs2 × Ft2 = Fq2 × Fr2 and

F : Fn2 → Fn2 , x = (xs, xt)→ (yq, yr)

Given a multidimensional approximation [(as, 0), (bq, 0)]as∈Fs
2,bq∈F

q
2

with capacity

C =
∑

(as,bq) 6=(0,0)

cor2 [(as � xs)⊕ (bq � yq)] ,

and a truncated differential composed of 2t input differences (0, σt) ∈ {0} × Ft2,

and 2r output differences (0, γr) ∈ {0} × Fr2 with probability

PTD =
1

2q

∑
(σt,γr)∈Ft

2×Fr
2

P [(0, σt)→ (0, γr)]

where P [(0, σt)→ (0, γr)] = 2−n# {x ∈ Fn2 : F (x)⊕ F (x⊕ (0, σt)) = (0, γr)}. We

have

PTD = 2−q(C + 1).

As to traditional linear hulls for Simon, we have s = q = 1 and Theorem 1 is

still applicable as has been proved in [41]. Suppose that a linear hull (Γ1, Γ2) is

placed at the TD part of EK in (1). Its correlation is cor(Γ1, Γ2) defined as

cor(Γ1, Γ2) = Pr [(Γ1 � Sr1)⊕ (Γ2 � Sr2) = 0]

− Pr [(Γ1 � Sr1)⊕ (Γ2 � Sr2) = 1]

and its capacity can also be acquired as C = 2−1 · cor2(Γ1, Γ2). Then, accord-

ing to Theorem 1, we can derive a truncated differential characteristic having

Property 2.

Property 2. For a pair (Sr1 , S
′
r1) satisfying Γ1�Sr1 = Γ1�S′r1 , their correspond-

ing (Sr2 , Sr2) will have the property

Pr
[
Γ2 � Sr2 = Γ2 � S′r2

]
= PTD = 2−1(1 + C).

In this way, all existing linear hulls of Simon can be transformed to truncated

differential characteristics that can be used for our known-key attacks.
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3.2 The Data Collections in the MITM Part

The MITM part of Simon also aims at constructing plaintexts S
(1)
r0 , . . . , S

(N)
r0

and their corresponding S
(1)
r1 , . . . , S

(N)
r1 satisfying{

S(i)
r0 [λ] = 0

Γ1 � S(i)
r1 = 0

i ∈ [1, N ] (16)

where λ ∈ [0, n− 1] is a predefined index. Apparently, the probabilistic method

for acquiring these plaintexts requires 2N queries of Sr0 → Sr1 and we are going

to propose a deterministic method for data collections with lower complexity

than the generic bound.

Unfortunately, there is no gradual matching for bit-oriented Simon. Instead

of matching in the middle, we use the start from the middle strategy as shown

in (17),

Sr0 [λ]
Decrypt←−−−−− Srm

Encrypt−−−−−→ Γ1 � Sr1 . (17)

Our method is based on Observation 1

Observation 1 Let v = (v0, . . . , vn) where v0, . . . , vn are boolean variables.

Supposing that we have a boolean function F s.t.: for some i ∈ [0, n], the al-

gebraic normal form (ANF) of F can be regarded as:

F (v) = vi +G (18)

where G ∈ F2[v0, . . . , vi−1, vi+1, . . . , vn] is irrelevant to the variable vi. Then, we

can nullify F by modifying v to v′ defined as

v′[j] =

{
v[j], j 6= i

G, j = i
(19)

With this modification, we have F (v′) = 0. In this case, we refer vi as a “linear

variable” of F .

Linear variables do widely occur in primitives with low-degree updating func-

tions. Dinur and Shamir have already used linear variables to nullify the crucial

bits and successfully launched dynamic cube key recovery attacks on the stream

cipher Grain-128 [42,43].

Apparently, both of the two bits Sr0 [λ] and Γ1�Sr1 in (17) are boolean func-

tions of the intermediate state Srm . The knowledge of the whole ANF in (18)

is essential for the key recoveries in [42,43]. Even with very few rounds of itera-

tions, the ANFs of Simon’s intermediate bits will become extremely complicated

which barricades us from further extensions. But in fact, the explicit expressions

of the ANFs are unnecessary for our known-key attacks. We only need to know

two indices u and v such that: Srm [u] is a linear variable of Γ2 � Sr1 and Srm [v]

is a linear variable of Sr0 [λ]. Therefore, instead of deducing ANFs, we identify

available pairs (u, v) in a probabilistic manner:

12



1. We define a sufficiently large integer T as the test strength (for example

T = 213).
2. For all of the (u, v) pairs, which is n · (n − 1) in total, we do the following

substeps:
(a) We run Algorithm 1 with inputs ((u, v), T )
(b) If Algorithm 1 returns 1, (u, v) is available with a probability 1 − 2−T ;

otherwise, (u, v) is unavailable with probability 1.

As can be seen (15), the updating function of Simon is only of degree 2 and

its linear diffusion is also weak, enabling us to find linear variables after several

rounds. Therefore, our MITM part for Simon can pre-add at least 9 rounds to

the truncated differential characteristics.

Algorithm 1: Identify whether a candidate (u, v) is available.

Input: Candidate pair (u, v) ∈ Zn × Zn, u 6= v; the test strength T ∈ Z+.

Output: 1 (if (u, v) is available) or 0 (if (u, v) is unavailable).

1: Initialize γ ← 1.

2: for i = 1, . . . , T do

3: Randomly pick a intermediate state Srm and a masterkey K.

4: Compute from Srm and acquire the bit Γ2 � Sr1 .

5: Update the v-th bit of Srm as Srm [v]← Srm [v]⊕ (Γ2 � Sr1).

6: Compute from Srm and acquire the bit Sr0 [λ].

7: Update the u-th bit of Srm as Srm [u]← Srm [v]⊕ Sr0 [λ].

8: Compute from Srm and acquire both Sr0 [λ] and Γ2 � Sr1 .

9: if Sr0 [λ] = Γ2 � Sr1 = 0 then

10: Continue;

11: else

12: Assign γ ← 0 and break.

13: end if

14: end for

15: Return γ.

The plaintexts we need, should conform (16) which is a 2-bit filter, so there

are only 2n−2 available. With (u, v) settled (supposing that 0 ≤ u < v ≤ n− 1),

we claim that, for all N ≤ 2n−2, we can deterministically collect N available

plaintexts with MITM(λ, Γ1, u, v) described as in Algorithm 2.

The complexity of this data collection is no more than 1.5N computations

of Sr0 → Sr1 , lower than the generic bound 2N . Furthermore, since the ratio

(r1 − r0)/(r2 − r0) of our attacks is much smaller than (1.5)−1 = 2
3 , this 1.5N

computations of Sr0 → Sr1 is significantly lower than that of the N queries of O
in the construction phase. Step 2 of Algorithm 2 makes sure that the plaintexts

are distinct for all N ≤ 2n−2 and the procedure is deterministic.

13



Algorithm 2: Construct Available Plaintexts in the MITM Part

MITM(λ, Γ1, u, v)

Input: The targeted bit position λ. The number of plaintexts N . The input mask

Γ1. The available (u, v) ∈ Zn × Zn corresponding to Γ1 and λ. The unknown

oracle O ∈ {EK , π}
Output: The plaintexts S

(1)
r0 , . . . , S

(N)
r0 conforming (16).

1: Define the sequence Im := {x ∈ [0, n− 1] : x 6= u, x 6= v}.
2: Select N Srm ’s, denoted as S

(1)
rm , . . . , S

(N)
rm that are mutually different in bits

Srm [Im].

3: for i = 1, . . . , N do

4: Compute from S
(i)
rm to the bit Γ1 � S(i)

r1 and update

S
(i)
rm [u]← Srm [u]⊕ (Γ1 � S(i)

r1 ).

5: Compute backward from S
(i)
rm to the bit S

(i)
r0 [λ] and update

S
(i)
rm [v]← Srm [v]⊕ S(i)

r0 [λ].

6: end for

7: for i = 1, . . . , N do

8: Compute from S
(i)
rm the plaintext S

(i)
r0 .

9: end for

3.3 The Basic Known-Key Attacks on Simon

The truncated differential characteristics we used are derived from the existing

linear hulls which have been verified by previous secret single-key attacks such

as [21,25]. According to Section 2.2, a truncated differential characteristic can be

determined by the parameters: Γ1, Γ2, C and r2 − r1. According to Section 3.2,

the MITM part can be determined by the parameters: λ, u, v, r1− rm, rm− r0.

The relation R of the basic attacks are defined as

Relation R: (S
(i)
r0 )i=1,...,NR(S

(i)
r2 )i=1,...,N iff

– S
(1)
r0 , . . . , S

(N)
r0 share the same value 0 at bit λ;

– There are more than τ out of the
(
N
2

)
ciphertext pairs (S

(i)
r2 , S

(j)
r2 )1≤i<j≤N

satisfying Γ2 � S(i)
r2 = Γ2 � S(j)

r2 .

The attack procedure on Simonn is as follows:

1. Collect N (N ≤ 2n−2) plaintexts S
(1)
r0 , . . . , S

(N)
r0 = MITM(λ, Γ1, u, v) using

Algorithm 2. (Preparation)

2. Query the oracle O for the ciphertexts S
(i)
r2 = O(S

(i)
r0 ) for i = 1, . . . , N .

(Construction)

3. Assign a counter m = 0. (Checking)

4. For i = 1, . . . , N , if Γ2 � S(i)
r2 = 0, update m← m+ 1. (Checking)

5. Assign ψ ←
(
m
2

)
+
(
N−m

2

)
. (Checking)

6. If ψ > τ , make the judgment O = EK ; otherwise, O = π. (Checking)
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The complexity of the construction phase is dominated by the N queries to the

oracle O in Step 2, which is also the overall complexity of the whole known-

key attack. The checking phase only involves the XOR operations of computing

Γ2 � S(i)
r2 = 0 for i = 1, . . . , N whose complexity is much lower than that of the

construction phase.

The success probability PS and the τ parameter can be approximated with

the method in Section 2.2.

Detailed parameters of our basic attacks are shown in Table 2. The attacks

can mount to r2 − r0 rounds, which is equal to the summation of the numbers

in the 3rd, 4th and 11th column.

Note: The characteristics of Attack 1 and Attack 2 are in fact the same. The

(Γ1, Γ2) of Attack 1 is only a cyclic left rotation of that of Attack 2. The sig-

nificant difference in C results from different trials and approximation methods.

We will show later in our experiments that the approximation of [25] is more

precise and that of [23] is a little too optimistic.

Table 2. Basic Truncated Differential Based Known-Key Attacks on Simonn where

n is the block size. The PS can be acquired with the data complexity N = 2n−2 for

n = 32, 48, 64, 96, 128.

n No.
MITM TD

PSrm − r0 r1 − rm λ u v B(Γ1) B(Γ2) C r2 − r1 Source

1 5 5 31 14 7 22 14 2−29.69 13 [25]* 66.94%

32 2 5 5 28 13 4 21 13 2−28.19 13 [23]* 89.25%

3 5 5 23 8 15 0 24, 6 2−30.56 14 [25]* 59.48%

4 6 3 29 7 29 43, 35, 31, 17,9 29, 19, 11, 7, 3 2−42.11 15 [16]* 99.99%

48 5 6 3 47 6 47 42, 38, 30, 16 29, 22, 20, 18, 6 2−40.28 15 [23]* 99.99%

6 6 3 30 17 30 45, 29, 25, 23 29, 25, 23 2−42.92 16 [15]* 99.86%

7 6 3 24 18 24 46, 38, 30, 26, 0 24, 22, 16, 14, 6, 2 2−47.78 17 [25] 54.10%

8 6 4 33 22 57 56, 52, 22 54, 24, 20 2−60.52 21 [16]* 83.63%

64 9 6 5 53 30 45 38 32, 30, 6, 2 2−58.72 21 [23]* 99.97%

10 6 4 37 3 61 63, 59, 35, 29 32, 2, 1 2−61.83 22 [23]* 65.46%

96 11 7 4 51 44 49 90, 86, 82, 50, 36 94, 90, 50, 40, 0 2−92.2 30 [16]* 89.09%

128 12 8 7 64 2 64 126, 122, 66, 60 124, 62, 58, 2, 0 2−124.6 41 [16]* 89.09%

*: These characteristics are also used by Chen et al. for key recoveries in [21].

The ALH in [21] has ALH = 2−2 · C.

4 Further Extension of the Basic Attacks

In [33], Gilbert extends the basic 8-round attack on AES to 10 rounds by involv-

ing some subkey guesses in the checking phase. He proved that: as long as the

complexity of the checking phase is significantly lower than that of the construc-

tion phase, the known-key distinguishers can still be meaningful. This criterion

is formally stated in (ii) of Definition 2. We can also apply the method in [33]
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to extend the basic distinguishers forward and backward. After the extension,

the block cipher EK in (1) is now transformed to (20)

EK : Srb
BExt−−−→
E

(b)
K

Sr0
MITM−−−−−→
E

(0)
K

Sr1
TD−−−→
E

(1)
K

Sr2
FExt−−−→
E

(f)
K

Srf (20)

where BExt is short for “Backward Extension” and FExt for “Forward Exten-

sion”.

In the extended attacks, we are still using the collision properties of the two

bits Sr0 [λ] and Γ2 � Sr2 . To acquire these two bits, some subkey bits, kb and

kf , are to be guessed in the checking phase so that we can acquire Sr0 [λ] and

Γ2 � Sr2 through partial encryptions & decryptions denoted as

Sr0 [λ] = P (kb, Srb), Γ2 � Sr2 = Q(kf , Srf ). (21)

The selection of kb makes sure that there is only one α ∈ {0, 1}|kb| conforming

P (α, S
(i)
rb ) = 0 for all i = 1, . . . , N . The correct assignment of kf should enable

us to acquire the desired ψ parameter at the lowest cost. The determinations of

kb and kf are to be detailed in Section 4.2. The computation of P requires no

more than r0−rb
rf−rb computations while Q requires

rf−r2
rf−rb . Therefore, the relation

R of this attack is now transformed as

Relation R: (S
(i)
rb )i=1,...,NR(S

(i)
rf )i=1,...,N iff there are bit strings α ∈ F|kb|2 and

β ∈ F|kf |2 conforming to:

– P (α, S
(i)
rb ) = 0 for all i = 1, . . . , N ;

– There are more than τ out of the
(
N
2

)
ciphertext pairs (S

(i)
rf , S

(j)
rf )1≤i<j≤N

satisfying Q(β, S
(i)
rf ) = Q(β, S

(j)
rf ).

The procedure of this extended attack will be changed accordingly as follows:

1. Collect the N (N ≤ 2n−2) intermediate states satisfying (16) and compute

backward for their plaintexts S
(1)
rb , . . . , S

(N)
rb . (Preparation)

2. Query the oracle O for the ciphertexts S
(i)
r2 = O(S

(i)
r0 ) for i = 1, . . . , N .

(Construction)
3. Set a table T consisting of 2|kf | counters and initiate them to 0 (T [s] ← 0

for all s = 0, . . . , 2|kb|+|kf | − 1). (Checking)
4. Initialize a flag f← 0.
5. For the α = 0, . . . , 2|kb| − 1, we do the following substeps: (Checking)

(a) For all i = 1, . . . , N , if for any P (α, S
(i)
rb ) 6= 0, then continue.

(b) Assign f← 1 and break;
6. For β = 0, . . . , 2|kf | − 1, we do the following substeps: (Checking)

(a) Initialize a m← 0.
(b) For all i = 1, . . . , N , if Q(β, S

(i)
rf ) = 0, update m← m+ 1.

(c) Update T [β]←
(
m
2

)
+
(
N−m

2

)
.

7. Assign ψ ← max T . (Checking)
8. If ψ > τ and f = 1, make the judgment O = EK ; otherwise, O = π.

(Checking)
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4.1 The Complexity Analysis of the Extended Attacks

The preparation and construction phases of the extended attack resemble that

of the basic attack and the overall complexity is still dominated by the N times

of O queries in the construction phase.

The complexity of the checking phase, denoted as θ, is somewhat complicated.

With the subkey bits kb and kf involved, the complexity of the checking phase

has largely increased. The more extension r0−rb (rf−r2) gets, the bigger the key

length |kb| (|kf |) will be and the complexity θ will grow accordingly. According

to (ii) in Definition 2, the extended distinguishers can still be meaningful as

long as the relation R is “efficiently checkable”. This criterion restricts that the

complexity of the checking phase should be lower than that of the construction

phase. In other words, we should make sure θ < N .

The checking phase complexity θ can be estimated step by step. For the

inappropriate assignment of α ∈ {0, 1}|kb|, Step 5.(a) will run averaging

2−NN +

N∑
i=1

(i2i) ≈ 1

1− 2−1
= 2

computations P before continuing to α+ 1. Such an assignment of α can reach

Step 5.(b) with a negligible probability 2−N . So the complexity of Step 2 is

bounded by [
2 · (2|kb| − 1) +N

]
· r0 − rb
rf − rb

.

Step 6 requires 2|kf | · N computations of Srf → Sr2 . So the overall complexity

of the attack can be approximated as

θ = (2|kb|+1 − 2 +N) · r0 − rb
rf − rb

+ 2|kf | ·N · rf − r2
rf − rb

≈ N · 2|kf | · (rf − r2) + (r0 − rb)
rf − rb

+ 2|kb|+1 · r0 − rb
rf − rb

(22)

The memory complexity of the extended attacks is bounded by the size of T
which is 2|kf |.

In order to keep θ < N , we restrict kb and kf to conform (23).
|kb| < logN

|kf | < log
rf − rb

rf − r2 + r0 − rb
(23)

4.2 Determine kb and kf

For any extension rb and rf , we need to determine the corresponding key bits

kb and kf required for the computation of the targeted Sr0 [λ] and Γ2 � Sr2
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respectively. This involves analyzing the ANFs of the targeted bits and is similar

to the method used by Dinur et al. in [43] to determine the key guesses for full

Grain-128.

For the backward extension, we need to compute the targeted state bit Sr0 [λ]

precisely and kb should be the subkey bits sufficient and necessary for the com-

putation. The sufficiency requires that the knowledge of kb is well enough to

acquire Sr0 [λ]. The necessity restricts that: for any wrong guess of kb, denoted

as α, it should be impossible for the N plaintexts to conform P (α, S
(i)
rb ) = 0 for

i = 1, . . . , N . The computation of the whole state Sr0 involves the n
2 -bit round

keys, denoted as Krb , . . . ,Kr0−1, kb, and obviously kb is only a part of them. We

identify the kb by analyzing the ANF of Sr0 [λ] as follows.

For i ∈ [rb, r0−1], we assign its j-th bit (j ∈ [0, n2−1]) with a symbolic boolean

variable xn
2 ·i+j such that Ki[j] = xn

2 ·i+j . The n plaintext bits of Sr0 are assigned

to n boolean variables v0, . . . , vn−1 such that Srb [i] = vi for i = 0, . . . , n − 1.

With this Srb and round keys Krb , . . . ,Kr0−1, we run the encryption procedure

of the first r0 − rb rounds and acquire the ANF of Sr0 [λ] which, following the

notations in [44], can be represented as

Sr0 [λ] = P (kb, Srb) = f(x,v)

=
∑

u=(u0,...,un−1)∈Fn
2

auMu
(24)

where v = (v0, . . . , vn−1), x = (x0, . . . , xL) (L = n
2 ·(r0−rb)−1),Mu =

∏n−1
i=0 v

ui
i ,

au = au(x) ∈ F2[x0, . . . , xL] and the function P is defined as (21). We also define

P ∗(kb, Srb) = f∗(x,v) as

Ŝr0 [λ] = P ∗(kb, Srb) = f∗(x,v) = f(x,v) + a0 =
∑

u∈Fn
2 \{0}

auMu.

By analyzing the ANF of f(x,v) and f∗(x,v), we have the following observation.

Observation 2 For Simon, we divide the set of indices {0, . . . , L} into three

non-overlapping categories as follows:

1. Let X contain all the indices i s.t. the corresponding xi’s affect f∗(x,v).

Therefore, X can be defined as

X := {i ∈ [0, L] : xi ∈ f∗(x,v)}

where xi ∈ f∗(x,v) indicates that xi appears in the ANF f∗(x,v).

2. Let Lx be the set of indices l s.t. l /∈ X and the key bits xl are linear variables

of f(x,v). More formally, we define Lx as:

Lx := {l /∈ X : f(x,v) = xl + η, where η is irrelevant to xl } .
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3. The remaining indices j are all categorized as X ∪ Lx and the corresponding

key bits xj have no effect on the targeted bit.

We stress that such a categorization is suitable for all extended attacks on Simon

but we do not expect it to available elsewhere. With Observation 2, we can define

the set of index P as

P := X ∪ {l}

where l is an arbitrary element of L. Then, we can have

kb := xP .

For the correct encryptions, we have S
(i)
r0 [λ] = 0 for all i = 1, . . . , N . The correct

guess of key bits xX will ensure that Ŝ
(i)
r0 [λ] = δ for some static δ ∈ {0, 1} and

all of i = 1, . . . , N . Since xl is a linear variable of f(x,v) and l /∈ X , we know

that xl can only affect the value a0. So there must be one assignment of xl s.t.

a0 = δ. Therefore, this assignment of xl along with the correct guess of xX will

ensure that S
(i)
r0 [λ] = 0 for all i = 1, . . . , N .

The determination of kf is quite similar to that of kb. We assign the ciphertext

to v and the involved round keys Krb−1,Krb−2, . . . ,Kr2 are assigned to y =

(y0, . . . , yL′) where L′ = n
2 ·(rf −r2)−1. Then, the ANF of the targeted Γ2�Sr2

can be represented as

Γ2 � Sr2 = Q(kf , Srf ) = g(y,v)

=
∑
u∈Fn

2

cuMu

where cu = cu(y) ∈ F2[y0, . . . , yL′ ]. We also have

̂Γ2 � Sr2 = Q∗(kf , Srf ) = g(y,v) + c0 =
∑

u∈Fn
2 \{0}

cuMu. (25)

We can also divide the indices {0, . . . , L′} into Y, Ly corresponding to the X and

Lx in Observation 2. However, instead of yl‖yY (l ∈ Ly), we find that letting

kf := yY is well enough for us to acquire the final ψ parameter as is proved in

Proposition 1.

Proposition 1. Supposing that kf = yl‖yY where l ∈ Ly, then for any ζ ∈
F|kf |−12 , we have

T [yl‖ζ] = T [(yl + 1)‖ζ] (26)

and the final ψ cannot be affected by the correct guessing of yl.

Proof. As to T [yl‖ζ], we denote the set W(yl, ζ)

W(yl, ζ) =
{
i ∈ [1, N ] : Q

(
yl‖ζ, S(i)

rf

)
= 0
}
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so we have

T [yl‖ζ] =

(
|W(yl, ζ)|

2

)
+

(
N − |W(yl, ζ)|

2

)
.

According to the definition of yl, we know that yl is linear to the targeted bit

Γ2 � Srf which means

Q
(
yl‖ζ, S(i)

rf

)
= Q

(
(yl + 1)‖ζ, S(i)

rf

)
+ 1

for all i ∈ [1, N ]. Therefore, we know that

W(yl + 1, ζ) =
{
i ∈ [1, N ] : Q

(
(yl + 1)‖ζ, S(i)

rf

)
= 0
}

=
{
i ∈ [1, N ] : Q

(
yl‖ζ, S(i)

rf

)
= 1
}

=W(yl, ζ)

and |W(yl + 1, ζ)| = N − |W(yl, ζ)|. So the T [(yl + 1)‖ζ] satisfies

T [(yl + 1)‖ζ] =

(
|W(yl + 1, ζ)|

2

)
+

(
N − |W(yl + 1, ζ)|

2

)
=

(
N − |W(yl, ζ)|

2

)
+

(
|W(yl, ζ)|

2

)
= T [yl‖ζ]

which proves (26). Since ψ = max T , there is some δ ∈ F2, ζ ∈ F |kf |−12 satisfying

ψ = T [δ‖ζ] = T [(δ + 1)‖ζ].

This indicate that the assignment of yl cannot affect the final ψ value of the

extended attacks. ut

Proposition 1 make it safe for us to determine kf = yY . We show later that this

property enables us to extend the basic attack forward by 1 round for free and the

extended attacks share the same success probability PS with their corresponding

basic attacks.

4.3 The Success Probability of the Extended Attacks

When |kf | = 0 (equivalently rf = r2), the only non-zero entry of T is T [kb].

In this situation, the PS , as well as the parameter τ , of this extended attack is

equal to that of its basic counterpart.

For |kf | > 0 (rf > r2), the success probability is slightly complicated. We re-

fer to the table T corresponding to O = EK and O = π as T EK , T π respectively.
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According to [41], the maximum entries of T EK and T π, denoted by max T EK ,

max T π, follows the normal distribution as (27).

max T EK ∼ Norm(µR, σ
2
R), max T π ∼ Norm(µW , σ

2
W ) (27)

As long as we can figure out the parameters µR, µW , σR, σW , we can evaluate

the success probability PS of the extended known-key attacks using (12). The τ

parameter can be acquired accordingly as (13).

We denote the density function of of variable X ∼ Norm(µ, σ2) by fµ,σ(x)

and the cumulative function as Fµ,σ(x). There are 2|kf | non-zero entries in T ,

namely T [0], . . . , T [kf ], . . . , T [(2|kf | − 1)]. We have T EK [kf ] ∼ Norm(µ0, σ
2
0)

where

µ0 = N · (2−1 + 2−1C), σ2
0 = N · (2−2 − 2−2C2)

while the other β 6= kf satisfies T EK [β] ∼ Norm(µ1, σ
2
1)

µ1 = 2−1N, σ2
1 = 2−2N.

As to the random permutation π, the entry T π[β] ∼ Norm(µ1, σ
2
1) for all β ∈

[0, 2|kf | − 1]. Then, our targeted parameters µR, µW , σR, σW can be acquired

precisely with Proposition 2 and Proposition 3.

Proposition 2. The accumulative function of max T EK satisfies

FµR,σR
(x) = Pr

{
max T EK < x

}
= Fµ0,σ0(x) · F 2|kf |−1

µ1,σ1
(x)

and the corresponding density function is

fµR,σR
(x) = fµ0,σ0(x) ·F 2|kf |−1

µ1,σ1
(x)+(2|kf |−1) ·fµ1,σ1(x) ·Fµ0,σ0(x) ·F 2|kf |−2

µ1,σ1
(x).

The parameters µR and σ2
R can be computed as

µR =

∫ ∞
−∞

x · fµR,σR
(x)dx, σ2

R =

∫ ∞
−∞

(x− µR)2 · fµR,σR
(x)dx.

Proposition 3. The accumulative function of max T π satisfies

FµW ,σW
(x) = Pr {max T π < x} = F 2|kf |

µ1,σ1
(x)

and the corresponding density function is

fµW ,σW
(x) = 2|kf |fµ1,σ1

(x) · F 2|kf |−1
µ1,σ1

(x).

The parameters µW and σ2
W can be computed as

µW =

∫ ∞
−∞

x · fµW ,σW
(x)dx, σ2

W =

∫ ∞
−∞

(x− µW )2 · fµW ,σW
(x)dx.
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Table 3. Extended Attacks on Simonn where n = 32, 48, 64, 96, 128 and the data

complexity is N = 2n−2.

n No. rf − rb r2 − r0 r0 − rb |kb| rf − r2 |kf | PS

1 28 23 4 17 1 0 66.94%

32 2 28 23 4 17 1 0 89.25%

3 29 24 4 17 1 0 59.48%

4 30 24 5 37 1 0 100.00%

48 5 30 24 5 37 1 0 100.00%

6 31 25 5 37 1 0 99.86%

7 32 26 5 37 1 0 54.10%

8 37 31 5 38 1 0 83.63%

64 9 38 32 5 38 1 0 99.97%

10 38 32 5 38 1 0 65.46%

96 11 48 41 6 86 1 0 89.09%

128 12 63 56 6 108 1 0 89.09%

Although the deductions of these parameters are quite straight forward, the

complicated integrations are not easy to compute when |kf | > 0.

We increase the parameter r0 − rb from 1 and determine the corresponding

kb with the method in Section 4.2. In this way, we can find the maximum r0−rb
whose kb does not violates the restriction in (23).

After r0 − rb and kb are settled, we start from rf − r2 = 1 to identify the

corresponding kf .

For Simon, the situation of kf is interesting. When we have rf−r2 = 1, using

the method of Section 4.2, we have Y = φ so the corresponding kf = yY is an

empty string so that |kf | = 0 so the size of the table T is 1 and T [0] is its only

entry. Instead of computing Γ2 � Srf , we only need H defined

H(i) := H(S(i)
rf

) =
̂

Γ2 � S(i)
rf , i ∈ [1, N ]

where
̂

Γ2 � S(i)
rf is defined as (25) and it can be acquired merely with the knowl-

edge of the ciphertexts S
(i)
rf . Let m be the number of i’s satisfying H(i) = 0. The

corresponding ψ value is

ψ = max T = T [0] =

(
m

2

)
+

(
N −m

2

)
.

In this situation of rf − r2 = 1 and |kf | = 0, the extended attacks share the

same PS with their corresponding basic attacks. For rf − r2 = 2, the |kf | grows

dramatically and violates the restriction of (23), indicating a strong diffusion

of the Simon round function. Therefore, all the 12 attacks can only extend for-

ward by 1 round. After the forward extension, the success probabilities remain

unchanged.
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The parameters of the extended attacks are listed in Table 3.

4.4 A Tradeoff in the Checking Phase

For the plaintexts generated in the construction phase, the appropriate assign-

ment of kb can ensure that P (kb, S
(i)
rb ) = 0 for all i = 1, . . . , N . For the inap-

propriate assignments, this can happen with a probability 2−N . Since there are

2|kb| − 1 inappropriate assignments, the probability that one of them reaches

Step 5.(b) of the extended attacks is 2|kb|−N .

N is usually significantly larger than |kb| and it seems unnecessary for us to

use all N plaintexts to filter out all the 2|kb| − 1 inappropriate assignments. Let

M = O(|kb|) (for example M = 2|kb|, 3|kb|, . . .). Therefore, we can modify the

relation R of the extended attack as

Relation R: (S
(i)
rb )i=1,...,NR(S

(i)
rf )i=1,...,N iff there are bit strings α ∈ F|kb|2 and

β ∈ F|kf |2 conforming to:

– P (α, S
(i)
rb ) = 0 for all i = 1, . . . ,M ;

– There are more than τ out of the
(
N
2

)
ciphertext pairs (S

(i)
rf , S

(j)
rf )1≤i<j≤N

satisfying Q(β, S
(i)
rf ) = Q(β, S

(j)
rf ).

and the Step 5 of the extended attack should be changed accordingly as follows:

5. For the α = 0, . . . , 2|kb| − 1, we do the following substeps: (Checking)

(a) For all i = 1, . . . ,M , if for any P (α, S
(i)
rb ) 6= 0, then continue.

(b) Assign f← 1 and break;

The probability that an inappropriate assignment to reach Step 5.(b) is only

2|kb|−M which is still sufficiently low. But the complexity of the online phase can

be reduced significantly.

5 Practical Verifications

The complexity of Attacks 1-3 (the extended versions) on Simon32 are practical

(N = 230). So we practically implement them to verify the correctness of our

methods.

We first detail the procedure of Attack 3. For such a 29-round attack on

Simon32, we can assign

rb = 0, r0 = 4, r1 = 14, r2 = 28, rf = 29.

We assign the plaintext S0 with boolean variables v = (v0, . . . , v31) and the

subkeys K0, . . . ,K3 with x = (x0, . . . , x63). By running the partial encryption,
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we acquire the ANF of S4[23] = f(x,v). By analyzing f(x,v), we can acquire

the two sets

X = {2, 3, 4, 5, 6, 11, 12, 13, 15, 20, 21, 23, 29, 30, 38, 47}
Lx = {1, 19, 37, 55}

which are defined as Observation 2. We can define P = X ∪ {1} and kb = xP so

we have |kb| = 17.

For kf , we first assign the ciphertext S29 with boolean variables v = (v0, . . . , v31)

and the subkey K28 with y = (y0, . . . , y15). Then, the ANF of Γ2 � S29 is

Γ2 � S29 = g(x,v) = y6 + v4 + v5v14 + v8 + v22

so we have Y = φ and |kf | = 0. Therefore, for any ciphertext S
(i)
29 (i = 1, . . . , N),

we only need to compute

H(S
(i)
29 ) =

⊕
j∈{4,8,22}

(S
(i)
29 [j])⊕ (S

(i)
29 [5] ∧ S(i)

29 [14]) (28)

and compute the ψ parameter. The relation R of Attack 3 can be defined as

Relation R: (S
(i)
0 )i=1,...,NR(S

(i)
29 )i=1,...,N iff there are bit strings α ∈ F17

2 con-

forming to:

– P (α, S
(i)
0 ) = 0 for all i = 1, . . . , N ;

– There are more than τ out of the
(
N
2

)
ciphertext pairs (S

(i)
29 , S

(j)
29 )1≤i<j≤N

satisfying H(S
(i)
29 ) = H(S

(j)
29 ) where H(·) is defined as (28).

In order to acquire the highest PS , we use the maximum data complexityN = 230

and the corresponding τ = 288230376027507000 using (13). With all parameters

settled, we run Attack 3. By modifying S9[15, 8], we can nullify the S4[23] and

Γ1 � S14 = S14[0], and collect the N plaintexts S
(1)
0 , . . . , S

(N)
0 . For the appro-

priate assignment of kb, we have P (kb, S
(i)
0 ) = 0 for all i = 1, . . . , N . For the

inappropriate assignments α ∈ F17
2 , the event P (α, S

(i)
0 ) = 1 appears within 20

different i attempts as has been verified by our experiments. Therefore, it is safe

for us to set M = 3|kb| = 51 and utilize the tradeoff in Section 4.4 for lowering

the complexity of the checking phase. This tradeoff can only sacrifice the success

probability by 2|kb|−M = 2−34 which is negligible. But the running time of Step

5.(a) can lower from 230 to only 51.

With thousands of experiments, we are able to acquire the averaging Pr0 ≈
29.56% and Pr1 ≈ 78.66% where Pr0 and Pr1 are defined as (8) (9) respectively.

Since O has equal possibility to be EK or π, the experimentally acquired success

probability of this known-key attack is 54.11% according to (10), slightly lower

than that of the theoretical 59.48% but still significantly higher than 50%. This

indicates that our known-key attacks are effective.
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Table 4. The parameters for Attack 1-3 when N = 230. The column “Exp” is the

experimentally acquired success probability according to (10). The PS column is the

theoretical approximation following (12).

No. τ Pr0 Pr1 Exp PS

1 288230376139236000 45.77% 83.92% 64.85% 66.94%

2 288230376481723000 32.59% 92.80% 62.69% 89.25%

3 288230376027507000 29.56% 78.66% 54.11% 59.48%

The procedure of Attack 1 and Attack 2 are the same so we just list the

main parameters in Table 4. It is noticeable that the “Exp” of Attack 2 is

much lower than the theoretic approximation PS = 89.25% but close to the

“Exp” of Attack 1. As can be seen from Table 2, the characteristic of Attack 2

is only cyclically rotating that of Attack 1. For bit oriented Simon, these two

characteristics should be sharing the same C’s. But [25] and [23] use different

methods and give significantly different approximations on the C parameter.

The method of [25] is more of an average approximation of C while that of

[23] gives an optimistic one. Our experiments reveal that [25]’s approximation is

more suitable for practical use. Still, the 62.69% success probability of Attack 2

is significantly higher than 50% and can still be regarded as effective.

To sum up, all our experiments are showing the significant success probabil-

ities of Attack 1-3 and indicating the effectiveness of our methods.

6 Conclusion

In this paper, we develop and apply the latest known-key attacking techniques

to round-reduced Simon block cipher. Altough our procedures follow a similar

pattern as those by Blondeau, Peyrin and Wang, a number of specific methods

have been elaborated to achieve known-key distinguishers for many rounds of

Simon: Our known-key attacks are able to mount up to 29/32/38/47/63 rounds

for Simon32/48/64/96/128 respectively, which comes relatively close to the full

numbers of rounds. The security margin of Simon under the known-key model

is thus not as large as expected. Our findings do not affect the security of Simon

in a secret single-key scenario.
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