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Abstract—The reported power analysis attacks on hardware
implementations of the MICKEY family of streams ciphers
require a large number of power traces. The primary motivation
of our work is to break an implementation of the cipher when
only a limited number of power traces can be acquired by
an adversary. In this paper, we propose a novel approach to
mount a Template attack (TA) on MICKEY-128 2.0 stream cipher
using Particle Swarm Optimization (PSO) generated initialization
vectors (IVs). In addition, we report the results of power analysis
against a MICKEY-128 2.0 implementation on a SASEBO-GII
board to demonstrate our proposed attack strategy. The captured
power traces were analyzed using Least Squares Support Vector
Machine (LS-SVM) learning algorithm based binary classifiers
to segregate the power traces into the respective Hamming
distance (HD) classes. The outcomes of the experiments reveal
that our proposed power analysis attack strategy requires a
much lesser number of IVs compared to a standard Correlation
Power Analysis (CPA) attack on MICKEY-128 2.0 during the
key loading phase of the cipher.

Index Terms—Template attack, MICKEY-128 2.0 stream ci-
pher, PSO, LS-SVM, FPGA.

I. INTRODUCTION

The security of cryptosystems has traditionally been based on
mathematically proven robust algorithms. However the real
life implementations of ciphers can be analyzed to launch
power analysis attacks [1]. Such attacks can be easily launched
against a cipher’s hardware implementation using widely avail-
able standard instruments. Although an active field of research,
there are only a limited number of publications related to
power analysis attacks on stream ciphers compared to various
block ciphers and public key cryptosystems. In [2], the authors
present a Differential Power Analysis (DPA) attack on Grain
and Trivium stream ciphers where an adversary can select a
large number of initialization vectors (IVs). In [3], the authors
demonstrate a DPA attack against Grain stream cipher using
machine learning based power trace template classifications.
Some power analysis techniques against the MICKEY family
of stream ciphers have been proposed in [4], [5].
In this paper, we present a new Template attack (TA) strategy
against a hardware implementation of eSTREAM hardware
portfolio finalist MICKEY-128 2.0 stream cipher. We used
Particle Swarm Optimization (PSO) computational method
to choose IVs of the cipher in such a way that it aids in
our proposed attack technique to retrieve the secret key. The
primary motivation of our proposed power analysis strategy is
to reduce the number of resynchronizations of MICKEY-128
2.0 with different IVs so that a hardware implementation of

the cipher can be broken with a limited number of captured
power traces. We implemented MICKEY-128 2.0 cipher on
Xilinx Virtex-5 FPGA device on SASEBO-GII development
board [6]. Our proposed attack methodology is based on the
Hamming distance (HD) power model, which is a standard
model for CMOS logic based circuits. To validate our pro-
posed power analysis attack strategy, we used Least Squares
Support Vector Machine (LS-SVM) learning algorithm [7] as
an analyzer of the collected power traces.
The organization of the paper is as follows: In section II, we
provide a brief description of the MICKEY-128 2.0 stream
cipher along with its hardware implementation. We report the
results of Correlation Power Analysis (CPA) attacks on an
FPGA implementation of the cipher in section III. Section
IV describes our proposed power analysis attack strategy on
MICKEY-128 2.0 using PSO generated IVs. In section V,
we present the experimental results of our proposed attack
on MICKEY-128 2.0 using LS-SVM learning algorithm. The
final section concludes the paper.

II. BACKGROUND

In this section, we first provide a brief description of MICKEY-
128 2.0 stream cipher, followed by its implementation details
on an FPGA platform. Finally, we briefly mention some re-
ported CPA attacks on the MICKEY family of stream ciphers.
A. MICKEY-128 2.0 stream cipher
The stream cipher MICKEY-128 2.0 was designed by Babbage
and Dodd [8]. It was selected as one of the hardware ori-
ented algorithms in the final portfolio of eSTREAM project.
MICKEY stands for Mutual Irregular Clocking KEYstream
generator and it was designed for resource constrained hard-
ware platforms.
The input parameters of MICKEY-128 2.0 are (a) a 128 bit
secret key K (k0, ..., k127) (b) an initialization vector or IV
(iv0, ..., ivIV LENGTH−1) anywhere between 0 and 128 bits in
length. The cipher is composed of two 160 bit long registers:
a Linear Feedback Shift Register (LFSR) termed R and a
Nonlinear Feedback Shift Register (NLFSR) termed S. The
clocking of each register is dependent on the states of both
the registers as detailed in [8].
The structure of MICKEY-128 2.0 is shown in Fig. 1.
The stages of the registers R and S are denoted by
(r0, r1, ..., r159) and (s0, s1, ..., s159) respectively. The vari-
ables Control bit R and Control bit S are used to regulate
the clocking of the registers R and S respectively.
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Fig. 1. Hardware realization of MICKEY-128 2.0 stream cipher.

B. Related Works

In [5], the authors have outlined a Differential Power Analysis
(DPA) attack technique against a MICKEY-128 cipher imple-
mentation in eSARGOt ASIC. A detailed study of various
methodologies based on combinations of different intermediate
values, power models and statistical analyses are presented in
the work. In another hypothetical CPA attack on MICKEY
v2 [4], the authors have considered the basic structure of
MICKEY v2 as combinations of two and three input XOR
gates and have provided some simulated results. In the next
section, we present the results of a CPA attack mounted on an
FPGA implementation of MICKEY-128 2.0 based on the HD
power model, which is suitable for CMOS logic circuits.

III. CPA ON AN FPGA DESIGN OF MICKEY-128 2.0

Unlike block ciphers, power analyses of stream ciphers usually
require to capture the leakage associated with several consec-
utive clock cycles or rounds of operations rather than targeting
a particular round. In a standard CPA framework against
a stream cipher, an adversary resynchronizes its hardware
implementation with several different Initialization Vectors
(IVs) for a fixed secret key to obtain a sufficiently large
number of power traces.

A. Attack Strategy
To execute a CPA attack, an adversary needs to focus on
specific register(s) and find an interesting time interval where
the register contents vary depending upon secret key bits. We
targeted the registers R and S of MICKEY-128 2.0 during
the key loading phase as the updates of both these registers
are dependent on the input key bits. We used the Hamming
distance (HD) power model to simulate the dynamic power
consumption of the cipher implementation. At a particular
clock cycle, a single key bit was targeted by randomly varying
IVs for a fixed secret key as outlined in [5]. Once a key bit was
determined from the correlation profile, the subsequent key
bit was targeted using the same procedure. We can repeat this
attack strategy for different key bit loading rounds to recover
entire 128 bits of the secret key.

B. Attack Results
We mounted a CPA attack on a MICKEY-128 2.0 implemen-
tation in Virtex-5 FPGA of SASEBO-GII board targeting two
randomly selected key loading cycles (1st and 64th key bits).
In our experimental setup, a higher power consumption results
in dips towards negative direction for the captured power
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Fig. 2. Number of measurements vs. Correlation Coefficient targeting 64th

key bit using random IVs.

profiles. Therefore, in the correlation plots a more negative
profile corresponds to the correct key bit. We noticed that
with a few number of power traces, the correlation profiles
of the correct and the wrong key bit guesses are hardly
distinguishable. But, with an increase in the number of traces
we observed a sharp distinction between the two correlation
profiles at the interesting point. From our experiments, we
observed that for the 1st key bit loading round 1000 power
traces were sufficient. On the other hand, while targeting the
64th key bit loading, around 3000 power traces were required
to clearly distinguish between the correct and wrong key bit
guesses. In Fig. 2, we have plotted the values of correlation
coefficients at the interesting point against the number of
power traces captured by randomly varying the IVs targeting
the 64th key bit. The correlation profiles corresponding to
correct and wrong key bit guesses are plotted in blue and red
respectively. In the next section, we propose a new chosen-IV
Template attack (TA) strategy which requires a much lesser
number of IVs to retrieve the secret key of MICKEY-128 2.0
stream cipher.

IV. PROPOSED ATTACK ON MICKEY-128 2.0

The primary motivation of our proposed power analysis attack
strategy is to retrieve the secret key of MICKEY-128 2.0 with
a limited number of power traces. As seen from the results
of the CPA attack in section III, around 3000 different IVs
are required to distinguish between correct and wrong key bit
guesses. To reduce the number of such resynchronizations of
MICKEY-128 2.0, we propose a Particle Swarm Optimization
(PSO) based IV selection procedure. In this section, we first
provide a brief overview of the PSO methodology, followed
by detailed descriptions of the hypothetical power model
considered and our proposed power analysis attack against
MICKEY-128 2.0 stream cipher.

A. Particle Swarm Optimization
Particle Swarm Optimization (PSO) is a population based
stochastic technique which optimizes a formulation through
generations with regard to a given measure of quality [9].
In PSO, a population of particles is initialized with random
positions which move around the search-space in quest for
optimum by updating themselves through iterations. Each
particle’s movement is influenced by the position vector of
the best solution it has achieved its so far (called local
best) and the position vector of the best solution achieved
by any particle in the swarm so far (called global best).



Such movements of several particles across the search-space
is expected to attain an optimal solution for the problem being
considered. The PSO computational method can be applied on
optimization problems that are partially noisy or change over
time. A drawback of metaheuristics like PSO is that it does not
guarantee an optimal solution is found. However, in context to
our proposed attack strategy against MICKEY-128 2.0 using
PSO based IV selections, we only require to find solutions
above a certain threshold (predetermined margin as defined in
section IV-B), which may or may not be an optimum value.

B. Hypothetical Power Model
We considered the Hamming distance (HD) power model to
estimate the power consumption of a CMOS based implemen-
tation of MICKEY-128 2.0 stream cipher. The overall power
consumption during the key loading phase of the cipher can
be modeled using the following expression:

P = PRcomb + PScomb +

159∑
i=0

PRi +

159∑
i=0

PSi + σ

where, PRcomb
, PScomb

, PR, PS and σ denote the power
consumptions of the combinational circuits associated with the
register R, combinational circuits associated with the register
S, stages of the register R, stages of the register S, and
implementation independent noise respectively. In our attack
strategy, we considered the power dissipation due to the stages
of registers R and S only as they are the dominating power
contributing components.
We define predetermined margin (PM) as the minimum dif-
ference between any two HD classes that can be distinguished
using preconstructed power trace templates from a cipher’s
hardware implementation.
The value of PM can be set by an adversary depending upon
the noise characteristics of the captured power traces. If the
noise levels are high, then it would be difficult to distinguish
between two close HD values from the power templates. In
such a case the adversary must set high values of PM to
correctly identify the HD classes. On the other hand, if the
influence of noise in the collected power traces are low, small
values of PM would be sufficient. In our proposed power
analysis technique, the parameter PM has a direct correlation
with the number of IVs required to mount a Template attack
(TA) on MICKEY-128 2.0 stream cipher.

C. Attacking with PSO based IV selections
In this subsection, we provide a detailed description of a
chosen-IV power analysis attack strategy on MICKEY-128 2.0
using PSO based computational method.

1) PSO formulation: Each particle consists of an n bit
binary array, n being equal to the length of IV. A ‘1’ in the
kth bit of the array indicates that the kth IV bit is 1, whereas
a ‘0’ in the kth bit signifies that the kth IV bit is 0. In case
of MICKEY-128 2.0, since the n bit IV and the 128 bit secret
key are loaded bit by bit, the total number of transitions in
the registers R and S in the ith round of key loading phase
is a function of already loaded n bits of the IV, the preceding
i− 1 retrieved key bits and the unknown ith key bit itself.
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Fig. 3. Number of measurements vs. Correlation Coefficient targeting 64th

key bit using PSO generated IVs.

In our formulation, the value of fitness function f(p) for a
particle p in the swarm during the ith round of key loading
can be expressed as follows:

f (p) = |(HD i
R(p) + HD i

S(p))key bit guess 0

−(HD i
R(p) + HD i

S(p))key bit guess 1 |

where, HDi
R(p) and HDi

S(p) denote the HDs of registers R
and S respectively for the particle p during the ith round of
key loading phase. The value of f(p) denotes the absolute
difference between the sums of the aforementioned HDs for
different guesses of the targeted key bit. For our experimen-
tations, we initially generated 128 bit long random IVs (i.e.,
n = 128) for each particle in the swarm and the corresponding
fitness values were evaluated. The local best of each particle
was initialized with the corresponding IVs from the randomly
generated population (typically of size 1000). The global best
for the first generation was initialized with the particle having
the maximum value of fitness function in the swarm for the first
key bit loading round. The second generation was obtained
through applications of sequences of swap operations, which
determines the velocities with which different particles of the
swarm approaches the optimum solution [10]. The local best
of individual particles and the global best were updated if
their values in the current generation were higher than their
corresponding values in the prior generation. The objective of
our formulation was to maximize the value of fitness function
such that it can be exploited to mount a power analysis attack
on MICKEY-128 2.0. The process of updating the local best
and global best solutions was repeated for several generations
till a global best solution with the fitness value above the
adversary specified PM was obtained.

2) Application to CPA attack: A CPA attack can be
mounted on MICKEY-128 2.0 with a low number of traces if
such PSO generated IVs are used as the correlation profiles for
the correct and wrong key bit guesses would be significantly
different. In Fig. 3, we have plotted the correlation coefficient
values at the interesting point by varying the number of
measurements for PSO chosen-IVs with PM set to 30 and
targeting the 64th key bit. It was observed that about 500 traces
were sufficient to distinguish between the right and the wrong
key bit guesses in this case, compared to the requirement of
about 3000 traces if the IVs were varied randomly for the
same secret key. A certain fraction of the PSO generated
IVs targeting a particular key bit will produce fitness values
more than PM for the subsequent key loading rounds as
well. However, for mounting a successful CPA attack in those



rounds might require the generation of additional IVs using
PSO depending upon the magnitude of PM specified.

Algorithm 1: Attack algorithm on MICKEY-128 2.0 with
PSO chosen-IVs

Input: predetermined margin: PM , Power trace templates: POWtemplates

Output: 128 bit secret key

1 IV pool = φ ; /* Contains a pool of PSO generated IVs */
2 for i = 1 to 128 do
3 flag = 0 ;
4 if (i > 1) then
5 for IV ∈ IV pool do
6 Clock the cipher with IV and the preceding i− 1 key bits ;
7 if (fitness function > PM) then
8 Determine the ith key bit using POWtemplates ;
9 flag = 1 ; /* No new IV generation required */

10 break ;
11 end
12 end
13 end
14 if (flag = 0) then
15 Generate a new IV using PSO targeting the ith key bit loading round ;
16 Determine the ith key bit using POWtemplates;
17 Add IV to IV pool;
18 end
19 end

3) Application to Template attack: An adversary can suc-
cessfully deduce the secret key with a limited number of power
traces using PSO generated IVs and power trace templates as
outlined in Algorithm 1. We constructed power trace templates
for different HD values of a MICKEY-128 2.0 implementation
(under the hypothetical power model considered) as outlined
in Algorithm 2. Subsequently, we used LS-SVM learning
algorithm to classify the power traces captured during attack
phase for determining the secret key bits.
At first, an IV was generated using the aforementioned PSO
formulation with a value of fitness function above PM for the
1st key bit loading round. The cipher was then clocked with
the PSO generated chosen-IV and the secret key loaded bit
by bit. The power trace during the entire key loading phase
of the implementation was captured. Subsequently, the 1st bit
of the secret key was determined by matching power trace of
the corresponding round with the set of preconstructed power
trace templates. It is to be noted that for the chosen-IV, a value
of fitness function above PM for the 1st key bit loading round
empowers an adversary to easily distinguish between the HD
classes due to the key bit guesses 0 and 1 using the power
templates. Once the 1st key bit was successfully determined,
the 2nd key bit loading round was targeted. In this phase,
at first it was checked whether the prior PSO generated IV
produced a fitness value above PM for the current targeted
round also. If the outcome was positive, then no new IV
generation was further required for the 2nd key bit loading
round, else a new IV was generated using the PSO formulation
described earlier. This process was continued until all the 128
key bits were successfully recovered or a sufficiently large
number of key bits were determined such that the remaining
key bits can be retrieved by a brute force search. To devise
our proposed attack strategy, we exploited the fact that the
HDs between consecutive states of MICKEY-128 2.0 vary as
a function of IV and the already loaded key bits during the
key loading phase of the cipher.

TABLE I
NUMBER OF DIFFERENT PSO GENERATED IVS VS. predetermined margin

(PM) TO RECOVER THE ENTIRE 128-BIT KEY

predetermined margin Number of different IVs
key1 key2 key3 key4 key5

5 4 5 4 5 4
10 7 8 9 9 9
15 12 14 13 13 15
20 27 24 25 26 24
25 37 38 41 43 42
30 71 69 70 70 72

A PSO generated IV might produce values of fitness function
above a specified PM for several key bit loading rounds of
MICKEY-128 2.0 cipher but usually not for all the targeted
rounds. In Table I, we summarize the simulation based results
to estimate the number of PSO generated IVs required to
recover the entire 128 bit key against various PM values for
5 different, randomly selected keys. It is quite evident that
with an increase in PM, more number of PSO generated IVs
are required to ensure that for every key bit loading clock
cycles there is at least one IV which produces a value of fitness
function above PM.
In actual power traces there are significant influences of
various noise elements. This may lead to a wrong key recovery
due to errors in power template matching. To enhance the
confidence of a correct key recovery using our proposed attack
strategy, we have considered a majority voting scheme in
subsection V-A such that every key bit is determined by
multiple PSO generated IVs.

V. EXPERIMENTAL RESULTS

In this section, we report the results of experimentations to
demonstrate our proposed attack strategy against MICKEY-
128 2.0 stream cipher. We first provide a detailed description
of the techniques adapted to mount our proposed power
analysis attack and then, we report the results based on power
traces collected from an actual chip implementation.

A. Power Analysis of MICKEY-128 2.0 using LS-SVM

Support Vector Machines (SVMs) are powerful supervised
learning models for data analysis and pattern recognition. They
are widely used for problems of classification and regression
analysis. The Least Squares Support Vector Machine (LS-
SVM) was originally proposed by Suykens and Vandewalle
in [7]. LS-SVM is a kind of kernel based learning method in
which a solution is obtained by solving a set of linear equations
instead of convex quadratic programming problems as solved
by conventional SVMs.
In order to demonstrate our proposed power analysis strategy
against MICKEY-128 2.0, we used LS-SVM based classifiers
to classify the actual power traces corresponding to different
HD classes. We implemented LS-SVM supervised learning
classifiers using LS-SVMlab 1.8 [11].
In a standard template attack (TA) [12], an adversary first
constructs multivariate Gaussian templates of noise within
the collected power traces for all possible HD classes. This
preliminary step is also termed as the profiling phase. In the
subsequent characterization phase, the attacker classifies a
new power trace by calculating multivariate Gaussian prob-
ability density functions for all the templates and applying



TABLE II
NUMBER OF DIFFERENT PSO GENERATED IVS VS. predetermined margin (PM) TO RECOVER THE ENTIRE 128-BIT KEY WITH majority voting SCHEME.

PM
Number of different IVs

key 1 key 2 key 3 key 4 key 5
VS 3 VS 5 VS 10 VS 3 VS 5 VS 10 VS 3 VS 5 VS 10 VS 3 VS 5 VS 10 VS 3 VS 5 VS 10

5 10 11 22 9 14 22 8 13 23 9 12 22 8 12 21
10 17 28 41 18 25 43 18 23 42 19 23 45 17 22 42
15 28 37 65 26 36 65 23 42 71 26 42 62 26 41 69
20 64 87 146 59 75 159 59 83 151 55 80 145 57 86 149
25 94 150 254 102 128 265 93 159 255 98 150 267 105 151 254
30 206 328 634 203 315 628 201 332 630 199 312 641 204 320 635

maximum likelihood approach. This technique thus relies on
the assumption of a particular noise model to mount a success-
ful attack. To overcome this issue, recent works suggest a noise
distribution independent SVM based approach as one of the
most promising alternatives [13], [14], [3]. In [14], the authors
introduce probabilistic multi-class SVMs and also show that
SVM based template attacks outperform conventional TAs
when the noise levels are significantly high in the collected
power traces. In [3], the authors present a DPA on Grain v1
using the LS-SVM learning algorithm.
To mount our proposed power attack on MICKEY-128 2.0,
an adversary needs to identify the HD classes corresponding
to captured power traces using preconstructed power trace
templates. We employed Algorithm 2 to determine the HD
classes for which power traces should be collected in the
profiling phase. The captured power traces would then be
utilized to train the LS-SVM classifier.

Algorithm 2: Determining HD classes required to train
LS-SVM classifier

Input: predetermined margin: PM , number of simulations: N , targeted key
loading round: K

Output: HD classes to construct power trace templates: HDtemplate classes

1 for i = 1 to N do
2 Clock MICKEY-128 2.0 with a 128 bit random IV ;
3 Clock the cipher for K − 1 more rounds for a randomly generated key ;
4 Compute (HDK

R +HDK
S )key bit guess 0 and

(HDK
R +HDK

S )key bit guess 1 ;
5 if (|(HDK

R +HDK
S )key bit guess 0

6 −(HDK
R +HDK

S )key bit guess 1| 6 PM ) then
7 i = i− 1 ; /* Discard the randomly generated key-IV pair */
8 end
9 else

10 Add both (HDK
R +HDK

S )key bit guess 0 and
(HDK

R +HDK
S )key bit guess 1 to HDtemplate classes;

11 end
12 end

We generated 10000 HD class pairs and stored them in
HDtemplate classes; for each pair, one HD class corresponded
to a key bit guess 0 and the other corresponded to a key bit
guess 1 for the Kth round of key loading. The HD classes
belonging to a pair were separated by a magnitude greater
than predetermined margin (PM) to ensure that they can be
segregated from actual power traces. For our experiments, we
set the values of PM and K to 30 and 1 respectively. We
obtained the plot as shown in Fig. 4, where, higher HD and
lower HD are defined as follows:

A = (HDK
R +HDK

S )key bit guess 0

B = (HDK
R +HDK

S )key bit guess 1

higher HD = max(A,B)
lower HD = min(A,B)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
110

120

130

140

150

160

170

180

190

200

210

Number of simulation trials

H
a
m

m
in

g
 d

is
ta

n
c
e
 v

a
lu

e
s

 

 

higher HD lower HD boundary

Fig. 4. Selection of boundary to partition HD classes for a PM=30.

Fig. 5. Training data set for LS-SVM based binary classifier

From the nature of the plot, we selected HD value 160 as the
boundary value to partition the training HD classes into two
distinct sets: (i) higher HD class and (ii) lower HD class. It
is to be noted that since the total length of the register stages
in MICKEY-128 2.0 is 320, the frequencies of occurrences of
HD classes around mid-value of 160 is expected to be much
higher than the extremal values. Therefore, with PM set to
30 we devised a LS-SVM based binary classifier to classify a
power trace belonging to either a higher HD class or a lower
HD class. Since the values of the HD classes corresponding
to the key bit guesses 0 and 1 are calculated beforehand, the
classification outcome of an unknown power trace determined
the value of the key bit in the targeted round. However, with
lower PM values an adversary needs to employ LS-SVM based
multiclass classifiers [3] depending upon the frequencies of
HD classes occurring.
We constructed a training data set consisting of 10000 aligned
power traces corresponding to higher HD and lower HD
classes with known key-IV pairs (using Algorithm 2). Each
of the training HD classes consisted of 5000 power traces
as shown in Fig. 5. After forming the training data set, an
adversary can deduce the secret key using PSO generated IVs
as outlined in Algorithm 1.
However, a power trace collected from actual experimental
setup is disturbed by various noise elements and this may lead
to faulty classifications. Therefore, to increase our confidence
of a successful key bit recovery, we employed a majority
voting scheme where multiple number of PSO generated IVs



TABLE III
RESULTS OF RBF KERNEL BASED CLASSIFICATIONS FOR ROUND 1.

No. of features SR for different parameter combinations
γ = 1, σ2 = 0.1 γ = 1, σ2 = 1 γ = 10, σ2 = 0.1 γ = 10, σ2 = 1

1 90 90 90 90
2 90 90 80 90
3 80 90 70 90
4 80 90 80 90
5 70 90 70 80

TABLE IV
RESULTS OF RBF KERNEL BASED CLASSIFICATIONS FOR ROUND 64.

No. of features SR for different parameter combinations
γ = 1, σ2 = 0.1 γ = 1, σ2 = 1 γ = 10, σ2 = 0.1 γ = 10, σ2 = 1

1 20 10 20 20
2 20 20 20 20
3 90 30 90 40
4 100 90 100 90
5 100 90 100 90

decide the value of each key bit. As evident, with inclusion of
majority voting scheme, the number of different IVs required
to resynchronize the cipher operation increases. We denote the
minimum number of PSO generated IVs per key loading round
considered for majority voting by a parameter vector size (VS).
In Table II, we report the simulation based results for the total
number of PSO generated IVs required for different PM and
VS values to entirely recover the 5 randomly selected keys (as
used in Table I) after incorporating the majority voting scheme.
Also for our experimentations, we considered the mean value
of every 10 power traces for a particular chosen IV to further
reduce the effect of noise. Similarly, we took means of every
10 power traces belonging to the same training HD class and
hence, the size of the training set was transformed to 1000
mean traces.

B. Attack Results on SASEBO-GII

Our experimental setup consisted of a SASEBO-GII evaluation
board [6], a Tektronix digital oscilloscope DPO 4034B and a
PC. We implemented the cipher and control modules on Xilinx
Virtex-5 (XC5VLX50) and Xilinx Spartan-3A (XC3S400A)
FPGAs of SASEBO-GII respectively. The Virtex-5 FPGA was
operated at 2 MHz clock frequency and the power traces were
captured at a sampling rate of 2.5 GSa/s. We used LS-SVM
classifier to analyze the power traces.

1) Feature Selection: In a captured power trace, the major-
ity of sample points do not contain any valuable information
regarding the targeted register updates of MICKEY-128 2.0
and hence represent noise. We used Pearson’s correlation
coefficient metric to select the most relevant components of
the power traces. Such a feature selection technique helps to
reduce the computational burden of a classifier as well as it
avoids training the classifier with wrong data set features.

2) Results of classifications: In Tables III and IV, we report
the results of LS-SVM based binary classifications targeting
two randomly selected key loading clock cycles (1st and 64th

round) with PM set to 30. We used RBF kernel-based LS-SVM
classifiers with hyperparameter combinations of γ ∈ {1, 10}
and σ2 ∈ {0.1, 1}. In addition, we employed the majority
voting scheme so that the value of each targeted key bit is
determined by the majority outcome of 10 such PSO chosen-
IVs. By success rate (SR) we refer to the percentage of IVs
out of 10 that produce the correct key bit prediction using
the classifier. From the results of the experiments based on

various combinations of the RBF kernel hyperparameters, it
can be stated that by selecting a suitable number of fea-
tures an adversary can successfully attack a MICKEY-128
2.0 implementation using our proposed method. However,
the success rate of classifications using LS-SVM learning
algorithm depends on the quality of power traces collected.
If high noise levels are associated with the collected power
traces, then the aforementioned majority voting scheme should
be incorporated.

VI. CONCLUSIONS

In this paper, we presented a new Template attack strategy
against MICKEY-128 2.0 stream cipher. We used PSO com-
putational method to generate IVs for power analysis of the
cipher. The primary advantage of our proposed technique is
that it empowers an adversary to attack a hardware imple-
mentation of MICKEY-128 2.0 using a limited number of
resynchronizations of the cipher with different IVs. At first,
we performed a standard CPA attack targeting an arbitrarily
chosen key loading round and observed that around 3000
random IVs were required, whereas using PSO generated IVs
around 500 power traces were sufficient. Finally, we proposed
a Template attack on MICKEY-128 2.0 using PSO selected
IVs and preconstructed power trace templates using a limited
number of power traces. To demonstrate our proposed method,
we used LS-SVM based binary classifiers as an analyzer of
the captured power traces from an FPGA implementation of
the cipher.
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